
Defining and Verifying MLIR Operations with Constraints

Alex Rice

EuroLLVM 2025

Defining and Verifying MLIR Operations with Constraints

What do operation definitions do?

Verification Inference

Builders Parsing

Accessors

Alex Rice 1

Defining and Verifying MLIR Operations with Constraints

Example: arith.addi

%0 = arith.addi %1, %2 : i32

Alex Rice 2

Defining and Verifying MLIR Operations with Constraints

Example: arith.addi

%0 = arith.addi %1, %2 : i32

Constraints cannot be defined independently:

"arith.addi"(%1, %2) : (i32, i64) -> i8

Alex Rice 2

Defining and Verifying MLIR Operations with Constraints

Example: arith.addi

%0 = arith.addi %1, %2 : i32

Constraints cannot be defined independently:

"arith.addi"(%1, %2) : (i32, i64) -> i8❌

Alex Rice 2

Defining and Verifying MLIR Operations with Constraints

Constraints for arith.addi

class AddIOp:
 _T: ClassVar = VarConstraint("T", signlessIntegerLike)
 lhs = operand_def(_T)
 rhs = operand_def(_T)
 result = result_def(_T)

 assembly_format = "$lhs `,` $rhs attr-dict `:` type($result)"

Alex Rice 3

Defining and Verifying MLIR Operations with Constraints

Towards more complex constraints

class InsertOp:
 name = "vector.insert"

 _T: ClassVar = VarConstraint("T", AnyAttr())
 _V: ClassVar = VarConstraint("V", VectorType.constr(_T))

 source = operand_def(VectorType.constr(_T) | _T)
 dest = operand_def(_V)
 result = result_def(_V)
 ...

Alex Rice 4

	What do operation definitions do?
	Example: arith.addi
	Constraints for arith.addi
	Towards more complex constraints

