
Public

Integration of LLVM-JIT
Compiler with Interpreter
and manually prepared
machine code snippets
Marc Auberer (SAP)

Lukas Rapp (Heidelberg University)

April 16, 2025

2Public

Public

Agenda

Introduction

Why is our interpreter slow?

ASM Snippets

Snippet Management

Code Generation

Results

Conclusion

3Public

Public

Introduction

4Public

Public

Introduction
Query Execution

▪ Working on SAP HANA, SAP's flagship in-memory database

▪ SQL queries processed through complex multi-stage pipeline

(ending with L program execution)

▪ Execution uses tiered compiler-interpreter approach

5Public

Public

Introduction

L Compiler L Interpreter

▪ Uses LLVM as backbone (MCJIT)

▪ Default -O0 pipeline

▪ Custom -O1 pipeline (production)

▪ Default -O2 pipeline

▪ Default -O3 pipeline

▪ IR is constructed in main process

▪ Middle/backend compilation

happens in separate process

▪ Custom implementation

▪ Sequential block-wise execution

similar to IR interpretation

Execution Tiers

6Public

Public

Introduction
Product Requirements

Execute query as fast as possible from an E2E perspective.

Start early (low compile time) and finish quickly (low runtime).

Balance between latency and throughput is key!

7Public

Public

Introduction

Absolutely essential precondition for our in-memory database context:

CRASH UNDER NO

CIRCUMSTANCES!

Product Requirements

8Public

Public

0

2

4

6

8

10

12

14

16

x86_64

C
P

U
 T

im
e

 (
s)

Accumulated Compile Time Across All TPC-H
Queries (Less is Better)

Compile Only (-O1) Compile Only (-O0)

Interpret Only Mixed Execution

0

500

1000

1500

2000

2500

3000

x86_64

C
P

U
 T

im
e

 (
s)

Accumulated Runtime Across All TPC-H Queries
(Less is Better)

Compile Only (-O1) Compile Only (-O0)

Interpret Only Mixed Execution

Introduction

Benchmark Machine: 128 cores / 256 threads

-93%

+1960%

Tier Performances (x86_64)

9Public

Public

Introduction
Compile Time Breakdown

The program involves

many loops, jumps and

mathematical expressions.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Interpreter

Compiler (-O0)

Compiler (-O1)

Compile Time (ms)

Breakdown of Compile Time for sample program (~48K LOC)

Mid-End Optimizations Instruction Selection Reg Alloc
CodeGen Prepare Live Interval Analysis Live Variable Analysis
AsmPrinter Other passes

10Public

Public

Why is our interpreter slow?

11Public

Public

Why is our interpreter slow?
Virtual Function Calls

▪ Interpreter main loop

▪ Most instructions are

simple

▪ Each instruction has a

virtual execute() method

▪ Virtual call overhead

dominates runtime

12Public

Public

Why is our interpreter slow?
Redundant Loads/Stores

▪ An instruction does not know what it's

predecessor already did (node isolation)

▪ This leads to many redundant

loads/stores

LlangValue

▪ Generic container for temporary

or named value

▪ Live consecutively in memory

▪ Either contain buffer with value or

point to the heap

13Public

Public

Why is our interpreter slow?
Central Questions

(1) How to get rid of the execution overhead?

(2) Can we do this incrementally?

14Public

Public

ASM Snippets

15Public

Public

ASM Snippets
Concept

▪ Simple instructions produce simple machine code

▪ Generate machine code for those at runtime

▪ Incremental integration into existing interpreter

architecture

▪ Focus on essential aspects of the language (low

complexity and compile time)

16Public

Public

ASM Snippets
Concatenation

17Public

Public

ASM Snippets
Compactization

18Public

Public

ASM Snippets
Compactization

There are several reasons as to why a node might not

(yet) have an explicit machine code translation:

1) Dependencies

2) Implementation Pending (Priority)

3) Technical Difficulties (Complexity, Exceptions)

19Public

Public

ASM Snippets
Devirtualization

20Public

Public

ASM Snippets
Devirtualization

Devirtualization is a generic fallback mechanism that

removes Dynamic Dispatch, enabling most nodes to be

included in ASM snippets and unlocking performance gains.

