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Introduction
• The demand for efficient parallel programming persists.
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Can effective tuning techniques in Automatic Parallelizers enable applications to 
consistently match or exceed the performance of manually parallelized 

implementations?

• Automatic Parallelization VS Hand Parallelization.

• Inability to make optimize choices at compile time.

• Insufficient knowledge of target applications.



Important Contributions
Present a Tuning study of the state of the art Parallelizer Compiler called Cetus, 
utilizing study cases from real-world applications, such as the NAS Parallel 
Benchmarks Suite (NPB) v3.3 , the POLYBENCHMARK PB) Suite v4.2.
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• Optimizations depends on the program and the target platform.

• The different sets of optimizations will create a vast optimization space.

|Z|={0,1}

|Z|={0,1}
N

|Z|={0,1,.........K}
N

X

Enable / Disable  N type of 
optimations.

Enable / Disable  one 
optimization.

Different SubLevels of the 
different optimizations.

The space of potential 
combinations of optimizations.
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The Cetus Automatic Parallelizer

Input C 
program

OpenMP 
annotated 
input program 
as output

CETUS
GCC

Clang

Binary
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1. Search Space
Navigation 3. Evaluation 

2. Version creation 

Iteratively 
traverse the 

space

CETUS 
Optimizations

Generate the 
binary: GCC 
and Clang

Execution Time

Z = {1,1,1,1,1} Program + optimizations set Z

Combine Elimination 
Algorithm (CE)
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Experimental Setup
• Our study compares two state-of-the-art optimizing compilers:
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• Performance of the applications were measured:
❏ CLASS B for NAS and LARGE_DATASET for the PB.
❏ 16 Cores on a compute node featuring an INtel Xeon Gold 6230 processor
❏ -O3 in each compiler
❏ 8 different optimizations within Cetus

GCC

17.0.6Clang

12.2.0



Preliminary Results 
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Application CG from the Nas Parallel Benchmark suite.  Subroutine conj_grad
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Conclusions and Future Work

GCC and Clang implement different optimization strategies, runtime libraries (especially for 
OpenMP)

Tuning two optimizing compilers

The best Windows size depends on the program and the target application.

Clang showed better performance in 5 out of the 6 applications evaluated

Using ML power in order to navigate the huge search space



Questions?
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