
Wave programming 

language

Ivan Butygin



2 |

[Public]

Motivational example: tiled and optimized GEMM

constraints = [tkw.WorkgroupConstraint(M, BLOCK_M, 0)]
constraints += [tkw.WorkgroupConstraint(N, BLOCK_N, 1)]
constraints += [tkw.TilingConstraint(K, BLOCK_K)]
constraints += [tkw.WaveConstraint(M, BLOCK_M / 2)]
constraints += [tkw.WaveConstraint(N, BLOCK_N / 2)]

constraints += [tkw.HardwareConstraint(threads_per_wave=64, mma_type=F32_16x16x16_F16)]

if dynamic_dims:
constraints += [tkw.Assumption(K > BLOCK_K * 4)]

@tkw.wave(constraints)
def gemm(

a: tkl.Memory[M, K, ADDRESS_SPACE, tkl.f16],
b: tkl.Memory[N, K, ADDRESS_SPACE, tkl.f16],
c: tkl.Memory[M, N, GLOBAL_ADDRESS_SPACE, tkl.f32],

):
c_reg = tkl.Register[M, N, tkl.f32](0.0)
@tkw.reduction(K, init_args=[c_reg])
def repeat(acc: tkl.Register[M, N, tkl.f32]) -> tkl.Register[M, N, tkl.f32]:

a_reg = tkw.read(a)
b_reg = tkw.read(b)
acc = tkw.mma(a_reg, b_reg, acc)
return acc

tkw.write(repeat, c)



3 |

[Public]

What is Wave

• Symbolic domain specific language for high performance machine learning.

• Targeting GPU (AMDGPU only currently)

• Python syntax + sympy symbolic expressions

• Explicit separating between kernel logic and distribution strategy

• MLIR for codegen, mostly upstream dialects

• IREE as last-mile optimizer and runtime



4 |

[Public]

Motivation: why new language

• HW matmul intrinsics are required for the competitive perf on modern GPUs

• All GPU vendors have them in some form

• Direct CUDA/HIP programming them is too time consuming and error prone
• They are usually a collective operation across many threads, doesn’t fit nicely to SIMT model

• Matrix elements may need a nontrivial layout in registers/shared memory

• Tiling/scheduling intertwined with the kernel logic

• Need a more convenient way to experiment with various intrinsics/tile sizes/distribution

• Wave

• High level kernel description operating on whole tensors level

• Tiling and distribution strategy is spelled explicitly and separated from the kernel description

• Tiling operating on block/wave level

• Symbolic data types for tensor shapes and distribution patterns

• Memory access pattern per block/thread is decided by the compiler transparently

• Automatic masking for unaligned shapes

• Easy way to test new data access patterns



5 |

[Public]

Basic syntax: elementwise copy kernel

• Constraints to describe how to tile/distribute 

computation across GPU WGs/Threads 

• Splits work shape into workgroups and than 

each WG into waves

• All tensor shapes are symbolic

• Tensor shapes and constraints are connected 

symbolically

• Kernel logically operating on the entire 

tensors

• Setting symbol values

• Global work size not need to be divisible on tile 

sizes, masking ops are inserted automatically 

for unaligned shapes

constraints = [
tkw.HardwareConstraint(threads_per_wave=64)

]
constraints += [tkw.WorkgroupConstraint(M, BLOCK_M, 1)]
constraints += [tkw.WorkgroupConstraint(N, BLOCK_N, 0)]
constraints += [tkw.WaveConstraint(M, BLOCK_M)]
constraints += [tkw.WaveConstraint(N, BLOCK_N)]

@tkw.wave(constraints)
def test(

a: tkl.Memory[M, N, ADDRESS_SPACE, tkl.f16],
b: tkl.Memory[M, N, ADDRESS_SPACE, tkl.f16],

):
res = tkw.read(a)
tkw.write(res, b)

options = WaveCompileOptions(
subs={

M: shape[0],
N: shape[1],
ADDRESS_SPACE: GLOBAL_MEMORY,

},
)

test = wave_compile(options, test)
test(a, b)



6 |

[Public]

