
Petr Hosek (phosek@google.com) October 2023LLVM Dev Mtg '23

Understanding the LLVM build

I'm the technical lead for the LLVM toolchain team that
supports lower level operating systems at Google.

In addition to supporting Fuchsia in LLVM, I maintain the
CMake build, including the runtimes build.

I became involved in the build after Chris Bieneman's
Developing and Shipping LLVM and Clang with CMake
talk at 2016 LLVM Developers’ Meeting.

2

https://www.youtube.com/watch?v=StF77Cx7pz8

CMake is a cross-platform
build-generator tool.

CMake manages the build process in an operating
system and in a compiler-independent manner.

CMake does not build the project, it generates the files
needed by your build tool (Ninja, Visual Studio, etc.)

3

4

Building projects & runtimes

Building toolchains

Building faster

Next steps

Q&A

01

02

03

04

05

Agenda

5

Building projects & runtimes
01

6

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ cmake --build build

$ cmake --build build --target check-all

$ cmake --install build

7

Configure Generate Build Test Install

Execute the CMake script
CMakeLists.txt in the
source directory.

Generate build targets for
the selected generator in
the build directory.

Build the project. Run the project tests. Install the appropriate
header files, libraries, and
executables.

CMake stages

8

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ cmake --build build

9

CMake source tree

LIBC++

LIBC++ABI

LIBUNWIND
RUNTIMES

LLVM

COMPILER-RT

CLANG

CLANG TOOLS

LLD

MODULES

MODULES

MODULES

10

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ cmake --build build

11

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ cmake --build build

12

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ ninja -C build

13

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ ninja -C build

$ ninja -C build check-all

$ ninja -C build install

14

$ cmake -S llvm -B build -G Ninja -D CMAKE_BUILD_TYPE=Release

$ ninja -C build

15

$ cmake -S llvm -B build -G Ninja \

 -D CMAKE_BUILD_TYPE=Release \

 -D LLVM_ENABLE_PROJECTS="clang;clang-tools-extra;lld" \

 -D LLVM_ENABLE_RUNTIMES="compiler-rt;libcxx;libcxxabi;libunwind"

$ ninja -C build

16

Controls which projects are built.

For example, you can work on Clang, Clang Tools or LLD by specifying
-DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra;lld"

These are built using the host compiler.

LLVM_ENABLE_PROJECTS

17

Controls which runtimes are built.

For example, you can work on compiler-rt, libc++, libc++abi or libunwind by specifying
-DLLVM_ENABLE_RUNTIMES="compiler-rt;libcxx;libcxxabi;libunwind"

These are built using the just-built compiler.

LLVM_ENABLE_RUNTIMES

18

CLANG, CLANG TOOLS, LLD, LLVM

COMPILER-RT, LIBC++, LIBC++ABI, LIBUNWIND

These are separate
CMake sub-builds
orchestrated by the
top-level LLVM build

BUILTINS

19

LIBC++LIBC++ABILIBUNWINDCOMPILER-RT

20

LIBC++LIBC++ABILIBUNWINDBUILTINS COMPILER-RT

21

Building runtimes

Runtimes
build

● You use the LLVM build to drive the runtimes build by setting

-DLLVM_ENABLE_RUNTIMES="<name>;…"

● Runtimes are built using the just built compiler as a sub-build.

Custom
script

● You build LLVM and runtimes separately, typically using a custom script

to drive individual sub-builds.

● This gives you a lot of flexibility, but also requires more maintenance.

22

$ cmake -S llvm -B build/llvm -G Ninja \

 -D CMAKE_BUILD_TYPE=Release \

 -D LLVM_ENABLE_PROJECTS="clang;clang-tools-extra;lld"

$ ninja -C build/llvm

23

$ cmake -S runtimes -B build/runtimes -G Ninja \

 -D CMAKE_BUILD_TYPE=Release \

 -D LLVM_ENABLE_RUNTIMES="compiler-rt;libcxx;libcxxabi"

$ ninja -C build/runtimes

24

$ cmake -S runtimes -B build/runtimes -G Ninja \

 -D CMAKE_BUILD_TYPE=Release \

 -D CMAKE_C_COMPILER="build/llvm/clang" \

 -D CMAKE_CXX_COMPILER="build/llvm/clang++" \

 -D LLVM_ENABLE_RUNTIMES "compiler-rt;libcxx;libcxxabi"

$ ninja -C build/runtimes

25

Building toolchains
02

26

Controls which components to build and install.

