Adopting -fbounds-safety
In practice

Henrik Olsson & Patryk Stefanski

Apple logo is a trademark of Apple Inc.

Agenda

Introduction to -fbounds-safety
Live adoption
Live debugging

Current status

- Announced in 2023

- In the process of upstreaming into mainline Clang

- Our goal Is to standardize -fbounds-safety in C

- Implementation now open sourced in Swift's fork of Clang

- https://github.com/swiftlang/llvm-project/

- You can try it out today with the swift.org snapshot toolchain (not in Xcode)

- https://www.swift.org/install

- Currently only supports C (Objective-C and C++ not yet supported)

https://github.com/swiftlang/llvm-project/
https://www.swift.orghttps://www.swift.org/install

Memory unsafety is the leading source of security
vulnerabilities

- Memory safety bugs account for 60-70% of software vulnerabilities

- High-profile attacks have exploited memory safety bugs leading to financial and
physical threats

- Many security critical codebases are written in C

- Full rewrites are costly and time consuming

-fbounds-safety prevents out of bounds memory
access

- Mitigations such as FORTIFY_SOURCE do not catch all OOB accesses
- -fbounds-safety provides a strong bounds safety guarantee

- OOB access bugs become unexploitable

- Attackers are forced to look for other types of bugs that are harder to exploit

- Dynamic bug finding tools like ASan don't protect in production

How bounds safety is guaranteed

-fbounds-safety enforces bounds safety at language level

- Prevents out-of-bounds memory accesses via bounds checking at run time
- Prevents pointer operations at compile time if they cannot be proven safe
- Bounds information can be provided using bounds annotations

- Maintains correctness of bounds annotations

Automatic bounds checking with bounds annotations

- Programmers adopt bounds annotations on:

- Function prototypes, struct fields, globals

- Compiler adds guaranteed bounds checks

fill array with _indices(xbuf, size t count) {
(size t 1 = @; 1 <= count; ++1) {
bufl[1i] = 1;
}
}

Automatic bounds checking with bounds annotations

- Programmers adopt bounds annotations on:

- Function prototypes, struct fields, globals

- Compiler adds guaranteed bounds checks

f11ll array with_indices(* _counted _by(count) buf, size_t count) {
(size t 1 = @; 1 <= count; ++1) {
bufli1] = 1;
l
;

Automatic bounds checking with bounds annotations

- Programmers adopt bounds annotations on:

- Function prototypes, struct fields, globals

- Compiler adds guaranteed bounds checks

f11ll array with_indices(* _counted _by(count) buf, size_t count) {
(size t 1 = @; 1 <= count; ++1) {
(i <0 || 1i>= count) trap();
bufl[1] = 1;
l
;

Automatic bounds checking with bounds annotations

- Programmers adopt bounds annotations on:

- Function prototypes, struct fields, globals

- Compiler adds guaranteed bounds checks

f11ll array with_indices(* _counted _by(count) buf, size_t count) {
(size t 1 = 0; 1 <= count; ++1i) {
(i <0 || 1i>= count) trap();
bufl[1] = 1;
l
;

Compiler rejects code without sufficient bounds
Information

- Guides programmers to add necessary bounds annotations

- Securing all pointers by default

Compiler rejects code without sufficient bounds
Information

- Guides programmers to add necessary bounds annotations

- Securing all pointers by default

fill array with_indices(* buf, size t count) {
(size t 1 = ©; 1 <= count; ++1) {
bufl1] = 1;
l
}

Compiler rejects code without sufficient bounds
Information

- Guides programmers to add necessary bounds annotations

- Securing all pointers by default

fill array with_indices(* buf, size t count) {
(size t 1 = ©; 1 <= count; ++1) {

} buffil = 1; Q Array subscript not allowed on pointer without

bounds information

¥

Compiler rejects code without sufficient bounds
Information

- Guides programmers to add necessary bounds annotations

- Securing all pointers by default

void fill _array with_indices(int * _ counted_by(count) buf, size t count) {
for (size t 1 = 0; 1 <= count; ++1) {
bufl1] = 1;
l
}

