ave programming
nguage

Butygin

AMD ¢

together we advance_

Motivational example: tiled and optimized GEMM

)

constraints
constralnts +
constrailnts
constrailnts
constrailnts

constraints

+_
+=
+=

tkw WorkEroupConstralnt(M BLOCK M, ©
rou Constralnt(N BLOCK_N,
BLOCK K)I

kw.Wor
tkw TlllngConstralnt(
tkw.WaveConstraint (M, ELO
tkw.WaveConstraint N BLOCK

07 3]

+= [tkw.HardwareConstraint(threads per wave=64, mma_type=F32 16x16x16 F16)]

if dynamic_dims:

constraints += [tkw.Assumption(K > BLOCK K * 4)]

gtkw wave(constralnts)

emm (
g: tkl.Memory[M, K, ADDRESS SPACE, tkl.f16
b: tkl.Memory N, K, ADDRESS”SPACE, tk1.f16
c: tkl.Memory[M, N, GLOBAL KDDRESé _SPACE,
C tkl.Re 1ster[, N, tkl. f32](@ .0)
@fkw Peductlon init ar s=[c_re
ef repeat(acc: fkl Register[M;
a_reg = tkw.read(a
b— _reg = tkw.read(b
acc = tkw. mma(a_reg, b_reg, acc)

return acc

tkw.write(repeat, c)

1&1.{32],

? %kl.f32]) -> tkl.Register[M, N, tkl.f32]:

AMDZU

together we advance_

What is Wave

Symbolic domain specific language for high performance machine learning.
Targeting GPU (AMDGPU only currently)

Python syntax + sympy symbolic expressions

Explicit separating between kernel logic and distribution strategy

MLIR for codegen, mostly upstream dialects

IREE as last-mile optimizer and runtime

AMDZU

together we advance_

Motivation: why new language

HW matmul intrinsics are required for the competitive perf on modern GPUs
All GPU vendors have them in some form

Direct CUDA/HIP programming them is too time consuming and error prone
They are usually a collective operation across many threads, doesn't fit nicely to SIMT model
Matrix elements may need a nontrivial layout in registers/shared memory
Tiling/scheduling intertwined with the kernel logic

Need a more convenient way to experiment with various intrinsics/tile sizes/distribution

Wave
High level kernel description operating on whole tensors level
Tiling and distribution strategy is spelled explicitly and separated from the kernel description
Tiling operating on block/wave level
Symbolic data types for tensor shapes and distribution patterns
Memory access pattern per block/thread is decided by the compiler transparently
Automatic masking for unaligned shapes
Easy way to test new data access patterns

AMDZU

together we advance_

Basic syntax: elementwise copy kernel

_ _ I constraints = [.
Constraints to describe how to tile/distribute tkw.HardwareConstraint(threads per wave=64)

computation across GPU WGs/Threads constraints += tkw.wOr‘kgr‘oupConstr‘aintEM, BLOCK M, 1”
Sp|its work Shape into Workgroups and than constraints += [tkw.Work r‘oupConstr‘alnt N, BLOCK N, ©

each WG into waves constraints += [tkw.Wave onstr‘alntEM, BLOCK MH

constraints += [tkw.WaveConstraint(N, BLOCK™N

All tensor shapes are symbolic Qtléw;cwa)c/e(constr‘aints)

Tensor shapes and constraints are connected © a?stlgl.Memor\y M, N, ADDRESS SPACE, tkl.f16],

symbolically . b: tkl .Memor‘y[M, N, ADDRESS SPACE, tkl .f16] 5
Kernel logically operating on the entire " res = tkw, r‘ead(ag
tensors tkw.write(res, b
Setting symbol values opti(s)ﬂBS:{WaveCompileOptions(

Global work size not need to be divisible on tile M: sﬂape 9],

sizes, masking ops are inserted automatically XI'JDFS{Egge Fl, tE: GLOBAL MEMORY

— ° — J

for unaligned shapes

J

)

test = wave compile(options, test)

IS AMDZU

together we advance_

GEMM

constraints
constralnts
constrailnts
constrailnts
constraints

constraints

constraints += [tkw.Assumption(K > BLOCK K * 4)]

+—
+=
+=
+=

+=

[tkw. WOrkEroupConstralnt(M BLOCK M, ©
rou Constralnt(N BLOCK_N,
tkw T111ngConstPa1nt(BLOCK K)g

tkw.Wor

tkw.WaveConstraint (M, éLO
tkw.WaveConstraint N BLOCK

07 3]

