
Deegen: A LLVM-based Compiler-Compiler
for Dynamic Languages

Stanford University

Haoran Xu
haoranxu@stanford.edu

Fredrik Kjolstad
kjolstad@cs.stanford.edu

mailto:haoranxu@stanford.edu
mailto:kjolstad@cs.stanford.edu

Dynamic Languages

● High productivity thanks to dynamic typing.
● But also poor runtime performance on a naive VM implementation.
● And building a good VM is hard…

Writing a good VM is hard

Heavyweight
Opt. JIT FTL

Lightweight
Opt. JIT DFG

Baseline JIT

tier-up

tier-up OSR-exit

Interpreter
LLInt

OSR
exit

tier-up

JavaScriptCore
(in Safari)

Optimizing JIT
TurboFan

Baseline JIT
Sparkplug

tier-up OSR-exit

Interpreter
Ignition

tier-up

V8
(in Chrome)

Optimizing JIT
WarpMonkey

Baseline JIT

tier-up OSR-exit

Interpreter

tier-up

SpiderMonkey
(in Firefox)

* OSR-exit: the process of bailing out from speculatively optimized JIT’ed code and
fallback to interpreter / generic JIT’ed code, also known as deoptimization

Can we use LLVM?

● Obviously, I’m not the first to have this idea
○ Unladen Swallow (for Python, inactive since 2010)

○ Rubinius (for Ruby, inactive since 2020)

○ LLVMLua (for Lua, inactive since 2012)

○ …
● Many attempts, but limited outreach to mainstream use
● Why?

The Problems

● LLVM compilation is slow
○ But for a JIT, fast compilation is critical

Even worse, some are
fundamentally undoable at
LLVM IR level without major
changes to LLVM!

● No direct support for the important domain-specific optimizations
○ Inline Caching / Self-Modifying Code (dynamic patching)

○ Dynamic Type Related Optimization
○ Tiering-up / OSR-Exit
○ …

Core Idea

● Do not use LLVM as a compiler
● Use LLVM as a compiler-compiler!

LLVM as a compiler-compiler

Bytecode Semantic
Description in C++
(single source of truth)

At build time,
Deegen takes as input

DONE

DONE

IN PROGRESS

FAR FUTURE

(if possible at all)

Heavyweight
Optimizing JIT

Lightweight
Optimizing JIT

Baseline JIT

tier-up

tier-up OSR-exit

Optimized Interpreter

OSR
exit

tier-up

Ultimate Goal
JavaScriptCore-like
four-tier architecture

automatically generates

LuaJIT Remake

● Standard-compliant VM for Lua 5.1
● Bytecode execution engine generated automatically by Deegen

○ Optimized interpreter
○ Baseline JIT compiler

● VM design not identical
○ Most importantly, we have inline caching optimization (powered by Deegen)

Performance Summary

● Interpreter-only performance
○ 31% faster than LuaJIT interpreter, 179% faster than PUC Lua

● Baseline JIT compilation cost
○ Negligible (19 million Lua bytecode/s)

● Baseline JIT performance
○ 34% slower than LuaJIT optimizing JIT, 360% faster than PUC

Lua

Bytecode Semantic Definition Example

Deegen API Defined by user, but understood by Deegen

Bytecode Semantic Definition Example, Continued

Arbitrary runtime call,
not understood by Deegen

Deegen API
Control transfers to continuation
functor when call returns

Bytecode Specification Language

Deegen understands the type system,
and will do optimizations using this info

Also supports static quickening
based on type assumption (not shown)

User-Friendly Bytecode Builder API

Actual
Disassembly
of AddVV
bytecode

The Baseline JIT Tier

● Completely free for a language implementer:
○ No additional input required.
○ Everything generated automatically from the bytecode semantics.

