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Intro

The problem

 Software is deployed on various devices (we may compile for a baseline and reuse the binaries).
 Most CPUs implement optional instructions which may not be present on the target of compilation.
 For example, on Arm, dotproduct instructions may not be available.
 To make use of such instructions, a run-time check is needed. 

The solution

Function Multi Versioning (FMV)
https://learn.arm.com/learning-paths/cross-platform/function-multiversioning
 lets the compiler generate multiple function versions, and
 auto-dispatch between them

https://learn.arm.com/learning-paths/cross-platform/function-multiversioning
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What’s new?
 FMV was originally developed for x86 using the function attributes target and target_clones

► https://llvm.org/devmtg/2014-10/#talk22
► https://reviews.llvm.org/D40819

 On AArch64 the target attribute is broadly used as an optimization hint,
► for example in header files of Arm C Language Extensions:

lib/clang/21/include/arm_acle.h

 Therefore, we introduced a new attribute target_version (also adopted by RISC-V) and wrote a 
specification for FMV in ACLE (currently beta).

https://llvm.org/devmtg/2014-10/#talk22
https://reviews.llvm.org/D40819
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Clang CodeGen

 Clang generates multiple function versions with mangled names as per 
https://arm-software.github.io/acle/main/acle.html#name-mangling

► each version may use several features, their names are encoded in the mangled name

► __attribute((target_version("crc+bti+aes+bf16"))) int fmv(void); → 

 Each version is associated with metadata which propagate information from C/C++ source to LLVM.

 Clang generates a resolver function that determines which version to run when the function is called.

► The resolution is dynamic (it is performed at load time) and permanent for the lifetime of the process.

► The resolver: (1) initializes the runtime, (2) detects features, and (3) selects the available version of highest 
priority as indicated by https://arm-software.github.io/acle/main/acle.html#mapping

 Clang generates a global __aarch64_cpu_features which contains the feature bits for runtime detection.

https://arm-software.github.io/acle/main/acle.html#name-mangling
https://arm-software.github.io/acle/main/acle.html#mapping
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Compiler-rt

The runtime asks the kernel which features are available on host and initializes __aarch64_cpu_features

Various platforms are supported
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Example https://godbolt.org/z/qsaTohfM7 

https://godbolt.org/z/qsaTohfM7
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Design choices

 FMV is supported across multiple translation units.

 The resolver cannot “see” versions beyond the current translation unit.

 Emission options:

► On use (when the function is called)? → may generate multiple (potentially different) resolvers
   → non deterministic version selection depending on linking order

► Unique resolver in the TU of the default version
   → deterministic version selection regardless of linking order

Resolver emission

 Dependent-on features get detected transitively as indicated by 
https://arm-software.github.io/acle/main/acle.html#dependencies (for example sve2→ sve → fp16 → fp)

 Features implied by the command line are not exempt from runtime detection (simd → fp)

► For example -march=armv8 implies simd

Feature detection

https://arm-software.github.io/acle/main/acle.html#dependencies
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FMV info representation

FMV info is autogenerated using
llvm/utils/TableGen/ArmTargetDefEmitter.cpp
https://github.com/llvm/llvm-project/pull/113281

 detection ≠ priority
because the detection bit is 
part of the ABI; if a feature is 
added/removed whose priority 
falls between existing ones…

 dependencies
are used both for (1) runtime detection, and 
(2) to enable all the necessary subtarget 
features for code generation

https://github.com/llvm/llvm-project/pull/113281
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Metadata in LLVM IR
 https://github.com/llvm/llvm-project/pull/118544

Similar to target-features.

clang/test/CodeGen/AArch64/fmv-features.c

Why we need them?

 Suppose you have target_version("i8mm+dotprod") and target_version("fcma").

 The first version has higher priority because Priority(i8mm) > Priority(fcma) > Priority(dotprod).

 Now suppose you specify -march=armv8-a+i8mm on the command line.

 Then the versions would have target-features "+dotprod,+i8mm" and "+fcma,+i8mm" respectively.

 If you are using these metadata to deduce version priority, then you would incorrectly deduce that 
the second version was higher priority than the first!

https://github.com/llvm/llvm-project/pull/118544
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GlobalOpt
 May statically (at compile time) resolve calls to versioned functions

https://github.com/llvm/llvm-project/pull/87939

by comparing LLVM IR metadata between caller and callee.

 if FMV caller → FMV callee,
then compare fmv-features

bitmask construction 

metadata selection

benefit? → inlining

 else if non-FMV caller → FMV callee,
then compare target-features with fmv-features

https://github.com/llvm/llvm-project/pull/87939
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Static resolution algorithm

for every ifunc in 
the module

examine basic blocks 

of resolver

discover callee 
versions

sorts callees

discover 
caller versions

sorts callers



12Public © 2025 Arm

Example https://godbolt.org/z/PcGnGbWd3
from llvm/test/Transforms/GlobalOpt/resolve-fmv-ifunc.ll

sorted caller versions
caller._MmopsMsve2 = {1,1,1,1,1}
caller._Mmops = {1,0,0,0,0}
caller._Msve = {0,0,1,1,1}
caller.default = {0,0,0,0,0}

sorted callee versions
callee._Mmops = {1,0,0,0,0}
callee._Msve2 = {0,1,1,1,1}
callee._Msve = {0,0,1,1,1}
callee.default = {0,0,0,0,0}

Static resolution algorithm (continued)

       Simplified priority bitmask
    after dependency expansion:

{mops,sve2,sve,fp16,fp}

 mops+sve2 implies mops → we can statically resolve
 mops implies mops → we can statically resolve

bitmask equality → advance callee iterator
  at this point we know the host does not have mops
sve does not imply sve2 → we can’t statically resolve
however sve2 implies sve → advance callee iterator

 keep skipping over callee candidates
sve implies sve → advance callee iterator

 no feature is available → we can statically resolve

https://godbolt.org/z/PcGnGbWd3
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Future work

 User can control feature priorities: https://github.com/ARM-software/acle/pull/371

 User can refer to a specific function version: https://github.com/llvm/llvm-project/issues/84094

 Pointer authentication works with IFUNC resolver: https://github.com/llvm/llvm-project/pull/84704

 Request to support more features (like CSSC): https://github.com/llvm/llvm-project/issues/131218 

 ?  (feedback welcome)

https://github.com/ARM-software/acle/pull/371
https://github.com/llvm/llvm-project/issues/84094
https://github.com/llvm/llvm-project/pull/84704
https://github.com/llvm/llvm-project/issues/131218
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