J

[tkw.HardwareConstraint(threads per wave=64, mma_type=F32 16x16x16 F16)]

if dynamic_dims:

gtkw wave(constralnts)

emm (
g: tkl.Memory[M, K, ADDRESS SPACE, tkl.f16
b: tkl.Memory N, K, ADDRESS”SPACE, tk1.f16
c: tkl.Memory[M, N, GLOBAL KDDRESé _SPACE,
C tkl.Re 1ster[, N, tkl. f32](@ .0)
gfkw Peductlon init ar s=[c_re
ef repeat(acc: fkl Register[M;

a_reg = tkw.read(a

b— _reg = tkw.read(b

acc = tkw. mma(a_reg, b_reg, acc)

return acc

tkw.write(repeat, c)

1&1.{32],

? %kl.f32]) -> tkl.Register[M, N, tkl.f32]:

AMDZU

together we advance_

GEMM

Wave size and matmul intrinsic to use (alternatively, can be set per individual mma op)

constraints += [tkw.HardwareConstraint(threads per wave=64, mma_type=F32 16x16x16 F16)]

Assumptions for dynamically sized dimensions, used later in compilation pipeline
if dynamic_dims:)
constraints += [tkw.Assumption(K > BLOCK K * 4)]

ADDRESS_SPACE controls if input array should be promoted to shared mem

a: tkl.Memory[M, K, ADDRESS SPACE, tkl.F16],
b: tkl.Memory[N, K, ADDRESS_SPACE, tkl.f16

J

Allocate temp storage for accumulator
c_reg = tkl.Register[M, N, tkl.f32](0.0)

Reduction loop across K dimension as this dimension is tiled

tkw.reduction(K init_ar%s= c_reg]% _

ef repeat(acc: tk1l.Register M, N, tkl.f32]) -> tkl.Register[M, N, tkl.f32]:
a_reg = tkw.read a?
b"reg = tkw.read(b

mma is mapped to the hw matmul instructions

acc = tkw.mma(a_reg, b _reg, acc)
return acc

tkw.write(repeat, c)

AMDZU

together we advance_

conv2d/igemm

x_mapping = tkw.IndexMapping(
num_1lterators=2,
inputs={
N: 1 4/ SZ_OUT,

C: §.% C
H: gi % 57 OUTg % W OUT * stride + (j.// c% % WF,
23 // C)

) W: (i % SZ_0uT) // W_OUT * stride + // WF,
) oﬁtputs={M: i, K: j},
w_mapping = ...

out _mapping = ...

gt$w.wave(constraints)
e

conv

X tﬁl.Memory[N H, W, C, ADDRESS SPACE, tkl.f16]

we: tkl.Memory[HF, WF, C, NF, ADDRESS SPACE, tkl.#lsg

out: tkl.Memory[N, H _OUT, W OUT, NF, GLOBAL ADDRESS SPACE, tkl.f32],

c_reg = tkl.Register[M, NF, tkl.f32}(@.@)

Tkw.reduction(K, init_args=[c_reg])
ef repeat(acc: tkl.Register[M; NF, tkl.f32]) -> tkl.Register[M, NF, tkl.f32]:

a_reg = tkw.read(x, mapping=x_mapping)
b"reg = tkw.read(we, mapping=w_mapping)
acc = tkw.mma(a_reg, b _reg, acc)

return acc

tkw.write(repeat, out, mapping=out _mapping)
AMD ¢\

together we advance_

conv2d/igemm

GEMM convolution: im2col -> GEMM -> col2im
Implicit as it doesn’t require allocation temp tensors
Same kernel as GEMM

In/out tensors are 4d

Reads/writes has the custom mapping

gtkw wave(constraints)
conv(
x: tkl.Memory C, ADDRESS SPACE, tkl.f16]
we: tki.Memor [HF NF, ADDRESS SPACE, tkl. #16;
out: tki. Memory[N 6UT W OUT, NF, GLOBAL ADDRESS SPACE, tkl.f32],

c_reg = tkl.Register[M, NF, tkl.f32](0.0)

@tkw reductlon(K init _args= E])
ef repeat(acc: tkl.Register M NF, tkl.f32]) -> tkl.Register[M, NF, tkl.f32]:
a_reg = tkw.read(x, mapplng =X mapplng)
b” _reg = tkw.read(we, mapping=w_mapping)
acc = tkw.mma(a_reg, b_reg, acc
return acc

tkw.write(repeat, out, mapping=out mapping)

