
Polyhedral Rescheduling of GPU Kernels
To Exploit Async Memory Movement

Ivan R. Ivanov,
William Moses, Emil Vatai, Toshio Endo, Jens Domke, Alex Zinenko

Advanced features in GPUs are underused

● Legacy code
● Code not written by GPU experts
● Untuned code
● Synthesized code

Background

Async global->shared copies

GPU features

Faster reductions

GPU features

Tensor cores
TMA

More memory movement features

GPU features

● A lot of async memory movement
● Specialized hardware for memory and computation (TMA and Tensor cores)

...

Need to overlap them and stress them to make full use of your modern GPU

Common theme

Example usage

Blocked matmul

PROLOGUE COPY

COMPUTE

COPY

COMPUTE

EPILOGUE

COPY

COMPUTE

Optimized matmul - pipelining

COMPUTE

COPY
COPY

COMPUTE

COMPUTECOPY

COPY
COPY

COMPUTE

COPY

COMPUTECOPY

COMPUTE

COMPUTECOPY

COPY

COPY

COMPUTE

COPY

COMPUTE

COPY

COMPUTE

S0 S0

S2

S1

Memory Memory ComputationComputation

COMPUTE

COMPUTE

Pipelining using nvvm intrinsics

COMPUTECOPY

COMPUTE

COMPUTECOPY

COPY

async.cp global[i] -> shared[j]
...
commit_group
wait_group 2

compute using shared[...]

Can we automatically optimize existing code
to use these features?

Polyhedral model

Polyhedral model

for (int i = 0; i < N; i++) {
 for (int j = 0; j < i; j++) {
 S(i, j);
 R(i, j);
 }
}

domain

{ S(i, j) : 0 <= i < N,
 0 <= j < i }
{ R(i, j) : 0 <= i < N,
 0 <= j < i }

dependencies

{ S(si, sj) -> R(ri, rj) :
 si = ri, sj = rj }

Everything is represented using linear algebra

● Extracting the polyhedral structure
○ Source code - pet
○ Intermediate representation - polly (LLVM), polygeist+polymer(MLIR)

What about synchronisation?

-> No prior work in importing code with synchronisation into a polyhedral
representation.

It is essential to be able to handle barriers for GPU code (extremely prevalent)

Existing work on polyhedral
representation

● CPU/Generic: polly, isl, pluto, etc
● GPU: ppcg

Parallelism Supported

But everything assumes synchronous execution within a thread of execution

What about asynchronous execution? e.g. nvvm.async.cp

Existing work on polyhedral scheduling

Our approach

We need to get the
polyhedral representation
of a kernel...

● The information is
split

○ In the host code (the
launch configuration:
grid, block dims,
shared mem size)

○ In the device code
(the actual kernel
computation)

Hydra: The pipeline

a

Comparison to earlier work

CUDA
code

host
LLVMIR

device
LLVMIR

clang
combined

MLIR
(LLVM CFG)

combined
MLIR
(SCF)

combined
MLIR

(Affine)

CUDA
code

Polygeist combined
MLIR
(SCF)

combined
MLIR

(Affine)

Early work

Hydra (this work)

Need to support entire C/C++

Less infrastructure needed to take LLVM as input

Compiling to LLVM-IR

clang++ --cuda-device

clang++ --cuda-host

Patched clang to preserve launch information better

Merging the GPU modules

The raising pipeline:
finding control flow structure

Adapted from
upstream

numba-mlir

Preserving loop information through
LLVM transformations

LLVM Optimizer
Standard
pipeline Clang Low level code

Loop unswitching, loop rotation, etc. enabled

Our pipeline

LLVM
Pre-OptimizerClang

MLIR loop
optimizations

LLVM
Post-Optimizer Low level code

Loop unswitching, loop
rotation, etc. enabled

Loop opts disabled

The raising pipeline:
finding the polyhedral structure

affine loop bounds and access indices

Representing the parallel structure of a
GPU kernel

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs
Authors: William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Johannes Doerfert, Oleksandr ZinenkoAuthors Info & Claims

[1]

Propagating constants

Extremely important for
subsequent analysis

What is affine.sync ?

Representing synchronization

No synchronisation allowed

Transforming to pure polyhedral

Parallel loop fission

[1] Moses, W.S., Ivanov, I.R., Domke, J., Endo, T., Doerfert, J. and Zinenko, O., 2023, February. High-performance gpu-to-cpu transpilation and optimization via
high-level parallel constructs. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (pp. 119-134).
[2] Stratton, J.A., Stone, S.S. and Hwu, W.M.W., 2008, July. MCUDA: An efficient implementation of CUDA kernels for multi-core CPUs. In International
Workshop on Languages and Compilers for Parallel Computing (pp. 16-30). Berlin, Heidelberg: Springer Berlin Heidelberg.

