
 Pass Plugins

 Stefan Gränitz EuroLLVM Berlin 15 April 2025

 Past // Present // Future

Agenda
Preview: not signed of

2 / 32

1. Past: Legacy Pass Plugins

2. Present: Modern Pass Plugins

3. Future: From Passes to Extensions?

→ Motivation

→ Proposals

Round Tables
Preview: not signed of

3 / 32

Tuesday 5 PM, right after the talk

Another one on Wednesday

Plugin term is convoluted
Preview: not signed of

4 / 32

ld.lld -plugin gold.so ⛔ LTO plugin

clang -fplugin=clad.so ⛔ Clang frontend plugin

clang -fpass-plugin=omvll.so ✅ Pass-Plugin

https://llvm.org/docs/GoldPlugin.html
https://file+.vscode-resource.vscode-cdn.net/Users/ez/Develop/2025-eurollvm/intro.md
https://llvm.org/docs/WritingAnLLVMNewPMPass.html#registering-passes-as-plugins

Preview: not signed of
5 / 32

Past

" Don’t dwell in the past
Don’t dream of the future
Concentrate the mind on
the present moment. Focus!

404 @ Phabricator 😄

Past: Legacy Pass Plugins
Preview: not signed of

6 / 32

Option -load dates back to the early 2000s 1 2

struct PluginLoader {
 void operator=(const std::string &Filename);
 static unsigned getNumPlugins();
 static std::string& getPlugin(unsigned num);
};

static cl::opt<PluginLoader, false, cl::parser<std::string>>
 LoadOpt("load", cl::value_desc("pluginfilename"),
 cl::desc("Load the specified plugin"));

https://github.com/llvm/llvm-project/commit/92f4e1e0aa8ba7408ac7bd939e77192a79274b81
https://github.com/llvm/llvm-project/commit/2c54a0db79bf5c8e90bbafd25ec6fa6bfc79bf89

Past: Legacy Pass Plugins
Preview: not signed of

7 / 32

Plugins like Polly used static init to register new passes 1 2

class StaticInitializer {
public:
 StaticInitializer() {
 llvm::PassRegistry &Registry = *PassRegistry::getPassRegistry();
 polly::initializePollyPasses(Registry);
 }
};

static StaticInitializer InitializeEverything;

https://polly.llvm.org/docs/Architecture.html#polly-in-the-llvm-pass-pipeline
https://github.com/llvm/llvm-project/commit/0ab5004f9ea9229d8f6e0fc278f424ce5ba06e4d

Preview: not signed of
8 / 32

Present

Modern Pass Plugins

Plugin Renaissance with the New Pass Manager
Preview: not signed of

9 / 32

Major contributions

2017 Philip Pfaffe adds a pass registration mechanism for Polly

2018 He refines it into a plugin API so that "interaction with a plugin is always

initiated from the tools perspective"

2020 Serge Guelton generalizes it, removes remaining Polly-specific code

from LLVM and adds an Bye 👋 example

1

2

3

https://github.com/llvm/llvm-project/commit/a70e2649ab868d532c012581435230b3ed85fb41
https://github.com/llvm/llvm-project/commit/e8f3ae9da07c47d5ee4d351a8085385e3df9390d
https://github.com/llvm/llvm-project/commit/24ab9b537e61b3fe5e6a1019492ff6530d82a3ee

Modern Pass Plugins
Preview: not signed of

10 / 32

On the plugin side, we implement a defined interface

extern "C" struct PassPluginLibraryInfo {
 uint32_t APIVersion;
 const char *PluginName;
 const char *PluginVersion;
 void (*RegisterPassBuilderCallbacks)(PassBuilder &);
};