AMDZU

together we advance_

10

conv2d/igemm

Custom mapping for read/write ops
Maps 4d input into 2d tiles mma expects
Iterators describe iteration shape and symbolic exprs maping to the input/output tensors elements
Semantics similar to MLIR linalg.generic

tkw.IndexMapping. 1terator2@
tkw.IndexMapping.iterator(1l

‘—Iol—l‘

X_mapping = tkw.IndexMapping(
num_1iterators=2,

1nputs—{

:1 [/ SZ OUT,

c:
H: g o 27 OUTg % W OUT * stride + cg % WF,
W: % SZ"0UT) // W OUT * stride + %J // C) // WF,

gﬂtputs={M: i, K: j},

w_mapping = tkw.IndexMapping(
num_1iterators=2,
inputs={NF: 1./ NF, C: j % C, HF: (3 // C) % WF, WF: (3 // C) // WF},
outputs={NF: i, K: j},

AMDZU

together we advance_

11

Attention

2 mmas inside reduction loop with @
different intrinsics

Reductions across WG):

Direct iteration index access
And more...

tkw.reduction(K2, init _args=[init max, init sum, c_reg])
ef repeat

partial max: tkl.Register[B, M, tkl.f32],
partial sum: tkl.Register([B, M, tkl.f32
acc: tkTI.Register[B, N, M, fkl.f32],

imm _reg = tkl.Register[B, K2, M, tkl.f32](0.0)

g _reg = tkw.read(qg

K“reg = tkw.read(k . .
inner_acc = tkw.mma(k_reg, gq_reg, imm_reg, mfma_variant[0])
X_Jj . = tkw.permute(inner_acc tarﬁet shape=[B, M, K2
kZ”index = tkw.self 1ndex(Kﬁ, tkl.i64)

J

mask = tkw.apply_exEr(kZ index, lambda x: x < K2)
mask = tkw.broadcast(mask, target_ shape=[M, K2])
mask = tkw.cast(mask, tkw.llz

bias = tkw.select(mask, ZEROF, MIN_INF)

X_j = x_j + bias]]

m_a = tkw.max(x_j, partial _max, dim=K2)
e_delta max = tkw.exp2(partial max - m_j)
e_delta = tkw.exp2(x_j - m_

e_init = partial_sum * e_delta_max

d_j = tkw.sum(e_delta, e init, dim=K2)
imm_f16 = tkw.cast(e_delTa, tRl.fl@)
v_reg = tkw.read(v, mapping=v_mapping)
new_acc = acc * e_delta_max

acc = tkw.mma(v_reg, imm_f16, new_acc)
return m_j, d_j, acc

AMDZU

together we advance_

Architecture

Frontend
Torch.fx tracing

Middle end

We are using torch.fx + sympy as IR
Index sequence analysis
Tiling/Expansion

Some optimizations

Backend

MLIR vector, arith, scf, amdgpu dialects
IREE as last-mile optimizer

IREE as runtime
Standalone runtime WIP

12

AMDZU

together we advance_

13

Frontend - tracing

Tracing

Uses torch.fx to trace the kernel
Torch.fx calls the kernel function and traces the kernel using special Proxy objects that act as placeholders for actual

values
Avoids the need to implement custom parser and leverages the flexibility of Python

Need special handling for control flow ops

Intermediate Representation
Builds on torch.fx intermediate representation (python-based IR)
SSA
Adds wave-specific operators and types

Adds symbolic types
Leverages torch.fx infrastructure for graph rewrites

AMDZU

together we advance_

14

Middle end - transformations

Index Sequence Analysis & Thread Shape Analysis

Given a computation graph G with nodes N, and a specific set of nodes V with
requirements on memory access patterns (like MMA), determine the memory
access patterns for every node in the graph

Nodes providing requirements can be thought of as “sources” and the rest as
“sinks”

Need to propagate information from the “sources” to the “sinks”
Also need to handle “conflicts” when thread shapes don’t agree
In the best case, this requires just a broadcast
In the worst case, shuffles or trips to shared memory

AMDZU

together we advance_

Middle end - transformations

Expansion

While the kernel distribution is authored from the perspective of a single wave, the compiler needs to generate code
for a single thread

To do that, we need to expand the kernel according to the input sizes and the constraints specified by the kernel
author

3 b

a JCoicYEmpemycnfen
\ l,.»—/"ﬂ / o

\
\

acc000 read000 mma000 read001 mmal00 mma010 mmal 10 read011

5 i
\
N

X

mma000 mma(0 | mmal0l mmalll

write00 | write101

Figure 2: a) (left) The graph representation of the traced gemm kernel of Listing 1. b) (right) shows the fully expanded
gemm kernel. We highlight the added nodes in subsequent expansion steps in different colors: 1. Expansion in (0, 1,0) red,
2. Expansion in (1,0,0) blue, 3. Expansion in (1, 1, 0)7 green.

