
Apple logo is a trademark of Apple Inc.

Henrik Olsson & Patryk Stefanski
EuroLLVM 2025

Adopting -fbounds-safety
in practice

Agenda

Introduction to -fbounds-safety
Live adoption
Live debugging

Current status

•Announced in 2023
• In the process of upstreaming into mainline Clang
•Our goal is to standardize -fbounds-safety in C
• Implementation now open sourced in Swift's fork of Clang
-https://github.com/swiftlang/llvm-project/

•You can try it out today with the swift.org snapshot toolchain (not in Xcode)
- https://www.swift.org/install

•Currently only supports C (Objective-C and C++ not yet supported)

https://github.com/swiftlang/llvm-project/
https://www.swift.orghttps://www.swift.org/install

Memory unsafety is the leading source of security
vulnerabilities

•Memory safety bugs account for 60-70% of software vulnerabilities
•High-profile attacks have exploited memory safety bugs leading to financial and
physical threats

•Many security critical codebases are written in C
•Full rewrites are costly and time consuming

-fbounds-safety prevents out of bounds memory
access

•Mitigations such as FORTIFY_SOURCE do not catch all OOB accesses
•-fbounds-safety provides a strong bounds safety guarantee
•OOB access bugs become unexploitable
•Attackers are forced to look for other types of bugs that are harder to exploit
•Dynamic bug finding tools like ASan don’t protect in production

How bounds safety is guaranteed

-fbounds-safety enforces bounds safety at language level

•Prevents out-of-bounds memory accesses via bounds checking at run time
•Prevents pointer operations at compile time if they cannot be proven safe
•Bounds information can be provided using bounds annotations
•Maintains correctness of bounds annotations

Automatic bounds checking with bounds annotations

•Programmers adopt bounds annotations on:
- Function prototypes, struct fields, globals

•Compiler adds guaranteed bounds checks

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {

buf, size_t count) {

 buf[i] = i;
 }
}

Automatic bounds checking with bounds annotations

•Programmers adopt bounds annotations on:
- Function prototypes, struct fields, globals

•Compiler adds guaranteed bounds checks

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {

__counted_by(count) buf, size_t count) {

 buf[i] = i;
 }
}

Automatic bounds checking with bounds annotations

•Programmers adopt bounds annotations on:
- Function prototypes, struct fields, globals

•Compiler adds guaranteed bounds checks

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {

__counted_by(count) buf, size_t count) {

 if (i < 0 || i >= count) trap();
 buf[i] = i;
 }
}

Automatic bounds checking with bounds annotations

•Programmers adopt bounds annotations on:
- Function prototypes, struct fields, globals

•Compiler adds guaranteed bounds checks

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {

__counted_by(count) buf, size_t count) {

 if (i < 0 || i >= count) trap();
 buf[i] = i;
 }
}

Compiler rejects code without sufficient bounds
information

•Guides programmers to add necessary bounds annotations
•Securing all pointers by default

Compiler rejects code without sufficient bounds
information

•Guides programmers to add necessary bounds annotations
•Securing all pointers by default

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {
 buf[i] = i;
 }
}

buf, size_t count) {

Compiler rejects code without sufficient bounds
information

•Guides programmers to add necessary bounds annotations
•Securing all pointers by default

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {
 buf[i] = i;
 }
}

Array subscript not allowed on pointer without
bounds information

buf, size_t count) {

Compiler rejects code without sufficient bounds
information

•Guides programmers to add necessary bounds annotations
•Securing all pointers by default

void fill_array_with_indices(int *
 for (size_t i = 0; i <= count; ++i) {
 buf[i] = i;
 }
}

__counted_by(count) buf, size_t count) {

Compiler maintains correctness of bounds
annotations

•Pointer and bounds must be kept in sync
•This guarantees correctness of bounds checks

Compiler maintains correctness of bounds
annotations

•Pointer and bounds must be kept in sync
•This guarantees correctness of bounds checks

void fill_array_with_indices_inverse(int *__counted_by(count) buf, size_t count) {
 while (count-- > 0) {
 *buf = count;
 buf++;
 }
}

Compiler maintains correctness of bounds
annotations

•Pointer and bounds must be kept in sync
•This guarantees correctness of bounds checks

void fill_array_with_indices_inverse(int *__counted_by(count) buf, size_t count) {
 while (count-- > 0) {
 *buf = count;
 buf++;
 }
}

Assignment to ‘buf’ requires corresponding
assignment to ‘count’

Compiler maintains correctness of bounds
annotations

•Pointer and bounds must be kept in sync
•This guarantees correctness of bounds checks

void fill_array_with_indices_inverse(int *__counted_by(count) buf, size_t count) {
 while (count > 0) {
 *buf = count - 1;
 buf++;
 count--;
 }
}

Local variables track bounds without annotations

•Reduces the number of annotations needed drastically
•Allows for flexibility with reassignments

