
1Public © 2025 Arm

Function Multi Versioning for AArch64:

Compiler aided function specialization with runtime dispatch

Alexandros Lamprineas

2Public © 2025 Arm

Intro

The problem

 Software is deployed on various devices (we may compile for a baseline and reuse the binaries).
 Most CPUs implement optional instructions which may not be present on the target of compilation.
 For example, on Arm, dotproduct instructions may not be available.
 To make use of such instructions, a run-time check is needed.

The solution

Function Multi Versioning (FMV)
https://learn.arm.com/learning-paths/cross-platform/function-multiversioning
 lets the compiler generate multiple function versions, and
 auto-dispatch between them

https://learn.arm.com/learning-paths/cross-platform/function-multiversioning

3Public © 2025 Arm

What’s new?
 FMV was originally developed for x86 using the function attributes target and target_clones

► https://llvm.org/devmtg/2014-10/#talk22
► https://reviews.llvm.org/D40819

 On AArch64 the target attribute is broadly used as an optimization hint,
► for example in header files of Arm C Language Extensions:

lib/clang/21/include/arm_acle.h

 Therefore, we introduced a new attribute target_version (also adopted by RISC-V) and wrote a
specification for FMV in ACLE (currently beta).

https://llvm.org/devmtg/2014-10/#talk22
https://reviews.llvm.org/D40819

4Public © 2025 Arm

Clang CodeGen

 Clang generates multiple function versions with mangled names as per
https://arm-software.github.io/acle/main/acle.html#name-mangling

► each version may use several features, their names are encoded in the mangled name

► __attribute((target_version("crc+bti+aes+bf16"))) int fmv(void); →

 Each version is associated with metadata which propagate information from C/C++ source to LLVM.

 Clang generates a resolver function that determines which version to run when the function is called.

► The resolution is dynamic (it is performed at load time) and permanent for the lifetime of the process.

► The resolver: (1) initializes the runtime, (2) detects features, and (3) selects the available version of highest
priority as indicated by https://arm-software.github.io/acle/main/acle.html#mapping

 Clang generates a global __aarch64_cpu_features which contains the feature bits for runtime detection.

https://arm-software.github.io/acle/main/acle.html#name-mangling
https://arm-software.github.io/acle/main/acle.html#mapping

5Public © 2025 Arm

Compiler-rt

The runtime asks the kernel which features are available on host and initializes __aarch64_cpu_features

Various platforms are supported

6Public © 2025 Arm

Example https://godbolt.org/z/qsaTohfM7

https://godbolt.org/z/qsaTohfM7

7Public © 2025 Arm

Design choices

 FMV is supported across multiple translation units.

 The resolver cannot “see” versions beyond the current translation unit.

 Emission options:

► On use (when the function is called)? → may generate multiple (potentially different) resolvers
 → non deterministic version selection depending on linking order

► Unique resolver in the TU of the default version
 → deterministic version selection regardless of linking order

Resolver emission

 Dependent-on features get detected transitively as indicated by
https://arm-software.github.io/acle/main/acle.html#dependencies (for example sve2→ sve → fp16 → fp)

 Features implied by the command line are not exempt from runtime detection (simd → fp)

► For example -march=armv8 implies simd

Feature detection

https://arm-software.github.io/acle/main/acle.html#dependencies

8Public © 2025 Arm

FMV info representation

FMV info is autogenerated using
llvm/utils/TableGen/ArmTargetDefEmitter.cpp
https://github.com/llvm/llvm-project/pull/113281

 detection ≠ priority
because the detection bit is
part of the ABI; if a feature is
added/removed whose priority
falls between existing ones…

 dependencies
are used both for (1) runtime detection, and
(2) to enable all the necessary subtarget
features for code generation

https://github.com/llvm/llvm-project/pull/113281

9Public © 2025 Arm

Metadata in LLVM IR
 https://github.com/llvm/llvm-project/pull/118544

Similar to target-features.

clang/test/CodeGen/AArch64/fmv-features.c

Why we need them?

