Bolting the Linux kernel with profile instrumentation

Wei Wei (weiwei64@huawei.com)
Fenglei Zhang(zhangfenglei@huawei

— .. < e - -

V2 HUAWEI

Introduction

* Binary Optimization and Layout Tool
e BOLT is a static post-link binary optimizer.
* Build on LLVM framework.
* Why a static binary optimizer?
v’ the simplicity of the approach
v" the absence of runtime overheads
* Why use BOLT?
v Speedup on top of LTO and PGO
v' Support both GCC and LLVM code
v Perform some optimizations beyond than what a

compiler can achieve

« Compilation pipeline

Function discovery

Read Debug Info

Disassembly

CFG Construction

Read Profile Data

U

Local Optimizations

Global Optimizations

VU

Emit and Link Functions

Update MetaData

Rewrite Binary File

V2 HUAWEI

Optimizing the Linux Kernel with Bolt

 Linux 5.12 kernel brings support for building the kernel with LTO + Clang compiler
« Linux 6.13 kernel introduces AutoFDO and Propeller optimization support
« Optimizing the linux kernel with BOLT :

(Guide) https://github.com/llvm/llvm-project/blob/main/bolt/docs/OptimizingLinux.md

2023 EuroLLVM - Optimizing the Linux Kernel with LLVM BOLT
2024 Linux Plumbers Conference - BOLT - Binary Optimizer for Linux Kernel

e Limitations of bolting linux kernel:
v" Only x86-64 Linux kernel

v' Sample-based profiling using LBR(Intel's last branch records)

How about other targets like AArch64 or RISCV?
Without LBR or BRBE? How to support instrumentation profiling?

V2 HUAWEI

https://github.com/llvm/llvm-project/blob/main/bolt/docs/OptimizingLinux.md

Bolting the Linux kernel with profile instrumentation

[BOLT][RFC] Enhance BOLT for Linux kernel

W Subprojects W BOLT

»

. FLZ101 54 Jan 20

After adding support for AArch64, relocation mode and instrumentation, we managed to make
BOLT for Linux kermnel work on AArch64 and achieved an improvement of 8+% on our nginx
benchmark.

We'd like to contribute our work to the community. Below is a basic plan:

1. Add support for AArch64. We need to refactor some code first to make it easier to handle
different Linux kernel versions and different architectures.

2. Add support for relocation mode to enable more and better optimizations.

3. Add support for instrumentation to make BOLT for Linux kernel work on machines without
LBR/BRBE.

4 Improve the documentation to make BOLT for Linux kernel easier to use.

Three kinds of functions in Linux kernel source code need to be specially handled:

1. Functions whose address must be kept. Their address is usually used in
add/sub/comparision. We could gather a list of them in the middle end.

2. Functions that can not be changed at all. Some functions in assembly code have additional
semantics/enforcements. For example, irg_entries start definedin

arch/x86/include/asm/idtentry.h is actually an “array” but BOLT can never know that and
views it as an ordinary function. If BOLT applies instrumentation, basic block reordering, etc

to it, a run time error happens. As you can see, BOLT just can not handle functions defined
in assembly code reliably. We could gather a list of functions defined in C code in the
middle end and optimize them only.

3. Functions whose code can change at run time. Linux kernel could patch a function at run
time. In relocation mode, BOLT could create a copy of such a function and Linux kernel can
only patch the copy. To avoid undefined behaviors at run time, we fill patch points in the
original function with undef instructions.

