DDDDDDDD
RRRRRRRR
CCCCCCCC
EEEEEEEE

FFFFFFF

The Data Inspection Language: Fast Simple
Expression Evaluationin LLDB

Ilya Kuklin (Access Softek)
Caroline Tice (Google)

Anton Korobeynikov (Access Softek)

Andrei Lebedev (Access Softek)

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

DDDDDDDD
RRRRRRRR
CCCCCCCC

Motivation
* Debugging is frustrating when every step can take a noticeable time to complete
o LLDB spends a substantial amount of time evaluating expressions needed to
display debug summaries in an IDE
o Itisacommon problem in very large projects
* Debuggingis fragile and unstable
o Single print x could crash a debugger if it stopped in some weird context
o Expression evaluation relies on Clang AST which has a lot of internal invariants

and is tricky to construct

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

RRRRRRRR
CCCCCCCC

ENJWEQMS
OTBXGSSP
FHKTDVIM

ACCESS SOFTEK, INC

* FName represents a string, but only stores an index to a global table of strings

class FName { VS Code:
/] ...
FNameEntryId ComparisonIndex; v EventName = 'name=b'ExtensionAdded''’
;{ I v ComparisonIndex = FNameEntryId @ Ox7fffffffc358

Value = 296599

Part of the Python formatters, simplified:
def UEFNameIndexToEntry(EntryId):
Index = EntryId.GetChildMemberWithName('Value').GetValueAsUnsigned(9)
NameEntryExpr = f'(FNameEntry*)(GNameBlocksDebug[{Index} >> 16] + (2 * ({Index} & 16))'
NameEntry = EntryId.CreateValueFromExpression('NameEntry', NameEntryExpr)
return NameEntry

* These debugging expressions tend to be small and simple

* They can be evaluated much faster by an interpreter, rather than a full compiler

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

RRRRRRRR

C R U

Example
OTBXGSSP

FHKTDVIM

FTE

K, INC

* FName represents a string, but only stores an index to a global table of strings

class FName { VS Code:
/] ...
FNameEntryId ComparisonIndex; v EventName = 'name=b'ExtensionAdded''’
;{ I v ComparisonIndex = FNameEntryId @ @x7fffffffc358

Value = 296599
Part of the Python formatters, simplified:

def UEFNameIndexToEntriiEntriIdi:

NameEntryExpr = f'(FNameEntry*)(GNameBlocksDebug[{Index} >> 16] + (2 * ({Index} & 16))'
NameEntry = EntryId.CreateValueFromExpression('NameEntry', NameEntryExpr)
return NameEntry

* These debugging expressions tend to be small and simple

* They can be evaluated much faster by an interpreter, rather than a full compiler

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

RRRRRRRR

C R U

Example
OTBXGSSP

FHKTDVIM

FTE

K, INC

* FName represents a string, but only stores an index to a global table of strings

class FName { VS Code:
/] ...
FNameEntryId ComparisonIndex; v EventName = 'name=b'ExtensionAdded''’
;{ I v ComparisonIndex = FNameEntryId @ @x7fffffffc358

Value = 296599

Part of the Python formatters, simplified:
def UEFNameIndexToEntry(EntryId):
Index = EntryId.GetChildMemberWithName('Value').GetValueAsUnsigned(9)

NameEntry = EntryId.CreateValueFromExpression('NameEntry', NameEntryExpr)
return NameEntry

* These debugging expressions tend to be small and simple

* They can be evaluated much faster by an interpreter, rather than a full compiler

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

RRRRRRRR

C R U

Example
OTBXGSSP

FHKTDVIM

FTE

K, INC

* FName represents a string, but only stores an index to a global table of strings

class FName { VS Code:
/] ...
FNameEntryId ComparisonIndex; v EventName = 'name=b'ExtensionAdded''’
;{ I v ComparisonIiidex = FNameEntryId @ @x7fffffffc358

Value = 296599

Part of the Python formatters, simplified:
def UEFNameIndexToEntry(EntryId):
Index = EntryId.GetChildMemberWithName('Value').GetValueAsUnsigned(9)
NameEntryExpr = f'(FNameEntry*)(GNameBlocksDebug[{Index} >> 16] + (2 * ({Index} & 16))'

return NameEntry

* These debugging expressions tend to be small and simple

* They can be evaluated much faster by an interpreter, rather than a full compiler

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

History

DDDDDDDD
RRRRRRRR
CCCCCCCC
EEEEEEEE

FFFFFFF

* lldb-eval project was implemented as a fast interpreter for a subset of C++

o Andy Yankovsky. Building a faster expression evaluator for LLDB - LLVM Developers’ Meeting 2021.

