NTT (O)

A technology for lifting machine code to
high-performance LLVM IR

2025/06/10

NTT Software Innovation Center

Masashi Yoshimura

Porting applications to different environments NTT ©

* Linux applications have been developed for a long time, so there are huge Linux
binary assets.
* Reusing these assets can bring several benefits.
— Reducing development costs
— Improved application stability due to years of enhancements
— etc...

* Today, the container is used in the cloud, local environment, and so on. However,
“WebAssembly” is expected to be used as a more secure and portable application.

‘ Porting Linux applications
to different environments (WebAssembly, ...)!

elfconv: Linux apps — WebAssembly, ...

 elfconv: AOT binary translator for Linux/ELF binary

Repo: https://github.com/yomaytk/elfconv
— Current status: Linux/ELF/AArch64 — WebAssembly, Linux/ELF/x86-64

* We will work on translating to Mach-O binary in the future

Remill: The library for lifting machine code to LLVM IR

=)

ELF

AArch64

(=)

LLVM
bitcode

S

—

elfconv overview

NTT (©)

ELF
x86-64

https://github.com/yomaytk/elfconv

Demo can be accessed through the github repo
https://github.com/yomaytk/elfconv

https://github.com/yomaytk/elfconv

What kind of LLVM IR does Remill generate? NTT ©

one machine I::) one
code LLVM IR

What kind of LLVM IR does Remill generate?

Machine Code (ARM64)

/

VMA

0x400200 mov x2, x1
0x400204 b 0x400228

\0X400208 add x4, x3, x1

/

one machine
code

one
LLVM IR

NTT (O)

What kind of LLVM IR does Remill generate?

CPU State (by Remill)

struct State {
SIMD simd; // 512 bytes
GPR gpr; // 518 bytes
uinté4_t NZCV;

b7

NTT (O)

LLVM IR by Remill
/mov@l: \

vx(0 = load State.x1
vx(0 State.x2

D 4

b@2:
call func_0x400228(...)

b 4

add@3:
vxl = load State.x1
vxZ2 = load State.x3
vx3 = add vxlI, vx2

/ Machine Code (ARM64) \
VMA
0x400200 mov x2, x1
Remill Translation

0x400204 b 0x400228

\0X400208 add x4, x3, x1 y w
one machine I::) one
code LLVM IR

k vx3 State.x3 /

What's the performance bottleneck? NTT ©

LLVM IR by Remill

(fonovar D

vx(0 = load State.x1
vx(0 State.x2

vxl = load State.x1
vx2 = load State.x3
vx3 = add vxlI, vx2

vx3 State.x3 /

Remill generates the Basic Block “independently”

4

Virtual registers are not propagated
between basic blocks

4

For the same register, access the CPU state
(i.e., the data in global memory data) multiple
times by many load and

This optimization PR: hitps://github.com/yomaytk/elfconv/pull/53

https://github.com/yomaytk/elfconv/pull/53

Overview of performance improvement NTT ©

Basic Block CFG Root Basic Block CFG Root

nd State.x1

@. tate.x1
d State.x1

Overview of performance improvement NTT ©

Basic Block CFG Root Basic Block CFG Root

nd State.x1

@. tate.x1

‘mem2reg and SROA only work on local variable allocas
(not including global data).

i (vx2)

7

Benchmark Test NTT O

* elfconv enables the creation of binaries that perform well in

praCtlce. Wasm for Browser (using Emscripten)
N Source Code
100 - 943 = elfconv (latest)

82.1

§ 20 4 77.7
Prime LINPACK 3
Numbers benchmark g 97
Calculation g
g 07
elfconv (normal) 1.98 (s) 726 (MFLOPS) &
20 4
elfconv 1.39 (s) 1,256
(Optlmlzatlon) (MFLOPS) - Prime Nums minist-NN LINPACK
1.43x faster 1.73x faster

Fig 2. Wasm from source code by Emscripten
VS
Wasm from Linux/ELF by elfconv

(lower is better) (higher is better)

Fig 1. Performance Improvement with Optimization

Future Work NTT O

* Reducing Compile Time
— It sometimes takes several tens of minutes, especially in targeting Wasm.
— The generated LLVM IR may be too large.

* Implement more Linux system calls
— e.g., difficult to implement fork, exec for Wasm

* Enhance aarch64 and x86-64 machine code conversion

Any issues or PRs are welcome!

Repo: https://github.com/yomaytk/elfconv

https://github.com/yomaytk/elfconv

	スライド 1: A technology for lifting machine code to high-performance LLVM IR
	スライド 2: Porting applications to different environments
	スライド 3: elfconv: Linux apps → WebAssembly, ...
	スライド 4
	スライド 5: What kind of LLVM IR does Remill generate?
	スライド 6: What kind of LLVM IR does Remill generate?
	スライド 7: What kind of LLVM IR does Remill generate?
	スライド 8: What‘s the performance bottleneck?
	スライド 9: Overview of performance improvement
	スライド 10: Overview of performance improvement
	スライド 11: Benchmark Test
	スライド 12: Future Work