GEMM

constraints = [tkw.WorkgroupConstraint(M, BLOCK_M, 0)]
constraints += [tkw.WorkgroupConstraint(N, BLOCK_N, 1)]
constraints += [tkw.TilingConstraint(K, BLOCK_K)]
constraints += [tkw.WaveConstraint(M, BLOCK_M / 2)]
constraints += [tkw.WaveConstraint(N, BLOCK_N / 2)]

constraints += [tkw.HardwareConstraint(threads_per_wave=64, mma_type=F32_16x16x16_F16)]

if dynamic_dims:
constraints += [tkw.Assumption(K > BLOCK_K * 4)]

@tkw.wave(constraints)
def gemm(

a: tkl.Memory[M, K, ADDRESS_SPACE, tkl.f16],
b: tkl.Memory[N, K, ADDRESS_SPACE, tkl.f16],
c: tkl.Memory[M, N, GLOBAL_ADDRESS_SPACE, tkl.f32],

):
c_reg = tkl.Register[M, N, tkl.f32](0.0)
@tkw.reduction(K, init_args=[c_reg])
def repeat(acc: tkl.Register[M, N, tkl.f32]) -> tkl.Register[M, N, tkl.f32]:

a_reg = tkw.read(a)
b_reg = tkw.read(b)
acc = tkw.mma(a_reg, b_reg, acc)
return acc

tkw.write(repeat, c)



7 |

[Public]

GEMM

• Wave size and matmul intrinsic to use (alternatively, can be set per individual mma op)

• Assumptions for dynamically sized dimensions, used later in compilation pipeline

• ADDRESS_SPACE controls if input array should be promoted to shared mem

• Allocate temp storage for accumulator

• Reduction loop across K dimension as this dimension is tiled

• mma is mapped to the hw matmul instructions

constraints += [tkw.HardwareConstraint(threads_per_wave=64, mma_type=F32_16x16x16_F16)]

if dynamic_dims:
constraints += [tkw.Assumption(K > BLOCK_K * 4)]

a: tkl.Memory[M, K, ADDRESS_SPACE, tkl.f16],
b: tkl.Memory[N, K, ADDRESS_SPACE, tkl.f16],

c_reg = tkl.Register[M, N, tkl.f32](0.0)

@tkw.reduction(K, init_args=[c_reg])
def repeat(acc: tkl.Register[M, N, tkl.f32]) -> tkl.Register[M, N, tkl.f32]:

a_reg = tkw.read(a)
b_reg = tkw.read(b)

acc = tkw.mma(a_reg, b_reg, acc)
return acc

tkw.write(repeat, c)



8 |

[Public]

conv2d/igemm

x_mapping = tkw.IndexMapping(
num_iterators=2,
inputs={

N: i // SZ_OUT,
C: j % C,
H: (i % SZ_OUT) % W_OUT * stride + (j // C) % WF,
W: (i % SZ_OUT) // W_OUT * stride + (j // C) // WF,

},
outputs={M: i, K: j},

)
w_mapping = ...
out_mapping = ...

@tkw.wave(constraints)
def conv(

x: tkl.Memory[N, H, W, C, ADDRESS_SPACE, tkl.f16],
we: tkl.Memory[HF, WF, C, NF, ADDRESS_SPACE, tkl.f16],
out: tkl.Memory[N, H_OUT, W_OUT, NF, GLOBAL_ADDRESS_SPACE, tkl.f32],

):
c_reg = tkl.Register[M, NF, tkl.f32](0.0)
@tkw.reduction(K, init_args=[c_reg])
def repeat(acc: tkl.Register[M, NF, tkl.f32]) -> tkl.Register[M, NF, tkl.f32]:

a_reg = tkw.read(x, mapping=x_mapping)
b_reg = tkw.read(we, mapping=w_mapping)
acc = tkw.mma(a_reg, b_reg, acc)
return acc

tkw.write(repeat, out, mapping=out_mapping)



9 |

[Public]

conv2d/igemm

• GEMM convolution: im2col -> GEMM -> col2im

• Implicit as it doesn’t require allocation temp tensors

• Same kernel as GEMM

• In/out tensors are 4d

• Reads/writes has the custom mapping

@tkw.wave(constraints)
def conv(

x: tkl.Memory[N, H, W, C, ADDRESS_SPACE, tkl.f16],
we: tkl.Memory[HF, WF, C, NF, ADDRESS_SPACE, tkl.f16],
out: tkl.Memory[N, H_OUT, W_OUT, NF, GLOBAL_ADDRESS_SPACE, tkl.f32],

