
Making LoopAccessAnalysis more precise

Ramkumar Ramachandra

Codasip

April 16, 2025

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



LoopAccessAnalysis is a dependency analysis built on
ScalarEvolution that is used by:

LoopVectorize
SLPVectorize
LoopVersioning
LoopDistribute
LoopLoadElimination

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Runtime checks are the raison d’être of LAA:
void saxpy(size_t n, const float a, const float *x, float *y) {

for (size_t iv = 0; iv < n; ++iv)
y[iv] += a * x[iv];

}

Trivally safe to vectorize with float * replaced with
float *restrict.

Non-trivial analysis (determined safe):
for (size_t iv = 1; iv < n; ++iv)

x[2 * iv] = x[2 * iv - 1];

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Dependence is either between a load and a store, or a store and
another store.

Forward dependence:
for (size_t iv = 1; iv < n; ++iv)

x[iv - 1] += x[iv];

Backward (loop-carried) dependence:
for (size_t iv = 0; iv < n - 1; ++iv)

x[iv + 1] = x[stride * iv];

Here, stride is symbolic: LAA generates a predicate stride == 1,
which is used by LoopVersioning to generate a unit-strided version
of the loop.

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Variations where LAA falls over:

for (size_t iv = 1; iv < n; ++iv)
x[iv][iv] = x[iv][iv - 1];

for (size_t iv = 0; iv < n; ++iv)
x[2 * iv] = x[2 * iv + 1];

for (size_t iv = 0; iv < n; ++iv)
x[3 * iv] = x[7 * iv];

LAA reasons based on simple SCEV expressions. It is not
theory-based, and is something that works in practice.

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



struct DepDistanceStrideAndSizeInfo {
const SCEV *Dist;
uint64_t MaxStride;
std::optional<uint64_t> CommonStride;
bool ShouldRetryWithRuntimeCheck;
uint64_t TypeByteSize;
bool AIsWrite;
bool BIsWrite;

};

Emphasis: The reasoning within LAA is pure engineering.

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Dependence distance is an SCEV minus:
const SCEV *Dist = SE.getMinusSCEV(Sink, Src);

Strides of Src and Sink from AddRecs:
std::optional<int64_t>
getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy,

Value *Ptr, PredicatedScalarEvolution &PSE);

Stride versioning in case of non-constant stride:
// Stride >= TripCount
if (SE->isKnownPositive(StrideMinusBETaken)) {

LLVM_DEBUG(
dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "

"Stride==1 predicate will imply that the loop executes "
"at most once.\n");

return;
}

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



// We can only analyze innermost loops.
if (!TheLoop->isInnermost()) {

LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
return false;

}

In contrast, DependenceAnalysis is a complex beast that is
theory-based: users are LoopUnrollAndJam and LoopInterchange,
which fundamentally need outer-loop analysis.

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



The kind of indexing and loop-nests that LAA can analyze, and
where it really shines:

for (size_t oiv = 32; oiv < n; ++oiv)
for (size_t iv = 0; iv < 256; ++iv)
x[oiv + iv] = x[iv];

Here, LAA could deem it safe for a certain maximum vector-width,
or generate RT-checks.

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Memory dependences are safe
Dependences:

Forward:
%l = load i32, ptr %gep.mul.2, align 4 ->
store i32 %add, ptr %gep, align 4

Run-time memory checks:
Grouped accesses:

Non vectorizable stores to invariant address were not found in loop.
SCEV assumptions:

Expressions re-written:

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Memory dependences are safe with run-time checks
Dependences:
Run-time memory checks:
Check 0:

Comparing group ([[GRP1:0x[0-9a-f]+]]):
%gep.dst = getelementptr i32, ptr %dst, i64 %iv.2

Against group ([[GRP2:0x[0-9a-f]+]]):
%gep.src = getelementptr inbounds i32, ptr %src, i32 %iv.3

Grouped accesses:
Group [[GRP1]]:

(Low: ((4 * %iv.1) + %dst) High: (804 + (4 * %iv.1) + %dst))
Member: {((4 * %iv.1) + %dst),+,4}<%inner.loop>

Group [[GRP2]]:
(Low: %src High: (804 + %src))
Member: {%src,+,4}<nuw><%inner.loop>

Non vectorizable stores to invariant address were not found in loop.
SCEV assumptions:

Equal predicate: %offset == 1

Expressions re-written:
[PSE] %gep.dst = getelementptr i32, ptr %dst, i64 %iv.2:

{((4 * %iv.1) + %dst),+,(4 * (sext i32 %offset to i64))<nsw>}<%inner.loop>
--> {((4 * %iv.1) + %dst),+,4}<%inner.loop>

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



Issues with LAA:
1 Inability to reason about outer-loops
2 Inability to reason about multiple array indices
3 Relies on finding ”array bounds” to insert RT-checks
4 Always-false runtime checks
5 Spurious false dependencies
6 Few contributions from a small contributor-pool

Ramkumar Ramachandra Making LoopAccessAnalysis more precise



LoopAccessAnalysis: The analysis we have, but is it the analysis
we deserve? �

Ramkumar Ramachandra Making LoopAccessAnalysis more precise


