
Comparative Analysis of Compiler Performance for
RISC-V on SPEC CPU 2017

Yongtai Li, Chunyu Liao, Ji Qiu
PLCT Lab. ISCAS
{liyongtai, chunyu, qiuji}@iscas.ac.cn

2025/3/1

1

Table of Contents

Background & Motivation

Methodology

Results

A case study

Conclusion & Future Work

2

Background & Motivation
RISC-V is growing fast in both embedded systems and high-performance
computing. Code size is crucial for embedded systems, while dynamic instruction
count matters a lot for HPC.

SPEC CPU 2017, as an industry-standard benchmark, evaluates compiler
performance across diverse workloads.
Our goal is to analyze how LLVM and GCC perform in these aspects and identify
potential improvements.

3

How We Tested
1. Setup

2. Data Collection

3. Automation

4

Setup
Build GCC and LLVM on RISC-V hardware

Build SPEC CPU 2017

Hardware: Milk-V Pioneer Box, 64 cores C920
Commit: GGC - d28ea8e5a704, LLVM - c9a6e993f7b3
Flags: -Ofast , -flto for C/C++, -Ofast for fortran

Targets: rv64gbc , rv64gbcv

Some tips：https://github.com/sihuan/llvm-work/tree/master/spec2017

5

https://github.com/sihuan/llvm-work/tree/master/spec2017

Setup
Prepare the runtime environment, which includes input data and the speccmds.cmd file.

runcpu --config label.cfg --action runsetup intspeed

exchage2_r.exe : Placeholder for the executable to be tested.

puzzles.txt : Input data.

control , speccmds.cmd , compare.cmd : Control files
6

Setup
We can use the specinvoke command to see how the tests run as described in
speccmds.cmd

$ specinvoke -n speccmds.cmd
 # specinvoke r4356
 # Invoked as: specinvoke -n speccmds.cmd
 # timer ticks over every 1000 ns
 # Use another -n on the command line to see chdir commands and env dump
 # Starting run for copy #0
 ../run_base_refrate_llvm-c9a6e993f7b3-rv64gc_zba_zbb_zbs-64.0000/\
 exchange2_r_base.llvm-c9a6e993f7b3-rv64gc_zba_zbb_zbs-64 6 > exchange2.txt 2>> exchange2.err
 specinvoke exit: rc=0

7

Data Collection
Code Size: strip binaries and measure their sizes.

DIC: Run tests using QEMU with the insn plugin.

$ path/to/qemu-riscv64 -plugin path/to/plugin/libinsn.so -d plugin ./demo
 cpu 0 insns: 20250301
 total insns: 20250301

https://qemu-stsquad.readthedocs.io/en/latest/devel/tcg-plugins.html
https://github.com/qemu/qemu/blob/master/tests/tcg/plugins/insn.c

8

https://qemu-stsquad.readthedocs.io/en/latest/devel/tcg-plugins.html
https://github.com/qemu/qemu/blob/master/tests/tcg/plugins/insn.c

Automation
Now we can run any of the SPEC CPU benchmarks in QEMU and get the instruction
count for it.
But such a process is tedious and inefficient, so we wrote an automated tool to handle
this.
It has a web frontend that uploads a tarball containing several benchmark binaries, and
then it can run these tests simultaneously using multiple QEMU processes

https://github.com/sihuan/countspec

9

https://github.com/sihuan/countspec

10

11

Code Size Comparison

12

Google
Sheet
QR Code

13

Dynamic Instruction Count

14

Dynamic Instruction Count

15

Dynamic Instruction Count

16

A case study on 548_exchange
The 548.exchange2_r benchmark is a Sudoku solver for 9×9 grids, written in Fortran 95
with approximately 1,600 lines of code. The program heavily relies on recursion, with a
maximum recursion depth of up to 8 levels. Notably, it does not perform any floating-
point operations, focusing entirely on integer computations.

The difference between LLVM and GCC is significant, regardless of whether the V
extension is enabled.

In fact, this issue is not related to the B extension, nor is it even specific to the RISC-V architecture.

https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.h

17

https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.h

Some trouble
Plan to use the perf tool, which needs to run on a physical machine. However, our
RISC-V processor does not support the B extension or the V extension.

Reproduced this issue on rv64gc first.

How to manually compile this 548_exchange benchmark?

flang-new -c -o exchange2.fppized.o -march=rv64gc -Ofast exchange2.fppized.f90
flang-new -march=rv64gc -Ofast exchange2.fppized.o -o exchange2_r

How to manually run the tests?

