

# BOLT'ED CLANG: HOW GOOD IS IT ON AARCH64?

ELVINA YAKUBOVA, SJOERD MEIJER

EUROLLVM 2025

### HOW GOOD IS BOLT ON AARCH64?

#### Questions we wanted to investigate:

- 1. What performance improvements can we obtain by using BOLT on AArch64 platforms?
- 2. Should we BOLT our Clang build?
- 3. And can we do better and change build process?

#### We will show:

- Performance results for timed compilation of LLVM and CTMark (LLVM test-suite)
- The trends for Clang-18, Clang-19, and Clang-20
- Show experiments with more and different profiles



### BOLT'ED CLANG: LTO/PGO/BOLT OPTIMISED COMPILER

- BOLT optimised AArc64 Clang toolchain
  - o A.k.a.: how do we create a fast compiler?
  - o Metric: measure compilation time of the BOLT'ed compiler: 27% speed-up of BOLT'ed Clang-20 compared to a standard build:





### IS IT GOOD FOR ALL WORKLOADS?

4% compile-time regression for SQLite with BOLT'ed Clang:



#### Hypothesis:

- BOLT'ed Clang is trained on a modern C++ code (LLVM),
- Maybe this works less well for SQLite that is C-code.



# IT'S NOT ALL GOOD, MORE REGRESSIONS...



#### CTMark C-code base:

- SPASS
- Consumer-typeset
- ClamAV
- Mafft
- Lencod
- Sqlite



## CLANG 20: GAME CHANGER

Massive 20% SQLite compile-time improvement!





### ONLY IMPROVEMENTS WITH CLANG 20

Clang 20 vs BOLT'ed Clang 20 compilation time reduction in % (upper is better)





### CAN WE DO BETTER?

- BOLT'ed Clang-20 improvements could come from:
  - CMake configurations: different options passed on,
  - BOLT learned new optimisations,
  - o More/better profiles?
- Can we do better?
  - BOLT'ed Clang is trained on a modern C++ code-base (LLVM),
  - Should we extend the training stage with more/different profiles?
- Extended Profile:
  - Collect profiles for CTMark from the LLVM test-suite (C code-base),
  - Collect profiles for LLVM (C++ code-base),
  - Merge LLVM + CTMark profiles and use that as input to BOLT.



### MORE PROFILES FIX THE CLANG 19 RESULTS

BOLT'ed Clang 19 vs BOLT'ed Clang 19 + extended profile compilation time reduction in % (upper is better)



Clang 19 vs BOLT ed Clang 19

■ Clang 19 vs BOLT ed Clang 19 + extended profile



### EXTENDED PROFILES: ADDITIONAL IMPROVEMENTS LESS THAN 2%







### LTO/PGO/BOLT OPTIMISED CLANG COMPILER

- Additional 6% improvement on Clang 19
- No difference on Clang 20





### CONCLUSIONS

- Clang-20 and BOLT-20 are great, also on AArch64!
  - BOLT'ed Clang-20 is 27% faster than Clang-20
  - Universally good: the same or better performance (for LLVM and CTMark)
  - Fixes the issues with Clang-19 and older versions that were not so great yet.
- Yes, Clang releases should be BOLT'ed
  - They started with the latest release
- Extended profiles:
  - Clang-20 is now also trained on libLLVMSupport: big improvement
  - Training it even more with CTMark: almost makes no difference!
  - The current CMake Clang/BOLT build process and configuration is enough
- Future work:
  - CTMark apps are small, investigate more/bigger apps,
  - With extended profiles, they should also be added to the PGO stage (i.e. not only BOLT)



