
Lessons learned from leveling up 
RISC-V LLVM testing

Alex Bradbury asb@igalia.com

EuroLLVM, 2025-04-15



Background

● RISC-V

● LLVM’s buildbot infrastructure

○ Important: this is focused on post-commit CI



Challenges



Challenge:

Lack of high performance commodity RISC-V hardware 
with support for all desired instruction set extensions.



Challenge:

A full bootstrap build and test under qemu-system is 
incredibly slow (>16h).



Challenge:

Limitations in bug finding ability of a two-stage Clang build 
followed by running LLVM’s unit tests.



Challenge:

Missing a flow for iterative developing and testing builder 
configurations prior to commit and deployment from 
llvm-zorg.



Challenge:

Existing buildbot worker configurations/recipes are hard to 
customise to the needs of the RISC-V setup. e.g. 
cross-compilation followed by running tests under 
qemu-system.



Challenge:

Difficult to reproduce a failure locally.



Challenge:

It can be time consuming to manually root cause a 
regression with multiple candidate commits.



Challenge:

There is no single “best” builder approach given the 
pros/cons of different emulation choices and trade-offs of 
test coverage and speed.



Challenge:

The buildbot interface is hard to navigate to check the 
status of RISC-V bots at a glance, so failures can go 
unnoticed.



Dashboard: https://igalia.github.io/riscv-llvm-ci/



Thank you

● Patch reviewers

● Everyone contributing to development and upkeep of LLVM’s 

testing infrastructure.

● RISE for supporting this work.

Questions?

asb@igalia.com



Overflow

● Release testing

Future work:

● Performance testing and tracking.

● Wider ecosystem testing (e.g. large corpus of Linux 

packages)

● On-demand pre-commit CI.


