
● The following vector extension instructions are 
proposed to support the sub-FP8 format:  

LLVM Support for Sub-FP8 Quantization with 
RISC-V Extensions for Machine Learning Models
Jhih-Kuan Lin, Fu-Jian Shen, Kathryn Chapman, Mengshiun Yu, Jenq-Kuen Lee
Department of Computer Science, National Tsing-Hua University, Taiwan

● Model quantization optimizes performance by reducing 
32-/16-bit INT/FP formats to 8-, 6-, and 4-bit formats, 
lowering compute, memory, and transmission costs.

● The Open Compute Project (OCP) defines floating-point 
formats smaller than 8-bit. We developed the sub-FP8 
ISA extension for RISC-V to enable support for these 
formats in scalar operations.

Motivation EFT & SFT

Simulation
● The instruction set architecture (ISA) was simulated, 

allowing for correctness verification, using Spike. 
● Gem5 was used to execute real programs and collect 

research data.

Example for GEMM

Hardware Reference Design Based 
on CVA6

for (int i = 0; i < MLEN; ++i)
    for (int j = 0; j < NLEN; ++j)
      for (int k = 0; k < KLEN; ++k)
        {        
          golden_array[i * NLEN + j] = 
__builtin_riscv_sfmadd_f8e4m3_f8e4m3(a_array[i * KLEN + k], 
b_array[j + k * NLEN], golden_array[i * NLEN + j]);
        }

Fig. 3. The results of GEMM computation ((256×16) × (16×256)) under an environment with a 
32KB L1 D-cache and compilation optimization level O3. Cache miss rates across different 

floating-point formats are also compared.

Fig. 5. CVA6 processor modified to support the sub-FP8 format and accompanying instructions. 
The red line shows the stages of the pipeline that use the format information provided by the 

FCSR (sset). New features and modules with significant modifications are shown in green. 

● RISC-V CVA6 Core (CV64A6) (Work-in-Progress) using 
the transprecision-supporting FPU, CVFPU  (FPnew)  

ssft/seft[3:0] SFT/EFT

0 0 0 1 FP8(E5M2)

0 0 1 0 FP8(E4M3)

0 0 1 1 FP6(E3M2)

0 1 0 0 FP6(E2M3)

0 1 0 1 FP4(E2M1)

others reserve

● The FCSR was modified to 
hold additional fields, SFT 
and EFT, for type 
information. 

● Performing data flow 
analysis for automatic SSET 
insertion to reduce 
redundant sset instructions.

● C code snippet demonstrating a GEMM operation using 
the newly added RISC-V f8e4m3 floating-point format. 

● Sub-FP8 Backend & Code Generation
● Instruction Support for Sub-FP8 in Assembler
● Efficient Pattern Matching for Sub-FP8 Operations
● Sub-FP8 C/C++ Intrinsics

%0 = call f8e4m3 @llvm.riscv.pllab.sfadd.f8e4m3.f8e4m3.f8e4m3(f8e4m3 
0xQ1D, f8e4m3 0xQ1D)

__builtin_riscv_sfadd_f8e4m3_f8e4m3(0.1f8e4m3, 0.1f8e4m3);

f8e4m3 = llvm.riscv.pllab.sfadd TargetConstant:i64<9897>, ConstantFP:f8e4m3<APFloat(29)>, 
ConstantFP:f8e4m3<APFloat(29)>

PseudoSSET_INSERT 1, 1, implicit-def $eft, implicit-def $sft
renamable $f15_s = nofpexcept PseudoSFADD killed renamable $f15_s, renamable $f15_s, 
7, 1, 1, implicit killed $eft, implicit killed $sft, implicit $frm

csrwi sft, 1
csrwi eft, 1
sfadd fa5, fa5, fa5

Fig. 2. Sub-FP8 Compile Flow in LLVM (from C to assembly)

Sub-FP8 Support in LLVM

RISC-V Vector Extensions

Contact: kjchapman@pllab.cs.nthu.edu

Class Instruction name Description

Arithmetic vsfadd, vsfsub, vsfmul, vsfdiv, 
vsfmacc, vsfsqrt

Vector-scalar addition, subtraction, 
multiplication, division,and  

multiply-accumulate

Comparison vsfmin, vsfmax Compute element-wise min/max

Reduction vsfredosum, vsfredusum, 
vsfredmin, vsfredmax, vsdot

Perform reduction operations on a vector, such 
as sum or min/max, to produce a scalar result

Data Movement vfmv,vfcvt(float -> float) Move or convert data

Other vsfsgnjn, vsfclass, Other operations for floating-point numbers

Fig. 4. Overall architecture of our Sub-FP8 compilation and simulation flow. 

Fig. 1. Contents of the modified Floating-Point Control and Status Register (FCSR) 