Compiler maintains correctness of bounds
annotations

- Pointer and bounds must be kept in sync

- This guarantees correctness of bounds checks

Compiler maintains correctness of bounds
annotations

- Pointer and bounds must be kept in sync

- This guarantees correctness of bounds checks

void fill array with_indices_inverse(int *__counted _by(count) buf, size_ t count) {
while (count—— > 0) {
xbuf = count;
buf++;
l
;

Compiler maintains correctness of bounds
annotations

- Pointer and bounds must be kept in sync

- This guarantees correctness of bounds checks

f11ll array with_indices_1inverse(* counted by(count) buf, size t count) {
(count—— > 0) A
xbuf = count;
buf++;
l
;

Q Assignment to ‘buf’ requires corresponding
assignment to ‘count’

Compiler maintains correctness of bounds
annotations

- Pointer and bounds must be kept in sync

- This guarantees correctness of bounds checks

f11ll array with_indices_1inverse(* counted by(count) buf, size t count) {
(count > @) A
buf = count - 1;
buf++;

count——;

Local variables track bounds without annotations

- Reduces the number of annotations needed drastically

- Allows for flexibility with reassignments

Local variables track bounds without annotations

- Reduces the number of annotations needed drastically

- Allows for flexibility with reassignments

f11ll array with _indices_1inverse(* counted by(count) buf,
size t count) {
(count— > 0) {
xbuf = count;

CLiet S I Assignment to 'buf’ requires corresponding
assignment to ‘count’

¥
h

Local variables track bounds without annotations

- Reduces the number of annotations needed drastically

- Allows for flexibility with reassignments

f1ll array with_indices_1inverse(* counted _by(countOrig) bufOrig,
size_ t countOrig) A
xbuf = bufOrig;
size_t count = countOrig;
(count—— > 0) A
xbuf = count;

buf++;

-fbounds-safety is easy to adopt

- Low manual annotation overhead
- Time to adopt: ~1 hour per 2,000 LOC
- Maintains ABI compatibility

- Allows incremental adoption

Adoption at Apple

- Adopted in millions of lines of production C code
- Libraries used for:

- Secure boot and firmware
- Security-critical components of XNU

- https://github.com/apple-oss-distributions/xnu

- Built-in image format parsers
- Built-in audio codecs

- Works well with real-world applications

- Low system level overhead

https://github.com/apple-oss-distributions/xnu

Performance

Performance

- Note: measured in 2023

Performance

- Note: measured in 2023
- Ptrdist and Olden benchmark suites

- Code size overhead (text section only): 9.1% geomean (range: -1.4% to 38%)
- Run-time overhead: 5.1% geomean (range: -1% to 29%)

- Can be optimized further

Performance

- Note: measured in 2023
- Ptrdist and Olden benchmark suites

- Code size overhead (text section only): 9.1% geomean (range: -1.4% to 38%)
- Run-time overhead: 5.1% geomean (range: -1% to 29%)
- Can be optimized further

- Minor run-time impact on real-world adopters

-audio encoding/decoding: ~1% overhead

Bounds annotations

__counted by carries bounds info across interfaces

- Let the programmer specify where the size is stored
void foo(int *_counted by(len) p, size t len):
void bar(int *x__counted_by(42) q);

volid baz(int *x__counted _by(a * b) p, size_ t a, size_ t b);
- No need to change the pointer representation (preserves ABI)

- Compile-time and run-time checks to enforce that pointer and count are in sync

__counted_by variants for different use cases

void bzero(void *__counted _by(n) s, size t n);

__counted_by variants for different use cases

void bzero(void *__sized by(n) s, size_t n);

- __sized_by(size) — size denotes the size in bytes instead of number of elements

__counted_by variants for different use cases

void bzero(void *__sized by(n) s, size_t n);
- __sized_by(size) — size denotes the size in bytes instead of number of elements

void * sized by(size) malloc(size t size);

