
MLIR Is Not an
ML Compiler
And Other Common
Misconceptions

2023 LLVM Developer Meeting
October 12, 2023 - Santa Clara, CA

Alex Zinenko
<zinenko@google.com>

Using an ML Compiler

Q: What is the performance of an 4x56x56x64 NHWC convolution
with a 3x3 window (ResNet-50 conv-2) on an A100 GPU?

XLA: N milliseconds.
TVM: M milliseconds.
TorchInductor: K milliseconds.

MLIR: 🤷
Well, it depends. The question is not well specified.
Which dialects are used?
Which transformations are applied?
How is this lowered?

@jax.jit
def myconv(lhs: jnp.Array, rhs: jnp.Array):
 ...

torch_tvm.enable()
@torch.jit.script
def myconv(...):
 torch.nn.Conv2D(...)()

@torch.compile
def myconv(...):
 ...

%timeit myconv(...)

Well, all of these are JIT in Python with hidden machinery.

Using an ML Compiler

“compiler
 magic” 

.cc clang .exe

.f90 flang .exe

.cc clang -O3 faster .exe

.cc clang -O3 -mllvm -polly faster .exe after fancy opts

* assuming environment is configured correctly, eventual (c)make, etc

Using MLIR

“compiler
 magic” 

.mlir

mlir-opt -arith-bufferize
-linalg-bufferize -tensor-bufferize
-func-bufferize -finalizing-bufferize
-buffer-deallocation-pipeline
-convert-bufferization-to-memref
-convert-linalg-to-loops
-convert-arith-to-llvm
-convert-scf-to-cf -convert-cf-to-llvm
-finalize-memref-to-llvm
-convert-func-to-llvm
-reconcile-unrealized-casts

.mlir

* assuming environment is configured correctly, eventual (c)make, etc

.mlir .llmlir-translate -mlir-to-llvmir

.ll clang -x ir -O3 .exe (not that fast)

No optimization

Still MLIR

From test-tensor-e2e.mlir
git@f2f61a99f7f754f3e4

Using MLIR

“compiler
 magic”

.mlir

mlir-opt -arith-bufferize
-linalg-bufferize -tensor-bufferize
-func-bufferize -finalizing-bufferize
-buffer-deallocation-pipeline
-convert-bufferization-to-memref
-convert-linalg-to-loops
-convert-arith-to-llvm
-convert-scf-to-cf -convert-cf-to-llvm
-finalize-memref-to-llvm
-convert-func-to-llvm
-reconcile-unrealized-casts

Let’s do transformers
instead of ResNet!
There is an
attention/softmax block
that uses math.exp.

Math dialect not
handled here

MLIR Is Not a Compiler

MLIR mlir-opt Is Not a Compiler

MLIR mlir-opt Is Not a Compiler Frontend!
Neither is LLVM opt
But there is nothing else!

Towards a Frontend for MLIR

“compiler
 magic” 

.cc clang .exe

ISO/IEC 14882:2020 e.g. x86 + Linux ABI

.mlir mlirc .exe

Share target info

Also want: SPIR-V, CIRCT

Dialects 💫

Misconception: MLIR Can Be In Dialect A, B or C

Unlike human language dialects where we speak one or another,
MLIR dialects are almost always mixed.

module {
 func.func @foo() -> tensor<4xf32> {
 %0 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf32>
 return %0 : tensor<4xf32>
 }
 func.func @main() {
 %0 = call @foo() : () -> tensor<4xf32>
 %unranked = tensor.cast %0 : tensor<4xf32> to tensor<*xf32>
 call @printMemrefF32(%unranked) : (tensor<*xf32>) -> ()
 return
 }
 func.func private @printMemrefF32(%ptr : tensor<*xf32>)
}

Built-in dialect

Function dialect

Arithmetic dialect

Tensor dialect

Misconception: There Is a Common Set of Instructions

The exhaustive list of built-in MLIR operations:
- module,
- unrealized_conversion_cast.

There are 10 built-in types though.

Misconception: There Is a Common Set of Instructions

Can’t we just use all upstream dialects?

acc

affine
amdgpu

amx arith

arm_neon

arm_sve

arm_sme

async
bufferization

cf
complex

dlti

emitc
func

gpu

index

irdl
linalg

llvm

math

memref

ml_program

nvgpu

nvvmomp

pdl_interp

pdl
quant

rocdl

scf

shape
sparse_tensor

tensor

ubvector x86vector

builtin

spv tosa

transform

41 total

Misconception: There Exists a Standard Dialect

It has been split into the following dialects,
with some more that would have been candidates for “standardization”.

acc

affine
amdgpu

amx arith

arm_neon

arm_sve

arm_sme

async
bufferization

cf
complex

dlti

emitc
func

gpu

index

irdl
linalg

llvm

math

memref

ml_program

nvgpu

nvvmomp

pdl_interp

pdl
quant

rocdl

scf

shape
sparse_tensor

tensor

ubvector x86vector

builtin

spv tosa

transform

Towards a Frontend for MLIR: Stages

mlir-opt -arith-bufferize
-linalg-bufferize -tensor-bufferize
-func-bufferize -finalizing-bufferize
-buffer-deallocation-pipeline
-convert-bufferization-to-memref
-convert-linalg-to-loops
-convert-arith-to-llvm
-convert-scf-to-cf -convert-cf-to-llvm
-finalize-memref-to-llvm
-convert-func-to-llvm
-reconcile-unrealized-casts

