LLVVM's First 25 Years -
and the Road Ahead

. —\
Chris Lattner > =
LLVM Cofounder

CEO, Modular Inc. 7

LLVM Dev Meeting, Tokyo
June 2025

Today iIs a Historic Gathering

® Celebrating LLVM's impact across Asia-Pacific

Next generation of LL\VM contributors

8. 32nd LLVVM Developer Meeting!

Looking Back & Celebrating

25 years of compiler evolution

W Celebrating the community behind LLVM

@ Where will you take LLVM next?

2000-2005
Growing out of
Academia

LLVM Prehistory (2000)

- (Graduate research at University

of lllinois under Vikram Adve J
. Solve multi-stage compilation + I r ; '
"~

optimization

https://llvm.org/devmtg/2007-05/

LLVM 1.0 (2003)

The default optimizer sequence used by the C/C++ front-ends is:
¢ p a rC [} [} a I I a C e I I . CFG simplification (-simplifycfg)

. Interprocedural dead code elimination (-globaldce)
. Interprocedural constant propagation (-ipconstprop)
Dead argument elimination (-deadargelim)

. Exception handling pruning (-prune-eh)

. Function inlining (-inline)

. Instruction combining (-instcombine)

. Cast elimination (-raise)

. Tail duplication (-tailduplicate)

10. CFG simplification (-simplifycfg)

11. Scalar replacement of aggregates (-scalarrepl)

. 12. Tail call elimination (-tailcallelim)
13. Instruction combining (-instcombine)
o = e)
- 7 . Reassociation (-reassociate)

15. Instruction combining (-instcombine)

u 16. CFG simplification (-simplifycfg)
17. Loop canonicalization (-loopsimplify)
e n r I S 18. Loop invariant code motion, with scalar promotion (-licm)
[] §F " 19. Global common subexpression elimination, with load elimination (-gcse)

20. Sparse conditional constant propagation (-sccp)
21. Instruction combining (-instcombine)
22. Induction variable canonicalization (-indvars)

. 23. Aggressive dead code elimination (-adce)
o 24. CFG simplication (-simplifycfg)
25. Dead type elimination (-deadtypeelim)

26. Global constant merging (-constmerge)

This is the first public release of the LLVM compiler infrastructure. As such, it is all new! In particular, we are
providing a stable C compiler, beta C++ compiler, a C back-end, stable X86 and Sparc V9 static and JIT code
generators, as well as a large suite of scalar and interprocedural optimizations.

V01 Wn bk W~

» [lvm-gCC: 34-vm 20030827 (experimental)

At link-time, the following optimizations are run:

1. Global constant merging (-constmerge)

N OW O e ' l SO l I r(:ed | 2. [optional] Internalization [which marks most functions and global variables static] (-internalize)
n 3. Interprocedural constant propagation (-ipconstprop)

4. Interprocedural dead argument elimination (-deadargelim)
5. Instruction combining (-instcombine)

6. CFG simplification (-simplifycfg)

7. Interprocedural dead code elimination (-globaldce)

At this time, LLVM is known to work properly with SPEC CPU 2000, the Olden benchmarks, and the Ptrdist
benchmarks among many other programs. Note however that the Sparc and X86 backends do not currently
support exception throwing or long jumping (including 253.perlbmk in SPEC). For these programs you must
use the C backend.

releases.llvm.org/1.0/docs/ReleaseNotes.html

https://releases.llvm.org/1.0/docs/ReleaseNotes.html

UIUC PhD (2005)

« Described LLVM + iIntermediate
representation (IR)

- Proposed a foundation for
modern compiler architecture

- Capstone showing pointer
analysis research using LLVIM

ideals.illinois.edu/items/11014

MACROSCOPIC DATA STRUCTURE ANALYSIS AND OPTIMIZATION

BY
CHRIS LATTNER

B.S., University of Portland, 2000
M.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

https://www.ideals.illinois.edu/items/11014

Should LLVM join GNU? (2005)

u This is the mail archive of the gcc@gcc.gnu.org mailing list for the GCC project.
. [age etween aln

Index Nav:
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]

LLVIM ecosystems e

LLVM/GCC Integration Proposal

i - "1t From: Chris Lattner <clattner at apple dot com>
o rOve S VI a I I a S To: GCC Development <gcc at gce dot gnu dot org>

Cc: Chris Lattner <sabre at nondot dot org>
Date: Fri, 18 Nov 2005 17:50:52 -0800

p r O d u Cti O n b a C k e n d Subject: LLVM/GCC Integration Proposal

Hi Everyone,

At the request of several members of the GCC community, I'm writing this email
to describe some of my short-term plans with GCC and describe an alternative to

u u
® Ena bled m Ig ratIOn path fOr the recent link-time optimization [1] and code generator rewrite [2] proposals.

