
SOLVING COMPILER PUZZLES

Debug Methods in MLIR

CHRISTOPHER MCGIRR

2

COMPILER DESIGN FOR ML DEVELOPERS WITH LIMITED MLIR EXPERIENCE

INTRODUCTION

• For developers who may not have had deep

experience using the MLIR framework

• Focus on ML or Tensor Compilers

• Compiler inputs are non-source languages

• Inputs often contain large constants

A practical guide

Not exhaustive or definitive

Opinionated based on experience

DisclaimersWhat is this talk about?

3

DEBUGGING AI MODELS IN MLIR IS A PAIN

INTRODUCTION

Case Example

meta-llama/Llama-3.2-1B (f32)
 ~1000 operations that could be of
interest
 ~4.7GB in byte code
 ~9.3GB in assembly form

linalg.batch_matmul , 145
linalg.generic , 906
linalg.transpose , 193

Approach

Finding the root cause of a bug in an ML Compiler

1. Many different levels of abstraction (dialects)
• Frontend: onnx-mlir, torch-mlir, TOSA
• Middle-End: linalg, vector, memref
• Backend: PTX, SPIRV, LLVM

2. Dealing with large files

3. Pass phase ordering

4. Shape Propagation

5. Pattern Matching

AI Model

MLIR Reduce5

LLDB Integration4

Leveraging MLIR Reproducers3

Useful MLIR-Opt Arguments2

IR Printing Mechanisms1

TODAY, LET’S FOCUS ON FIVE KEY DEBUG METHOS

DEBUG METHODS

5

FIRST STEP IS LOOKING AT THE IR

IR PRINTING MECHANISMS

// -----// IR Dump After Canonicalizer (canonicalize) //----- //
// -----// IR Dump After ConvertElementwiseToLinalgPass (convert-elementwise-to-linalg) //----- //
// -----// IR Dump After ConvertLinalgToLoopsPass (convert-linalg-to-loops) //----- //
// -----// IR Dump After CSE (cse) //----- //
// -----// IR Dump After SCFToControlFlow (convert-scf-to-cf) //----- //

--mlir-print-ir-after=<pass-arg>
--mlir-print-ir-after-all
--mlir-print-ir-after-change
--mlir-print-ir-after-failure
--mlir-print-ir-before=<pass-arg>
--mlir-print-ir-before-all

Easiest method to see how IR changes after
every pass

1

Advantages

Finding where an operation changes

Lacks the arguments provided to the pass

Disadvantages

After-failure: does not work if you hit an assert

Manageable with only the smallest of reproducers

Code and Insights

Arguments for printing around passes:

6

ELIDING ARGUMENTS

IR PRINTING MECHANISMS1

Disadvantages

Extremely useful when debugging large files Constants are still in-lined in the IR for tensor
compilers

The only way to work with large models

Arguments for printing around passes:

--mlir-elide-elementsattrs-if-larger=<uint>
 --mlir-elide-resource-strings-if-larger=<uint>

Code and Insights

Eliding the constants replaces them with an external reference

Advantages

7

OTHER NOTABLE ARGUMENTS

[1] https://github.com/llvm/llvm-project/blob/main/mlir/lib/IR/AsmPrinter.cpp#L4065

Can be used to print IR to file after each pass in a

directory structure that matches the pass

manager nesting

--mlir-print-ir-tree-dir=<string>

--mlir-print-ir-module-scope

--mlir-print-local-scope

Useful if your ML compiler deals with multiple,

nested functions that have information attached

to operations or regions in the parent level

Prints all operations above the selected operation

without the IsolatedFromAboveTrait. [1]

1 IR PRINTING MECHANISMS

1

2

3

https://github.com/llvm/llvm-project/blob/main/mlir/lib/IR/AsmPrinter.cpp

8

NARROWING THE SCOPE

USEFUL MLIR-OPT ARGUMENTS

[1] https://github.com/llvm/llvm-project/blob/6257621f41d1deb31cfbfcee993a75991a0bca13/llvm/lib/Support/Debug.cpp

Useful for debugging pattern matching errors

2

Some passes have great debugging
messages

Prints ever pattern that did or did not match

Disadvantages

Only available in builds with Debug [1]

Requires very small IR example which is good for single
pass debugging

Code and Insights

//===---===//
Processing operation : 'linalg.fill'(0x616758f17990) {

 * Pattern FoldTensorCastProducerOp : 'linalg.fill -> ()' {
Trying to match "FoldTensorCastProducerOp"
"FoldTensorCastProducerOp" result 0
 } -> failure : pattern failed to match

//===---===//

mlir-opt:
 --debug
 --debug-only=<pass>

Piping to a log file is very useful here

#define DEBUG_TYPE ”my-pass-name”
LLVM_DEBUG({
 llvm::dbgs() << ”My Debug Message\n";
});

Make sure to add these lines to your code

Advantages

9

REPLAY COMPILER PASSES

MLIR REPRODUCER

Link to Implementation

Great mechanism to generate IR after failures
(excluding asserts)

3

Great for reporting bugs to up-stream if IR
is small enough

Each pipeline pass must support full CLI
serialization of its options

Disadvantages

Potential odd behavior with the nested pass
manager

Requires multi-threading to be disabled when
generating local reproducer

Code and Insights

MLIR-Pot Argument

--mlir-generate-reproducer=<filename>
 --mlir-pass-pipeline-crash-reproducer=<string>
 --mlir-pass-pipeline-local-reproducer
 --run-reproducer

