
1

Faster Compilation in LLVM 20 and Beyond

Alexis Engelke
engelke@tum.de

Chair of Data Science and Engineering
Department of Computer Science
Technical University of Munich

EuroLLVM ’25, Berlin, DE, 2025-04-16



2

Why Fast Compilation?

▶ Fast compilation is important, especially at -O0

▶ JIT compilation: databases, WebAssembly runtimes, . . .
▶ LLVM often used anyway, as high-quality compiler
▶ Separate back-end increases maintenance cost
▶ Fast baseline compilation ⇒ low startup latency

▶ Developer experience: faster develop–test roundtrip, CIs
▶ (Also needs to consider front-end)

▶ LLVM 18→20 Back-end Performance: −18% (x86-64), −13% (AArch64)
▶ This talk: how we got there + how to be faster



3

General: Hash Maps

▶ Hash maps can be rather expensive
▶ O(1) asymptotic run-time; but every access has a non-trivial cost

▶ For pointer maps: pointer dereference is fastest
▶ E.g., add field to struct; but limits reusability
▶ Example: worklist for SDNode (#92900, #94609)

▶ Dense numbering for keys, then use arrays
▶ Example: add numbers for IR blocks (#101052) ⇝ faster dominator tree

▶ Avoid redundant lookups
▶ Example: reduce number of hash table lookups for symbol creation to one

(#95464)
▶ Prefer llvm::DenseMap, llvm::StringMap when possible

https://github.com/llvm/llvm-project/pull/92900
https://github.com/llvm/llvm-project/pull/94609
https://github.com/llvm/llvm-project/pull/101052
https://github.com/llvm/llvm-project/pull/95464


4

General: Memory Allocations

▶ Memory allocations have a cost, esp. when done often
▶ Cost depends on allocator, particularly noticeable with glibc’s malloc

▶ Bump allocator can make allocations much cheaper
▶ Additional benefit: improved spatial locality
▶ Downside: can lead to higher max-rss, so no clear cut
▶ Example: use for MCFragment (#96402),

dominator tree nodes (#102516 (unmerged))
▶ Bump allocation of MCFragment contents/fixups would be nice

▶ Bump-allocatable SmallVector?

https://github.com/llvm/llvm-project/pull/96402
https://github.com/llvm/llvm-project/pull/102516


5

General: Miscellaneous

▶ Indirect/virtual function calls have some overhead
▶ Especially avoidable: virtual functions that do nothing by default
▶ Example: should allocate register class (#96296)

▶ raw_svector_ostream: every write goes through slow path (=virt. fn call)
▶ Making slow path faster is beneficial (e.g., #97396), but not ideal
▶ Ideally, use fast path with SmallVector itself as buffer

▶ Timers are not free even if disabled (global/TLS access)

https://github.com/llvm/llvm-project/pull/96296
https://github.com/llvm/llvm-project/pull/97396


6

-O0 Back-End Performance

▶ LLVM 18, x86-64:
IR

Pass
ISel RegAlloc Other

Passes
Asm-

Printer
Overhead +

AsmPrinter Final

▶ LLVM 20, x86-64: -18%
IR

Pass

−6.0%

ISel

−14.9%

RegAlloc

−21.5%

Other
Passes

−18.8%

Asm-
Printer

−27.1%

Overhead +
AsmPrinter Final

−18.9%

▶ LLVM 18, AArch64, GlobalISel:
IR
Pass

ISel RegAllocOther Passes Asm-
Printer

Overhead +
AsmPrinter Final

▶ LLVM 20, AArch64, GlobalISel: -13%
IR

Pass

+17.0%

ISel

−15.1%

RegAlloc

−0.9%

Other Passes

+6.4%

Asm-
Printer

−34.5%

Overhead +
AsmP Final

−28.8%



7

Pre-ISel -O0 Back-End Passes

▶ 15–20 passes to prepare LLVM IR for back-end
▶ Mostly lowering intrinsics and some complex operations
⇝ For many functions, these do nothing

▶ Iterating over LLVM-IR is not free ⇝ reduce number of passes
▶ Two passes merged into the pre-ISel intrinsic lowering (#97727, #101652)

▶ Goal (?): merge most of these into a single pre-ISel legalization pass

https://github.com/llvm/llvm-project/pull/97727
https://github.com/llvm/llvm-project/pull/101652


8

Machine IR

▶ Back-end mostly works on SSA-based Machine IR
▶ Very featureful, can represent machine code for various target architectures

▶ Fairly expensive to create/modify
▶ addOperand takes considerable amount of time
▶ Managing use–def lists of virtual/physical registers is expensive

▶ Supports storing extra-information inline and out-of-line
▶ Reduces memory utilization, but leads to branch misses



9

Instruction Selection

▶ Transform/lower LLVM IR into Machine IR
▶ FastISel: handle common cases in single step
▶ SelectionDAG: rewrite to graph, match patterns, schedule into MIR
▶ GlobalISel: rewrite to generic MIR, rewrite gMIR twice, rewrite to MIR

▶ Call lowering is not cheap (attributes, ABIs, etc.)
▶ SelectionDAG fallbacks are expensive

▶ Adding more FastISel duplicates functionality – maintainability...