):
c_reg = tkl.Register[M, NF, tkl.f32](0.0)

@tkw.reduction(K, init_args=[c_reg])
def repeat(acc: tkl.Register[M, NF, tkl.f32]) -> tkl.Register[M, NF, tkl.f32]:

a_reg = tkw.read(x, mapping=x_mapping)
b_reg = tkw.read(we, mapping=w_mapping)
acc = tkw.mma(a_reg, b_reg, acc)
return acc

tkw.write(repeat, out, mapping=out_mapping)



10 |

[Public]

conv2d/igemm

• Custom mapping for read/write ops

• Maps 4d input into 2d tiles mma expects

• Iterators describe iteration shape and symbolic exprs maping to the input/output tensors elements

• Semantics similar to MLIR linalg.generic

i = tkw.IndexMapping.iterator(0)
j = tkw.IndexMapping.iterator(1)

x_mapping = tkw.IndexMapping(
num_iterators=2,
inputs={

N: i // SZ_OUT,
C: j % C,
H: (i % SZ_OUT) % W_OUT * stride + (j // C) % WF,
W: (i % SZ_OUT) // W_OUT * stride + (j // C) // WF,

},
outputs={M: i, K: j},

)
w_mapping = tkw.IndexMapping(

num_iterators=2,
inputs={NF: i % NF, C: j % C, HF: (j // C) % WF, WF: (j // C) // WF},
outputs={NF: i, K: j},

)



11 |

[Public]

Attention

@tkw.reduction(K2, init_args=[init_max, init_sum, c_reg])
def repeat(

partial_max: tkl.Register[B, M, tkl.f32],
partial_sum: tkl.Register[B, M, tkl.f32],
acc: tkl.Register[B, N, M, tkl.f32],

):
imm_reg = tkl.Register[B, K2, M, tkl.f32](0.0)
q_reg = tkw.read(q)
k_reg = tkw.read(k)
inner_acc = tkw.mma(k_reg, q_reg, imm_reg, mfma_variant[0])
x_j = tkw.permute(inner_acc, target_shape=[B, M, K2])
k2_index = tkw.self_index(K2, tkl.i64)
mask = tkw.apply_expr(k2_index, lambda x: x < K2)
mask = tkw.broadcast(mask, target_shape=[M, K2])
mask = tkw.cast(mask, tkw.i1)
bias = tkw.select(mask, ZEROF, MIN_INF)
x_j = x_j + bias
m_j = tkw.max(x_j, partial_max, dim=K2)
e_delta_max = tkw.exp2(partial_max - m_j)
e_delta = tkw.exp2(x_j - m_j)
e_init = partial_sum * e_delta_max
d_j = tkw.sum(e_delta, e_init, dim=K2)
imm_f16 = tkw.cast(e_delta, tkl.f16)
v_reg = tkw.read(v, mapping=v_mapping)
new_acc = acc * e_delta_max
acc = tkw.mma(v_reg, imm_f16, new_acc)
return m_j, d_j, acc

• 2 mmas inside reduction loop with 

different intrinsics

• Reductions across WG

• Direct iteration index access

• And more…



12 |

[Public]

Architecture

• Frontend

• Torch.fx tracing

• Middle end

• We are using torch.fx + sympy as IR

• Index sequence analysis

• Tiling/Expansion

• Some optimizations

• Backend

• MLIR vector, arith, scf, amdgpu dialects

• IREE as last-mile optimizer

• IREE as runtime
• Standalone runtime WIP



13 |

[Public]

Frontend - tracing

• Tracing

• Uses torch.fx to trace the kernel

• Torch.fx calls the kernel function and traces the kernel using special Proxy objects that act as placeholders for actual 

values

• Avoids the need to implement custom parser and leverages the flexibility of Python

• Need special handling for control flow ops

• Intermediate Representation

• Builds on torch.fx intermediate representation (python-based IR)

• SSA

• Adds wave-specific operators and types

• Adds symbolic types

• Leverages torch.fx infrastructure for graph rewrites



14 |

[Public]

Middle end - transformations

• Index Sequence Analysis & Thread Shape Analysis

• Given a computation graph G with nodes N, and a specific set of nodes V with 

requirements on memory access patterns (like MMA), determine the memory 

access patterns for every node in the graph

• Nodes providing requirements can be thought of as “sources” and the rest as 

“sinks”

