
CARTS: Enabling Event-Driven Task and
Data Block Compilation for Distributed
HPC
Rafael Andres Herrera Guaitero
PhD Candidate
University of Delaware

Saturday, March 1

Contributors
• Joseph B. Manzano Franco

Pacific Northwest National Laboratory
• Joshua D. Suetterlein

 Pacific Northwest National Laboratory
• Xiaoming Li

University of Delaware
• Andres Marquez

Pacific Northwest National Laboratory

2

Outline

MOTIVATION & CONTEXT

CARTS: COMPILER FOR ARTS

FUTURE WORK

3

Motivation & Context - I
• Evolving Architectures: Modern HPC and AI/ML workloads

demand architectures that efficiently leverage memory systems.

• Hardware Heterogeneity: The rise of multi-core CPUs, GPUs, and
specialized accelerators creates complexity in managing resources.

• Performance Pressure: Increased demand for efficient
concurrency, synchronization, and communication in large-scale
systems.

4

Motivation & Context - II
• OpenMP: A widely adopted standard in C/C++ for specifying

parallel regions, tasks, and dependencies through intuitive
pragmas.

• MLIR: A flexible intermediate representation framework that
supports multi-level optimizations and custom dialects, bridging
high-level abstractions with low-level execution details.

• ARTS (Abstract RunTime System) is a runtime infrastructure
engineered for fine-grained concurrency and efficient task
scheduling in distributed systems

5

Motivation & Context - III
Asynchronous RunTime System (ARTS)
It provides users with a distributed global address space, a distributed
memory model, and synchronization constructs to write efficient
applications on a massively parallel system.

6

Data
Blocks (DB)

Event-Driven
Tasks (EDTs)

Epochs

Events

What is the need?
Compiler Infrastructure for ARTS

Compiler for ARTS

A task-centric compiler pipeline that transforms OpenMP-
annotated C/C++ code into an ARTS-friendly format using MLIR.

8

9

10

We extended Polygeist by providing
support to more OpenMP constructs
(e.g. tasks) and other C/C++ related
operations

1 - C/C++ + OpenMP support

11

Transform standard MLIR + OpenMP
standard dialects to the ARTS Dialect.

2 – Mapping to ARTS

12

• Remove unused EDTs
• Convert a ‘parallel’ EDT with only a

‘single’ EDT in the region into a ‘sync’
EDT

3 – EDTs Analysis and Optimization

13

Analyze data access patterns inside
EDTs and create Datablocks.

4 – Data Blocks Identification

14

• Identify: Parent EDT, EDT Users
• Aliasing Relationships: Set of DBs

that are equal or alias a given DB.
• Child DBs: Identify direct child DBs

derived from the current DB.
• Dependent DBs: List all DBs that

depend on the current DB.
• Usage Count: Track how frequently

the DB is used throughout the
program.

• Attributes: Add appropriate
attributes to the EDT

5 – Data Blocks Analysis

15

• Adaptive DB Configuration: Adjust types and sizes
based on data access patterns.

• Pruning Redundant DBs: Remove “out-only” DBs to
streamline resource usage.

• Isolated Producer Identification: Detect producer
DBs without consumers, except when embedded
within an epoch.

6 – Data Blocks Optimization

16

Allocate, create and load events in the EDT using the
DB analysis information

7 – Events Creation

17

• Common Subexpression Elimination (CSE)
• Dead Code Elimination (DCE)
• Canonicalization

8 – Other Optimizations

18

• Create EDT functions and outline EDT regions within
them.

• Insert ARTS API function calls to instantiate EDTs,
Datablocks, Epochs, and Events.

• Run LLVM Conversion patterns.
Note: This block is not fully ready yet

9 – Conversion to LLVM IR

19

Generate binary and link it to the
ARTS library

10 - Output

Future Work

Test the infrastructure with different
benchmarks.

Provide support to more OpenMP Constructs
(e.g. for, barriers, locks…)

Advanced Transformation Passes.

Memory-Centric Optimizations based on a
Memory cost model

Feedback-Directed Compilation.

Domain-Specific Extensions

20

Acknowledgments

21

• This work is supported by
the US DOE Office of
Science project “Advanced
Memory to Support Artificial
Intelligence for Science” at
PNNL. PNNL is operated by
Battelle Memorial Institute
under Contract DEAC06-
76RL01830.

• LLVM Foundation for the
travel award.

Thank you!
Any questions?

22

Rafael Andres Herrera Guaitero
rafaelhg@udel.edu
Phd Candidate at University of Delaware

23

	Slide 1: CARTS: Enabling Event-Driven Task and Data Block Compilation for Distributed HPC
	Slide 2: Contributors
	Slide 3: Outline
	Slide 4: Motivation & Context - I
	Slide 5: Motivation & Context - II
	Slide 6: Motivation & Context - III
	Slide 7: What is the need? Compiler Infrastructure for ARTS
	Slide 8: Compiler for ARTS
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Future Work
	Slide 21: Acknowledgments
	Slide 22: Thank you! Any questions?
	Slide 23