Local variables track bounds without annotations

•Reduces the number of annotations needed drastically
•Allows for flexibility with reassignments

void fill_array_with_indices_inverse(int *__counted_by(count) buf,
 size_t count) {
 while (count-- > 0) {
 *buf = count;
 buf++;
 }
}

Assignment to ‘buf’ requires corresponding
assignment to ‘count’

Local variables track bounds without annotations

•Reduces the number of annotations needed drastically
•Allows for flexibility with reassignments

void fill_array_with_indices_inverse(int *__counted_by(countOrig) bufOrig,
 size_t countOrig) {
 int *buf = bufOrig;
 size_t count = countOrig;
 while (count-- > 0) {
 *buf = count;
 buf++;
 }
}

-fbounds-safety is easy to adopt

•Low manual annotation overhead
•Time to adopt: ~1 hour per 2,000 LOC
•Maintains ABI compatibility
•Allows incremental adoption

Adoption at Apple

•Adopted in millions of lines of production C code
•Libraries used for:
- Secure boot and firmware
- Security-critical components of XNU
-https://github.com/apple-oss-distributions/xnu

-Built-in image format parsers
- Built-in audio codecs

•Works well with real-world applications
•Low system level overhead

https://github.com/apple-oss-distributions/xnu

Performance

Performance

•Note: measured in 2023

Performance

•Note: measured in 2023
•Ptrdist and Olden benchmark suites
-Code size overhead (text section only): 9.1% geomean (range: -1.4% to 38%)
-Run-time overhead: 5.1% geomean (range: -1% to 29%)
-Can be optimized further

Performance

•Note: measured in 2023
•Ptrdist and Olden benchmark suites
-Code size overhead (text section only): 9.1% geomean (range: -1.4% to 38%)
-Run-time overhead: 5.1% geomean (range: -1% to 29%)
-Can be optimized further

•Minor run-time impact on real-world adopters
- audio encoding/decoding: ~1% overhead

Bounds annotations

__counted_by carries bounds info across interfaces

•Let the programmer specify where the size is stored

void foo(int *__counted_by(len) p, size_t len);

void bar(int *__counted_by(42) q);

void baz(int *__counted_by(a * b) p, size_t a, size_t b);

•No need to change the pointer representation (preserves ABI)
•Compile-time and run-time checks to enforce that pointer and count are in sync

__counted_by variants for different use cases

void bzero(void *__counted_by(n) s, size_t n);

__counted_by variants for different use cases

void bzero(void *__sized_by(n) s, size_t n);
•__sized_by(size) — size denotes the size in bytes instead of number of elements

__counted_by variants for different use cases

void bzero(void *__sized_by(n) s, size_t n);
•__sized_by(size) — size denotes the size in bytes instead of number of elements

void *__sized_by(size) malloc(size_t size);

__counted_by variants for different use cases

void bzero(void *__sized_by(n) s, size_t n);
•__sized_by(size) — size denotes the size in bytes instead of number of elements

void *__sized_by_or_null(size) malloc(size_t size);
•__counted_by_or_null(), __sized_by_or_null() — allows NULL pointer with
arbitrary count/size

Bounds are validated during initialization

•The compiler emits a bounds-check when a __counted_by pointer is initialized

void foo(int *__counted_by(len) p, int len);

void bar(int n) {
 int array[42];

 // bounds-check (n >= 0 && n <= 42)
 foo(array, n);
}

Single element pointers

•__single denotes a pointer that points to a single element
•Can be null
•Normal C pointer but with compile-time restrictions

void foo(int *__single p, int n) {
 p[42]; // compile error (p only has one element)
 p++; // compile error (p would be invalid after p++)
 p[n]; // compile error (dynamic index likely a mistake)
 p[0]; // ok
 *p; // ok
}

__bidi_indexable tracks both upper and lower bounds

•__bidi_indexable transforms a plain pointer into a wide pointer

struct wide_ptr {
 char *ptr;
 char *upper_bound;
 char *lower_bound;
};

void foo(char *__bidi_indexable p);

void foo(struct wide_ptr p);

__bidi_indexable can be modified without checks

•The compiler emits a bounds-check when the pointer is dereferenced

void foo(char *__bidi_indexable p) {

 p += 42; // ok (p.ptr += 42, bounds unchanged)
 p -= 100; // ok (p.ptr -= 100, bounds unchanged)
 char x = *p; // bounds-check (p.ptr >= p.lower_bound &&
 p.ptr < p.upper_bound)
}

__bidi_indexable is easy to use but breaks ABI

struct wide_ptr {
 char *ptr;
 char *upper_bound;
 char *lower_bound;
};

•Few compiler restrictions
•Wide pointer takes 3x the size of a raw pointer
•Not ABI compatible

__unsafe_indexable

•Unsafe escape hatch
•Just like regular C pointers
-Pointer arithmetic is allowed
-No checks