10

Instruction Selection: GlobalISel I

▶ Multi-pass: translate gMIR, legalize, select register bank, actual ISel
▶ Additionally: combiners between passes; localizer for constants

▶ Fixed-point iteration often not really beneficial, esp. at -O0
▶ Opt-in to do single pass of GISel combiners (#94291, #102167)
▶ Also changed earlier for InstCombine and SelectionDAG

▶ Full dead code elimination is not cheap, but not always needed
▶ Legalizer already performs DCE, so combiners don’t need full DCE again
▶ Use observer on combined instruction for sparse DCE (#102163)

https://github.com/llvm/llvm-project/pull/94291
https://github.com/llvm/llvm-project/pull/102167
https://github.com/llvm/llvm-project/pull/102163


11

Instruction Selection: GlobalISel II

▶ Generating “bad” IR to clean it up later is simple but expensive
▶ Legalizer expands i1 arithmetic at uses, resulting in unneeded instructions
▶ Can use KnownBits to avoid such artifacts (D159140), always beneficial

▶ GlobalISel still 47% slower than FastISel
▶ Multi-pass approach costly, esp. on already-slow Machine IR
▶ Localizer can have quadratic runtime for large basic blocks
▶ Add fast path to directly generate target MIR from IRTranslator?



12

Register Allocator

▶ Fast paths for common cases are important
▶ Example: early exit for x86-typical single-tied-def case (#96284)

▶ Fast data structures are very important
▶ Example: replacing SparseSet with a vector (#96323)

▶ Managing registers is expensive: handle all regunits
▶ Regunits stored as difflist ⇝ iteration has data dependencies
▶ Maybe add simplified handling for subregisters to RegAllocFast?

https://github.com/llvm/llvm-project/pull/96284
https://github.com/llvm/llvm-project/pull/96323


13

x86-Specific Passes

▶ Many back-end passes are target-specific
▶ Several of these do nothing on typical input

▶ -O0 compilation should not require a dominator tree
▶ Example: x86 copy-flags lowering does nothing on typical IR
⇝ detect such cases early and compute analysis only if required (#97628)

▶ Optional analysis passes hard to model in legacy pass manager

▶ Passes for specific ISA features should be fast §f feature not used
▶ Example: x86 AMX rarely used — track usage during ISel lowering and store

in MachineFunctionInfo; add early exit to passes (#94358, #94989)
▶ Keeping track of used ISA features in LLVM-IR would be better
▶ Passes that do nothing still have a small cost

https://github.com/llvm/llvm-project/pull/97628
https://github.com/llvm/llvm-project/pull/94358
https://github.com/llvm/llvm-project/pull/94989


14

Machine Code Emission (AsmPrinter/MC)

▶ Lowers Machine IR to MC and writes object files, highly customizable
▶ Various formats, hooks for instructions, NaCl bundles, full assembler, ...
▶ Most functionality based on virtual function calls

▶ Not originally designed for performance

▶ Reduce virtual function calls
▶ E.g., move shared functionality to base classes, avoid hooks that do nothing

(e.g., #96785)
▶ Avoid copying data/instructions; vector append is just asymptotically O(1)

▶ Still optimization potential when focusing on common path

https://github.com/llvm/llvm-project/pull/96785


15

Other Considerations

▶ LLVM’s fundamental performance problem: incremental IR rewriting
▶ Great for composability, but IR rewriting is expensive

▶ Compile-time performance is not the primary concern
▶ Quality of generated code, size of generated code, maintainability, memory

usage, reusability, libLLVM size, ...

▶ Front-ends tend to generate “bad” IR
▶ Front-end time increasingly dominates

▶ Clang tends to become slower with more features, due to its architecture

⇝ Separate -O0 back-end focusing on common case for >10x improvement



16

Summary

▶ LLVM back-end performance got substantially better over the last year

▶ Many small improvements (or inefficiencies) add up
▶ Optimizing for common path is important
▶ Fundamental performance of LLVM unlikely to change in near future

Thanks to all contributors and reviewers!


