
     Challenges with Current Approaches:

Existing ML graph compilers primarily 
represent the operational graph but lack
detailed awareness of machine topology and
data distribution.

This limitation leads to inefficient distribution of
compute and data workloads, causing
unnecessary communication overhead and
poor system performance.

How SonicMachine Models Hardware Efficiently

Leverages MLIR’s shape system to efficiently represent hierarchical hardware
components.
Models data movement explicitly using operations such as slice, concat and
broadcast
These operations define interconnections between compute and storage units.
Supports custom topology tiers to:

Specify communication pathways.
Define performance attributes tied to those pathways.

Ensures accurate representation of system constraints through detailed
modeling.
Provides builder functions and templates to:

Enhance expressiveness.
Enable compact descriptions of complex hardware architectures.

Distribution Example

Consider the blue square as the Processing Element (PE) described
previously. These PEs can logically be grouped into 2x2 modules. Such
modules can represent entities like a node containing 4 GPUs or a die
comprising 4 PEs.

Attributes can be assigned to each PE, such as latency for computational
operations, memory operations, and bandwidth. Similarly, attributes
regarding latency and bandwidth can be defined for communication among
PEs within the same module.

We can further group these smaller modules into larger units, adding
comparable attributes at this higher level as well.

Using this structured intermediate representation (IR), Sonic Compute can
effectively analyze and decide how to distribute data and computation.

Example:

In a vector addition task involving 8 GPUs, the operation might still execute
entirely on a single GPU. This decision could arise because the inter-GPU
bandwidth might be insufficient for efficient parallel computation across
multiple GPUs.

The above machine is 2x1x2x2x2x2x2x2; 

with different colours representing different hierarchy

pe_in[0]pe_out[0]

move(M)

move(M)

pe_in[1]

pe_out[1]

pe_in[2]

pe_out[2]

pe_in[3]pe_out[3]

move(M)

move(M)

local(S)
compute(C)

Daniyal Khan
Malte Deling

Hyunchul Park
Dong Hyuk Woo


