
A technology for lifting machine code to
high-performance LLVM IR

NTT Software Innovation Center

Masashi Yoshimura

2025/06/10



• Linux applications have been developed for a long time, so there are huge Linux 
binary assets.

• Reusing these assets can bring several benefits.

– Reducing development costs

– Improved application stability due to years of enhancements

– etc...

• Today, the container is used in the cloud, local environment, and so on. However, 
“WebAssembly” is expected to be used as a more secure and portable application.

Porting applications to different environments

Porting Linux applications 

to different environments (WebAssembly, ...)!



• elfconv: AOT binary translator for Linux/ELF binary
– Repo: https://github.com/yomaytk/elfconv

– Current status: Linux/ELF/AArch64 → WebAssembly, Linux/ELF/x86-64
• We will work on translating to Mach-O binary in the future

– Remill: The library for lifting machine code to LLVM IR

elfconv: Linux apps → WebAssembly, ... 

ELF

AArch64

LLVM

bitcode

ELF

x86-64

elfconv overview

https://github.com/yomaytk/elfconv


Demo can be accessed through the github repo
https://github.com/yomaytk/elfconv

https://github.com/yomaytk/elfconv


What kind of LLVM IR does Remill generate?

one machine 

code 

one 

LLVM IR 



What kind of LLVM IR does Remill generate?

one machine 

code 

one 

LLVM IR 

0x400200

0x400204

0x400208

VMA

Machine Code (ARM64)



What kind of LLVM IR does Remill generate?

0x400200

0x400204

0x400208

VMA

one machine 

code 

one 

LLVM IR 

Machine Code (ARM64)

LLVM IR by Remill

struct State {

SIMD simd; // 512 bytes

GPR gpr; // 518 bytes

uint64_t NZCV;

...

};



What‘s the performance bottleneck?

LLVM IR by Remill
Remill generates the Basic Block “independently”

Virtual registers are not propagated 

between basic blocks

For the same register, access the CPU state 

(i.e., the data in global memory data) multiple 

times by many and . 

This optimization PR: https://github.com/yomaytk/elfconv/pull/53

https://github.com/yomaytk/elfconv/pull/53


Overview of performance improvement

RootBasic Block CFG RootBasic Block CFG



Overview of performance improvement

RootBasic Block CFG RootBasic Block CFG

`mem2reg` and `SROA` only work on local variable allocas

(not including global data). 



• elfconv enables the creation of binaries that perform well in 
practice. 

Benchmark Test

Prime 

Numbers 

Calculation

LINPACK 

benchmark

elfconv (normal) 1.98 (s) 726 (MFLOPS)

elfconv 

(Optimization)

1.39 (s) 1,256

(MFLOPS)

1.43x faster

(lower is better)

1.73x faster

(higher is better)

Fig 1. Performance Improvement with Optimization

Fig 2. Wasm from source code by Emscripten

vs 

Wasm from Linux/ELF by elfconv



• Reducing Compile Time
– It sometimes takes several tens of minutes, especially in targeting Wasm.

– The generated LLVM IR may be too large.

• Implement more Linux system calls
– e.g., difficult to implement fork, exec for Wasm

• Enhance aarch64 and x86-64 machine code conversion

Future Work

Any issues or PRs are welcome!

Repo: https://github.com/yomaytk/elfconv

https://github.com/yomaytk/elfconv

	スライド 1: A technology for lifting machine code to high-performance LLVM IR
	スライド 2: Porting applications to different environments
	スライド 3: elfconv: Linux apps → WebAssembly, ... 
	スライド 4
	スライド 5: What kind of LLVM IR does Remill generate?
	スライド 6: What kind of LLVM IR does Remill generate?
	スライド 7: What kind of LLVM IR does Remill generate?
	スライド 8: What‘s the performance bottleneck?
	スライド 9: Overview of performance improvement
	スライド 10: Overview of performance improvement
	スライド 11: Benchmark Test
	スライド 12: Future Work