• Need to propagate information from the “sources” to the “sinks”

• Also need to handle “conflicts” when thread shapes don’t agree

• In the best case, this requires just a broadcast

• In the worst case, shuffles or trips to shared memory



15 |

[Public]

Middle end - transformations

• Expansion

• While the kernel distribution is authored from the perspective of a single wave, the compiler needs to generate code 

for a single thread

• To do that, we need to expand the kernel according to the input sizes and the constraints specified by the kernel 

author



16 |

[Public]

Middle end - optimizations

• Promotion to Shared Memory

• Global Load Optimization

• FP8 Virtual GEMM Optimizations

• Partitioning Strided Operators

• Barrier Insertion

• Instruction Scheduling

• Hoisting loop invariant Wave ops

• Contiguous Load Detection

• …



17 |

[Public]

Backend - lowering

• Lower symbolic access patterns to affine.apply + sequence of MLIR operations

• Prior to lowering, we simplify the symbolic expressions using sympy to reduce the number of instructions emitted / 

type of instructions emitted

• Most operators are then lower to the vector dialect

• Read -> vector.read / vector.gather / vector.maskedload

• Write -> vector.store / vector.scatter / vector.maskedstore

• MMA -> amdgpu.mfma

• Reduce -> gpu.shuffle

• Special Intrinsics (Instruction Scheduling Barriers) -> llvm.intrinsics

• Eventually lowered to LLVM IR for device



18 |

[Public]

Backend - runtime

• IREE Runtime

• Leverages IREE Runtime to launch kernels

• Encapsulates kernels within the stream/flow dialect for 

easy integration into models compiled by IREE

• Can leverage existing tools like iree-run-module and 

iree-benchmark-module to run and benchmark kernels

• Integrates efficiently with Pytorch

• Zero-copy of tensors to-and-from Pytorch​ (still some 

issues being worked on)

• Kernels can be called from Pytorch code and are 

cached to avoid recompilation on every call 



19 |

[Public]

Backend optimizations

• General vector/arith dialect canonicalizations

• MLIR CSE

• Integer range analysis (IREE)

• Reduce int<->index casts count

• Remove selects after affine.apply/ceildiv lowering

• Divisibility (simplify divs/mods when work size is divisible by tile size)



20 |

[Public]

Some takeaways

• Python as primary language

• We are using upstream MLIR python bindings

• Slow kernel compile times (partially offset by caching)

• Not all MLIR things are exposed to Python

• torch.fx is minimal IR

• Quickly enabling e2e flow

• Had to implement our own common utilities (CSE, DCE) on top of it

• No good upstream symbolic type dialect

• Using affine exprs + affine.apply for represent index calculations

• Have converter from subset of sympy to affine expr + arith 

• Would be nice to have one upstrem

• IREE runtime is good at quickly enabling e2e flow

• With just few lines of IR and few API calls we have a runnable e2e kernel and pytorch arrays integration

• Would be nice to have this in MLIR upstream too



21 |

[Public]

Fin

• Project repo: https://github.com/iree-org/iree-turbine/tree/main/iree/turbine/kernel/wave

• Discussions: IREE discord Discord

• We are hiring!

https://github.com/iree-org/iree-turbine/tree/main/iree/turbine/kernel/wave
https://discord.com/channels/689900678990135345/1255610298627395664



	Slide 1: Wave programming language
	Slide 2: Motivational example: tiled and optimized GEMM
	Slide 3: What is Wave
	Slide 4: Motivation: why new language
	Slide 5: Basic syntax: elementwise copy kernel
	Slide 6: GEMM
	Slide 7: GEMM
	Slide 8: conv2d/igemm
	Slide 9: conv2d/igemm
	Slide 10: conv2d/igemm
	Slide 11: Attention
	Slide 12: Architecture
	Slide 13: Frontend - tracing
	Slide 14: Middle end - transformations
	Slide 15: Middle end - transformations
	Slide 16: Middle end - optimizations
	Slide 17: Backend - lowering
	Slide 18: Backend - runtime
	Slide 19: Backend optimizations
	Slide 20: Some takeaways
	Slide 21: Fin
	Slide 22

