
HUAWEI TECHNOLOGIES CO., LTD.

www.huawei.com

Huawei Confidential

Security Level: Internal

47pt

30pt

反白

:

LT Medium

: Arial

47pt

黑体

28pt

反白

细黑体

Container Class Annotations in C++ Improve the
Capability of Static Analysis in MLIR

Ehsan Amiri, Rouzbeh Paktinatkeleshteri, Hao Jin – Huawei Technologies Canada

Eric Wang – University of Waterloo

Jose Nelson Amaral – University of Alberta

HUAWEI TECHNOLOGIES CO., LTD. Page 2

What is a Container?

 Containers are specified in the C++ standard as part of C++ standard library and have certain

requirements. (Quotes from n4713).

› “Containers are objects that store other objects. They control allocation and deallocation of these objects

through constructors, destructors, insert and erase operations.”

 The standard is also provides very specific information on member function and member

variables:

› “ The member function size() returns the number of elements in the container.”

› On erase(q) function: “Effects: Erases the element pointed to by q”.

 This is text of the standard, not something that can be used by the compiler.

HUAWEI TECHNOLOGIES CO., LTD. Page 3

Is it useful if compiler knows (standard library) containers?

 An MLIR compiler for C++ would be able to recognize C++ idioms and optimize them, among

other things by recognizing standard library containers.

 Examples from relevant talks in LLVM Dev 2020 and LLVM Dev 2023.

https://llvm.org/devmtg/2020-09/slides/CIL_Common_MLIR_Abstraction.pdf
https://www.youtube.com/watch?v=XNOPO3ogdfQ

HUAWEI TECHNOLOGIES CO., LTD. Page 4

How the code will look like?

template< <class T, class Allocator>

[[container, vector]] class ElementsArray{

protected:

[[memory]] T *elements;

[[size]] unsigned int used_count;

[[capacity]] unsigned allocated_mem;

public:

[[insert]] void insert(...)

};

[[container]]: This class has an exclusive data member that is

allocated and deallocated only in member functions of this class.

[[vector]]: The memory is a contiguous list of elements of a specific

data type. Only specific member functions of this class can add new

element or remove an existing element.

[[memory]]: The memory that is allocated/deallocated by the class.

[[size]]: Number of valid elements of the specific data type in the

allocated memory.

[[capacity]]: Total size of allocated memory

[[insert]]: Insertion of new elements happens exclusively in this

function.

HUAWEI TECHNOLOGIES CO., LTD. Page 5

How the code will look like?

template< <class T, class Allocator>

class ElementsArray{

protected:

[[container, vector]] T *elements;

[[size]] unsigned int used_count;

[[capacity]] unsigned allocated_mem;

public:

[[insert]] void insert(...)

};

 Advantage: A more complex class might

contain a container for its own use.

HUAWEI TECHNOLOGIES CO., LTD. Page 6

Example 1

 The example is taken from an open source DBMS.

for (size_t onexpr_idx = 0; onexpr_idx < added_columns.join_on_keys.size(); ++onexpr_idx)

 Here we have a std::vector<..> container.

 We cannot hoist size() function because compiler cannot prove tht the following function does not modify the

relevant memory.

PODArray::reserveForNextSize()

 PODArray is an internally defined data structure, similar to std::vector.

 Proper definition of container that guarantees two containers have distinct memory could be enough to

resolve this issue.

 Alternatively, if it is known that this function only reallocates memory, we were fine.

HUAWEI TECHNOLOGIES CO., LTD. Page 7

Example 2

 Temporarily create copies of pointers to D, directly reachable from A (While original objects

still exist in the memory)

 The copies should be valid in a specific time interval in the program.

 We create a software cache.

A*
B*

B*

B*

…

B*

N

C*

C*

D*

D*

…

D*

D*

D*

…

D*

D *

D *

D *

…

D *

N

D *

D *

D *

…

D *

…

…

…

…

…

D *

D *

D *

…

D *

M

A*

M

M

HUAWEI TECHNOLOGIES CO., LTD. Page 8

Example 2

 The challenge is to prove the cache remains valid, during the time interval of interest.

 We need to prove nothing is removed from the vector-like data structures.

