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What is onnx-mlir?
• Compile an ONNX AI model to an optimized binary for inferencing using

• MLIR to perform high-level transformations
• LLVM to perform low-level optimizations and code generation

• GitHub (open-source): https://github.com/onnx/onnx-mlir
• Initially developed by IBM Research since 2019
• > 100 contributors from AMD, ByteDance, Groq, Microsoft, etc.
• Cited by ~90 scientific papers 

ONNX 
models LLVM IR

- MLIR representation of ONNX models
- Code transformation and optimization

x86

IBM Power

IBM Z

Accelerators 
(e.g., IBM zAIU)

ARM

https://github.com/onnx/onnx-mlir


• A reference ONNX dialect in MLIR 
• Easy to write optimizations for CPU and custom accelerators
• From high-level (e.g., graph level) to low-level (e.g., instruction level)

• Easy to deploy
• Stand-alone driver and runtime support in C/C++/Java/Python
• Integration into other applications

• Continuously tested
• Unit tests for each operation and ONNX model zoo
• x86, Arm, Power, z/Architecture
• Windows, Linux, z/OS, macOS
• C/C++/Java/Python

Design goals

3



Core Dialects and Transformations

New dialect in onnx-mlir

Dialect in MLIR

ONNX

Krnl Std
Loop & Calls

Affine
Affine & Std

Std

DNN

Instructions LLVM

Object creator, Linker, etc. (LLVM tools)

--convert-onnx-to-krnl

--convert-krnl-to-affine

--convert-all-to-llvm

Executable/Library

ONNX model

- Type/shape inference,
- Graph optimizations
- Constant propagation
- Canonicalization, etc.

- Loop optimizations: Tile, skew, 
transpose, etc.

- Canonicalization, etc.

- Loop fusion,
- Memref dataflow optimization,
- Memory pool management,
- Canonicalization, etc.

--convert-all-to-llvm

4



• Presentation of an ONNX model in MLIR language
• Additional operation, EntryPoint, to specify the 

entry function for doing inference

ONNX Dialect

ONNX Model ONNX Model represented in MLIR language

Importer
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• ONNX Dialect is automatically generated by a python script from the ONNX specification

ONNX Dialect

Specification of Add operator in ONNX

def ONNXAddOp:ONNX_Op<"Add",
  [Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
  let summary = "ONNX Add operation";
  let description = [{
  Performs element-wise binary addition (with Numpy-style broadcasting support).
  
  This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please 
check [the doc](Broadcasting.md).
  
  (Opset 14 change): Extend supported types to include uint8, int8, uint16, and int16.
  }];
  let arguments = (ins AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
                                 TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>, 
              TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>, 
         TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$A,
                                   AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>, 
           TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>, 
           TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>, 
         TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$B);
  let results = (outs AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>, 
    TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>, 
    TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>, 
     TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$C);
  let hasVerifier = 1;
  let hasCanonicalizer = 1;
}
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• Each ONNX operator has multiple versions
• Each version may have different specification, e.g.

• Squeeze version 1 has one input (data) and one attribute (axes)
• Squeeze version 11 the same as version 1
• Squeeze version 13 has two inputs (data and axes)

• onnx-mlir supports lowering for the latest version only.
• When importing an operator with an old version, it is converted 

into the closest newer version, e.g.
• We have two rewritten rules for Squeeze to convert

• version 1 to 11
• version 11 to 13

• If there were a new version, say 15, only one rule is needed to convert 
version 13 to 15

Version Handling
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• Operations to define loop iterations: 
• krnl.define_loops to define loops, krnl.iterate to iterate over loops

• Operations for optimizations:
• krnl.block for tiling, krnl.permute for permutation, etc.