__counted_by variants for different use cases

void bzero(void *__sized by(n) s, size_t n);
__sized_by(size) — size denotes the size in bytes instead of number of elements
void *__sized by or null(size) malloc(size_t size);

__counted_by_or_null(), __sized_by_or_null() — allows NULL pointer with
arbitrary count/size

Bounds are validated during initialization

- The compiler emits a bounds-check when a __counted_by pointer is initialized
void foo(int *_ counted by(len) p, int len);

vold bar(int n) {
int arrayl[42];

// bounds—-check (n >= 0 && n <= 42)
foo(array, n);

¥

Single element pointers

- __single denotes a pointer that points to a single element
- Can be null

- Normal C pointer but with compile-time restrictions

void foo(int *__single p, int n) {

pl42]1;: // (p only has one element)

p++; // (p would be invalid after p++)
plnl; // (dynamic index likely a mistake)
plol; // ok

Xp; // ok

bidi_indexable tracks both upper and lower bounds

- __bidi_indexable transforms a plain pointer into a wide pointer

struct wide_ptr{
char *ptr;
char *upper_bound:
char *lower_bound:

3
voild foo(char *__bidi_indexable p);

void foo(struct wide_ptr p);

___bidi_indexable can be modified without checks

- The compiler emits a bounds-check when the pointer is dereferenced

volid foo(char *__bidi indexable p) {

0D += 42 // ok (p.ptr += 42, bounds unchanged)

D —= 100: // ok (p.ptr —= 100, bounds unchanged)

char x = *%p; // bounds—-check (p.ptr >= p.lower bound &&
p.ptr < p.upper_bound)

___bidi_indexable is easy to use but breaks ABI

struct wide ptr {
char xptr;
char *upper_bound;
char *xlower bound:

3
- Few compller restrictions

- Wide pointer takes 3x the size of a raw pointer

- Not ABI compatible

___unsafe_indexable

- Unsafe escape hatch
- Just like regular C pointers

- Pointer arithmetic is allowed

- No checks

Converting between pointer kinds maintains
Invariants

__counted_by et.al.

N,

~_bidi_indexable

__unsafe_indexable

Converting between pointer kinds maintains
Invariants

__counted_by et.al.

N,

~_bidi_indexable

__unsafe_indexable

Converting between pointer kinds maintains
Invariants

__counted_by et.al.

N,

~_bidi_indexable

Constructing a safe pointer
from __unsafe_indexable
requires call to unsafe builtin

__unsafe_indexable

Default annotations

- The defaults are secure by default and preserve ABI
- Sensible defaults reduce adoption time
- ABI visible pointers are __single by default

- except when declared in system headers, then they are __unsafe_indexable
-Include 3rd party libraries as system headers to prevent errors

- Local pointers are __bidi_indexable by default

void foo(int *pl) { // pl 1s __single
int *p2 = ...; // p2 1s _ _bidi_indexable
s

Additional resources

- EuroLLVM 2023 keynote on -fbounds-safety

- https://clang.llvm.org/docs/BoundsSafety.html

https://www.youtube.com/watch?v=RK9bfrsMdAM
https://clang.llvm.org/docs/BoundsSafety.html

Live adoption

Incremental adoption process

Incremental adoption process

1. Enable -fbounds-safety for a single C file

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors

b) Fix test failures - good test coverage is essential

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential

2. Repeat 1. until -fbounds-safety is enabled everywhere

Incremental adoption process

1. Enable -fbounds-safety for a single C file
a) Fix compilation errors
b) Fix test failures - good test coverage is essential
2. Repeat 1. until -fbounds-safety is enabled everywhere

3. Benchmark performance, measure binary size

Incremental adoption process

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential
2. Repeat 1. until -fbounds-safety is enabled everywhere