Modern Pass Plugins
Preview: not signed of

11 / 32

extern "C" PassPluginLibraryInfo llvmGetPassPluginInfo() {
 return {LLVM_PLUGIN_API_VERSION, "Bye", LLVM_VERSION_STRING,
 [](PassBuilder &PB) {
 PB.registerVectorizerStartEPCallback(
 [](FunctionPassManager &PM, OptimizationLevel Level) {
 PM.addPass(Bye());
 });
 PB.registerPipelineParsingCallback(
 [](StringRef Name, FunctionPassManager &PM, ...) {
 if (Name == "goodbye") {
 PM.addPass(Bye());
 return true;
 }
 return false;
 });
 }};

Modern Pass Plugins
Preview: not signed of

12 / 32

On the tools side, we load them explicitly

static cl::list<std::string>
 PassPlugins("load-pass-plugin",
 cl::desc("Load passes from plugin library"));

for (auto &PluginFN : PassPlugins) {
 auto PassPlugin = PassPlugin::Load(PluginFN);
 if (!PassPlugin)
 continue;
 PassPlugin->registerPassBuilderCallbacks(PB);
}

Modern Pass Plugins: Pros
Preview: not signed of

13 / 32

‣ Use PassBuilder the same way as in-tree tools

‣ Same concept in MLIR: entry-point mlirGetPassPluginInfo()

‣ Keep existing benefits:

- C interface for plugin registration

- Fast and easy builds against LLVM release versions

Modern Pass Plugins: Cons
Preview: not signed of

14 / 32

Pass base class and PassBuilder definitions are C++

struct Bye : PassInfoMixin<Bye> {
 PreservedAnalyses run(Function &F, FunctionAnalysisManager &) {
 if (!runBye(F))
 return PreservedAnalyses::all();
 return PreservedAnalyses::none();
 }
};

Building Plugins correctly isn’t trivial

Plugin binaries must fit target compiler’s C++ ABI

Modern Pass Plugins: Tools
Preview: not signed of

15 / 32

‣ opt -load=/path/to/Bye.so -passes=goodbye  
opt -load-pass-plugin=/path/to/Bye.so  
docs/CommandGuide/opt.html#cmdoption-opt-load

‣ clang -fpass-plugin=/path/to/Bye.so  
docs/ClangCommandLineReference.html#cmdoption-clang-fpass-plugin

‣ flang -fpass-plugin=/path/to/Bye.so  
docs/FlangCommandLineReference.html#cmdoption-flang-fpass-plugin

‣ clang-repl -fpass-plugin=/path/to/Bye.so  
weliveindetail.github.io/blog/post/2024/08/29/omvll-clang-repl.html

https://releases.llvm.org/20.1.0/docs/CommandGuide/opt.html#cmdoption-opt-load
https://releases.llvm.org/20.1.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-fpass-plugin
https://releases.llvm.org/20.1.0/tools/flang/docs/FlangCommandLineReference.html#cmdoption-flang-fpass-plugin
https://weliveindetail.github.io/blog/post/2024/08/29/omvll-clang-repl.html

Modern Pass Plugins: Tools
Preview: not signed of

16 / 32

‣ swiftc -load-pass-plugin=/path/to/bye.so  
mainline: swiftlang/swift/pull/68985

‣ rustc -Zllvm-plugins=/path/to/bye.so  
unstable: llvm.plugins = true option rust-lang.zulipchat.com

‣ ld.lld --load-pass-plugin=/path/to/Bye.so (since 15.x)
undocumented 🤷

1

https://github.com/swiftlang/swift/pull/68985
http://bye.so
https://rust-lang.zulipchat.com/#narrow/stream/187780-t-compiler.2Fwg-llvm/topic/.E2.9C.94.20Running.20Custom.20LLVM.20Pass/near/320275483
https://github.com/llvm/llvm-project/commit/32012eb11b235e1560a253664095676ea8ebd027

Modern Pass Plugins: in the wild
Preview: not signed of

17 / 32

Open-source projects:

‣ https://github.com/llvm/llvm-project/tree/release/20.x/polly

‣ https://github.com/EnzymeAD/Enzyme

‣ https://github.com/open-obfuscator/o-mvll

Yes, it's a niche for sure. But it might also a be chicken-egg-problem..

https://github.com/llvm/llvm-project/tree/release/20.x/polly
https://github.com/EnzymeAD/Enzyme
https://github.com/open-obfuscator/o-mvll

Preview: not signed of
18 / 32

Future

From Passes to

Rich out-of-tree Extensions?