Stored as an external resource outside of the Module

{-#
 dialect_resources: {
 builtin: {}
 },
 external_resources: {
 mlir_reproducer: {
 pipeline: "builtin.module(...)"
 disable_threading: false,
 verify_each: true
 }
 }
#-}

Advantages

https://github.com/llvm/llvm-project/blob/2da4ce8624b382cb6c51feac9bd96c22bb054356/mlir/lib/Pass/PassCrashRecovery.cpp

10

PRETTY PRINTING

LLDB INTEGRATION

Pretty Printers Scripts: 1. Link 2. Link

Works great with simple types:
(SmallVector<int>)

4

Advantages

LLDB terminal is very useful here with
“expr op->dump()”

Complex types are not resolved to a human-
readable string

Disadvantages

Room for improvement with those scripts

Code and Insights

{

 . . .

 "initCommands": [

 "settings set target.disable-aslr false",

 "command script import ${workspaceFolder}/llvm/utils/lldbDataFormatters.py",

 "command script import ${workspaceFolder}/mlir/utils/lldb-

scripts/mlirDataFormatters.py",

]

}

VSCode VisualizationVSCode Debug Configuration

https://github.com/llvm/llvm-project/blob/main/mlir/utils/lldb-scripts/mlirDataFormatters.py
https://github.com/llvm/llvm-project/blob/main/llvm/utils/lldbDataFormatters.py

11

ACTION DEBUGGING

LLDB INTEGRATION

Action Debugging works great VSCode

4

Advantages

mlir break-on-tag: Useful for stop on patterns or
pass executions

Do not forget to add:
--mlir-enable-debugger-hook [1]

Disadvantages

Code and Insights

mlir cursor-*: Navigate the IR at the current
frame

[1] Link to debugging script

Link to ODS Meeting Video

Documentation

Debugger Impl Source

Useful Links:

1

2

3

https://github.com/llvm/llvm-project/blob/main/mlir/utils/lldb-scripts/action_debugging.py
https://www.youtube.com/watch?v=ayQSyekVa3c
https://mlir.llvm.org/docs/ActionTracing/
https://github.com/llvm/llvm-project/blob/0aea1f2f21b8b3984072dc2ea33857d077d91af2/mlir/lib/Debug/CLOptionsSetup.cpp

12

REDUCING THE PROBLEM SIZE

MLIR REDUCE

Enables automated bug reporting

5

Reducing real-world models involves searching a
large design space

Disadvantages

Advanced knowledge is required.

Manual reduction is significantly faster

Advantages

Well-documented usage instructions

Implement your own reduction patterns

Downstream projects depend on customized versions
of mlir-reduce

MLIR Workshop (EuroLLVM2024)
MLIR-Reduce
IREE-Reduce
Circt-Reduce
LLVM-Reduce

Additional Resources

Great Documentation for how to use

Implement your own reduction patterns

Further Reading

https://docs.google.com/presentation/d/1DVgo6blM8sGQoMUXppowp9kSVSa5JHPIwPzmDmWRdWM/edit?usp=sharing
https://github.com/llvm/llvm-project/tree/main/mlir/tools/mlir-reduce
https://github.com/iree-org/iree/blob/main/tools/iree-reduce.cc
https://github.com/llvm/circt/tree/main/tools/circt-reduce
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-reduce
https://github.com/iree-org/llvm-project/blob/286a7a4023361aa63230596e88366c3d86776921/mlir/docs/Tools/mlir-reduce.md
https://github.com/iree-org/llvm-project/blob/286a7a4023361aa63230596e88366c3d86776921/mlir/docs/Tools/mlir-reduce.md

13

FOUR KEY TAKEAWAYS ON COMPILER DEBUGGING IN MLIR

CONCLUSION

Extensive toolkit already in place

Still room for improvement – which presents opportunity

LIT tests provide valuable insight into pass behavior

Reading the code helps to understand how you can use the tools available to debug

14

ANY QUESTIONS? I AM HAPPY TO CONNECT!

Q&A

Lead Engineer
Christopher McGirr

mcgirr@roofline.ai

mcgirr@roofline.ai

www.roofline.ai

www.roofline.ai

Christopher McGirr

Christopher
McGirr

Github Profile

Github Profile

mailto:joseph@ice.rwth-aachen.de
mailto:joseph@roofline.ai
https://www.linkedin.com/company/rooflineai/
mailto:joseph@ice.rwth-aachen.de
http://www.roofline.ai/
mailto:joseph@ice.rwth-aachen.de
https://www.linkedin.com/in/christopher-m-26b820134/
https://www.linkedin.com/in/christopher-m-26b820134/
mailto:joseph@ice.rwth-aachen.de
https://github.com/chrsmcgrr

	Default Section
	Slide 1: SOLVING COMPILER PUZZLES
	Slide 2: Compiler Design for ML Developers with Limited MLIR Experience
	Slide 3: Debugging ai models in mlir Is a pain
	Slide 4: Today, Let’s focus on five key debug methos
	Slide 5: First Step is looking at the IR
	Slide 6: Eliding Arguments
	Slide 7: Other notable Arguments
	Slide 8: Narrowing the scope
	Slide 9: Replay Compiler PASSES
	Slide 10: PRETTY Printing
	Slide 11: Action Debugging
	Slide 12: Reducing the Problem SIZE
	Slide 13: Four key Takeaways on compiler debugging in mlir
	Slide 14: Any questions? I am happy to connect!