● Features:
○ Extremely fast compilation speed
○ Good machine code quality (under design constraints of baseline JIT)
○ Almost all optimizations used in JavaScriptCore’s baseline JIT

The Baseline JIT Tier

● Generated automatically via a sophiscated build-time pipeline

The Baseline JIT Tier

● Use Copy-and-Patch to generate code.
● Inline Caching as the only high-level optimization

○ As it is the only high-level optimization that can be performed without
sacrificing startup delay

● However, many low-level optimizations
○ Runtime-constant propagation (aka, binding-time analysis)
○ Self-modifying-code-based IC implementation for best perf
○ Inline Slab optimization for IC
○ Hot-cold splitting
○ Tail-jump elimination
○ …

Baseline JIT Architecture (except Inline Caching)

Example: generated code for Add

Closure Thoughts

● What is Deegen’s #1 contribution?
○ Research novelty? Definitely a contribution, but not #1 IMO…

● What is LLVM’s #1 contribution to the world?
○ The engineering that puts together decades of compiler research

into a reusable infrastructure for static languages
● … that’s also the story I dream for Deegen …

○ The engineering that recollects the $$$$ lessons of JSC, V8, …
into a reusable infrastructure for dynamic languages

○ Very hard, still very far away, but we are at a good start :)

Extra Slides

Inline Caching

● “The most important optimization” —JavaScriptCore dev
● Key observation: certain values can be well-predicted

○ For code f(), “f” likely holds the same function
○ Many objects are used like C structs, so a property access site (e.g.,

“employee.name”) likely to see objects with the same “structure”.
● Cache the seen value and computation result at use site (“inline” caching)
● If next time we see the same value, can skip redundant computation

○ For call, can skip the check that the object is indeed a function, and the
load of the code pointer from the function

○ For object property access, combined with hidden class, can skip the
hash table lookup and directly know where the property is

Inline Caching in Deegen

● Deegen understands calls, but not objects
○ Object semantics drastically differ per language
○ Impossible to provide a generic and ideal implementation
○ So should not be hardcoded by Deegen

● Call inline caching
○ Automatic in Deegen, no user intervention

● Object property inline caching
○ Achieved by Generic Inline Caching API
○ Requires user to use the API to express IC semantics

Generic Inine Caching API

Generic Inine Caching API

● Idea: use C++ lambda to represent computation
● Body lambda

○ Represents the overall computation
● Effect lambda

○ Defined inside the body lambda, can have multiple
○ Represents an effectful computation

● That is, all computation in the body lambda must be idempotent. Effectful
computation must be done within an effect lambda.

Inline Caching Example: TableGetById

● TableGetById
● Get a fixed string property from the table
● e.g., employee.name, animal.weight
● One of the most common operations on object.

The Body Lambda

Two Effect Lambdas

Value defined in body lambda
 Treated as result from
 idempotent computation

Value defined outside,
sees fresh value every time

TableGetById: Interpreter Logic Disassembly
__deegen_interpreter_op_TableGetById_0_fused_ic_3:
 pushq %rax
 movzwl 2(%r12), %eax # decode the src slot from bytecode
 movq (%rbp,%rax,8), %r9 # load the src TValue from stack
 cmpq %r15, %r9 # check if it is a heap entity
 jbe .LBB5_9 # if not, branch to slow path (omitted)
 movzwl 6(%r12), %r10d # Decode the dst slot from bytecode
 movl 8(%r12), %edi
 addq %rbx, %rdi # Get metadata struct (holding the inline cache for this bytecode)
 movl %gs:(%r9), %ecx # Load hidden class (safe as we have checked it’s a heap entity)
 cmpl %ecx, (%rdi) # Check if inline cache hits
 jne .LBB5_5 # If not, branch to slow path (omitted)
 movslq 5(%rdi), %rax # IC directly tells us the slot holding the property in the object
 movq %gs:16(%r9,%rax,8), %rax # Load that slot in the object
 movq %rax, (%rbp,%r10,8) # Store the result back to dst slot in the stack frame
 movzwl 12(%r12), %eax # Dispatch to next bytecode
 addq $12, %r12
 movq __deegen_interpreter_dispatch_table(,%rax,8), %rax
 popq %rcx
 jmpq *%rax

Baseline JIT Inline Caching Design

Further Reading

● My Blog:
○ sillycross.github.io

● Blog post titles:
○ Building the fastest Lua interpreter automatically
○ Building a baseline JIT for Lua automatically

● LuaJIT Remake Github repo:
○ https://github.com/luajit-remake/luajit-remake

