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!coeffBlockType = !nir.block<Fields: [u], SEShape : tri, Deformed: false, Basis:(modified, modified), Size:1x1x7x7xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)>

!physBlockType = !nir.block<Fields: [u], SEShape : tri, Deformed: false, Quadrature: (gll, gl), Size:1x1x20x20xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)>

#map = affine_map<(d0,d1) -> (d0+20*d1)>

module{

  func.func @bwdtri(%uhat: memref<1x1x28xf64>, %b0: memref<20x7xf64, #map>, %b1:memref<20x28xf64, #map>, %u:memref<1x1x400xf64>) 

 attributes {llvm.emit_c_interface}

  {

    %b0t = bufferization.to_tensor %b0 restrict : memref<20x7xf64, #map>

    %b1t = bufferization.to_tensor %b1 restrict : memref<20x28xf64, #map>

    %coeffBlock = nir.block_from_memref [

      Data: %uhat : memref<1x1x28xf64>

      Fields : [u]

      Shape: tri

      Basis: (modified, modified)

      BlockSize: [7,7]

      Deformed: false] -> !coeffBlockType

   

    

  %out = nir.elemental_bwd [

      Block: %coeffBlock : !coeffBlockType

      Bases: %b0t, %b1t: tensor<20x7xf64>, tensor<20x28xf64>] -> !physBlockType

    nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x1x400xf64>) -> ()

    return

  }

}
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The approximation 
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This operation creates a nir block 

type from the memref “%uhat” 

which contains the expansion 

coefficients. The Shape and Basis 

attribute parameters encode some 

sparsity. This operation folds away 

after our first pass into standard 

MLIR, leaving the memref.

The nir.elemental_bwd constructs the elemental 

approximation from the expansion coefficients and 

basis tensors evaluated at the quadrature points. It 

is a kind of polynomial interpolation. We lower this 

to affine, with affine loops, loads and stores. For 

vectorization, we also use 

vector.transfer_read/write. We use arith for addition 

and multiplication. 

An example of our IR for the backward transformation on a triangle
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Goals and upcoming work
• Abstraction of the method: 

Develop an MLIR dialect representing a high-level abstraction of various finite 

element operators in the spectral/hp element method. 

• JIT compilation and automatic optimization:

Facilitate the just-in-time compilation of optimized kernels for the building block 

finite element operators for heterogeneous hardware architectures using LLVM.

• CPU and GPU:

We are close to performance testing our operators for CPUs, both in a scalar case 

and for AVX2/AVX512 instruction sets. Exploring how to implement optimizations 

for these operators using MLIR is an immediate concern. Extending support to 

GPU is also important next step for the project. 

A simple mesh of 

quadrilateral and 

triangular elements.

Standard quadrilateral and triangular 

elements with quadrature points, 

chosen according to a Gaussian 

quadrature rule

Background
The spectral/hp element method is an example of a high-order finite element method, used for solving the weak form of partial differential equations (PDEs), in areas 

such as fluid dynamics, aeronautics and renewable energy. The method involves partitioning the solution domain into a mesh of elemental regions and approximating the local 

(elemental) solution to the weak PDE using a polynomial expansion, given by a series of known basis functions and unknown expansion coefficients that need to be 

determined [1]. The basis functions are often given by high-order (or degree) polynomials, giving the method a high arithmetic intensity, defined as FLOPs per byte of 

memory, that is ideal for numerical schemes on modern high-performance hardware [2]. The local approximation, and therefore the basis functions, are only evaluated at a 

particular set of points, known as quadrature points. These are chosen according to a Gaussian quadrature rule to facilitate numerical integration. The discretization of the 

PDE within each element yields an elemental operator and reduces the problem to solving a system of linear equations for the unknown local expansion coefficients. A 

set of “building block” finite element operators that act on alike elements are used to construct the elemental operator, and these are common across a range of PDEs. An 

example of a building block operator is the backward transformation, which constructs the approximation from the coefficients and basis functions (discussed further below).

Having performant implementations of the building block finite element operators available for a range of hardware architectures is a crucial part of the development of a 

hardware extensible PDE solver using the spectral/hp element method. In this poster, we present the initial stages of the development of NektarIR, an MLIR dialect for the 

generation of high-performance  and hardware extensible kernels for finite element operators.    

Nektar++
• Nektar++ is an open-source framework for the development of high-fidelity PDE 

solvers using the spectral/hp element method, with support for both CPU and GPU 

hardware architectures [2,3].

• As a well-established framework, it is an ideal reference point for testing and 

verifying the NektarIR implementations.

• One of the goals of NektarIR is to complement the existing support for 

heterogenous hardware in Nektar++ and to provide a JIT compiled option for the 

finite element operator kernels that are already available. 

The NektarIR dialect
• Types:

We have a custom type, the block type, that is an abstraction of a single element or 

collection of alike elements in a mesh, encoding its basis type or quadrature rule and 

geometric shape through attribute parameters. This is a tensor-like type.

• Operations:

Our operations, for instance for the backward transformation, act on block types to 

perform the finite element operation on alike elements in the mesh. An IR example is 

given below. For inserting and extracting from a block, we use a destination-passing 

style and aim to mirror the tensor.insert_slice and tensor.extract_slice operations. 

• Passes:

Our entry-point to upstream MLIR is into the affine dialect. We lower our finite element 

operations to affine loop nests that loop over alike elements and try to mirror the 

bufferization dialect for conversion between the block type and memrefs.

Elements from a mesh with the same shape, quadrature rule and number of 

quadrature points, basis type and polynomial order are described by the 

!nir.block type
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