
1 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Complex Number Division
Calculation Methods and
Our Work in MLIR
Shunsuke Watanabe (@s-watanabe314)

2025 AsiaLLVM Developers’ Meeting

June 2025

2 © 2025 Fujitsu Limited

Introduction

● Flang’s performance was worse than GFortran’s on the cam4
benchmark of SPEC CPU 2017.
● Flang: The Fortran frontend in the LLVM project.
● GFortran: The GNU Fortran compiler.
● SPEC CPU 2017: The benchmarks to measure the performance of a

processor, memory subsystem, and compiler.

● One reason is complex number division.
● Flang always lowers complex number division to a scalar runtime function,

which prevents vectorization.
● We are considering using MLIR to lower it to simple instructions.

3 © 2025 Fujitsu Limited

Complex Number Division Algorithms

● Considering
𝑎+𝑏𝑖

𝑐+𝑑𝑖
=

𝑎𝑐+𝑏𝑑

𝑐2+𝑑2
+

𝑏𝑐−𝑎𝑑

𝑐2+𝑑2
𝑖

● Algebraic algorithm
● Fast but prone to overflow.

𝑑𝑒𝑛 = 𝑐 ∗ 𝑐 + 𝑑 ∗ 𝑑
𝑟𝑒𝑎𝑙 = Τ𝑎 ∗ 𝑐 + 𝑏 ∗ 𝑑 𝑑𝑒𝑛
𝑖𝑚𝑎𝑔 = Τ𝑏 ∗ 𝑐 − 𝑎 ∗ 𝑑 𝑑𝑒𝑛

● Smith’s algorithm
● Less prone to overflow but slower than algebraic method.

if 𝑐 > 𝑑
𝑟 = Τ𝑑 𝑐

𝑑𝑒𝑛 = 𝑐 + 𝑟 ∗ 𝑑

𝑟𝑒𝑎𝑙 = Τ𝑎 + 𝑏 ∗ 𝑟 𝑑𝑒𝑛

𝑖𝑚𝑎𝑔 = Τ𝑏 − 𝑎 ∗ 𝑟 𝑑𝑒𝑛

else
𝑟 = Τ𝑐 𝑑
𝑑𝑒𝑛 = 𝑟 ∗ 𝑐 + 𝑑
𝑟𝑒𝑎𝑙 = Τ𝑎 ∗ 𝑟 + 𝑏 𝑑𝑒𝑛
𝑖𝑚𝑎𝑔 = Τ𝑏 ∗ 𝑟 − 𝑎 𝑑𝑒𝑛

4 © 2025 Fujitsu Limited

subroutine div_test(x, y, z)
 complex(4) :: x, y, z
 z = x / y
end subroutine

Proposal for Flang’s Complex Number Division

●Current behavior

Calculation algorithm and pre/post-
processing depend on the
implementation of the runtime function.

Always lowers to a runtime function

Converting to simple instructions
facilitates algorithm selection and
vectorization.

●Proposal

Selects runtime function
or simple instructions

● Improving Flang with MLIR for algorithm selection and
vectorization.

Via complex
dialect in MLIR

Pre-
processing

Division
Algorithm

Post-
processing

LLVM’s
runtime

Scaling inputs Algebraic NaN
handling

GNU’s
runtime

Using high-
precision

Algebraic -

Scaling inputs Smith NaN
handling

Pre-processing: Preventing overflow
Post-processing: Meeting language standard requirements
for invalid values

subroutine div_test(x, y, z)
 complex(4) :: x, y, z
 z = x / y
end subroutine

%11 = call { float, float } @__divsc3 %11 = call { float, float } @__divsc3 %6 = complex.div %4, %5

%10 = fmul contract float %8, %8
%11 = fmul contract float %9, %9
%12 = fadd contract float %10, %11
%13 = fmul contract float %6, %8
%14 = fmul contract float %7, %9
%15 = fadd contract float %13, %14
%16 = fmul contract float %7, %8
%17 = fmul contract float %6, %9
%18 = fsub contract float %16, %17
%19 = fdiv contract float %15, %12
%20 = fdiv contract float %18, %12

5 © 2025 Fujitsu Limited

Problem of Complex Dialect in MLIR

● When converting the “complex.div” operation, the algorithm was
determined by the target dialect.

● Algorithm selection should be independent of the target dialect.

ComplexToStandardPass ComplexToLLVMPass

Smith’s

algorithm

NaN

handling

Algebraic

algorithm

Arith & Math dialects LLVM dialect

Complex dialect

Fortran
program

ComplexToStandardPass ComplexToLLVMPass

Smith’s

algorithm

NaN

handling

Algebraic

algorithm

Arith & Math dialects LLVM dialect

Algebraic

algorithm

Smith’s

algorithm

NaN

handling

Any conversion
is selectable

Any conversion
is selectable

● Problem behavior ● Proposal
subroutine div_test(x, y, z)
 complex(4) :: x, y, z
 z = x / y
end subroutine

subroutine div_test(x, y, z)
 complex(4) :: x, y, z
 z = x / y
end subroutine

%6 = complex.div %4, %5%6 = complex.div %4, %5

6 © 2025 Fujitsu Limited

subroutine div_loop(x, y, z)
 integer, parameter :: n = 32768
 integer :: i
 complex(4), dimension(n) :: x, y, z
 do i = 1, n
 z(i) = x(i) / y(i)
 end do

Add Pass Option and Select Algorithm

● Our work (Patch : #127010)
● Consolidated conversion functions into a single header file.

● Reduced the risk that only one pass’s algorithm is modified in the future.
● Added new pass options to select the algorithm.
● This implementation maintains backward compatibility and makes it

easy to add new algorithms if needed.

● Using this patch with Flang will promote vectorization.
Current Flang : Can only lower to runtime call even when “-ffast-math” is specified.

Flang prototype : Can lower to instructions by using the improved “complex.div”
 when “-ffast-math” is specified, which promotes vectorization.

× contains unnecessary pre- and post-processing
× cannot be vectorized because only a scalar version is available

%11 = call { float, float } @__divsc3

%10 = fmul contract float %8, %8
%11 = fmul contract float %9, %9
%12 = fadd contract float %10, %11
%13 = fmul contract float %6, %8

%14 = fmul fast <4 x float> %strided.vec36, %strided.vec
%15 = fmul fast <4 x float> %strided.vec37, %strided.vec34
%16 = fadd fast <4 x float> %15, %14
%17 = fmul fast <4 x float> %strided.vec36, %strided.vec34

https://github.com/llvm/llvm-project/pull/127010

7 © 2025 Fujitsu Limited

Future Work & Concern

● Discuss and decide which algorithm should be used at each
optimization level in Flang (#83468).

● Design Flang driver options.
●Change the current behavior and add other options for complex

number division.

● How can we completely decouple algorithm selection from
dialect conversion?

https://discourse.llvm.org/t/optimization-of-complex-number-division/83468/7?u=s-watanabe314

8 © 2025 Fujitsu Limited

Acknowledgements

● This presentation is based on results obtained from a project,
JPNP21029, subsidized by the New Energy and Industrial
Technology Development Organization (NEDO)​.

9 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Thank you

	既定のセクション
	スライド 1: Complex Number Division Calculation Methods and Our Work in MLIR
	スライド 2: Introduction
	スライド 3: Complex Number Division Algorithms
	スライド 4: Proposal for Flang’s Complex Number Division
	スライド 5: Problem of Complex Dialect in MLIR
	スライド 6: Add Pass Option and Select Algorithm
	スライド 7: Future Work & Concern
	スライド 8: Acknowledgements
	スライド 9: Thank you

