< NVIDIA.

BOLT'ED CLANG:
HOW GOOD IS IT ON AARCH64?

ELVINA YAKUBOVA, SJOERD MEIJER




HOW GOOD IS BOLT ON AARCH64?

Questions we wanted to investigate:
What performance improvements can we obtain by using BOLT on AArché64 platforms?

Should we BOLT our Clang build?

And can we do better and change build process?

We will show:
Performance results for timed compilation of LLVM and CTMark (LLVM test-suite)
The trends for Clang-18, Clang-19, and Clang-20

Show experiments with more and different profiles

NVIDIA.



BOLT'ED CLANG: LTO/PGO/BOLT OPTIMISED COMPILER

BOLT optimised AArcé4 Clang toolchain
A.k.a.: how do we create a fast compiler?
Metric: measure compilation time of the BOLT'ed compiler: 27% speed-up of BOLT'ed Clang-20 compared to a standard build:

Timed LLVM Compilation for AArched Grace in seconds (lower |5 better)

130
120 115
100 143
98
a0
85
g0
70
Clang 17 Clang 18 Clang 19 Clang 20
— Standard build BOLT optimized

<A NVIDIA.



IS IT GOOD FOR ALL WORKLOADS?

4% compile-time regression for SQLite with BOLT'ed Clang:

Timed compilation of sglite-amalgamation-3450300 in seconds
(lower is better)

15.8
15.6 15.6 Hypothesis:

& 4 . 4 BOLT'ed Clang is trained on a modern C++ code (LLVM),

15.3

Maybe this works less well for SQLite that is C-code.

15.2

14.8
14.7

14.6

14.4

14.2
Clangl/ Clang 18 Clangl9

—atand ard build BOLT optimised

NVIDIA.



25%

210%

15%

10%

a'%

0%

Bl

10%

15%

IT'S NOT ALL GOOD, MORE REGRESSIONS...

compilation time

Clang 19vs BOLT ed Clang 19

reduction In %

[upper 15 better)

Improvements

Regressions

CTMark C-code base:

SPASS
Consumer-typeset
ClamAV

Mafft

Lencod

Sqlite

< NVIDIA.



CLANG 20: GAME CHANGER

= Massive 20% SQLite compile-time improvement!

Timed compilation of sglite-amalgamation-3450300 in seconds
(lower is better)

16

15.5 2.6

iEI | — — =

—— 15.3

15 4% regression
14.8

14.5

14

13.5

20% improvement
13

12.5

e 11.9

11.5

11
Clangl/ Clang 18 Clangls Clang20

—standard build —BOLT optimised <A NVIDIA.



35%

25%

15%

109

B

ONLY IMPROVEMENTS WITH CLANG 20

Clang 20 vs BOLTed Clang 20
compilation time reduction in %
(upper IS better)

<A NVIDIA.



CAN WE DO BETTER?

BOLT'ed Clang-20 improvements could come from:
CMake configurations: different options passed on,
BOLT learned new optimisations,

More/better profiles?

Can we do better?
BOLT'ed Clang is trained on a modern C++ code-base (LLVM),
Should we extend the training stage with more/different profiles?

Extended Profile:
Collect profiles for CTMark from the LLVM test-suite (C code-base),
Collect profiles for LLVM (C++ code-base),
Merge LLVM + CTMark profiles and use that as input to BOLT.

NVIDIA.



MORE PROFILES FIX THE CLANG 19 RESULTS

BOLTed Clang 19 vs BOLT ed Clang 19 + extended profile
compilation time reduction in %
(upper is better|

30%

25%

20%

15%

10%

. I I 1 1 .

. ) "

s AN ﬁ? “ m‘#& c?¢53 ,ﬁ’% ﬂsré I @I OF’I
& &

-10% ~ (@*’5‘

B Clang 19vs BOLT ed Clang 19 B Clang 19vs BOLT ed Clang 19 + extended profile

<A NVIDIA.



EXTENDED PROFILES: ADDITIONAL IMPROVEMENTS LESS THAN 2%

BOLIMed Clang 20 vs BOLT ed Clang 20 + extended profile
compilation time reduction in %
(upper 15 better)

4 0%
3500
30%%
250
2 0%
15%
10%
50
0%
3 «:':- "E- 1'5‘ & 'a.
&
.,:.,ti':‘
d:"":
-

B Clang 20vs BOLT ed Clang 20 B Clang 20vs BOLT ed Clang 20 + extended profile

<A NVIDIA.



LTO/PGO/BOLT OPTIMISED CLANG COMPILER

= Additional 6% improvement on Clang 19

= No difference on Clang 20

Timed LLVM Compilation for AArche4 Grace in seconds (lower 15 better)

130
120 118
100 ~— .
Lh[] 92 &
g7

B0
20

Clang 17 Clang 18 Clang 19 Clang 20

—Standand build — B OLT optimized — B OLT optimized extend ed

<X NVIDIA.



CONCLUSIONS

Clang-20 and BOLT-20 are great, also on AArché4!
BOLT'ed Clang-20 is 27% faster than Clang-20
Universally good: the same or better performance (for LLVM and CTMark)
Fixes the issues with Clang-19 and older versions that were not so great yet.

Yes, Clang releases should be BOLT ed
They started with the latest release

Extended profiles:
Clang-20 is now also trained on libLLVMSupport: big improvement
Training it even more with CTMark: almost makes no difference!
The current CMake Clang/BOLT build process and configuration is enough

Future work:

CTMark apps are small, investigate more/bigger apps,
With extended profiles, they should also be added to the PGO stage (i.e. not only BOLT)

NVIDIA.






	Slide 1: euroLLVM 2025
	Slide 2: How good is BOLT on AArch64?
	Slide 3: BOLT'ed Clang: LTO/PGO/BOLT Optimised Compiler
	Slide 4: is it good for all workloads?
	Slide 5: it's not all good, more regressions...
	Slide 6: Clang 20: Game Changer
	Slide 7: Only Improvements with Clang 20
	Slide 8: Can we do better?
	Slide 9: more profiles Fix the Clang 19 results
	Slide 10: extended profiles: additional improvements less than 2%
	Slide 11: LTO/PGO/BOLT Optimised Clang Compiler
	Slide 12: Conclusions
	Slide 13

