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What is a Container?

 Containers are specified in the C++ standard as part of C++ standard library and have certain 

requirements. (Quotes from n4713).

› “Containers are objects that store other objects. They control allocation and deallocation of these objects 

through constructors, destructors, insert and erase operations.”

 The standard is also provides very specific information on member function and member 

variables: 

› “ The member function size() returns the number of elements in the container.”

› On erase(q) function: “Effects: Erases the element pointed to by q”.

 This is text of the standard, not something that can be used by the compiler.
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Is it useful if compiler knows (standard library) containers?

 An MLIR compiler for C++ would be able to recognize C++ idioms and optimize them, among 

other things by recognizing standard library containers.

 Examples from relevant talks in LLVM Dev 2020 and LLVM Dev 2023.

https://llvm.org/devmtg/2020-09/slides/CIL_Common_MLIR_Abstraction.pdf
https://www.youtube.com/watch?v=XNOPO3ogdfQ
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How the code will look like?

template< <class T, class Allocator>

[[container, vector]] class ElementsArray{

protected:

[[memory]] T *elements;

[[size]] unsigned int used_count;

[[capacity]] unsigned allocated_mem;

public:

[[insert]] void insert(...)

};

[[container]]: This class has an exclusive data member that is 

allocated and deallocated only in member functions of this class.

[[vector]]: The memory is a contiguous list of elements of a specific 

data type. Only specific member functions of this class can add new 

element or remove an existing element.

[[memory]]: The memory that is allocated/deallocated by the class.

[[size]]: Number of valid elements of the specific data type in the 

allocated memory.

[[capacity]]: Total size of allocated memory

[[insert]]: Insertion of new elements happens exclusively in this 

function.



HUAWEI TECHNOLOGIES CO., LTD. Page 5

How the code will look like?

template< <class T, class Allocator>

class ElementsArray{

protected:

[[container, vector]] T *elements;

[[size]] unsigned int used_count;

[[capacity]] unsigned allocated_mem;

public:

[[insert]] void insert(...)

};

 Advantage: A more complex class might 

contain a container for its own use.
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Example 1

 The example is taken from an open source DBMS.

for (size_t onexpr_idx = 0; onexpr_idx < added_columns.join_on_keys.size(); ++onexpr_idx)

 Here we have a std::vector<..> container.

 We cannot hoist size() function because compiler cannot prove tht the following function does not modify the 

relevant memory.

PODArray::reserveForNextSize()

 PODArray is an internally defined data structure, similar to std::vector.

 Proper definition of container that guarantees two containers have distinct memory could be enough to 

resolve this issue.

 Alternatively, if it is known that this function only reallocates memory, we were fine.
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Example 2

 Temporarily create copies  of pointers to D, directly reachable from A (While original objects 

still exist in the memory)

 The copies should be valid in a specific time interval in the program.

 We create a software cache.
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Example 2

 The challenge is to prove the cache remains valid, during the time interval of interest.

 We need to prove nothing is removed from the vector-like data structures.

 Concepts of “container”, and “insert”and “remove”to/from it are relevant.

 35% improvement in the target program.
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Example 3
 We have a sorted data structure that contains 

pointers to actual objects.

› Sorting is based on “field 1”of the actual object.

› Could be a sorted array, a priority queue, or a binary search 

tree.

 Hot code may include

› Binary search over array.

› Standard operations on BST or priority queue.

 Extra level of indirection and potential cache miss 

could be expensive.

 What if we keep a copy of “field 1” in the main data 

structure?

 Objects exists in the program, at some point they are 

inserted in this sorted data structure and then later on 

removed.

› Challenge: How can we prove our copy of “field 1” is not 

invalidated?

› In our case, even a very careful analysis of the program can not 

rule out that the same object with a modified “field 1” is inserted 

twice.

 9% gain on an actual workload.

 The gain reduces if we put in guardrails for 

correctness.

PTR PTR … … … … … …

field1 field 2
field 1 field 2

PTR field1 PTR field1 … … … … … …

field1 field 2

field 1 field 2
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A few questions

 Can we consider a couple of different optimizations in different programs a good enough 

motivation for a programming language change?

 What if programmer uses this attributes incorrectly?
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Related work

 CGO 2024 paper [8]: “Representing data collections in an SSA form”

› Proposes SSA representation of data collections in the compiler.

› The authors need to modify C/C++ programs to use their library instead of the original data structures.

› This allows the compiler to detect a data structure and translate it to proper IR.

› Language support would be a better solution to achieve this goal.

 Knowledge of higher level semantics, helps compiler.

› The performance gain reported in [8] depends on the compiler, understanding quick sort. 
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Related work: similar optimizations

 Object inlining [6, 7]

 This is primarily an optimization for Java.

class LineInlined {

private int start_x;

private int start_y;

private int end_x;

private int end_y;

}

class Point {

private int x;

private int y;

}

class Line {

private Point start;

private Point end; 

}



HUAWEI TECHNOLOGIES CO., LTD. Page 13

Related work: similar optimizations

 Array flattening [5] PTR PTR … … … … … …

Obj 1 Obj 2

Obj 3 Obj 4

PTR PTR … … … … … …

Obj 1 Obj 2 Obj 3 Obj 4
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