
© 2023 Bloomberg Finance L.P. All rights reserved.

Large scale deployment of
libTooling derived tools

2023 US LLVM Developers’ Meeting
October 11, 2023

Vaibhav Yenamandra & Konstantin Romanov
Software Engineers
Static Analysis and Automated Refactoring team

© 2023 Bloomberg Finance L.P. All rights reserved.

Hello LLVM!

● We are Vaibhav Yenamandra and Konstantin Romanov
● Work in the Static Analysis and Automated Refactoring team
● Part of Developer Experience (DevX) @ Bloomberg

© 2023 Bloomberg Finance L.P. All rights reserved.

What is the plan for today?

● Motivation
○ Why static analysis pipelines?
○ Source code at Bloomberg
○ What kinds of tools do we want?

● Example workflows
○ What was needed
○ Our solution
○ Challenges

● Questions

© 2023 Bloomberg Finance L.P. All rights reserved.

Source Code at Bloomberg

● Bloomberg has hundreds of millions of lines of C, C++ source code
● Our C++ code changes constantly

○ 15K+ PRs merged weekly
○ 4K+ source packages published weekly
○ 1.7M+ packages built weekly (includes dependency rebuilds)

● Most of our modern code lives in Git
○ Leverages one or more CI/CD solutions
○ CMake
○ Makefile

● Code is built together in a consistent “distribution”
● Statically-linked targets where it matters
● Internal libraries and middleware

© 2023 Bloomberg Finance L.P. All rights reserved.

Why Static Analysis Pipelines

● Need a structured way to introduce tooling
● Failed PRs are better than runtime errors
● Centrally understand “the codebase”

What kinds of tools do we use?

● Emit diagnostics
○ clang++ , g++ -Werror for compiler upgrades
○ clang-tidy

● Emit patches
○ clang-tidy
○ Automatic feature toggle retirement
○ Automatic #include fixer

● Offline analysis
○ Capturing call-graphs & dependencies between functions
○ Infer RW-ness of pointer params
○ Static application security analysis

© 2023 Bloomberg Finance L.P. All rights reserved.

Example: Gating Package Releases

© 2023 Bloomberg Finance L.P. All rights reserved.

Gating Package Releases

● Code is built together in a consistent “distribution”
● All published packages are checked

○ Contents inspected
○ Check for potential regressions

● Releases gated on check outcome
● Need real-time, parallel checks

○ Missing deadlines holds up package release
○ Might have custom compute for checks
○ Publish pipeline needs to be light

Precompute
Checks

Query Checks

Package Release Workflow

Ingest
Source Code

Run Tools
(Remote Execution)

Dispatch Jobs

Analysis Results

User
Promotes
Package

Configure
+

 Build

Dependency
Graph Rebuilds Run Checks Finalize

post-build hook

REST

© 2023 Bloomberg Finance L.P. All rights reserved.

Ingesting Source Code

compile_
commands.json

Traverse
Include Graph

Create
Standalone

Archive

Normalize
Compilation

Database Paths

Annotate
and

Enqueue Archive

© 2023 Bloomberg Finance L.P. All rights reserved.

Dispatch and Analysis

Source Archive Matrix with
“fast” tools

BuildGrid Remote Execution

Job

Job

Job

…

platform=foo

cluster=bar

Store
Results

Challenges

● Parsing effort is duplicated
● Regression metrics: Diagnostics are hard to trace
● Consistency of distributed source code and diagnostics

© 2023 Bloomberg Finance L.P. All rights reserved.

Example: Feature Toggle Retirement

Feature Toggle Retirement

● Code, feature sets advance rapidly
● Desirable to control new features

○ Granular on-switches
● Centrally managed

○ Each switch must be registered with a end-date
○ Scope of deployment set on registration
○ Can be retired early by developers

● Feature switches are perfect for automatic removal
○ Values are runtime boolean constants
○ Usually have well known end of life
○ In C++ code each switch has one distinct accessor

Example Code Transformation

#include <feature_1234.h>

// void process_workflow_foo() {

if (have_feature_1234()) {

 // Code that uses this feature ...

}

#include <feature_1234.h>
#include <feature_5678.h>

// void process_workflow_bar() { ...
if (have_feature_1234() &&
 have_feature_5678()) {
 // Extra work
}

// void process_workflow_foo() {

{

 // Code that uses this feature ...

}

Before removal After removal of feature_1234 == true

#include <feature_5678.h>

// void process_workflow_bar() { ...
if (have_feature_5678()) {
 // Extra work
}

© 2023 Bloomberg Finance L.P. All rights reserved.

The Tool

Locate

AST Matchers

clang::PPCallbacks

Replace

Expand
Source Locations

Generate
Replacements

Source Archive

Source Code

compile_commands.json

Retired switch manifest

Recursive AST Matchers for Control Structures

ignoringParenImpCasts(

 callExpr(callee(isBoolFeatureFn()),

 hasArgument(

 0,

 ignoringParenImpCasts(

 unaryOperator(

 hasOperatorName(“&”),

 hasUnaryOperand(

 declRefExpr(to(varDecl().bind(“featureVarDecl”)))

)

))));

if(have_feature_7())

if(!have_feature_7())

have_feature_7() ? foo() : bar()

have_feature_7() && something

have_feature_7() || something

Matches

© 2023 Bloomberg Finance L.P. All rights reserved.

Queue
Manifest

Puller

Run Tool
+

clang-apply-replacements

Job Batcher

Source
Code

Design – Feature Toggle Retirement

Retired Switch
Manifest

User
Git Repositories

Automatic rebasing

Patch Service

automatic
pull requests

Code Formatting

Rate Limiting

Challenges: Replacing Test Code
#include <test/framework.h>

#include <feature_1234_override.h>

TEST_CASE(Suite, TestFeature1234Works) {

 // Check positive case

 override_feature_1234(true) // Default is true => this line is

safe to remove.

 run_some_code();

 // Check negative case

 override_feature_1234(false);

 run_some_other_code(); // Do we need to remove this line?

}

Challenges: Corner Case 1
#include <feature_7.h>

void foo(…) {

 // Cache expensive calls

 // before tight-loop code

 bool feat_7 = have_feature_7();

 for (const auto &item: sequence) {

 if (feat_7) {

 // Optional extra processing

 }

 // Regular work

 }

}

Challenges: Corner Case 2
#include <feature_7.h>

void foo(int x) {

 // Chained ifs

 if(x > 30) {

 // Regular work

 } else if(!have_feature_7()) {

 // Deprecated processing

 }

}

Challenges: Corner Case 3
#include <feature_7.h>

void foo() {
#if defined(__linux) || defined(__gcc)
 bool feat_7 = ...;
#else
 bool feat_7 = have_feature_7();
#endif
}

Closing Thoughts / Considerations

● Wishlist for clang::
○ Matchers for macros!
○ Easier to see preprocessor’s view of source code
○ Access to constant propagation / folding
○ Multi-pass analysis that saturates

● Wishlist for clang-apply-replacements
○ Stabilization of the input interface
○ Would like to use it for languages other than C/C++
○ Better handling of conflicting insertions

■ Merge strategies?
■ No abnormal terminations

© 2023 Bloomberg Finance L.P. All rights reserved.

Questions?

© 2023 Bloomberg Finance L.P. All rights reserved.

Thank you!
We are hiring: bloomberg.com/engineering

http://bloomberg.com/engineering