3. Benchmark performance, measure binary size

a) Optimize if needed - opt remarks can assist here

Libraries need to signal adoption

Libraries need to signal adoption

- System headers default to __unsafe_indexable for ABI visible pointers

Libraries need to signal adoption

- System headers default to __unsafe_indexable for ABI visible pointers

- Non-system headers default to __single for ABI visible pointers

Libraries need to signal adoption

- System headers default to __unsafe_indexable for ABI visible pointers
- Non-system headers default to __single for ABI visible pointers

- Mismatch when public headers of your library are included as system headers

Libraries need to signal adoption

- System headers default to __unsafe_indexable for ABI visible pointers
- Non-system headers default to __single for ABI visible pointers
- Mismatch when public headers of your library are included as system headers

- __ptrcheck_abi_assume_single() changes the default attribute to __single for the
whole file

Libraries need to signal adoption

- System headers default to __unsafe_indexable for ABI visible pointers
- Non-system headers default to __single for ABI visible pointers
- Mismatch when public headers of your library are included as system headers

- __ptrcheck_abi_assume_single() changes the default attribute to __single for the
whole file

- Public headers of your library should use __ptrcheck_abi_assume_single() to avoid
the mismatch and signal that they adopted -fbounds-safety

Alternative: header-only adoption

Alternative: header-only adoption

- Lightweight alternative for libraries

Alternative: header-only adoption

- Lightweight alternative for libraries

- Only public interfaces are annotated

Alternative: header-only adoption

- Lightweight alternative for libraries
- Only public interfaces are annotated

- Library implementation remains unsafe

Alternative: header-only adoption

- Lightweight alternative for libraries
- Only public interfaces are annotated

- Library implementation remains unsafe

- Clients adopting -fbounds-safety will get safe interface

Alternative: header-only adoption

- Lightweight alternative for libraries
- Only public interfaces are annotated

- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface

- Other clients pay no cost

Alternative: header-only adoption

- Lightweight alternative for libraries
- Only public interfaces are annotated

- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
- Other clients pay no cost

- Example use case: C standard library
void *memcpy(void *__sized_by(n) dst, const void *__sized_by(n) src, size_t n);

Alternative: header-only adoption

- Lightweight alternative for libraries

- Only public interfaces are annotated
- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
- Other clients pay no cost

- Example use case: C standard library
void *memcpy(void *__sized_by(n) dst, const void *__sized_by(n) src, size_t n);

- Also useful for safer interop from other languages

Alternative: header-only adoption

- Lightweight alternative for libraries
- Only public interfaces are annotated

- Library implementation remains unsafe
- Clients adopting -fbounds-safety will get safe interface
- Other clients pay no cost

- Example use case: C standard library
void *memcpy(void *__sized_by(n) dst, const void *__sized_by(n) src, size_t n);

- Also useful for safer interop from other languages

- Remember to add test case including each header with -fbounds-safety enabled

Demo

Demo

1. Enable -fbounds-safety for a single C file

a) Fix compilation errors
b) Fix test failures - good test coverage is essential
2. Repeat 1. until -fbounds-safety is enabled everywhere

3. Benchmark performance, measure binary size

a) Optimize if needed - opt remarks can assist here

Examples of adoption

Examples of adoption

- https://github.com/apple/sample-fbounds-safety-adoption
- GIFLIB

https://github.com/apple/sample-fbounds-safety-adoption
https://github.com/apple-oss-distributions/xnu

Examples of adoption

- https://github.com/apple/sample-fbounds-safety-adoption
- GIFLIB
- https://github.com/apple-oss-distributions/xnu

https://github.com/apple/sample-fbounds-safety-adoption
https://github.com/apple-oss-distributions/xnu

Summary

- While safe languages are great, securing existing code bases in unsafe languages
IS also necessary

- Incremental adoption and low adoption cost make this tractable even for large
code bases

- Check out Devin Coughlin's keynote tomorrow: “A Recipe for Eliminating Entire
Classes of Memory Safety Vulnerabilities in C and C++ "~

- Try 1t out and give us feedback!

- Toolchain available at https://www.swift.org/install
- #fbounds-safety on LLVM Discord

https://www.swift.org/install

TM and © 2025 Apple Inc. All rights reserved.