 Concepts of “container”, and “insert”and “remove”to/from it are relevant.

 35% improvement in the target program.

A*
B*

B*

B*

…

B*

N

C*

C*

D*

D*

…

D*

D*

D*

…

D*

D *

D *

D *

…

D *

M

D *

D *

D *

…

D *

…

…

…

…

…

D *

D *

D *

…

D *

N

A*

M

MVector-like data structures defined
in the program

HUAWEI TECHNOLOGIES CO., LTD. Page 9

Example 3
 We have a sorted data structure that contains

pointers to actual objects.

› Sorting is based on “field 1”of the actual object.

› Could be a sorted array, a priority queue, or a binary search

tree.

 Hot code may include

› Binary search over array.

› Standard operations on BST or priority queue.

 Extra level of indirection and potential cache miss

could be expensive.

 What if we keep a copy of “field 1” in the main data

structure?

 Objects exists in the program, at some point they are

inserted in this sorted data structure and then later on

removed.

› Challenge: How can we prove our copy of “field 1” is not

invalidated?

› In our case, even a very careful analysis of the program can not

rule out that the same object with a modified “field 1” is inserted

twice.

 9% gain on an actual workload.

 The gain reduces if we put in guardrails for

correctness.

PTR PTR … … … … … …

field1 field 2
field 1 field 2

PTR field1 PTR field1 … … … … … …

field1 field 2

field 1 field 2

HUAWEI TECHNOLOGIES CO., LTD. Page 10

A few questions

 Can we consider a couple of different optimizations in different programs a good enough

motivation for a programming language change?

 What if programmer uses this attributes incorrectly?

HUAWEI TECHNOLOGIES CO., LTD. Page 11

Related work

 CGO 2024 paper [8]: “Representing data collections in an SSA form”

› Proposes SSA representation of data collections in the compiler.

› The authors need to modify C/C++ programs to use their library instead of the original data structures.

› This allows the compiler to detect a data structure and translate it to proper IR.

› Language support would be a better solution to achieve this goal.

 Knowledge of higher level semantics, helps compiler.

› The performance gain reported in [8] depends on the compiler, understanding quick sort.

HUAWEI TECHNOLOGIES CO., LTD. Page 12

Related work: similar optimizations

 Object inlining [6, 7]

 This is primarily an optimization for Java.

class LineInlined {

private int start_x;

private int start_y;

private int end_x;

private int end_y;

}

class Point {

private int x;

private int y;

}

class Line {

private Point start;

private Point end;

}

HUAWEI TECHNOLOGIES CO., LTD. Page 13

Related work: similar optimizations

 Array flattening [5] PTR PTR … … … … … …

Obj 1 Obj 2

Obj 3 Obj 4

PTR PTR … … … … … …

Obj 1 Obj 2 Obj 3 Obj 4

HUAWEI TECHNOLOGIES CO., LTD. Page 14

References

1. N4713, Working draft, Standard for Programming Language C++

2. Evolution of Clang IR, LLVM Dev 2023

3. Common MLIR Dialect for C/C++ and Fortran, LLVM Dev 2020

4. A novel data layout optimization in BiSheng compiler, LLVM Dev 2023

5. A compiler framework for general memory layout optimizations targeting structures,

INTERACT-14, 2010.

6. An automatic object inlining optimization and its evaluation, PLDI 2000

7. Compiler-assisted object inlining with value fields, PLDI 2021

8. Representing data collections in an SSA form, CGO 2024

https://isocpp.org/files/papers/n4713.pdf
https://www.youtube.com/watch?v=XNOPO3ogdfQ
https://www.youtube.com/watch?v=3gcw-8C9UbA
https://www.youtube.com/watch?v=T7imC0udovo
https://dl.acm.org/doi/abs/10.1145/1739025.1739033
https://dl.acm.org/doi/10.1145/349299.349344
https://dl.acm.org/doi/abs/10.1145/3453483.3454034
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf

HUAWEI TECHNOLOGIES CO., LTD. Page 15

Thank you
www.huawei.com

Copyright©2016 Huawei Technologies Co., Ltd. All Rights Reserved.
The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and
operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to
differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only
and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

