
How to bring your Neural Network
into Upstream MLIR Dialects

A Practical Guide for Beginners

MAXIMILIAN BARTEL

1

AGENDA

Problem and what will you learn

Target upstream dialects

LiteRT

ONNX

Torch

JAX

Conclusion & How to reach me

3

2

4

5

6

7

3

BEGINNERS OFTEN STRUGGLE TO GET THEIR MODEL INTO UPSTREAM MLIR DIALECTS

THE CHALLENGE

https://iree.dev/

• Tensor compiler is a big part of upstream MLIR

• Newcomers want to get their model into upstream

MLIR to play around with passes and

transformations

• The importing is not part of upstream MLIR

4

HOW TO CONVERT YOUR MODEL TO THE LINALG OR TOSA – FRAMEWORK BY
FRAMEWORK

WHAT IS THE LEARNING OUTCOME?

• The projects which you can use to get your model into upstream MLIR

• Where to find the code and examples

• Tips and tricks on how to use them

• My personal experiences with the projects

6

QUICK EXAMPLES OF LINALG AND TOSA

IMPORTANT DIALECTS

https://github.com/llvm/llvm-project/blob/d1fd97737e9064431983e48c2105d1c54d5feacc/mlir/test/Dialect/Linalg/matmul-shared-memory-padding.mlir, https://github.com/llvm/llvm-
project/blob/d1fd97737e9064431983e48c2105d1c54d5feacc/mlir/test/Dialect/Tosa/ops.mlir

• Tensor Operator Set Architecture

• Minimal and stable set of tensor-level operators

• Only ML graph dialect upstream

• It is the output format for some accelerators

Linalg Dialect TOSA Dialect

• Two flavors:
• Named ops
• Generic ops

• Main Codegen dialect in MLIR
• Frameworks try to lower to named ops to preserve

information

Code and Insights

7

LITERT (FORMELY TENSORFLOW LITE)

INPUT FRAMEWORKS

https://ai.google.dev/edge/litert

• Lightweight ML runtime optimized for mobile/edge devices

• Flatbuffer file format (.tflite) with small footprint

• Supports quantization and model optimization

• Key operators for CNN/RNN architectures

• Used widely in Android, iOS, embedded Linux devices

Overview

10

LOWERING LITERT TO TOSA VIA TENSORFLOW

LITERT TO TOSA

flatbuffer_translate --tflite-flatbuffer-to-mlir model.tflite -o – | tf-opt --tfl-to-tosa-pipeline

TFLite

Flatbuffer

TFLite

Dialect
TOSA Dialect

Steps

Code and Insights

Problem

There is no Python API to
convert tfl dialect to tosa
anymore

Maybe some of you
know more here?

1

MY OWN
EXPERIENCE

If the Tensorflow package and your MLIR branch are in sync this is quite stable

The removal of the Python API is quite inconvenient, as it now requires building from source2

Depending on TensorFlow for just a few pieces is annoying3

This is a nice way to test full integer networks4

14

ONNX

INPUT FRAMEWORKS

Source

Overview

• Open Neural Network Exchange format

• Protocol buffer (.onnx) file format

• Supports static computation graphs

• Enables framework interoperability

• Used as bridge between training and deployment

https://onnx.ai/

16

IMPORTING ONNX VIA ONNX-MLIR

ONNX TO MLIR

https://github.com/onnx/onnx-mlir/blob/main/test/mlir/conversion/onnx_to_krnl/NN/Conv_with_canonicalize.mlir

• Original way of importing ONNX models

• Build by IBM mainly to support their own platforms

• Backend for IBM Telum accelerator is available

• There is an incomplete conversion to TOSA

• The StableHLO conversion has way better coverage and

can lower to Linalg

Overview Code and Insights

onnx-mlir --EmitONNXIR model.onnx | onnx-mlir-opt --convert-

onnx-to-tosa

18

IMPORTING ONNX VIA TORCH-MLIR

ONNX TO MLIR

https://github.com/llvm/torch-mlir/blob/main/test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir

”ONNX”

Torch dialect
Torch dialect Linalg/TOSA

Process

ONNX Model

Code and Insights

• “New kid on the block”

• ONNX and Aten are quite similar

• People didn‘t want to add yet another MLIR project

as a dependency

torch-mlir-import-onnx --opset-version 18 model.onnx | torch-mlir-
opt --convert-torch-onnx-to-torch --torch-backend-to-linalg-on-
tensors-backend-pipeline

1

MY OWN
EXPERIENCES

Both paths are not stable (It is getting better though!)