All LLVM-based tools are components, as well as most of the libraries and runtimes.
Component names match the names of the build system targets.

LLVM_DISTRIBUTION_COMPONENTS

27

$ cmake -S llvm -B build -G Ninja \

 -D CMAKE_BUILD_TYPE=Release \

 -D LLVM_ENABLE_PROJECTS="clang;clang-tools-extra;lld" \

 -D LLVM_DISTRIBUTION_COMPONENTS="clang;lld"

$ ninja -C build distribution

$ ninja -C build install-distribution

28

When enabled omits many of the LLVM development and testing tools as well as
component libraries from the default install target.

Many of the LLVM tools are only intended for development and testing use and it is
not recommended for distributions to include them.

LLVM_INSTALL_TOOLCHAIN_ONLY

29

$ cmake -S llvm -B build -G Ninja \

 -DCMAKE_BUILD_TYPE=Release \

 -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra;lld" \

 –DLLVM_DISTRIBUTION_COMPONENTS="clang;lld" \

 –DLLVM_INSTALL_TOOLCHAIN_ONLY=ON

$ ninja -C build distribution

$ ninja -C build install-distribution

30

The CMake cache may be thought of as a configuration file. The first time CMake is
run on a project, it produces a CMakeCache.txt file.

CMake lets you initialize cache with a CMake script which executes before the root
CMakeLists.txt file and has isolated scope.

See clang/cmake/caches for examples.

CMake cache

31

MyCache.cmake

set(CMAKE_BUILD_TYPE Release CACHE STRING "")

set(LLVM_DISTRIBUTION_COMPONENTS "clang;lld" CACHE STRING "")

set(LLVM_ENABLE_PROJECTS "clang;lld" CACHE STRING "")

set(LLVM_INSTALL_TOOLCHAIN_ONLY ON CACHE BOOL "")

32

$ cmake -S llvm -B build -G Ninja -C MyCache.cmake

$ ninja -C build distribution

$ ninja -C build install-distribution

33

Clang build supports bootstrap builds where build passes data from one stage into
the next which enables complex multi-stage builds with a single CMake invocation.

This can be enabled by the CLANG_ENABLE_BOOTSTRAP option.

You can use CLANG_BOOTSTRAP_PASSTHROUGH to control which variables are
passed through to the next stage in addition to the default set.

You can use CLANG_BOOTSTRAP_TARGETS to expose targets from later stages in the
first stage build prefixed with stage*-.

Multi-stage builds

34

$ cmake -S llvm -B build -G Ninja \

 -D CMAKE_BUILD_TYPE=Release \

 -D LLVM_ENABLE_PROJECTS="clang;clang-tools-extra;lld" \

 -D CLANG_ENABLE_BOOTSTRAP=ON \

 -D CLANG_BOOTSTRAP_PASSTHROUGH="CMAKE_INSTALL_PREFIX" \

 -D CLANG_BOOTSTRAP_TARGETS="check-all"

$ ninja -C build stage2

$ ninja -C build stage2-check-all

$ ninja -C build stage2-install

35

Runtimes build supports cross-compiling runtimes for multiple targets.

Use LLVM_BUILTIN_TARGETS to targets for compiler-rt builtins. To pass a per-target
variable to the builtins build, you can set BUILTINS_<target>_<variable>.

Use LLVM_RUNTIME_TARGETS to targets for compiler-rt builtins. To pass a per-target
variable to the builtins build, you can set RUNTIMES_<target>_<variable>.

The build targets are available as builtins-<target> and runtimes-<target>.

