
Effective Tuning of Automatically Parallelized
OpenMP Applications Using The State of the art

Parallel Optimizing Compiler.

Ph.D Candidate Miguel Romero Rosas and
Dr. Rudolf Eigenmann

CGO 2025

Introduction
• The demand for efficient parallel programming persists.

1

Can effective tuning techniques in Automatic Parallelizers enable applications to
consistently match or exceed the performance of manually parallelized

implementations?

• Automatic Parallelization VS Hand Parallelization.

• Inability to make optimize choices at compile time.

• Insufficient knowledge of target applications.

Important Contributions
Present a Tuning study of the state of the art Parallelizer Compiler called Cetus,
utilizing study cases from real-world applications, such as the NAS Parallel
Benchmarks Suite (NPB) v3.3 , the POLYBENCHMARK PB) Suite v4.2.

2

Important Contributions
Present a Tuning study of the state of the art Parallelizer Compiler called Cetus,
utilizing study cases from real-world applications, such as the NAS Parallel
Benchmarks Suite (NPB) v3.3 , the POLYBENCHMARK PB) Suite v4.2.

Introduced a novel Portable Tuning Framework (PTF) v1.0 that optimizes different
program sections at once.

3

Important Contributions
Present a Tuning study of the state of the art Parallelizer Compiler called Cetus,
utilizing study cases from real-world applications, such as the NAS Parallel
Benchmarks Suite (NPB) v3.3 , the POLYBENCHMARK PB) Suite v4.2.

Introduced a novel Portable Tuning Framework (PTF) v1.0 that optimizes different
program sections at once.

Present a evaluation performance among two different compilers , GCC and Clang.

4

Motivation Problem

5

• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

Motivation Problem

6

• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

Parallelization
Loop Interchange
Array Reduction
..
.
.

Motivation Problem

7

• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

|Z|={0,1} Enable / Disable one
optimization.

Motivation Problem

8

• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

|Z|={0,1}

|Z|={0,1}
N

Enable / Disable N type of
optimations.

Enable / Disable one
optimization.

Motivation Problem

9

• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

|Z|={0,1}

|Z|={0,1}
N

|Z|={0,1,.........K}
N

Enable / Disable N type of
optimations.

Enable / Disable one
optimization.

Different SubLevels of the
different optimizations.

Motivation Problem

10

• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

|Z|={0,1}

|Z|={0,1}
N

|Z|={0,1,.........K}
N

X

Enable / Disable N type of
optimations.

Enable / Disable one
optimization.

Different SubLevels of the
different optimizations.

The space of potential
combinations of optimizations.

Challenge Search Space

11

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

12

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

13

kernel #6

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

14

Loop #1kernel #6

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

15

Loop #1kernel #6

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

]

]

]

Windows size = 2

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

16

Loop #1kernel #6

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

]

]

]

Windows size = 2

Program
Variant = V1

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

17

Loop #1kernel #6

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

]

]

]

Windows size = 2

Program
Variant = V1

Loop #1

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

Windows size = 2

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

Challenge Search Space

18

Loop #1kernel #6

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

]

]

]

Windows size = 2

Program
Variant = V1

Loop #1

Loop #2

Loop #3

Loop #4

Loop #5

Loop #6

]

]

Windows size = 2

Program
Variant = V2

• Evaluating many optimization variants and choosing the one that
performs the best at runtime.

• The effect of an optimization may depend significantly on the presence
of another.

• Interactions between the optimization variants. (Windows Size).

19

The Cetus Automatic Parallelizer

Input C
program

20

The Cetus Automatic Parallelizer

Input C
program

CETUS

21

The Cetus Automatic Parallelizer

Input C
program

OpenMP
annotated
input program
as output

CETUS

22

The Cetus Automatic Parallelizer

Input C
program

OpenMP
annotated
input program
as output

CETUS
GCC

Clang

23

The Cetus Automatic Parallelizer

Input C
program

OpenMP
annotated
input program
as output

CETUS
GCC

Clang

Binary

Portable Tuning Framework (PTF) V1.0

24

1. Search Space
Navigation

2. Version creation 3. Evaluation

Portable Tuning Framework (PTF) V1.0

25

1. Search Space
Navigation

Iteratively
traverse the

space

Portable Tuning Framework (PTF) V1.0

26

1. Search Space
Navigation

Iteratively
traverse the

space

Combine Elimination
Algorithm (CE)

Portable Tuning Framework (PTF) V1.0

27

1. Search Space
Navigation

2. Version creation

Iteratively
traverse the

space

Z = {1,1,1,1,1}
Combine Elimination

Algorithm (CE)

