
1 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Leveraging “nsw” in Flang’s
LLVM IR Generation for
Vectorization
Yusuke Minato

LLVM Developers’ Meeting – April 2025

2 © 2025 Fujitsu Limited

Introduction

●Vectorization for Flang
●Flang: the Fortran frontend in the LLVM project
●Flang relies on the LoopVectorize pass in the backend.
● Its frontend itself doesn’t have a vectorization pass.

●We’re trying to improve the capability of vectorization in the
backend.
●Vectorization plays an important role in optimizations.

●TSVC (Test Suite for Vectorizing Compilers)
●Available in both Fortran and C
●Helps distinguish frontend problems from backend issues
●The frontend can affect vectorization because it may generate LLVM IR

that is difficult for the backend to vectorize.

3 © 2025 Fujitsu Limited

Flang’s Capability of Vectorization

●Evaluation using TSVC
●Options: -O3 -ffast-math -march=armv9-a

●Our contribution
●Three additional loops can be vectorized since LLVM 20.
●By introducing several options related to integer overflow into Flang

Vectorizable or not with Number
in LLVM 19

Number
in LLVM 20

Clang Flang

Vectorizable Vectorizable 76 80 (+4)

Vectorizable Non-Vectorizable 11 9 (-3+1)

Non-Vectorizable Vectorizable 1 1 (0)

Non-Vectorizable Non-Vectorizable 40 38 (-2)

4 © 2025 Fujitsu Limited

Analysis of the Result

●11 loops fall into four categories:
A) Suboptimal analysis for array subscripts (3 loops)
B) Reduction variables passed by reference as real arguments

(4 loops)
C) Gather/scatter with non-constant strides at compile-time

(3 loops)
D) Loops requiring LTO only for Fortran version (1 loop)

●Categories A and B can be addressed in the frontend.
●Adding more information to generated MLIR makes it easier for the

LoopVectorize pass to vectorize the input LLVM IR.

5 © 2025 Fujitsu Limited

Address Calculations in Fortran

●Array subscripts: 32 bits, Addresses: 1 word
●1 word is equal to 64 bits on 64-bit CPUs.

●Address calculations frequently involve different bit lengths.
●Lower bounds of subscripts are rarely 0, unlike in C.
●Address calculations need a step to calculate offsets from subscripts.

● Internal representation of array subscripts gets complicated.
●This can significantly influence analyses and loop vectorization.

Address calculations are linearized
because the shape of an array is often
mutable in Fortran.

↑subscript

↓address

6 © 2025 Fujitsu Limited

“nsw” in LLVM IR

●Attribute on add/sub/mul/shl/trunc in LLVM IR
●Shows the result will not overflow the range of signed integer

●Use case of nsw
●Simplifying calculations involving different bit lengths
●(i + 1) - 1L == i ?

●Do not add nsw to instructions whose results could overflow.
●cf. Rust (release mode)
●The behavior of integer overflow is defined (wraparound).

7 © 2025 Fujitsu Limited

“nsw” in LLVM IR

●Attribute on add/sub/mul/shl/trunc in LLVM IR
●Shows the result will not overflow the range of signed integer

●Use case of nsw
●Simplifying calculations involving different bit lengths
●(i + 1) - 1L == i ?

●Where i = INT_MAX, (LHS) = (long)INT_MIN - 1L, (RHS) = (long)INT_MAX
●Equivalent only if the addition has an nsw flag (i.e., i <= INT_MAX - 1)

●Do not add nsw to instructions whose results could overflow.
●cf. Rust (release mode)
●The behavior of integer overflow is defined (wraparound).

8 © 2025 Fujitsu Limited

Integer Overflow in Fortran

●The Fortran standard does not mention integer overflow.
●Leaves the handling of integer overflow up to compiler developers

●We can assume that some operations will never overflow:
● Increments of DO loop variables
●Calculations for array subscripts
●Calculations for loop bounds

●However, code that violates our assumption may exist.
●The option -fwrapv has been introduced into Flang, similar to

Clang.

9 © 2025 Fujitsu Limited

Implementation Details

● Introduced a new flag in FirOpBuilder, a kind of IRBuilder
●The Builder lowers the AST to IR recursively.
●This flag controls whether nsw is added to the target operations.
●Caution: Fortran 2008 and later have intrinsics for bitwise comparisons.

●Patches
●#91579, #110060, #113854, #110061, #118933

https://github.com/llvm/llvm-project/pull/91579
https://github.com/llvm/llvm-project/pull/110060
https://github.com/llvm/llvm-project/pull/113854
https://github.com/llvm/llvm-project/pull/110061
https://github.com/llvm/llvm-project/pull/118933

10 © 2025 Fujitsu Limited

LLVM IR Example with nsw Required

11 © 2025 Fujitsu Limited

Challenges

●Performance regression in the LoopStrengthReduce pass
●While sdiv is changed to udiv in the InstCombine pass when

considering nsw on its operands, it blocks analysis for the
optimization.
●https://github.com/llvm/llvm-project/issues/117318

●Remaining issues identified by TSVC (categories B and C)
●Adding nocapture attribute to arguments
●https://github.com/llvm/llvm-project/issues/106682

●Accepting non-constant strides if they are found to be loop-
invariant
●https://github.com/llvm/llvm-project/issues/110611

https://github.com/llvm/llvm-project/issues/117318
https://github.com/llvm/llvm-project/issues/106682
https://github.com/llvm/llvm-project/issues/110611

12 © 2025 Fujitsu Limited

Acknowledgements

●This presentation is based on results obtained from a project,
JPNP21029, subsidized by the New Energy and Industrial
Technology Development Organization (NEDO)​.

13 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Thank you

	スライド 1: Leveraging “nsw” in Flang’s LLVM IR Generation for Vectorization
	スライド 2: Introduction
	スライド 3: Flang’s Capability of Vectorization
	スライド 4: Analysis of the Result
	スライド 5: Address Calculations in Fortran
	スライド 6: “nsw” in LLVM IR
	スライド 7: “nsw” in LLVM IR
	スライド 8: Integer Overflow in Fortran
	スライド 9: Implementation Details
	スライド 10: LLVM IR Example with nsw Required
	スライド 11: Challenges
	スライド 12: Acknowledgements
	スライド 13: Thank you