« https://github.com/llvm/llvm-project/pull/130948
[BOLT][Linux] Add support for instrumentation #130948

Pull Request #130948 6 contains the following BOLT for Linux features:

« support for AArch64
= support for relocation mode
= support for instrumentation

FLZ101/test-bolt-for-linux 2 contains test scripts. It should work for x86/aarch64 and Linux
5x/6x

« https://gitee.com/openeuler/llvm-project/pulls/173

1173 [BOLT] Add support for kernel instrumentation of aarch64

V2 HUAWEI

Current Status

Our Work:

® Enable kernel optimization for aarch64/»

® Enable relocation mode for kernel
® Enable bolt instrumentation for kernel
(@)

Support more features for linux kernel

o Add indirect call instrumentation support

Done
In Progress

Non-relocation mode

must keep function address

Relocation mode

w/o opt: keep function address

w/ opt: create new function with new address
rename f to f.org.0

jump to f at the beginning of f.org.0

o

o

o

! f

non-relocation mode -
relocation mode

Instrumentation (depend on relocation mode)
jump

leaf node

edge not in the spanning tree

o
n

call

o

before call
indirect call
before indirect call

o

Runtime
indirect call runtime
emit profile

[]
o

o

V2 HUAWEI

Challenges

Code may be modified at boot time or runtime!

. Alternative instructions
« Inline assembly

. . . 1 instr offset:
E.g. a table for kernel, but function for bolt 1 |struct alt instr | > [B80:
2 332 1nstr offset; 3 xx
Disassembly of section .text: 3 532 repl_Offset; 4 BB1:
fFffffff822002a0 <irg_entries_start>: 4 R 2 XXX
ffffffff822002a0: 6a 20 $0x20 5 | - P .
ffffffff82200222: eg d9 6b 00 00 ff;fffff82200989 <asm_common_1interrupt> us8 instrlen; _ BB2:
ffFfffff822002a7: cc 6 u8 replacementlen; / b:5.9:4
ffffffff822002a8: 6a 21 $0x21 ~ °
ffffffff822002aa: e9 dl1 0b 00 0O ffffffff82200e80 <asm_common_interrupt> ! .- -
ffffffff822002af: cc 8 } packed; £ repl offset:
ffffffff822002h0: 6a 22 $0x22 } o 10 BRO -
ffffffff822002h2: €9 c9 Ob 00 00 ffffffff82200e80 <asm _common_interrupt> .
ffffffff822002b7: cc structure definition 11 e ¢
ffffffff822002h8: 6a 23 $0x23
ffffffff822002ba: e9 c1 Ob 00 00 ffffffff82200e80 <asm_common_interrupt> example
ffffffff822002bf: cc
. « Wh re alternative instructions?
e Linux features at are alternative instructions
Al . . . E.g.
a. ternative Iinstructions > . . :
- Replace BBO,BB1 of instr_offset with BBO of repl_offset at kernel runtime.
b. Exception table « Problem:
C. Bug table o Bolt reorder/split may change instruction length, so alternative
. instructions may fail.
d. Static keys
Stati ' « Solution:
e. Static calls . L
o Record alternative instructions info:
f. .. Assembly {offset, length} <-> BinaryBasicBlock {address, length}

o Trace and update offset and length of alternative instructions.

- Testing and Debugging N2 HUAWEI

Results

e Nginx .

o ha « CPU: Kunpeng 920 (ARMv8.2)
h v o « OS: openEuler 24.03 LTS

105.00% (Kernel 6.6 version)

oo 100.00% 100.00% « Compiler: BiSheng Compiler

(based on LLVM17.0.6)
o « Nginx Version: 1.21.5
0%0. 00% v— — « Benchmark Tool: wrk-4.2

HMBase MBOLT for Kernel PGO for Kenel

V2 HUAWEI

Plans

Test more benchmarks or workloads

> Unixbench/Sysbench/speccpu... ...
> MySQL/Redis/Nginx/RocksDB... ...

Compatible with and collaborate with other tools

Support other archs: RISC-V/x86-64/...

Support more kernel versions: 5.x/6.x...

V2 HUAWEI

Thank you.

BHFHATAETA. BITIHRE.
BMEL, MWEDYERAVEREHRA.
Bring digital to every person, home and

organization for a fully connected,
intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain predictive
statements including, without limitation, statements regarding

the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that
could cause actual results and developments to differ materially
from those expressed or implied in the predictive statements.
Therefore, such information is provided for reference purpose
only and constitutes neither an offer nor an acceptance. Huawei
may change the information at any time without notice.

2 HUAWEI

