
Beyond Pattern-based Optimization:

What Can LLM Reshape Auto-vectorization?

Presenter: Long Cheng1 (chenglong86@huawei.com)

Co-authors: Lu Li2, Zhongchun Zheng1, 5, Rodrigo Caetano de Oliveira Rocha3, Wei Wei1, Tianyi Liu4, Li Zhou1

Affiliations: 1 Compiler Lab., Huawei Technologies Co., LTD, China

2 Huawei Hongkong Research Institute, China HongKong

3 Huawei Edinburgh Research Institute, UK Edinburgh

4 Huawei Cambridge Research Institute, UK Cambridge

5 Sun Yat-sen University, GuangZhou, China

【More Information, please Refer to the Full Preprint Paper】
Zheng Z, Cheng L*, Li L, et al. VecTrans: LLM Transformation Framework for Better Auto-vectorization on High-performance CPU[J]. arXiv preprint arXiv:2503.19449, 2025.

mailto:chenglong86@huawei.com

Is It Good Enough for Auto-vectorization in Industrial Compilers?

➢ Compiler: BiSheng Compiler(LLVM-based, Industrial-level),

➢ Hardware: Kunpeng CPU-ARM(NEON/SVE)

➢ Optimization Flags: (1) -O3 -ffast-math; (2) -Rpass=loop-vectorize; (3) -Rpass-analysis=loop-vectorize

Failed Cases,

50, 34%

Successful

Cases, 99, 66%

Result Summary of Auto-vectorization in TSVC-2

(BiSheng Compiler)

10, 20%

27, 54%

1, 2%

3, 6%

2, 4%

1, 2%

3, 6%
2, 4% 1, 2%

Categories of Auto-vectorization Failure

(BiSheng Compiler)

Cate. 1: Unsafe dependent memory operations

Cate. 2: Could not identify reduction variable

Cate. 3: Cannot identify array bounds

Cate. 4: Could not determine number of loop iterations

Cate. 5: Instruction cannot be vectorized

Cate. 6: Loop contains a switch statement

Cate. 1+2

Cate. 2+4

Cate. 2+3

➢ (1) Even for the simple benchmark - TSVC-2, there is still about 50/149 cases that cannot be vectorized by the LLVM-based industrial compiler(BiSheng

Compiler) with –O3 flag;

➢ (2) The dominant failure causes are: limited analysis for memory dependencies and reduction;

➢ (3) For industrial applications like HPC and mobile rendering, code scenarios are more complicated, which makes it hard to successfully analyze the high-

level semantics purely utilizing traditional industrial compiler. Hence, the answer to the title question is NO.

https://www.hikunpeng.com/document/detail/en/kunpengdevps/compiler/ugbisheng/kunpengbisheng_06_0001.html

VecTrans: A LLM Compiler Agent Framework to Enhance Auto-vectorization

Source-to-Source
Transformation

(NL-based)

Global
Correlation

(Attention)

Probabilistic
Modeling

Multiple Feedback Mechanisms

We built VecTrans to massively enhance the capability of auto-vectorization in traditional compilers. It has the following features:
(1) LLM-guided Source Code Transformations for Vectorization; (2) Explores LLM-compiler Collaboration Paradigm;
(3) Naively Support Cross-platform Verification; (4) Generates Effective Results

Huawei BiSheng Compiler
(LLVM-based)

Huawei Kunpeng CPU
(ARM,NEON/SVE)

Current Results

Benchmark Code(TSVC-2, s1113)

VecTrans

Comparison with SOTA(TSVC-2)

LLM-Vectorizer(C -> SIMD Intrinsic)
Taneja J, Laird A, Yan C, et al. Llm-vectorizer: Llm-based verified loop vectorizer. CGO 2025: 137-149.

Configurations Success Ratio Average Iteration Times

DeepSeek-V3/VecTrans 46.2% 8.76

DeepSeek-V3/LLM-Vectorizer 28.8% 13.39

DeepSeek-V3/Base Model 17.3% 5.41

Qwen2.5-32B/VecTrans 34.6% 13.94

Qwen2.5-72B/VecTrans 38.5% 12.26

DeepSeek-V3/Without Formal Verification 32.7% 8.49

DeepSeek-V3/Without Compiler Feedback 21.2% 5.21

DeepSeek-V3/Without Unit Test 25.0 9.66

Auto-vectorization Ablation Experiments
(BiSheng Compiler+Kunpeng CPU-Neon/SVE)

Discussion and Future Work

1. If we can open the debug information in LLVM infrastructure to designate more precise program analysis

information to LLM, we believe that the concept of LLM as a Compiler optimizer will become more practical for

industrial applications;

2. The current VecTrans work will be open source in openEuler community. (https://gitee.com/openeuler/llvm-project)

https://www.openeuler.org/en/

openEuler is an open source project incubated and operated by the OpenAtom Foundation.

https://gitee.com/openeuler/llvm-project
https://www.openeuler.org/en/

