
© 2025 eSOL Co., Ltd. All rights reserved.

Fumiya Shigemitsu
f-shigemitsu@esol.co.jp

Toward a Practical Double-Fetch Checker for Clang Static Analyzer:
Early Results and Future Directions for OS Security

© 2025 eSOL Co., Ltd. All rights reserved.

Why Clang Static Analyzer, Why Double-Fetch?
• Great commercial tools ≠ always care about what

we need

 Some checks we want are missing,

unsupported, or unsuitable for our use-case

• Clang/LLVM = open, hackable, and already a part of

our tool-chain

 Clang Static Analyzer allows us to write custom

rules to meet our needs

• We develop Real-Time Operating Systems (RTOS) –

a kind of OS

 Requires specialized validation

• Pick one serious OS bug → Double-Fetch

 Serious, OS-specific, and ideal for learning

custom checker design

Data
modification

Data

User Thread 2
(Attacker)

User Thread 1

Kernel Space

First
Read

Second
Read

Data
Inconsistency

User Space

© 2025 eSOL Co., Ltd. All rights reserved.

Checker Overview

3

Memory Access Provenance
• Record where each load comes

from.
• Tag each access with a unique ID.

Memory Access Provenance
• Record where each load comes

from.
• Tag each access with a unique ID.

Alias relationships
• Track tags through all symbol

aliases.
• Ensure that any alias retains

its original provenance tag.

Alias relationships
• Track tags through all symbol

aliases.
• Ensure that any alias retains

its original provenance tag.

Control-flow analysis
• Propagate tags into if/else paths.
• Make a branch “tagged”

whenever its condition uses
tagged data.

Control-flow analysis
• Propagate tags into if/else paths.
• Make a branch “tagged”

whenever its condition uses
tagged data.

Double Fetch Detection
• Detect when data with

mismatched provenance tags
is consumed.

Double Fetch Detection
• Detect when data with

mismatched provenance tags
is consumed.

© 2025 eSOL Co., Ltd. All rights reserved.

Demo

4

© 2025 eSOL Co., Ltd. All rights reserved.

How The Checker Reduce False Positives

• Pointer changing

• Use of the double-fetched data

Reference:

• P. Wang, K. Lu, G. Li, and X. Zhou, “A survey of the double-fetch vulnerabilities,” Concurrency and
Computation, vol. 30, no. 6, p. e4345, Mar. 2018, doi: 10.1002/cpe.4345.

5

© 2025 eSOL Co., Ltd. All rights reserved.

Next Ideas

Future Ideas for RTOS/Hypervisor
• Product-specific API contract validation

• Interrupt Mask Duration policy checks

• Priority-Inversion detection

• Hypervisor Call validation

Additional Improvements for the Current Double-Fetch Checker:
• Application to large codebases

• Integration with the existing Clang Static Analyzer TOCTOU framework

6