For ONNX-MLIR the path through StableHLO might be more successful2

You can get Torch and ONNX support with one dependency3

The ONNX representation in Torch-MLIR is a bit weird, one would expect a
separate dialect for that

4

22

TORCH

INPUT FRAMEWORKS

https://pytorch.org/

Overview

• Python-first approach with C++ backend

• Multiple export formats: TorchScript, ONNX, FX Graph

•

• torch.export introduced in PyTorch 2.0+

• Popular in research and production deployments

• No stable serialization format (yet)

24

CURRENT STATE OF PYTORCH IMPORTING – TORCH EXPORT AND FXIMPORTER

PYTORCH

PyTorch; GitHub

In Torch In MLIR

• Torch Export is now the default way of exporting a
model

• It gives a lot more freedom and expressiveness to
the user

• Torch Export uses tracing, control flow on tensor
elements break this (graph break)

• FXImporter in Torch-MLIR can take this
ExportedProgram and generate the torch dialect

• It has hooks for advanced features like buffers

• This is nontrivial, because torch allows to have
mutable buffers

https://pytorch.org/docs/stable/export.html
https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/extras/fx_importer.py

25

EXAMPLE OF FXIMPORTER

TORCH TO LINALG AND TOSA

https://github.com/llvm/torch-mlir/blob/cccb0c030c0bafad43b5b3a55863dff1cf616210/test/python/fx_importer/basic_test.py

27

LOWERING TORCH TO UPSTREAM DIALECTS

TORCH TO LINALG AND TOSA

torch-mlir-opt --torch-backend-to-tosa-backend-pipeline file.mlir

28

LOWERING TORCH TO UPSTREAM DIALECTS

TORCH TO LINALG AND TOSA

torch-mlir-opt --torch-backend-to-linalg-on-tensors-backend-pipeline file.mlir

1

MY OWN
EXPERIENCES

Torch Export is extremely powerful in what it can capture

FXImporter is quite nice, and the hooks expose things like mutable buffers

2

Torch to Linalg has more coverage than Torch to TOSA

5

The project got redesigned into a “frontend” a few years back and not everything is adapted
yet

6

3

4

7

Torch frontends need to be more complicated by design

Code quality of some parts makes it hard to add new features or fix bugs
 -> Most of the time it is good enough

TOSA and Torch have a shape mismatch for convolutions and pooling ops
-> You will see a lot of transposes in the IR

31

JAX

INPUT FRAMEWORKS

https://docs.jax.dev/en/latest/

Overview

• Functional approach to numerical computing and ML

• XLA-based acceleration for NumPy operation

• Auto-differentiation

• Used in research and large-scale transformers

• Native integration with MLIR via XLA/MHLO

33

HOW JAX HANDLES MLIR EXPORT

JAX TO MLIR

https://openxla.org/stablehlo/tutorials/jax-export

Command

python jax_example.py | stablehlo-opt --stablehlo-legalize-to-linalg

Insight

Code

• Exporting from their example on was
straightforward

• To lower to TOSA or linalg you need to build
Stablehlo

• I don’t have too much experience with it, but the
coverage looks good

35

IN SUMMARY: I HAVE MY ML MODEL, WHAT NOW?

CONCLUSION

Each framework has its project

LiteRT -> Tensorflow

ONNX -> ONNX-MLIR or Torch-
MLIR

Torch -> Torch-MLIR

JAX -> StableHLO

Insights

• Easy cases most often work

• Devil is often in the detail, especially for

Torch

• You can often choose TOSA or Linalg, but

overall Linalg has better support IMO

• It is a bit annoying that you need to build

some of the projects from source

37

ANY QUESTIONS? I AM HAPPY TO CONNECT!

Q&A

CTO
Maximilian Bartel

bartel@roofline.ai

bartel@roofline.ai

www.roofline.ai

www.roofline.ai

https://www.linkedin.com/in/maximilianbartel97/

https://www.linkedin.com/in/
maximilianbartel97/

maxbartel

maxbartel

mailto:joseph@ice.rwth-aachen.de
mailto:joseph@roofline.ai
https://www.linkedin.com/company/rooflineai/
mailto:joseph@ice.rwth-aachen.de
http://www.roofline.ai/
mailto:joseph@ice.rwth-aachen.de
mailto:joseph@ice.rwth-aachen.de

	Default Section
	Slide 1: How to bring your Neural Network into Upstream MLIR Dialects
	Slide 2
	Slide 3: Beginners often struggle to get their model into upstream mlir dialects
	Slide 4: How to Convert Your Model to the linalg or TOSA – Framework by Framework
	Slide 6: Quick examples of linalg and tosa
	Slide 7: Litert (formely tensorflow lite)
	Slide 10: Lowering litert to tosa via tensorflow
	Slide 12
	Slide 14: onnX
	Slide 16: Importing onnx via onnx-mlir
	Slide 18: Importing onnx via torch-mlir
	Slide 20
	Slide 22: torch
	Slide 24: Current state of pytorch importing – torch export and FXImporter
	Slide 25: Example of fximporter
	Slide 27: Lowering torch to upstream dialects
	Slide 28: Lowering torch to upstream dialects
	Slide 30
	Slide 31: jax
	Slide 33: How jax handles mlir export
	Slide 35: In summary: I have my ml model, what now?
	Slide 37: Any questions? I am happy to connect!