Nested barriers?

[1] Moses, W.S., Ivanov, I.R., Domke, J., Endo, T., Doerfert, J. and Zinenko, O., 2023, February. High-performance gpu-to-cpu transpilation and optimization via
high-level parallel constructs. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (pp. 119-134).
[2] Stratton, J.A., Stone, S.S. and Hwu, W.M.W., 2008, July. MCUDA: An efficient implementation of CUDA kernels for multi-core CPUs. In International
Workshop on Languages and Compilers for Parallel Computing (pp. 16-30). Berlin, Heidelberg: Springer Berlin Heidelberg.

Let’s look at matmul

Analyzable using standard
polyhedral techniques

Example analysis of matmul

COPY(%bx, %by, %k)

INIT(%bx, %by)

COMPUTE(%bx, %by, %k)

EPILOGUE(%bx, %by)

Example analysis of matmul

COPY(%bx, %by, %k)

INIT(%bx, %by)

COMPUTE(%bx, %by, %k)

EPILOGUE(%bx, %by)

Polyhedral scheduling

Polyhedral model

for (int i = 0; i < N; i++) {
 for (int j = 0; j < i; j++) {
 S(i, j);
 R(i, j);
 }
}

domain

{ S(i, j) : 0 <= i < N,
 0 <= j < i }
{ R(i, j) : 0 <= i < N,
 0 <= j < i }

dependencies

{ S(si, sj) -> R(ri, rj) :
 si = ri, sj = rj }

Everything is represented using linear algebra

Integer Linear Programming Problem

maximize parallelism
minimize temporal distance between dependencies

subject to validity constraints (dependencies)

Polyhedral scheduling

How do we optimize for async execution?

Optimizing for async:
Copy detection

COPY(%bx, %by, %k)

Optimizing for async:
Detecting dependencies on copies

COPY(%bx, %by, %k)

COMPUTE(%bx, %by, %k)

{ COPY(i, j, k) -> COMPUTE(i, j, k) }

Async deps:

Optimizing for async:
Optimization objective

Async deps:
{ COPY(i, j, k) -> COMPUTE(i, j, k) }

Let’s maximize the temporal distance of async deps

Let’s maximize the temporal distance
of async deps

We need an infinite amount of memory? Not very useful...
We need a way to constraint that

Upper bound on the amount of memory used.

Live range overlap constraint

COPY(k) -> COMPUTE(k)

Dependencies
True dependencies (live ranges)

COMPUTE(k) -> COPY(k+1)

“False” dependencies

Prior work Live-range reordering: allow conditionally breaking the “false”
dependencies.
Verdoolaege, Sven, and Albert Cohen. "Live-range reordering." International Workshop on Polyhedral Compilation Techniques, Date: 2016/01/19-2016/01/19, Location:
Prague, Czech Republic. 2016.

Prior work: Live-range reordering

COPY

COMPUTE

COPY

COMPUTE

COPY

COMPUTE

Live ranges False deps
Ti

m
e

Ti
m

e COPY

COMPUTE

COPY

COMPUTE

COPY

COMPUTE

Not overlapping?

OK!

Verdoolaege, Sven, and Albert Cohen. "Live-range reordering." International Workshop on Polyhedral Compilation Techniques, Date:
2016/01/19-2016/01/19, Location: Prague, Czech Republic. 2016.

Live-range overlapping

COPY

COMPUTE

COPY

COMPUTE

COPY

COMPUTE

Ti
m

e

COPY

COMPUTE

COPY

COMPUTE

COPY

COMPUTE

Ti
m

e

overlap = 3

Constraint in ILP

ILP problem (prior work)

maximize parallelism
minimize temporal distance between
dependencies

subject to validity constraints
(dependencies)

Polyhedral scheduling

ILP problem (our work)

maximize parallelism
maximize async dep distance
minimize temporal distance between
dependencies

subject to validity constraints
(dependencies)
subject to overlap constraints

Final version

The matrix multiplication example

Some early stage evaluation

● LLVM -> MLIR Affine raising pipeline
● Polyhedral analysis of code with synchronisation
● Polyhedral scheduling with async

Conclusion

Questions?