./exchange2_r 0 # test size, solve the first problem in `puzzles.txt`

./exchange2_r 6 # ref size, solve all the six problems in `puzzles.txt`

18

We used perf to record
some data for test size
tests:

perf stat ./exchange2_r 0
perf report

19

20

Disassembly analysis

Based on the preliminary analysis of perf , the digits_2 function in the GCC version has been split into

forms like __brute_force_MOD_digits_2.constprop.${1-7}.isra.0 , and the static assembly code lines of these

functions are much smaller than those in LLVM. 21

So WHY?
In GCC, the hotspot function digits_2 is split into several specialized versions. This
specialization is caused by interprocedural constant propagation optimization (IPA-CP).
One of the main effects of this optimization is the elimination of conditional branches.

Therefore, the assembly line count for each specialized version of the function is
smaller.

The corresponding optimization pass in LLVM is IPSCCP Pass.

22

Verification
Disable this optimization in GCC by add the -fno-ipa-cp parameter

gcc -fno-ipa-cp gcc

exchange2_r 0 93,554,141,493 55,981,214,885

The number of instructions has almost doubled!

23

Manually add this optimization in LLVM

flang-new -c -emit-llvm -o exchange2.fppized.ll -march=rv64gc -Ofast exchange2.fppized.f90
opt -passes="ipsccp" exchange2.fppized.ll -o exchange2.fppized.ipsccp.ll
flang-new -march=rv64gc -Ofast fppized.ipsccp.ll -o exchange2_r

llvm llvm + ipsccp

exchange2_r 0 114,450,486,604 70,380,347,586

The number of instructions has decreased, and through disassembly, it was found that
digits_2 was also split into something like _QMbrute_forcePdigits_2.specialized.3 .

24

After reading the LLVM source code, we found that the IPSCCP Pass is enabled by
default, and our previous manual run was effectively a repetition. After some attempts,
we found an appropriate place to run the Pass again.

25

$ objdump -D exchange2_r_patched_llvm | grep "digits_2.*:$"
0000000000011ab0 <_QMbrute_forcePdigits_2>:
0000000000018a4e <_QMbrute_forcePdigits_2.specialized.1>:
0000000000019820 <_QMbrute_forcePdigits_2.specialized.2>:
000000000001a436 <_QMbrute_forcePdigits_2.specialized.3>:
000000000001ae78 <_QMbrute_forcePdigits_2.specialized.4>:
000000000001ba8e <_QMbrute_forcePdigits_2.specialized.5>:
000000000001c7e6 <_QMbrute_forcePdigits_2.specialized.6>:
000000000001d072 <_QMbrute_forcePdigits_2.specialized.7>:
000000000001dad0 <_QMbrute_forcePdigits_2.specialized.8>:

With this patch, LLVM now exhibits similar behavior, resulting in a substantial
performance uplift.

26

Used perf again to
obtain the instruction
count for exchange2_r 0
on rv64gc, as shown in the
table right.

Additionally, on x86_64, it
has a similar result.

Compiler Instructions on rv64gc

GCC #d28ea8e5 55,965,728,914

LLVM #62d44fbd 105,416,890,241

LLVM #62d44fbd with patch 62,693,427,761

Compiler cpu_atom instructions on x86_64

LLVM #62d44fbd 100,147,914,793

LLVM #62d44fbd with patch 53,077,337,115

27

Conclusion & Future Work
LLVM and new flang are ready for real-world workloads on RISC-V.
LLVM produces smaller C/C++ binaries but struggles with Fortran.

GCC is better at reducing dynamic instruction count in integer workloads.

LLVM’s auto-vectorization for floating-point workloads is ahead of GCC.

In the future, we will contunie the work to reduce the prefmance difference between
GCC and LLVM.

28

Resources
Code Size data: https://docs.google.com/spreadsheets/d/1e6sAkT1kZa8LQo4MWgT-
NomF8fSHnClrJMVTrxktUAM
DIC data:
https://docs.google.com/spreadsheets/d/1BSSc5XRr_QUmEgupRs3MgUJ4pICWsNW_X2
5vADO7DBY
countspec: https://github.com/sihuan/countspec
Workaround for 548: https://github.com/llvm/llvm-project/pull/96620

email: liyongtai@iscas.ac.cn

29

https://docs.google.com/spreadsheets/d/1e6sAkT1kZa8LQo4MWgT-NomF8fSHnClrJMVTrxktUAM
https://docs.google.com/spreadsheets/d/1e6sAkT1kZa8LQo4MWgT-NomF8fSHnClrJMVTrxktUAM
https://docs.google.com/spreadsheets/d/1BSSc5XRr_QUmEgupRs3MgUJ4pICWsNW_X25vADO7DBY
https://docs.google.com/spreadsheets/d/1BSSc5XRr_QUmEgupRs3MgUJ4pICWsNW_X25vADO7DBY
https://github.com/sihuan/countspec
https://github.com/llvm/llvm-project/pull/96620
mailto:liyongtai@iscas.ac.cn

Thanks

30

