
TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INTEGRATING XRAY INTO THE HPC
TOOL ECOSYSTEM

EuroLLVM’25 Berlin

09.04.2025 1

Sebastian Kreutzer

Scientific Computing, TU Darmstadt

sebastian.kreutzer@tu-darmstadt.de

Christian Bischof

Scientific Computing, TU Darmstadt

christian.bischof@tu-darmstadt.de

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

COMING UP

▪Short introduction to XRay

▪How XRay can benefit HPC performance tools

▪Ongoing and future work towards better integration

09.04.2025 2

E U R O L L V M ‘ 2 5

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

BACKGROUND
▪ XRay is LLVM’s integrated instrumentation and tracing solution, consisting of

▪ A hybrid instrumentation approach

▪ A runtime library with built-in tracing modes

▪ Tools to convert and analyze the collected data

▪ Originally developed by Google for performance debugging of applications running in production

▪ Compile with -fxray-instrument to insert patchable instrumentation points

▪ To start tracing, call __xray_patch()

▪ Afterwards, convert and analyze the trace with the llvm-xray utility

▪ Talk by Dean Berris: https://llvm.org/devmtg/2017-10/slides/Berris_XRay_in_LLVM.pdf

09.04.2025 3

E U R O L L V M ‘ 2 5

https://llvm.org/devmtg/2017-10/slides/Berris_XRay_in_LLVM.pdf

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

BACKGROUND
▪ XRay is LLVM’s integrated instrumentation and tracing solution, consisting of

▪ A hybrid instrumentation approach

▪ A runtime library with built-in tracing modes

▪ Tools to convert and analyze the collected data

▪ Originally developed by Google for performance debugging of applications running in production

▪ Compile with -fxray-instrument to insert patchable instrumentation points

▪ To start tracing, call __xray_patch()

▪ Afterwards, convert and analyze the trace with the llvm-xray utility

▪ Talk by Dean Berris: https://llvm.org/devmtg/2017-10/slides/Berris_XRay_in_LLVM.pdf

09.04.2025 4

E U R O L L V M ‘ 2 5

https://llvm.org/devmtg/2017-10/slides/Berris_XRay_in_LLVM.pdf

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

XRAY INSTRUMENTATION
▪ Hybrid approach:

▪ Compile-time: Insert “NOP Sleds”

▪ Runtime: Replace NOPs with call to profiling handler

Near-zero overhead when unpatched → Single binary usable for profiling and production

No binary re-ordering/JIT required → Less invasive than fully dynamic instrumentation

Fast, thread-safe patching → adjustments possible at arbitrary points at runtime

09.04.2025 7

E U R O L L V M ‘ 2 5

Patch
mov %r10d, <fid>
call <trampoline>

Entry

trampoline

event

handler
Jump to function start →

9 bytes of NOPs →
Runtime

library

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

09.04.2025 9

E U R O L L V M ‘ 2 5

Score-P TAU TALP …

▪ Instrumentation-based tools

▪ Support for different programming models

▪ MPI, OpenMP, CUDA, SHMEM…

Score-P: https://www.vi-hps.org/projects/score-p/

TAU: https://www.cs.uoregon.edu/research/tau/home.php

TALP: https://pm.bsc.es/ftp/dlb/doc/user-guide/how_to_run_talp.html

https://www.vi-hps.org/projects/score-p/
https://www.cs.uoregon.edu/research/tau/home.php
https://pm.bsc.es/ftp/dlb/doc/user-guide/how_to_run_talp.html

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

09.04.2025 10

E U R O L L V M ‘ 2 5

Paradigm:

Score-P TAU TALP

PMPI

MPI

…

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

09.04.2025 11

E U R O L L V M ‘ 2 5

Paradigm:

Score-P TAU TALP

PMPI

MPI

OMPT

OpenMP

…

→ (Semi-)standardized support for common parallel programming models

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

09.04.2025 12

E U R O L L V M ‘ 2 5

Paradigm:

+ Supported by most compilers

- Limited selection control

- Basic interface

- High overhead

Score-P TAU TALP

PMPI

MPI

OMPT

OpenMP

…

-finstrument-
functions

General-purpose region instrumentation

void kernel(double* A, int n) {
__cyg_profile_func_enter(&kernel, ...)
for (int i = 0; i < n; i++) {

…
}
__cyg_profile_func_exit(&kernel, ...)