21Public

Public

ASM Snippets
Current State

1) 30-ish x86 Instructions

2) Binary and Unary Operations (e.g. Arithmetic

3) Member Selection

4) Assignments

5) Logical Jumps

6) Exception Handling

7) Devirtualization

8) Intrinsics (e.g. Strings)

1) 30-ish x86 / AArch64 Instructions

2) Unary/Binary Operations (e.g. Arithmetic)

3) Member Selection

4) Assignments

As of today, the implementation explicitly supports:

22Public

Public

Code Generation

23Public

Public

Code Generation
Compactization

OP1 OP2HELPER Function Arguments

24Public

Public

Code Generation
Compactization

We define a small set of simple rules to drastically

simplify register management and code generation:

▪ Only call-clobbered registers

▪ LHS always in OP1

▪ RHS always in OP2

▪ Results/intermediary in RAX/OP1

▪ Lazy data movement (load/store)

25Public

Public

Code Generation
Devirtualization

(a) Prepare execute() function call arguments

(b) Resolve function address and invoke execute() function

(c) Resulting x86 machine code

26Public

Public

Code Generation
Intrinsic Support

As a side node, we identified common data types with a

noticeable impact on performance and simple logic,

which can easily be implemented:

1) Strings

2) NullBool / NullInt

3) Simplified C++ function calls

*

* pun intended

27Public

Public

Snippet Management

28Public

Public

Snippet Management
Explicit Handling

Since the machine code functions are generated at

runtime, we have to explicitely provide and register

information that the compiler would otherwise have

prepared:

1) Function Metadata (Name, Location)

2) Unwind Table (C++ Exception Handling)

29Public

Public

Snippet Management
Stack Traces

30Public

Public

Snippet Management
Disassembly

Further diagnostics:

1) Disassembly in crash dumps

is easily obtainable

2) Disassembly dump option for

developmentHere is the bug!

31Public

Public

Results

32Public

Public

0

500

1000

1500

2000

2500

3000

x86_64

C
P

U
 T

im
e

 (
s)

Accumulated Runtime Across All TPC-H Queries
(Less Is Better)

Compile Only (-O1) Compile Only (-O0)

Interpret Only (+ ASM) Interpret Only

Mixed Execution

0

2

4

6

8

10

12

14

16

x86_64

C
P

U
 T

im
e

 (
s)

Accumulated Compile Time Across All TPC-H
Queries (Less Is Better)

Compile Only (-O1) Compile Only (-O0)

Interpret Only (+ ASM) Interpret Only

Mixed Execution

Results

Benchmark Machine: 128 cores / 256 threads

-86%

+550%

Tier Performances (x86_64)

33Public

Public

Results

0 1000 2000 3000 4000 5000

Interpreter

Interpreter (+ASM)

Compiler (-O0)

Compiler (-O1)

Compile Time (ms)

Breakdown of Compile Time for sample program (~48K LOC)

Mid-End Optimizations Instruction Selection Reg Alloc
CodeGen Prepare Live Interval Analysis Live Variable Analysis
AsmPrinter Other passes

Compile Time Breakdown

34Public

Public

Conclusion

35Public

Public

Conclusion
Summary

▪ Bridge LLVM latency gap with ASM Snippets at runtime

▪ Little effort for a robust, tailored solution

▪ Slight compile-time increase, big performance gains

▪ Order-of-magnitude difference in interpreter vs compiler

runtime performance (~7x)

▪ Supports an incremental transition

36Public

Public

Conclusion
Learnings (for LLVM)

▪ LLVM -O0 compile time performance not sufficient for

latency-sensitive applications (at least LLVM 20)

▪ -O0 mostly spends time RegAlloc, ISel and

LiveIntervalAnalysis

▪ Ultra-low latency compilation not available

▪ More backend options desireable:

- Custom register allocation stategy (RegAlloc)

- Limit instruction selection (ISel)

Contact information:

© 2025 SAP SE or an SAP affiliate company. All rights reserved. See Legal Notice on www.sap.com/legal-notice for use terms, disclaimers, disclosures, or restrictions related to this material.