Motivation
Preview: not signed of

19 / 32

Claim: There is a demand for domain-specific compiler extensions.

Evidence? Looking at sanitizers:

2017 asan,dfsan,msan,tsan,safestack,cfi,esan,scudo
2018 asan,dfsan,msan,hwasan,tsan,safestack,cfi,esan,scudo,ubsan
2019 asan,dfsan,msan,hwasan,tsan,safestack,cfi,esan,scudo,ubsan
2020 asan,dfsan,msan,hwasan,tsan,safestack,cfi,scudo,ubsan,gwp_asan
2021 asan,dfsan,msan,hwasan,tsan,safestack,cfi,scudo,ubsan,gwp_asan
2022 asan,dfsan,msan,hwasan,tsan,safestack,cfi,scudo,ubsan,gwp_asan
2023 asan,dfsan,msan,hwasan,tsan,safestack,cfi,scudo,ubsan,gwp_asan
2024 asan,dfsan,msan,hwasan,tsan,safestack,cfi,scudo,ubsan,gwp_asan
2025 asan,rtsan,dfsan,msan,hwasan,tsan,tysan,safestack,cfi,scudo,ubsan,gwp_asan,nsan
 ^^^^^ ^^^^^ ^^^^

Sanitizers: Who are the newcomers?
Preview: not signed of

20 / 32

We can now check for:

‣ TypeSanitizer: type-based aliasing violations

‣ NumericalStabilitySanitizer: floating point precision issues

‣ RealtimeSanitizer: blocking calls in code with deterministic runtime

Observations: More domain-specific + less C/C++ specific

Future: Towards Rich Out-of-tree Extensions?
Preview: not signed of

21 / 32

Should we build everything upstream forever?

Alternative: Could we implement extensions like Sanitizers as plugins?

[] Frontend: Attributes control where/how they apply (or not)
[x] IR Pass: Inject instrumentation, mostly calls into a runtime library
[] Driver: Add runtime library to the link line

Frontend with built-in Sanitizer (Realtime Sanitizer)
Preview: not signed of

22 / 32

Clang: new [[clang::(non)blocking]] attributes translate

to built-in llvm::Attribute::SanitizeRealtime(Blocking)

llvm-project/commit/f03cb005eb4b

Swift: RTSanStandaloneSwift package wraps C API in expression macros
swiftpackageindex.com/realtime-sanitizer/RTSanStandaloneSwift

Rust: rtsan-standalone crate wraps C API in procedural macros
crates.io/crates/rtsan-standalone

Rust: also preparing RFC for rustc built-in support
github.com/rust-lang/rfcs/pull/3766

https://github.com/llvm/llvm-project/commit/f03cb005eb4ba3c6fb645aca2228e907db8cd452
https://swiftpackageindex.com/realtime-sanitizer/RTSanStandaloneSwift
https://crates.io/crates/rtsan-standalone
https://github.com/rust-lang/rfcs/pull/3766

Frontend without built-in Sanitizer
Preview: not signed of

23 / 32

Clang:

‣ Frontend-Plugin could define attributes [[clang::(non)blocking]]

‣ Emit annotations instead of llvm::Attribute::SanitizeRealtime?

‣ Combine with Pass-Plugin in a single shared lib! github.com/vgvassilev/clad

Modern languages:

‣ Could language features emit annotations directly?

 Round Table: Can we use annotations?