}

Example:

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

10.04.2025 14

E U R O L L V M ‘ 2 5

Paradigm:

Score-P TAU TALP

PMPI

MPI

OMPT

OpenMP

…

-finstrument-
functions

General-purpose region instrumentation

Custom compiler

plugins

Dynamic

binary inst.

+ Mitigate -finstrument-functions issues

- Development/maintenance cost

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

09.04.2025 15

E U R O L L V M ‘ 2 5

Paradigm:

Score-P TAU TALP

PMPI

MPI

OMPT

OpenMP

-finstrument-
functions

General-purpose region instrumentation

Custom compiler

plugins

Dynamic

binary inst.

Manual inst.

API

…

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INSTRUMENTATION IN HPC
TOOLS

Tool:

09.04.2025 17

E U R O L L V M ‘ 2 5

Paradigm:

Score-P TAU TALP

PMPI

MPI

OMPT

OpenMP

…

XRay

General-purpose region instrumentation

Manual Inst.

API

+ Fast, dynamic adjustment

+ Low overhead

+ Integration effort similar to -finstrument-functions

?

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

TOWARDS WIDER ADOPTION
OF XRAY INSTRUMENTATION
As of now, XRay has not found wider adoption as an instrumentation back-end

We are trying to change this by:

1) Enhancing core capabilities

▪ Shared library instrumentation

▪ Improved control over instrumentation points

2) Demonstrating benefits by integrating XRay into established HPC tools

▪ Score-P instrumentation back-end based on XRay

▪ XRay support for Extrae¹ & TALP within CaPI

▪ Research tool for compiler-assisted selective instrumentation

09.04.2025

E U R O L L V M ‘ 2 5

19

https://github.com/tudasc/CaPI

¹ https://tools.bsc.es/extrae

https://github.com/tudasc/CaPI
https://tools.bsc.es/extrae

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

TOWARDS WIDER ADOPTION
OF XRAY INSTRUMENTATION
As of now, XRay has not found wider adoption as an instrumentation back-end

We are trying to change this by:

1) Enhancing core capabilities

▪ Shared library instrumentation

▪ Improved control over instrumentation points

2) Demonstrating benefits by integrating XRay into established HPC tools

▪ Score-P instrumentation back-end based on XRay

▪ XRay support for Extrae¹ & TALP within CaPI

▪ Research tool for compiler-assisted selective instrumentation

09.04.2025

E U R O L L V M ‘ 2 5

20

https://github.com/tudasc/CaPI

¹ https://tools.bsc.es/extrae

https://github.com/tudasc/CaPI
https://tools.bsc.es/extrae

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

ADDING SHARED LIBRARY
SUPPORT

▪ We recently upstreamed support for DSO instrumentation

▪ Available in LLVM 20

▪ Enabled with -fxray-shared flag

▪ See pull request for details: https://github.com/llvm/llvm-project/pull/113548

▪ Support in built-in XRay tracing modes is work-in-progress

▪ Currently cannot properly resolve function IDs from DSOs

▪ RFC: https://discourse.llvm.org/t/rfc-xray-adding-runtime-symbol-resolution-to-xray/85397

▪ PR with prototype implementation: https://github.com/llvm/llvm-project/pull/133269

09.04.2025

E U R O L L V M ‘ 2 5

21

https://github.com/llvm/llvm-project/pull/113548
https://discourse.llvm.org/t/rfc-xray-adding-runtime-symbol-resolution-to-xray/85397
https://github.com/llvm/llvm-project/pull/133269

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

PATCHING (EXECUTABLE ONLY)

10.04.2025 23

▪ Sled data contains information about patchable functions

▪ Functions identified by unique 32-bit function ID

▪ Function ID passed to the event handler on invocation

E U R O L L V M ‘ 2 5

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

PATCHING SHARED
LIBRARIES

10.04.2025 25

▪ Other changes: extended XRay API, relocatable trampoline code

▪ Support implemented for X86_64 and Aarch64

→ See https://github.com/llvm/llvm-project/pull/115300 for reference to add support for other targets

Packed function ID layout

• On load, each instrumented DSO

self-registers with the main runtime

• Receives dynamic object ID

• Patching orchestrated by main runtime

• Patched functions invoke event handler with

 packed ID

E U R O L L V M ‘ 2 5

https://github.com/llvm/llvm-project/pull/115300

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

SCORE-P WITH XRAY BACK-END

▪ Available here: https://github.com/tudasc/scorep-xray

▪ Basic usage:

▪ Configure with --enable-xray-plugin

▪ Compile with scorep-clang++ wrapper

▪ DSO instrumentation is work-in-progress

09.04.2025

E U R O L L V M ‘ 2 5

26

Kreutzer, S., Adelmann, P., Bischof, C. (2025) "A Runtime-Adaptable Instrumentation Back-End for Score-P",

Proceedings of the 2024 International Parallel Tools Workshop (accepted and to appear)

https://github.com/tudasc/scorep-xray

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

SCORE-P EVALUATION

▪ Question: how does XRay’s performance compare to a polished, tool-specific instrumentation

plugin?

▪ Comparing XRay to Score-P’s instrumentation plugins for Clang & GCC

▪ Tool-specific instrumentation API

▪ Embedded region information

▪ Fast dynamic filtering at call site

09.04.2025

E U R O L L V M ‘ 2 5

27

TU Darmstadt | Scientific Computing | Sebastian Kreutzer09.04.2025

E U R O L L V M ‘ 2 5

28

Overhead results

(serial execution) from

LULESH and selected

SPEC benchmarks¹.

¹Benchmarks from SPEC CPU®2006

and SPEC CPU®2017. Results measure the

overhead of the instrumentation method only and

do not constitute compliant results according to the

SPEC fair use rules. Specifically, we do not make

any claims regarding the performance of the

underlying benchmarks.

TU Darmstadt | Scientific Computing | Sebastian Kreutzer10.04.2025

E U R O L L V M ‘ 2 5

31

Unfiltered configuration:

▪ Slightly more overhead with XRay

▪ Only significant in configurations with

too much overhead to be useful

7x

TU Darmstadt | Scientific Computing | Sebastian Kreutzer10.04.2025

E U R O L L V M ‘ 2 5

32

With dynamic filtering:

▪ Filter generated using scorep-score
▪ XRay matches or outperforms the

static instrumentation

TU Darmstadt | Scientific Computing | Sebastian Kreutzer10.04.2025

E U R O L L V M ‘ 2 5

33

Inactive instrumentation:

▪ XRay does not incur measurable

overhead

▪ Compared to up to 6% with plugin

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

INCREASING INSTRUMENTATION
FLEXIBILITY

▪ XRay instrumentation points: post-inlining and function-level only

▪ Can be manually inserted using custom events (__xray_customevent function)

▪ Requires custom handler

▪ Possible improvement: explicit support for loop and pre-inline instrumentation

▪ Via extended instrumentation flags (e.g., -fxray-instrument-loops)

▪ Better support for declaring custom regions on the IR level

09.04.2025

E U R O L L V M ‘ 2 5

37

TU Darmstadt | Scientific Computing | Sebastian Kreutzer

CONCLUSION
▪ There are many ways to perform automatic function instrumentation, with different drawbacks

and advantages

▪ XRay combines a lot of the advantages and is easy to integrate

▪ To make XRay viable for HPC tools, we work on extending core features, e.g. DSO

instrumentation

▪ We demonstrated the advantages of XRay by implementing an instrumentation back-end for

Score-P

▪ Are you using XRay with the built-in tracing libraries or in a custom tool?

I would love to hear about your experience!

09.04.2025

E U R O L L V M ‘ 2 5

38

	Slide 1: Integrating XRAY into the HPC TOOL Ecosystem
	Slide 2: Coming up
	Slide 3: Background
	Slide 4: Background
	Slide 7: Xray instrumentation
	Slide 9: Instrumentation in HPC tools
	Slide 10: Instrumentation in HPC tools
	Slide 11: Instrumentation in HPC tools
	Slide 12: Instrumentation in HPC tools
	Slide 14: Instrumentation in HPC tools
	Slide 15: Instrumentation in HPC tools
	Slide 17: Instrumentation in HPC tools
	Slide 19: Towards wider adoption of XRAy Instrumentation
	Slide 20: Towards wider adoption of XRAy Instrumentation
	Slide 21: Adding shared library support
	Slide 23: Patching (Executable only)
	Slide 25: Patching Shared libraries
	Slide 26: Score-P with XRay Back-end
	Slide 27: Score-P Evaluation
	Slide 28
	Slide 31
	Slide 32
	Slide 33
	Slide 37: Increasing instrumentation flexibility
	Slide 38: Conclusion