For those who are not familiar with me, I'm one of the main developers working
[n on the LLVM project (http://1lvm.org/). One important way that LLVM is
currently used is as a back—-end for GCC. In this role, it provides a static
eXIS In CO e ases optimizer, interprocedural link- time optimizer, JIT support, and several other
features. Until recently, LLVM has only been loosely integrated with an old
version of GCC (a 3.4 prerelease), which limited its effectiveness.

Recently, at Apple, I have been working on a new version of the 1lvm- gcc
translation layer, built on GCC 4. This implementation links the LLVM
optimizers and code generator directly into the GCC process, replacing the
- | - tree-ssa optimizers and the RTL code generator with the corresponding LLVM
I G CC / FS F d eCId ed th ey We re n t Inte rested components when enabled. The end result is a compiler that is command line

compatible with GCC: 'gcc -S t.c -0 t.s' does exactly what you'd expect, and

most standard command line options are supported (those that aren't are very

gcc.gnu.org/legacy-ml/gcc/2005-11/msg00888.html

https://gcc.gnu.org/legacy-ml/gcc/2005-11/msg00888.html

Code Generator (2007)

Presenter: Evan Cheng -

Foundation for LLVVM's muilti-
architecture support

Unified framework for instruction
selection and register allocation

Enabled rapid addition of new
processor backends

"The LL\VVM Code Generator"
lvm.org/devmtg/2007-05/

10

https://llvm.org/devmtg/2007-05/

Clang Frontend (2007)

-

Presenter: Steve Naroff
Modern C/C++ frontend architecture I &
-

Superior error messages and
diagnostics

Fast compilation times __.. Ao

"New LLVM C Front-end"
livm.org/devmtg/2007-05/

1

https://llvm.org/devmtg/2007-05/

Clang Static Analyzer (2008)

- Presenter: Ted Kremenek
- Advanced static analysis capabllities
- Path-sensitive bug detection }

Enhanced code quality and safety

"Finding Bugs with the Clang Static Analyzer”
llvm.org/devmtg/2008-08/

12

https://llvm.org/devmtg/2008-08

2009-2016
Growth & Adoption

NVIDIA PTX Backend (2009)

o NVDIA

tng N
Presenter: Vinod Grover P%%ﬁ?m VM IR
GPU computing integration with LL\VM 2
NVIDIA PTX language support hii K % B

. Ocoher2, 2009 PR S A% N
Heterogeneous computing capabilities Ao

"PLANG: Translating NVIDIA PTX language to LLVM IR Machine”
llvm.org/devmtg/2009-10/

https://llvm.org/devmtg/2009-10/

LLDB (2010)

Presenter: Greg Clayton
Modern debugger architecture
Deep LLVM/Clang integration
Superior debugging experience

"LLDB: Modular Debugging Infrastructure”
llvm.org/devmtg/2010-11/

19

https://llvm.org/devmtg/2010-11/

Sanitizers (2011)

- Presenter:
Konstantin Serebryany

- Revolutionary bug detection tech
- Memory safety and thread safety analysis
- Production-ready dynamic analysis

"Finding races and memory errors with LL\VM instrumen tation”
llvm.org/devmtg/2011-11/#talk12

16

https://llvm.org/devmtg/2011-11/#talk12

LLD (2012)

- Presenter: Michael Spencer
. Cross-platform, high-performance linker

- Native LLVM integration = faster linking
than traditional linkers

- EuroLL\VM's first full conference!

"lld - the LLVVM Linker"
llvm.org/devmtg/2012-04-12/

17

https://llvm.org/devmtg/2012-04-12/

AArché4 Backend (2012)

Presenter: Tim Northover

Support for ARM's next-generation
architecture

64-bit ARM processor enablement

Mobile and embedded systems
advancement

"The AArché4 backend: status and plans”
llvm.org/devmtg/2012-11/#talk2

18

https://llvm.org/devmtg/2012-11/#talk2

Modules (2012)

. Presenter: Doug Gregor

- Solve header-file compilation
problems

- Introduced Module Maps

- Set the path towards C++
standardization

"Modules"
livm.org/devmtg/2012-11/#talké

19

https://llvm.org/devmtg/2012-11/#talk6

OpenMP (2013)

- Presenters. Andrey Bokhanko,
Alexey Bataev

- Direct response to the growing need
for multi-core and multi-threaded
performance in C++

- Hat-tip to Polly for first experimenting
with OpenMP!

