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HOW GOOD IS BOLT ON AARCH64?

Questions we wanted to investigate:
What performance improvements can we obtain by using BOLT on AArché64 platforms?

Should we BOLT our Clang build?

And can we do better and change build process?

We will show:
Performance results for timed compilation of LLVM and CTMark (LLVM test-suite)
The trends for Clang-18, Clang-19, and Clang-20

Show experiments with more and different profiles
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BOLT'ED CLANG: LTO/PGO/BOLT OPTIMISED COMPILER

BOLT optimised AArcé4 Clang toolchain
A.k.a.: how do we create a fast compiler?
Metric: measure compilation time of the BOLT'ed compiler: 27% speed-up of BOLT'ed Clang-20 compared to a standard build:

Timed LLVM Compilation for AArched Grace in seconds (lower |5 better)
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IS IT GOOD FOR ALL WORKLOADS?

4% compile-time regression for SQLite with BOLT'ed Clang:

Timed compilation of sglite-amalgamation-3450300 in seconds
(lower is better)
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IT'S NOT ALL GOOD, MORE REGRESSIONS...

compilation time

Clang 19vs BOLT ed Clang 19

reduction In %
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CLANG 20: GAME CHANGER

= Massive 20% SQLite compile-time improvement!

Timed compilation of sglite-amalgamation-3450300 in seconds
(lower is better)
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ONLY IMPROVEMENTS WITH CLANG 20

Clang 20 vs BOLTed Clang 20
compilation time reduction in %
(upper IS better)
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CAN WE DO BETTER?

BOLT'ed Clang-20 improvements could come from:
CMake configurations: different options passed on,
BOLT learned new optimisations,

More/better profiles?

Can we do better?
BOLT'ed Clang is trained on a modern C++ code-base (LLVM),
Should we extend the training stage with more/different profiles?

Extended Profile:
Collect profiles for CTMark from the LLVM test-suite (C code-base),
Collect profiles for LLVM (C++ code-base),
Merge LLVM + CTMark profiles and use that as input to BOLT.
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MORE PROFILES FIX THE CLANG 19 RESULTS

BOLTed Clang 19 vs BOLT ed Clang 19 + extended profile
compilation time reduction in %
(upper is better|
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EXTENDED PROFILES: ADDITIONAL IMPROVEMENTS LESS THAN 2%

BOLIMed Clang 20 vs BOLT ed Clang 20 + extended profile
compilation time reduction in %
(upper 15 better)
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LTO/PGO/BOLT OPTIMISED CLANG COMPILER

= Additional 6% improvement on Clang 19

= No difference on Clang 20

Timed LLVM Compilation for AArche4 Grace in seconds (lower 15 better)
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CONCLUSIONS

Clang-20 and BOLT-20 are great, also on AArché4!
BOLT'ed Clang-20 is 27% faster than Clang-20
Universally good: the same or better performance (for LLVM and CTMark)
Fixes the issues with Clang-19 and older versions that were not so great yet.

Yes, Clang releases should be BOLT ed
They started with the latest release

Extended profiles:
Clang-20 is now also trained on libLLVMSupport: big improvement
Training it even more with CTMark: almost makes no difference!
The current CMake Clang/BOLT build process and configuration is enough

Future work:

CTMark apps are small, investigate more/bigger apps,
With extended profiles, they should also be added to the PGO stage (i.e. not only BOLT)
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