Portable Tuning Framework (PTF) V1.0

28

1. Search Space
Navigation

2. Version creation

Iteratively
traverse the

space

CETUS
Optimizations

Z = {1,1,1,1,1}
Combine Elimination

Algorithm (CE)

Portable Tuning Framework (PTF) V1.0

29

1. Search Space
Navigation 3. Evaluation

2. Version creation

Iteratively
traverse the

space

CETUS
Optimizations

Z = {1,1,1,1,1} Program + optimizations set Z

Combine Elimination
Algorithm (CE)

Portable Tuning Framework (PTF) V1.0

30

1. Search Space
Navigation 3. Evaluation

2. Version creation

Iteratively
traverse the

space

CETUS
Optimizations

Generate the
binary: GCC
and Clang

Z = {1,1,1,1,1} Program + optimizations set Z

Combine Elimination
Algorithm (CE)

Portable Tuning Framework (PTF) V1.0

31

1. Search Space
Navigation 3. Evaluation

2. Version creation

Iteratively
traverse the

space

CETUS
Optimizations

Generate the
binary: GCC
and Clang

Execution Time

Z = {1,1,1,1,1} Program + optimizations set Z

Combine Elimination
Algorithm (CE)

Combine Elimination Algorithm (CE)

32

• B = Baseline option combination

Combine Elimination Algorithm (CE)

33

• B = Baseline option combination
• S = Represent the optimization search space

Combine Elimination Algorithm (CE)

34

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.

Combine Elimination Algorithm (CE)

35

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time

Combine Elimination Algorithm (CE)

36

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Combine Elimination Algorithm (CE)

37

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Combine Elimination Algorithm (CE)

38

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.

Combine Elimination Algorithm (CE)

39

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.
1: for each Fi in S:{
2: RIP[Fi] = measureRIP(B, Fi);
3: }

Combine Elimination Algorithm (CE)

40

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.
1: for each Fi in S:{
2: RIP[Fi] = measureRIP(B, Fi);
3: }

Identify the Most
Negative RIP

Combine Elimination Algorithm (CE)

41

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.
1: for each Fi in S:{
2: RIP[Fi] = measureRIP(B, Fi);
3: }

Identify the Most
Negative RIP

B[MostRip] = 0

Combine Elimination Algorithm (CE)

42

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.
1: for each Fi in S:{
2: RIP[Fi] = measureRIP(B, Fi);
3: }

Identify the Most
Negative RIP

B[MostRip] = 0

S= S-B[MostRip]

Combine Elimination Algorithm (CE)

43

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.
1: for each Fi in S:{
2: RIP[Fi] = measureRIP(B, Fi);
3: }

Identify the Most
Negative RIP

B[MostRip] = 0

S= S-B[MostRip]

Combine Elimination Algorithm (CE)

44

• B = Baseline option combination
• S = Represent the optimization search space
• S = {F1, F2, ..., Fn} and B = {F1 = 1, F2 = 1, ..., Fn = 1}.
• TB= Baseline execution time
• RIP = Relative Improvement Percentage

Execute the B ={All on}.
1: for each Fi in S:{
2: RIP[Fi] = measureRIP(B, Fi);
3: }

Identify the Most
Negative RIP

B[MostRip] = 0

S= S-B[MostRip]

Experimental Setup
• Our study compares two state-of-the-art optimizing compilers:

45

• Performance of the applications were measured:
❏ CLASS B for NAS and LARGE_DATASET for the PB.
❏ 16 Cores on a compute node featuring an INtel Xeon Gold 6230 processor
❏ -O3 in each compiler
❏ 8 different optimizations within Cetus

GCC

17.0.6Clang

12.2.0

Preliminary Results

46

Windows Size Performance

47

Application SP from the Nas Parallel Benchmark suite. Subroutine Compute_rhs

Windows Size Performance

48

Application SP from the Nas Parallel Benchmark suite. Subroutine Compute_rhs

Windows Size Performance

49

Application SP from the Nas Parallel Benchmark suite. Subroutine Compute_rhs

Windows Size Performance

50

Application 3MM from the Poly Benchmark suite. Subroutine Kernel_3MM

Windows Size Performance

51

Application 3MM from the Poly Benchmark suite. Subroutine Kernel_3MM

Windows Size Performance

52

Application CG from the Nas Parallel Benchmark suite. Subroutine conj_grad

Windows Size Performance

53

Application CG from the Nas Parallel Benchmark suite. Subroutine conj_grad

54

Conclusions and Future Work

GCC and Clang implement different optimization strategies, runtime libraries (especially for
OpenMP)

Tuning two optimizing compilers

The best Windows size depends on the program and the target application.

Clang showed better performance in 5 out of the 6 applications evaluated

Using ML power in order to navigate the huge search space

Questions?

55