“Towards OpenMP Support in LLVM"
llvm.org/devmtg/2013-04/#talk2

20

https://llvm.org/devmtg/2013-04/#talk2

New Pass Manager (2014)

. Presenter: Chandler Carruth

. L;
nPassConcept,
. nPaSSManager { ction FunCth
class FUNctIOMm, ssConcept Fun

f detall

° |mpr0ved Optlmlzathn pOtential EiTﬁiitiunggszs’zzs;xi . detail passModel<Function . PassT> {

: 1(PassT Pass)
FunCtlggigiiMog:ngodel Function *, PassT>(std move(PaSS)) U

1

- Enabled efficient reuse of

. public
anal SIS results remplate <typenane FunctionPassT
void addPass(FunctionPassT Pass) {
Passes.emplace_back(

, new FunctionPassModel<FunctionPassT>(std move(Pass)));

- Foundation for improved pass i et o
scheduling and composition

P=>run(F);

- Better optimization composition

"The LLVM Pass Manager, Part 2"
llvm.org/devmtg/2014-10/#talkTi

2]

https://llvm.org/devmtg/2014-10/#talk11

Swift & SIL (2015)

» Presenters: Joseph Groff,
Chris Lattner

- High-level semantic analysis,
devirtualization, and memory
management optimizations

. Showed how LLVM IR is not enough:;
domain-specific IRs are important too

"Swift's High-Level IR: A Case Study of Complementing LLVM IR with Language-Specific Optimization”
llvm.org/devmtg/2015-10/#talk7

22

https://llvm.org/devmtg/2015-10/#talk7

LTO Infrastructure (2016)

« Presenters: Teresa Johnson,

Mehdi Amini
u"*_-_".::!llf-i-i!'[l'l!' PI]LJE_:I D_ qu A ld
- Enabled hyperscale whole-program Y| T
optimization §) | s 0
. B T R
» Introduced summary-based analysis B) PG -
for efficient cross-module insights g

- Significantly improved LTO's
memory footprint and build times

"ThinLTO: Scalable and Incremental LTO"
llvm.org/devmtg/2016-11/#talk12

23

https://llvm.org/devmtg/2016-11/#talk12

2017-Present
MLIR and the
Modern Era

XLA (2017)

» Presenter: David Majnemer

- Pioneered domain-specific compilers
built on LLVVM infrastructure

- Automatic operation fusion and graph
optimization

- JIT compilation targeting multiple
hardware architectures

"XLA: Accelerated Linear Algebra”
livm.org/devmtg/2017-03//2017/02/20 /accepted-sessions.html#20

29

https://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#20

MLIR (2019)

. Presenters: Tatiana Shpeisman,
Chris Lattner

- Multi-level IR abstraction

- Extensible ops for modeling
domain-specific abstractions

- Progressive lowering from high-
level to machine-level IRs

"MLIR: Multi-Level Intermediate Representation”
llvm.org/devmtg/2019-04/talks.html#Keynote 1

26

https://llvm.org/devmtg/2019-04/talks.html#Keynote_1

Opaque Pointers (2022)

Presenter: Nikita Popov
Simplified LLVM IR design

Reduced complexity in
optimization passes

True to a portable assembly

"Opaque Pointers Are Coming"”
livm.org/devmtg/2022-04-03/#keynote

27

https://llvm.org/devmtg/2022-04-03/#keynote

Mojo & (2023)

- Presenters: Abdul Dakkak, Jeff Niu,

Chris Lattner
- Python-family language design
- MLIR and LLVVM foundation

- Heterogeneous computing
capabilities

"Mojo @ : A system programming language for heterogenous computing”
llvm.org/devmtg/2023-10/

238

https://llvm.org/devmtg/2023-10/

Rust @ LLVM (2024)

Presenter: Nikita Popov

Dedicated Rust LLVIM Working Group
for systematic collaboration

Active upstream issue resolution
(inline assembly, optimization)

LLVVM 18 integration (PR #120055)
with performance improvements

"Rust Heart LLVM"
llvm.org/devmtg/2024-10/ 2 9

https://llvm.org/devmtg/2024-10/

Today & The Road Ahead

<— Just one
3,607 Active pull requests 1,261 Active issues m o nt h o n

f 2,787 1 820 © 692 () 569 - t H |
Open pull requests Closed issues New issues I u m

Merged pull requests

Excluding merges, 667 authors have pushed 3,372 commits 300

to main and 4,005 commits to all branches. On main, 12,633 200
files have changed and there have been 1,338,566 additions 100

and 554,592 deletions. 0 _
HaE/ERE NN SN

© 2 Releases published by 1 person

© livmorg-20.1.5 LLVM 20.1.5

published last month

© livmorg-20.1.6 LLVM 20.1.6
published 2 weeks ago

{ 2,787 Pull requests merged by 571 people

Thank You! Questions?

A Thank you to the incredible LLVVM community

25 years of innovation, and just getting started!

¢ Excited for LLVVM Asia's bright future

31

