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Motivation & Context - I
• Evolving Architectures: Modern HPC and AI/ML workloads 

demand architectures that efficiently leverage memory systems.

• Hardware Heterogeneity: The rise of multi-core CPUs, GPUs, and 
specialized accelerators creates complexity in managing resources.

• Performance Pressure: Increased demand for efficient 
concurrency, synchronization, and communication in large-scale 
systems.
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Motivation & Context - II
• OpenMP: A widely adopted standard in C/C++ for specifying 

parallel regions, tasks, and dependencies through intuitive 
pragmas.

• MLIR: A flexible intermediate representation framework that 
supports multi-level optimizations and custom dialects, bridging 
high-level abstractions with low-level execution details.

• ARTS (Abstract RunTime System) is a runtime infrastructure 
engineered for fine-grained concurrency and efficient task 
scheduling in distributed systems
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Motivation & Context - III
Asynchronous RunTime System (ARTS)
It provides users with a distributed global address space, a distributed 
memory model, and synchronization constructs to write efficient 
applications on a massively parallel system.
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What is the need? 
Compiler Infrastructure for ARTS



Compiler for ARTS

A task-centric compiler pipeline that transforms OpenMP-
annotated C/C++ code into an ARTS-friendly format using MLIR.
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We extended Polygeist by providing  
support to more OpenMP constructs 
(e.g. tasks) and other C/C++ related 
operations

1 - C/C++ + OpenMP support 
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Transform standard MLIR  + OpenMP 
standard dialects to the ARTS Dialect. 

2 – Mapping to ARTS
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• Remove unused EDTs
• Convert a ‘parallel’ EDT with only a 

‘single’ EDT in the region into a ‘sync’ 
EDT

3 – EDTs Analysis and Optimization
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Analyze data access patterns inside 
EDTs and create Datablocks.

4 – Data Blocks Identification
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• Identify: Parent EDT, EDT Users
• Aliasing Relationships: Set of DBs 

that are equal or alias a given DB.
• Child DBs: Identify direct child DBs 

derived from the current DB.
• Dependent DBs: List all DBs that 

depend on the current DB.
• Usage Count: Track how frequently 

the DB is used throughout the 
program.

• Attributes: Add appropriate 
attributes to the EDT

5 – Data Blocks Analysis
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• Adaptive DB Configuration: Adjust types and sizes 
based on data access patterns.

• Pruning Redundant DBs: Remove “out-only” DBs to 
streamline resource usage.

• Isolated Producer Identification: Detect producer 
DBs without consumers, except when embedded 
within an epoch.

6 – Data Blocks Optimization
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Allocate, create and load events in the EDT using the 
DB analysis information

7 – Events Creation
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• Common Subexpression Elimination (CSE)
• Dead Code Elimination (DCE)
• Canonicalization

8 – Other Optimizations
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• Create EDT functions and outline EDT regions within 
them.

• Insert ARTS API function calls to instantiate EDTs, 
Datablocks, Epochs, and Events.

• Run LLVM Conversion patterns.
Note: This block is not fully ready yet

9 – Conversion to LLVM IR
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Generate binary and link it to the 
ARTS library

10 - Output



Future Work

Test the infrastructure with different 
benchmarks.

Provide support to more OpenMP Constructs 
(e.g. for, barriers, locks…)

Advanced Transformation Passes.

Memory-Centric Optimizations based on a 
Memory cost model

Feedback-Directed Compilation.

Domain-Specific Extensions
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Thank you!
Any questions?
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