* We revamped the project, rebased it on the mainline, and experimented with it as

the first phase of expression evaluation with a fallback to full LLDB evaluation

o llya Kuklin et al. Experiments with two-phase expression evaluation for a better debugging experience -

LLVM Developers' Meeting 2024.

local and global variables

lldb-eval (via LLDB) LLDB LLDB + lldb-eval overhead
1 expression 0.65ms 87.9ms 88.9ms
Totalforall 103 ms 2025 ms 2041 ms

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

https://github.com/google/lldb-eval
https://github.com/google/lldb-eval
https://github.com/google/lldb-eval
https://github.com/google/lldb-eval

DDDDDDDD
RRRRRRRR

The Data Inspection Language (DIL)
Expression language designhed to inspect the data in the program

Designed to be a core part of LLDB for better integration, to reduce overhead and
code redundancy

Allows programming language-agnostic inspection of data in the program
Supports arithmetic, logic, comparison, data retrieval operations, type casts
Intended to replace the existing frame variable commandimplementation

RFC for DIL by Andy Yankovsky: https://discourse.llvm.org/t/rfc-data-inspection-

language/69893

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

https://discourse.llvm.org/t/rfc-data-inspection-language/69893
https://discourse.llvm.org/t/rfc-data-inspection-language/69893
https://discourse.llvm.org/t/rfc-data-inspection-language/69893
https://discourse.llvm.org/t/rfc-data-inspection-language/69893
https://discourse.llvm.org/t/rfc-data-inspection-language/69893
https://discourse.llvm.org/t/rfc-data-inspection-language/69893
https://discourse.llvm.org/t/rfc-data-inspection-language/69893

DDDDDDDD
RRRRRRRR
CCCCCCCC
EEEEEEEE

P

DIL overall design

* Evaluates expressions using its own lexer, parser and interpreter and relies purely

on the debug information retrieved from LLDB
* Anewly written lexer, independent from any frontend

* Most of the parser/interpreter logic is inspired by lldb-eval

Debug info |— LLDB Core

(@fo] of<
dat
ate calls
"expression" ‘ DIL ‘ DIL - DIL 11db: :ValueObject
11db: ;Stackaame' Lexer | Parser Interpreter

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

DDDDDDDD
RRRRRRRR
CCCCCCCC

Current status

Landing feature by feature to upstream LLDB

o Heavier use of LLDB core functions
o Additional changes to other LLDB code itself making it faster
For now, the syntax is very similar to a small subset of C++,
o Can be expanded to support the syntax of multiple programming languages
when needed
Already in the mainline: dereference, address of, subscripts and field retrieval
Partially based on lldb-eval

“frame variable implementation uses DIL engine under the hood

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

https://github.com/llvm/llvm-project/blob/main/lldb/docs/dil-expr-lang.ebnf
https://github.com/llvm/llvm-project/blob/main/lldb/docs/dil-expr-lang.ebnf
https://github.com/llvm/llvm-project/blob/main/lldb/docs/dil-expr-lang.ebnf

DDDDDDDD
RRRRRRRR

Work in progress
Could be turn on/off using the setting 'target.experimental.use-DIL <true/false>'
First milestone is to replace the old “frame variable’

More DIL features to support simple expressions, i.e. type casts and all arithmetic
and logic operations

Add basic function calls

Prove programming language agnostic approach by supporting features for

languages like Swift

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

DDDDDDDD
RRRRRRRR
CCCCCCCC

Preliminary DIL performance

ACCESS SOFTEK, INC

* Result for work in progress DIL

DIL debugging performance

DIL (via LLDB) LLDB
1 expression 14 ms 67 ms
Total for all
local and global variables 287 ms 1353 ms

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

DDDDDDDD
RRRRRRRR
CCCCCCCC

Conclusion
* DIL can already be used to evaluate simple expressions eithervia frame var
command, API call, or direct LLDB function call
o 'target.experimental.use-DIL <true/false>' setting to change between DIL and
the original “frame var implementation
e Canbeusedvia frame var and LLDB-DAP out of the box
* Expanding DIL capabilities automatically improves LLDB performance as well as

debugging speed via LLDB-DAP

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

Thank you!

Access Softek, Inc. | 727 Allston Way, Berkeley, CA 94710-2229 | compiler-toolchains@accesssoftek.com

	Slide 1: The Data Inspection Language: Fast Simple Expression Evaluation in LLDB
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