AMDZU

15 together we advance_

16

Middle end - optimizations

Promotion to Shared Memory
Global Load Optimization

FP8 Virtual GEMM Optimizations
Partitioning Strided Operators
Barrier Insertion

Instruction Scheduling

Hoisting loop invariant Wave ops
Contiguous Load Detection

AMDZU

together we advance_

17

Backend - lowering

Lower symbolic access patterns to affine.apply + sequence of MLIR operations

Prior to lowering, we simplify the symbolic expressions using sympy to reduce the number of instructions emitted /
type of instructions emitted

Most operators are then lower to the vector dialect

Read -> vector.read / vector.gather / vector.maskedload

Write -> vector.store / vector.scatter / vector.maskedstore

MMA -> amdgpu.mfma

Reduce -> gpu.shuffle

Special Intrinsics (Instruction Scheduling Barriers) -> llvm.intrinsics
Eventually lowered to LLVM IR for device

AMDZU

together we advance_

IREE Compiler using MLIR

PyTorch | : — .
Backend - runtime " 1@[] A5 Y>> AD <

TOSA |

stream

IREE Runtime Plugin P i B

Leverages IREE Runtime to launch kernels <
Encapsulates kernels within the stream/flow dialect for A aemtodlle
easy integration into models compiled by IREE g, =l
Can leverage existing tools like iree-run-module and . 95 9
iree-benchmark-module to run and benchmark kernels ' ’
Integrates efficiently with Pytorch S Cow|--{ v [scv 0
Zero-copy of tensors to-and-from Pytorch (still some sl gl o g }‘ Ak P
issues being worked on) iy R L WAsM
Kernels can be called from Pytorch code and are IREE Modules
cached to avoid recompilation on every call |
Bytecode | ' Source brary | | Library
IREE Runtimt—i 7;7”7” | ~25150KB
Plugins = Y "
CPL }
.. Ut :
°ofe -
- ;

~ Target Hardware

19

Backend optimizations

General vector/arith dialect canonicalizations
MLIR CSE

Integer range analysis (IREE)
Reduce int<->index casts count
Remove selects after affine.apply/ceildiv lowering
Divisibility (simplify divs/mods when work size is divisible by tile size)

AMDZU

together we advance_

20

Some takeaways

Python as primary language
We are using upstream MLIR python bindings
Slow kernel compile times (partially offset by caching)
Not all MLIR things are exposed to Python

torch.fx is minimal IR
Quickly enabling e2e flow
Had to implement our own common utilities (CSE, DCE) on top of it

No good upstream symbolic type dialect
Using affine exprs + affine.apply for represent index calculations
Have converter from subset of sympy to affine expr + arith
Would be nice to have one upstrem

IREE runtime is good at quickly enabling e2e flow
With just few lines of IR and few API calls we have a runnable e2e kernel and pytorch arrays integration
Would be nice to have this in MLIR upstream too

AMDZU

together we advance_

21

Fin

Project repo: https://github.com/iree-org/iree-turbine/tree/main/iree/turbine/kernel/wave

Discussions: IREE discord Discord
We are hiring!

AMDZU

together we advance_

https://github.com/iree-org/iree-turbine/tree/main/iree/turbine/kernel/wave
https://discord.com/channels/689900678990135345/1255610298627395664

	Slide 1: Wave programming language
	Slide 2: Motivational example: tiled and optimized GEMM
	Slide 3: What is Wave
	Slide 4: Motivation: why new language
	Slide 5: Basic syntax: elementwise copy kernel
	Slide 6: GEMM
	Slide 7: GEMM
	Slide 8: conv2d/igemm
	Slide 9: conv2d/igemm
	Slide 10: conv2d/igemm
	Slide 11: Attention
	Slide 12: Architecture
	Slide 13: Frontend - tracing
	Slide 14: Middle end - transformations
	Slide 15: Middle end - transformations
	Slide 16: Middle end - optimizations
	Slide 17: Backend - lowering
	Slide 18: Backend - runtime
	Slide 19: Backend optimizations
	Slide 20: Some takeaways
	Slide 21: Fin
	Slide 22