Cross-compiling runtimes

36

MyCache.cmake

set(LLVM_BUILTIN_TARGETS "x86_64-linux-gnu;aarch64-linux-gnu" CACHE STRING "")

foreach(target ${LLVM_BUILTIN_TARGETS})

 set(BUILTINS_${target}_CMAKE_SYSTEM_NAME "Linux" CACHE STRING "")

 set(BUILTINS_${target}_CMAKE_SYSROOT "${SYSROOT_${target}}" CACHE PATH "")

 …

endforeach()

37

MyCache.cmake

set(LLVM_RUNTIME_TARGETS "x86_64-linux-gnu;aarch64-linux-gnu" CACHE STRING "")

foreach(target ${LLVM_RUNTIME_TARGETS})

 set(RUNTIMES_${target}_CMAKE_SYSTEM_NAME "Linux" CACHE STRING "")

 set(RUNTIMES_${target}_CMAKE_SYSROOT "${SYSROOT_${target}}" CACHE PATH "")

 …

endforeach()

38

$ cmake -S llvm -B build -G Ninja -C MyCache.cmake \

 -D SYSROOT_x86_64-linux-gnu=<path> \

 -D SYSROOT_aarch64-linux-gnu=<path> \

$ ninja -C build runtimes-x86_64-linux-gnu runtimes-aarch64-linux-gnu

39

Runtimes build also has basic multilib support.

Use LLVM_RUNTIME_MULTILIBS to define your multilib variants and map those to
targets with LLVM_RUNTIME_MULTILIB_<multilib>_TARGETS.

Use RUNTIMES_<target>+<variant>_<variable> to pass a variable to the
variant build. The build targets are available as runtimes-<target>+<variant>.

Note that multilib support currently does not include compiler-rt—which includes
builtins—this limitation might be lifted in the future.

Multilibs

40

MyCache.cmake

set(LLVM_RUNTIME_MULTILIBS "asan" CACHE STRING "")

set(LLVM_RUNTIME_MULTILIB_asan_TARGETS

 "x86_64-linux-gnu;aarch64-linux-gnu" CACHE STRING "")

foreach(target ${targets})

 set(RUNTIMES_${target}+asan_LLVM_USE_SANITIZER "Address" CACHE PATH "")

 …

endforeach()

41

42

Building faster
03

43

Debug build tends to be slower and produce large amount of debug info.

When you do not intend to use the debugger, release mode with assertions is a more
efficient alternative; this can be enabled by -DLLVM_ENABLE_ASSERTIONS=ON.

Use release mode

44

Whenever possible, use faster tools and libraries:

● LLVM_OPTIMIZED_TABLEGEN

● LLVM_ENABLE_LLD

● LLVM_ENABLE_LIBCXX

LTO+PGO+BOLT optimized host compiler can speed up your build by 25-50%.

We have an examples of LTO, PGO and BOLT builds in clang/cmake/caches.

Use faster tools

45

Only build what you need:

● LLVM_TARGETS_TO_BUILD=Native

● LLVM_ENABLE_PROJECTS=clang;…

● LLVM_ENABLE_RUNTIMES=libcxx;…

● LLVM_DISTRIBUTION_COMPONENTS=llvm-ar;…

Build less code

46

Tools like ccache and distcc can speed up builds.

To use these with CMake, you can set these as compiler launchers
-DCMAKE_{C,CXX}_COMPILER_LAUNCHER={ccache,distcc,…}

Leverage caching

47

Next steps
04

48

Some projects like compiler-rt or libc can be built as standalone, as part of LLVM, or
as part of the runtimes build which complicates maintenance.

Supporting only the runtimes build would let us remove a lot of the complexity.

This may require improvements to the runtimes build to support all existing use cases.

Build all runtimes in the runtimes build

49

We should be able to build builtins together with other runtimes in a single build by
carefully ordering feature checks and setting the dependencies correctly.

This would simplify and speed up the runtimes build, but might require significant
refactoring.

Build builtins with other runtimes

50

Many of the concepts in our build date back to CMake 2.8 (released in 2009), but
CMake keeps on evolving (current is 3.27, LLVM requires at least 3.20).

We should be following Modern CMake principles—this would simplify our build and
make it more approachable to newcomers.

We should be treating build like code; build keeps on evolving to accommodate new
use cases, and we need to dedicate resources to refactorings and cleanups to avoid
too much technical debt.

Use modern CMake

51

https://cliutils.gitlab.io/modern-cmake/

Q&A
05

52

Whoever makes a problem visible
gets blamed for its existence…
Build systems make many
problems visible.

Jussi Pakkanen
Behind the Scenes of a C++ Build System - CppCon 2019

53