 Suppose you have target_version("i8mm+dotprod") and target_version("fcma").

 The first version has higher priority because Priority(i8mm) > Priority(fcma) > Priority(dotprod).

 Now suppose you specify -march=armv8-a+i8mm on the command line.

 Then the versions would have target-features "+dotprod,+i8mm" and "+fcma,+i8mm" respectively.

 If you are using these metadata to deduce version priority, then you would incorrectly deduce that
the second version was higher priority than the first!

https://github.com/llvm/llvm-project/pull/118544

10Public © 2025 Arm

GlobalOpt
 May statically (at compile time) resolve calls to versioned functions

https://github.com/llvm/llvm-project/pull/87939

by comparing LLVM IR metadata between caller and callee.

 if FMV caller → FMV callee,
then compare fmv-features

bitmask construction

metadata selection

benefit? → inlining

 else if non-FMV caller → FMV callee,
then compare target-features with fmv-features

https://github.com/llvm/llvm-project/pull/87939

11Public © 2025 Arm

Static resolution algorithm

for every ifunc in
the module

examine basic blocks

of resolver

discover callee
versions

sorts callees

discover
caller versions

sorts callers

12Public © 2025 Arm

Example https://godbolt.org/z/PcGnGbWd3
from llvm/test/Transforms/GlobalOpt/resolve-fmv-ifunc.ll

sorted caller versions
caller._MmopsMsve2 = {1,1,1,1,1}
caller._Mmops = {1,0,0,0,0}
caller._Msve = {0,0,1,1,1}
caller.default = {0,0,0,0,0}

sorted callee versions
callee._Mmops = {1,0,0,0,0}
callee._Msve2 = {0,1,1,1,1}
callee._Msve = {0,0,1,1,1}
callee.default = {0,0,0,0,0}

Static resolution algorithm (continued)

 Simplified priority bitmask
 after dependency expansion:

{mops,sve2,sve,fp16,fp}

 mops+sve2 implies mops → we can statically resolve
 mops implies mops → we can statically resolve

bitmask equality → advance callee iterator
  at this point we know the host does not have mops
sve does not imply sve2 → we can’t statically resolve
however sve2 implies sve → advance callee iterator

 keep skipping over callee candidates
sve implies sve → advance callee iterator

 no feature is available → we can statically resolve

https://godbolt.org/z/PcGnGbWd3

13Public © 2025 Arm

Future work

 User can control feature priorities: https://github.com/ARM-software/acle/pull/371

 User can refer to a specific function version: https://github.com/llvm/llvm-project/issues/84094

 Pointer authentication works with IFUNC resolver: https://github.com/llvm/llvm-project/pull/84704

 Request to support more features (like CSSC): https://github.com/llvm/llvm-project/issues/131218

 ? (feedback welcome)

https://github.com/ARM-software/acle/pull/371
https://github.com/llvm/llvm-project/issues/84094
https://github.com/llvm/llvm-project/pull/84704
https://github.com/llvm/llvm-project/issues/131218

14Public © 2025 Arm

Acknowledgements

Special thanks to all the folks who helped with ACLE/code reviews, code refactoring, technical
discussions, brainstorming, presentation, etc.

Jon Roelofs, Tomas Matheson, Andrew Carlotti, Daniel Kiss, Wilco Dijkstra, Victor Campos, Sander De
Smalen, Maciej Gabka, Andre Vieira, Richard Sandiford, Pavel Iliin, Kristof Beyls, Alfie Richards and
others.

Merci
Danke

Gracias
Grazie谢谢ありがとう
Asante

Thank You감사합니다
धन्यवाद
Kiitos
شكراً

ধন্যবাদ
תודה

ధన్యవాదములు
Köszönöm

The Arm trademarks featured in this presentation are
registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights
reserved. All other marks featured may be trademarks of
their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