Thank you.

Marc Auberer

marc.auberer@sap.com

Lukas Rapp

lukas.rapp@stud.uni-heidelberg.de

41Public

Public

Introduction

Benchmark Machine: 64 cores / 64 threads

Tier Performances (AArch64)

0

1

2

3

4

5

6

7

8

9

AArch64

C
P

U
 T

im
e

 (
s)

Accumulated Compile Time Across All TPC-H
Queries (Less is Better)

Compile Only (-O2) Compile Only (-O0)

Interpret Only Mixed Execution

0

200

400

600

800

1000

1200

1400

1600

1800

2000

AArch64

C
P

U
 T

im
e

 (
s)

Accumulated Runtime Across All TPC-H Queries
(Less Is Better)

Compile Only (-O2) Compile Only (-O0)

Interpret Only Mixed Execution

42Public

Public

Results

Benchmark Machine: 64 cores / 64 threads

Tier Performances (AArch64)

0

1

2

3

4

5

6

7

8

9

AArch64

C
P

U
 T

im
e

 (
s)

Accumulated Compile Time Across All TPC-H
Queries (Less Is Better)

Compile Only (-O2) Compile Only (-O0)

Interpret Only (+ ASM) Interpret Only

Mixed Execution

0

200

400

600

800

1000

1200

1400

1600

1800

2000

AArch64

C
P

U
 T

im
e

 (
s)

Accumulated Run Time Across All TPC-H Queries
(Less is Better)

Compile Only (-O2) Compile Only (-O0)

Interpret Only (+ ASM) Interpret Only

Mixed Execution

43Public

Public

Snippet Management
Exception Handling

▪ Devirtualized function calls may produce a C++

exception that must be caught

▪ Uncaught exception can cause crash

▪ Unwind table needed for restoration of call-preserved

registers (normally in .eh_frame in ELF executable)

▪ We can partially use LLVM for this

▪ Technical difficulties prevented implementation

44Public

Public

Snippet Management
Exception Handling

We can use the same DWARF FDE, that spans

over all snippet functions, since the used

registers, that need to be restored are always

the same

45Public

Public

Code Generation
Devirtualization

*

* According to Itanium C++ ABI (GCC, Clang/LLVM)

A.execute()

46Public

Public

Code Generation
Devirtualization

47Public

Public

Why is our interpreter slow?
Virtual Function Calls

(1) How can we get rid of these virtual calls

and redundant loads/stores?

(2) Can we do this incrementally or do we

have to go for all-or-nothing?

48Public

Public

Code Generation
Compactization

▪ Lazy loading of values into registers

▪ If temporary is used immediately in next instruction, skip

store and reload

	Slide 1: Integration of LLVM-JIT Compiler with Interpreter and manually prepared machine code snippets
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Why is our interpreter slow?
	Slide 11: Why is our interpreter slow?
	Slide 12: Why is our interpreter slow?
	Slide 13: Why is our interpreter slow?
	Slide 14: ASM Snippets
	Slide 15: ASM Snippets
	Slide 16: ASM Snippets
	Slide 17: ASM Snippets
	Slide 18: ASM Snippets
	Slide 19: ASM Snippets
	Slide 20: ASM Snippets
	Slide 21: ASM Snippets
	Slide 22: Code Generation
	Slide 23: Code Generation
	Slide 24: Code Generation
	Slide 25: Code Generation
	Slide 26: Code Generation
	Slide 27: Snippet Management
	Slide 28: Snippet Management
	Slide 29: Snippet Management
	Slide 30: Snippet Management
	Slide 31: Results
	Slide 32: Results
	Slide 33: Results
	Slide 34: Conclusion
	Slide 35: Conclusion
	Slide 36: Conclusion
	Slide 37: Thank you.
	Slide 41: Introduction
	Slide 42: Results
	Slide 43: Snippet Management
	Slide 44: Snippet Management
	Slide 45: Code Generation
	Slide 46: Code Generation
	Slide 47: Why is our interpreter slow?
	Slide 48: Code Generation

