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Introduction
Query Execution

▪ Working  on SAP HANA, SAP's flagship in-memory database

▪ SQL queries processed through complex multi-stage pipeline

(ending with L program execution)

▪ Execution uses tiered compiler-interpreter approach
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Introduction

L Compiler L Interpreter

▪ Uses LLVM as backbone (MCJIT)

▪ Default -O0 pipeline

▪ Custom -O1 pipeline (production)

▪ Default -O2 pipeline

▪ Default -O3 pipeline

▪ IR is constructed in main process

▪ Middle/backend compilation 

happens in separate process

▪ Custom implementation

▪ Sequential block-wise execution 

similar to IR interpretation

Execution Tiers
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Introduction
Product Requirements

Execute query as fast as possible from an E2E perspective.

Start early (low compile time) and finish quickly (low runtime).

Balance between latency and throughput is key!
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Introduction

Absolutely essential precondition for our in-memory database context:

CRASH UNDER NO 

CIRCUMSTANCES!

Product Requirements
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Introduction
Compile Time Breakdown

The program involves 

many loops, jumps and 

mathematical expressions.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Interpreter

Compiler (-O0)

Compiler (-O1)

Compile Time (ms)

Breakdown of Compile Time for sample program (~48K LOC)

Mid-End Optimizations Instruction Selection Reg Alloc
CodeGen Prepare Live Interval Analysis Live Variable Analysis
AsmPrinter Other passes
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Why is our interpreter slow?
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Why is our interpreter slow?
Virtual Function Calls

▪ Interpreter main loop

▪ Most instructions are 

simple

▪ Each instruction has a 

virtual execute() method

▪ Virtual call overhead 

dominates runtime
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Why is our interpreter slow?
Redundant Loads/Stores

▪ An instruction does not know what it's 

predecessor already did (node isolation)

▪ This leads to many redundant 

loads/stores

LlangValue

▪ Generic container for temporary 

or named value

▪ Live consecutively in memory

▪ Either contain buffer with value or 

point to the heap
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Why is our interpreter slow?
Central Questions

(1) How to get rid of the execution overhead? 

(2) Can we do this incrementally?
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ASM Snippets
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ASM Snippets
Concept

▪ Simple instructions produce simple machine code

▪ Generate machine code for those at runtime

▪ Incremental integration into existing interpreter 

architecture

▪ Focus on essential aspects of the language (low

complexity and compile time)
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ASM Snippets
Concatenation
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ASM Snippets
Compactization
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ASM Snippets
Compactization

There are several reasons as to why a node might not 

(yet) have an explicit machine code translation:

1) Dependencies

2) Implementation Pending (Priority)

3) Technical Difficulties (Complexity, Exceptions)
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ASM Snippets
Devirtualization
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ASM Snippets
Devirtualization

Devirtualization is a generic fallback mechanism that 

removes Dynamic Dispatch, enabling most nodes to be 

included in ASM snippets and unlocking performance gains.
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ASM Snippets
Current State

1) 30-ish x86 Instructions

2) Binary and Unary Operations (e.g. Arithmetic

3) Member Selection

4) Assignments

5) Logical Jumps

6) Exception Handling

7) Devirtualization

8) Intrinsics (e.g. Strings)

1) 30-ish x86 / AArch64 Instructions

2) Unary/Binary Operations (e.g. Arithmetic)

3) Member Selection

4) Assignments

As of today, the implementation explicitly supports:



22Public

Public

Code Generation
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Code Generation
Compactization

OP1 OP2HELPER Function Arguments
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Code Generation
Compactization

We define a small set of simple rules to drastically 

simplify register management and code generation:

▪ Only call-clobbered registers

▪ LHS always in OP1

▪ RHS always in OP2

▪ Results/intermediary in RAX/OP1

▪ Lazy data movement (load/store)
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Code Generation
Devirtualization

(a) Prepare execute() function call arguments

(b) Resolve function address and invoke execute() function

(c) Resulting x86 machine code
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Code Generation
Intrinsic Support

As a side node, we identified common data types with a 

noticeable impact on performance and simple logic, 

which can easily be implemented:

1) Strings

2) NullBool / NullInt

3) Simplified C++ function calls

*

* pun intended
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Snippet Management
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Snippet Management
Explicit Handling

Since the machine code functions are generated at 

runtime, we have to explicitely provide and register 

information that the compiler would otherwise have 

prepared:

1) Function Metadata (Name, Location)

2) Unwind Table (C++ Exception Handling)
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Snippet Management
Stack Traces
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Snippet Management
Disassembly

Further diagnostics:

1) Disassembly in crash dumps

is easily obtainable

2) Disassembly dump option for 

developmentHere is the bug!
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Results
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Results
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Compile Time Breakdown
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Conclusion
Summary

▪ Bridge LLVM latency gap with ASM Snippets at runtime

▪ Little effort for a robust, tailored solution

▪ Slight compile-time increase, big performance gains

▪ Order-of-magnitude difference in interpreter vs compiler 

runtime performance (~7x)

▪ Supports an incremental transition
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Conclusion
Learnings (for LLVM)

▪ LLVM -O0 compile time performance not sufficient for 

latency-sensitive applications (at least LLVM 20)

▪ -O0 mostly spends time RegAlloc, ISel and 

LiveIntervalAnalysis

▪ Ultra-low latency compilation not available

▪ More backend options desireable:

- Custom register allocation stategy (RegAlloc)

- Limit instruction selection (ISel)
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Introduction

Benchmark Machine: 64 cores / 64 threads

Tier Performances (AArch64)
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Results

Benchmark Machine: 64 cores / 64 threads

Tier Performances (AArch64)
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Snippet Management
Exception Handling

▪ Devirtualized function calls may produce a C++ 

exception that must be caught

▪ Uncaught exception can cause crash

▪ Unwind table needed for restoration of call-preserved 

registers (normally in .eh_frame in ELF executable)

▪ We can partially use LLVM for this

▪ Technical difficulties prevented implementation
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Snippet Management
Exception Handling

We can use the same DWARF FDE, that spans 

over all snippet functions, since the used 

registers, that need to be restored are always 

the same
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Code Generation
Devirtualization

*

* According to Itanium C++ ABI (GCC, Clang/LLVM)

A.execute()
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Code Generation
Devirtualization
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Why is our interpreter slow?
Virtual Function Calls

(1) How can we get rid of these virtual calls 

and redundant loads/stores?

(2) Can we do this incrementally or do we 

have to go for all-or-nothing?
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Code Generation
Compactization

▪ Lazy loading of values into registers  

▪ If temporary is used immediately in next instruction, skip 

store and reload
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