Converting between pointer kinds maintains
invariants

__bidi_indexable

__single __counted_by et.al.

__unsafe_indexable

bounds
check

bounds check

Converting between pointer kinds maintains
invariants

__bidi_indexable

__single __counted_by et.al.

__unsafe_indexable

bounds
check

bounds check

Converting between pointer kinds maintains
invariants

__bidi_indexable

__single __counted_by et.al.

__unsafe_indexable

bounds
check

bounds check

Constructing a safe pointer
from __unsafe_indexable
requires call to unsafe builtin

Default annotations

•The defaults are secure by default and preserve ABI
•Sensible defaults reduce adoption time
•ABI visible pointers are __single by default
- except when declared in system headers, then they are __unsafe_indexable
- include 3rd party libraries as system headers to prevent errors

•Local pointers are __bidi_indexable by default

void foo(int *p1) { // p1 is __single
 int *p2 = ...; // p2 is __bidi_indexable
}

Additional resources

•EuroLLVM 2023 keynote on -fbounds-safety
•https://clang.llvm.org/docs/BoundsSafety.html

https://www.youtube.com/watch?v=RK9bfrsMdAM
https://clang.llvm.org/docs/BoundsSafety.html

Live adoption

Incremental adoption process

Incremental adoption process

1. Enable -fbounds-safety for a single C file

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential

2. Repeat 1. until -fbounds-safety is enabled everywhere

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential

2. Repeat 1. until -fbounds-safety is enabled everywhere
3. Benchmark performance, measure binary size

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential

2. Repeat 1. until -fbounds-safety is enabled everywhere
3. Benchmark performance, measure binary size

a) Optimize if needed - opt remarks can assist here

Libraries need to signal adoption

Libraries need to signal adoption

• System headers default to __unsafe_indexable for ABI visible pointers

Libraries need to signal adoption

• System headers default to __unsafe_indexable for ABI visible pointers

• Non-system headers default to __single for ABI visible pointers

Libraries need to signal adoption

• System headers default to __unsafe_indexable for ABI visible pointers

• Non-system headers default to __single for ABI visible pointers

• Mismatch when public headers of your library are included as system headers

Libraries need to signal adoption

• System headers default to __unsafe_indexable for ABI visible pointers

• Non-system headers default to __single for ABI visible pointers

• Mismatch when public headers of your library are included as system headers

• __ptrcheck_abi_assume_single() changes the default attribute to __single for the
whole file

Libraries need to signal adoption

• System headers default to __unsafe_indexable for ABI visible pointers

• Non-system headers default to __single for ABI visible pointers

• Mismatch when public headers of your library are included as system headers

• __ptrcheck_abi_assume_single() changes the default attribute to __single for the
whole file

• Public headers of your library should use __ptrcheck_abi_assume_single() to avoid
the mismatch and signal that they adopted -fbounds-safety

Alternative: header-only adoption

Alternative: header-only adoption

• Lightweight alternative for libraries

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated
- Library implementation remains unsafe

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated
- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated
- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
-Other clients pay no cost

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated
- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
-Other clients pay no cost

• Example use case: C standard library
void *memcpy(void *__sized_by(n) dst, const void *__sized_by(n) src, size_t n);

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated
- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
-Other clients pay no cost

• Example use case: C standard library
void *memcpy(void *__sized_by(n) dst, const void *__sized_by(n) src, size_t n);

•Also useful for safer interop from other languages

Alternative: header-only adoption

• Lightweight alternative for libraries

•Only public interfaces are annotated
- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
-Other clients pay no cost

• Example use case: C standard library
void *memcpy(void *__sized_by(n) dst, const void *__sized_by(n) src, size_t n);

•Also useful for safer interop from other languages

•Remember to add test case including each header with -fbounds-safety enabled

Demo

Demo

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential

2. Repeat 1. until -fbounds-safety is enabled everywhere
3. Benchmark performance, measure binary size

a) Optimize if needed - opt remarks can assist here

Examples of adoption

Examples of adoption

• https://github.com/apple/sample-fbounds-safety-adoption
•GIFLIB

https://github.com/apple/sample-fbounds-safety-adoption
https://github.com/apple-oss-distributions/xnu

Examples of adoption

• https://github.com/apple/sample-fbounds-safety-adoption
•GIFLIB

•https://github.com/apple-oss-distributions/xnu

https://github.com/apple/sample-fbounds-safety-adoption
https://github.com/apple-oss-distributions/xnu

Summary

•While safe languages are great, securing existing code bases in unsafe languages
is also necessary

• Incremental adoption and low adoption cost make this tractable even for large
code bases

•Check out Devin Coughlin's keynote tomorrow: “A Recipe for Eliminating Entire
Classes of Memory Safety Vulnerabilities in C and C++ ”

•Try it out and give us feedback!
- Toolchain available at https://www.swift.org/install
-#fbounds-safety on LLVM Discord

https://www.swift.org/install

TM and © 2025 Apple Inc. All rights reserved.