Or could we teach Pass-Plugins to define LLVM attributes?

https://github.com/vgvassilev/clad

How to add a runtime library to the link line?
Preview: not signed of

24 / 32

Named metadata entries for auto-linking might help:

‣ llvm.linker.options

docs/LangRef.html#automatic-linker-flags-named-metadata

‣ llvm.dependent-libraries

docs/LangRef.html#dependent-libs-named-metadata

 Round Table: Can we make it consistent or find a better way?

https://releases.llvm.org/20.1.0/docs/LangRef.html#automatic-linker-flags-named-metadata
https://releases.llvm.org/20.1.0/docs/LangRef.html#dependent-libs-named-metadata

Future: Rich out-of-tree Extensions?
Preview: not signed of

25 / 32

Doesn’t seem impossible!

[x] Frontend: Attributes control where/how they apply (or not)
[x] IR Pass: Inject instrumentation, mostly calls into a runtime library
[x] Driver: Add runtime library to the link line

Realtime Sanitizer: What is the story?
Preview: not signed of

26 / 32

‣ Start a hack in a fork and reach a PoC

‣ Promote in domain-specific communities and find interested contributors

adc23.sched.com/event/1PudD/radsan-a-realtime-safety-sanitizer

‣ Write RFC discourse.llvm.org/t/rfc-nolock-and-noalloc-attributes/76837/

‣ RFC considered to mature downstream or implement outside of LLVM

‣ #92460 merged upstream in May 2024 and 150+ PRs since

1

https://adc23.sched.com/event/1PudD/radsan-a-realtime-safety-sanitizer
https://discourse.llvm.org/t/rfc-nolock-and-noalloc-attributes/76837/
https://github.com/llvm/llvm-project/pull/92460
https://github.com/google/gwpsan

Realtime Sanitizer: Developer perspective
Preview: not signed of

27 / 32

Pro upstream:

- re-use infrastructure from other sanitizers

- reviewers give guidance, help find issues and propose improvements

- boost reachable audience and get maximum convenience for users

- no immediate commercial interests (apparently)

Downside:

- requirements on code-quality and cross-platform support

- extra complexity from considering interference with other sanitizers

Future: Proposals
Preview: not signed of

28 / 32

If we want to promote out-of-tree extensions, we could:

1. Provide re-usable infrastructure

2. Make it a playground to test new ideas

3. Motivate vendors to support plugins!

1. Re-usable infrastructure for out-of-tree extensions
Preview: not signed of

29 / 32

Today:

‣ Plugin interface: unit-tests + Bye example with LIT tests

‣ Most bots don't build examples

‣ Most vendors don't ship examples

‣ Bye is quite primitive

Make it a Reference Plugin, that is built and deployed by default?

1. Re-usable infrastructure for out-of-tree extensions
Preview: not signed of

30 / 32

Reference Plugin:

(1) Complexity of real-world extension

(2) Should work for LLVM and MLIR

(3) Do something useful for experimentation

(4) Consider a pure C interface?

2. Playground to test new ideas and not fork LLVM
Preview: not signed of

31 / 32

Load a Python script and run it in as a pass?

(1) Python is popular + real-world complexity (e.g. static libPython?)

(2) Bindings for LLVM and MLIR

(3) Write IR transforms without building the plugin!

Two open-source repos with proof-of-concept:

‣ C++ with Numba's llvmlite: github.com/weliveindetail/llvm-py-pass

‣ Rust with llvmcpy from rev.ng: github.com/aneeshdurg/pyllvmpass

https://github.com/weliveindetail/llvm-py-pass
https://github.com/aneeshdurg/pyllvmpass

3. Motivate vendors to support and ship plugins!
Preview: not signed of

32 / 32

Concerns:

‣ Security and tampering with internals (probably Apple)

→ Would code-signing checks help?

‣ Compatibility, versioning and dependence (probably Rust)

→ Would a pure C API version help?

 Round Table: Let’s keep dreaming of a bright future for a bit!

Preview: not signed of
33 / 32

Pass Plugins
Round Tables

Tuesday 5 PM, right after the talk

Another one on Wednesday

Contact

stefan.graenitz@gmail.com

weliveindetail.github.io/blog/about/

https://weliveindetail.github.io/blog/about/