Move from tensors to buffers

Convert soup of dialects to the LLVM dialect

Towards a Frontend for MLIR: Stages

mlirc

-bufferize

-lower-to-llvm

Towards a Frontend for MLIR: Interfaces

Operations on tensors
that can be bufferized

Operations on buffers
that can be lowered to LLVM

“Low-level” operations that
can be translated to LLVM IR

-bufferize -lower-to-llvm

Bufferizable
OpInterface

LLVMTranslation
DialectInterface��

Towards a Frontend for MLIR: Stages

Operations on tensors
that can be bufferized

Operations on buffers
that can be lowered to LLVM

“Low-level” operations that
can be translated to LLVM IR

Operations on
sparse tensors

C++ abstraction
operations

-bufferize -lower-to-llvm

-sparse-gen -polygeist/cir

Towards a Frontend for MLIR: Targeting GPUs

Operations on tensors
that can be bufferized

Operations on buffers
that can be lowered to LLVM

“Low-level” operations that
can be translated to LLVM IR

Operations on buffers
that can be lowered to SPIR-V

-bufferize

-lower-to-llvm

SPIR-V dialect
(or extension dialects)

-lower-to-spirv

Same ops,
two interfaces But there is no parallelism or

other GPU specificity!

Misconception: mlir-opt Is an Optimizer Driver

$ mlir-opt --help | head -n 1
OVERVIEW: MLIR modular optimizer driver

Documentation

May run to improve performance

Must run to generate code

Should run for certain targets, e.g., GPU

355 registered passes

151 test passes

204 passes
113 conversion or lowering

91 “optimization”

Categorizing mlir-opt Passes: Function

“Always beneficial”

Cannot generate any
code without this step

Conversion by choice

Requires heuristic

Lowering Optimization

Target adaptation SpecializationTargeted lowering
Cannot go to certain
target without this step

Code will be better
with this step

-lower-affine

-arith-emulate-unsupported-floats

-canonicalize
–inline

-convert-scf-to-openmp
-convert-parallel-loops-to-gpu

-arith-int-narrowing

-linalg-to-loops
-linalg-to-affine

Categorizing mlir-opt Passes: Target Abstraction

Tensor Buffer

Vector Scalar
⊗

“Type System”

Unknown/Any

Any LLVM Any SPIR-V

Any LLVM CPU Any LLVM GPU

Any Arm CPU Any x86 CPU Any NVGPU Any AMDGPU

SVESME Neon AVX512 AMX SM80SM90
Affine Loops

Linalg Structured

n-D Vectors Sparse Tensors

“Regular” SSA

Target

Optimization substrate

Mostly a DAG.
Constraints: e.g., affine loops substrate requires buffer-of-scalars type system

Refining the target is incompatible with most optimization substrates

~Lowering

~Conversion by choice

~Targeted Lowering

Building a Pass Pipeline

Type System 1
Optimization Substrate A

Type System 2
Optimization Substrate A

Target
Specific

Lowering Target
commitment

Type System 1
Optimization Substrate B

Type System 2
Optimization Substrate B

Lowering

Optimizations

Specialization
& Refinement

Optimizations

Frontend configuration: order of type system and substrate changes + target selection
Default optimization pipelines can be informed by the target.

Misconception: MLIR is Primarily for Machine Learning

A lot of upstream MLIR has been heavily influenced by ML workloads:
- Built-in tensor type, different from vector.
- No operations on tuple types (ML frameworks provide those).
- “Memory reference” type that is not a pointer but a Torch-style

sizes/strides/offset buffer descriptor.
- Quantization and ml_program dialects.
- The only “frontend-ish” dialect is Tensor Operator Set

Architecture (TOSA).

Doesn’t ML in MLIR stand for Machine Learning?

But not entirely:
- Signless integer arithmetic.
- Explicit loops.
- emitc dialect.

Sibling projects and downstreams are not ML
- Flang.
- CIR and Polygeist.
- CIRCT.

Misconception: MLIR Compiler Would Be a Sequence of Passes

mlir-opt -arith-bufferize
-linalg-bufferize -tensor-bufferize
-func-bufferize -finalizing-bufferize
-buffer-deallocation-pipeline
-convert-bufferization-to-memref
-convert-linalg-to-loops
-convert-arith-to-llvm
-convert-scf-to-cf -convert-cf-to-llvm
-finalize-memref-to-llvm
-convert-func-to-llvm
-reconcile-unrealized-casts

These are “mostly test” passes.

Internal logic:
- Collect A-to-B rewrite patterns.
- Configure target options.
- applyConverisonPatterns

One is supposed to build their own pass:

-apply-patterns=”
 bufferization-to-memref,
 linalg-to-loops,
 arith-to-llvm,
 …
 my-dialect-to-llvm
“

Should LLVM provide an (MLIR-based) ML compiler?

Should LLVM provide an (MLIR-based) ML compiler?

MLIR is not an ML compiler.

- No defined input format / frontend.
- No established pass pipeline.
- No target information.
- No heuristics.
- No benchmarks.

If not, how do we position the project unambiguously?

MLIR is a collection of abstractions and transforms to assemble a
compiler, for ML or anything else.

Invest in better discoverability of abstractions, especially within
the broader LLVM ecosystem.

- It’s okay as long as there is an interface.
- Lowering can be organized in stages around interfaces.
- We should have one!
- Optimization can be driven by flags or meta-dialects (pdl, transform).
- ???

MLIR Is Not an
ML Compiler, Yet?

2023 LLVM Developer Meeting
October 12, 2023 - Santa Clara, CA

Alex Zinenko
<zinenko@google.com>