Krnl Dialect

(Original) Loop definition

Iteration domain 
using original loops

Affine schedule for blocking/tiling

Scalar computation
using original loops

Convert to 
Affine dialect
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• Problem:
• ONNX Shape Inference: generate literal values or question marks at 

compute time.
• Shape Lowering: generate literals or create operations that compute 

shapes at runtime.
• Index expressions (IndexExpr and subclasses)
• Polymorphic class that represents computations over shapes (e.g. 

add/ceil/select…).
• ShapeHelper (ONNXOpShapeHelper and subclasses)
• Encapsulate how to compute the shape for a give ONNX operation.
• Each ONNX operation defines its own/reuse a subclass.
• Runtime code is generated if a builder is given. Otherwise, question marks.
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• A new on-chip accelerator for AI on IBM Z machines
• High-speed and real-time inferencing at scale
• More than 6 TFLOPs of 16-bit floating point processing power

• IBM Z Deep Learning Library (zDNN)
• A very thin wrapper in C for neural-network-processing-assist 

(NNPA) instructions
• A set of primitives: matmul, conv, lstm, etc. 
• E.g., zdnn_status zdnn_add( 
               const zdnn_ztensor *input_a, 
               const zdnn_ztensor *input_b,
                zdnn_ztensor *output);
• Open sourced at: https://github.com/IBM/zDNN
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IBM Telum on-chip AI accelerator (zAIU)

IBM Telum Chip in 
z16 mainframes

IBM z16 mainframe

https://github.com/IBM/zDNN


• zHigh represents high-level operations 
for accelerator
• Tensor-based representation of zDNN APIs 
• Operations for for data transformation

• zLow represents low-level operations 
on actual memory
• Memory buffer allocation
• Operation’s signature is like zDNN API’s one
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Support zAIU Accelerator

Krnl Std
Loop & Calls

Affine
Affine & Std

Std

DNN

Instructions

Object creator, Linker, etc. (LLVM tools)

--convert-onnx-to-krnl

--convert-krnl-to-affine

--convert-all-to-llvm

Executable/Library

zLow

New dialect for 
accelerator

Dialect in 
onnx-mlir

Dialect in 
MLIR

LLVM

ONNX

zHigh
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Representation of zTensor in MLIR

#tiling = affine_map<(d0, d1) -> (0, d1/64, 0, d0/32, d0%32, d1%64)>
%0 = memref.alloc() {alignment = 4096 : i64} : memref<4x8xf16, #tiling>

tensor<4x8xf32>

tensor<4x8xf32, #zhigh.encoding<{dataLayout = "2D"}>>

to zHigh dialect

to zLow dialect: buffer allocation, element mapping using affine functions

Original shape is preserved 
throughout the transformation

Tensor in ONNX dialect

zTensor in zHigh dialect

MemRef in zLow dialect
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Other lowering paths
ONNX

Krnl Std
Loop & Calls

Affine
Affine & Std

Std

DNN

Instructions

Object creator, Linker, etc. (LLVM tools)

--convert-onnx-to-krnl

--convert-krnl-to-affine

--convert-all-to-llvm

Executable/Library

zHigh

zLow

Dialect for zAIU 
accelerator

Dialect in 
onnx-mlir

Dialect in 
MLIR

LLVM

StableHLOTOSA



• onnx-mlir initially had its own bufferization to optimize buffer 
reuse
• MLIR introduced a bufferization
• We updated onnx-mlir to use the new bufferization

• MLIR introduced a new bufferization
• We updated onnx-mlir to use the new bufferization
• Found that runtime performance was lost by 2x, and reported to MLIR
• We introduced a compile flag in onnx-mlir to switch between the old and 

new one
• Finally the new bufferization has worked well and we are using it
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Memory buffer optimization



• onnx-mlir initially used DenseElementsAttr for storing learned weights
• Memory consumption during compilation was really big

• Memory increased after each constant folding => peak memory was 5x large 
than the model size

• Temporary solution:
• Manually allocate buffers for constant folding
• Only create DenseElementsAttr at the end of constant folding
• Memory consumption is still 2x of the model size.

• MLIR introduced ElementsAttr interface that allows defining custom 
storage.
• onnx-mlir created DisposableElementsAttr based on ElementsAttr

• Memory consumption is close to the model size

15

Attribute for big contants
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LLVM tools: slow compilation time for AI models

 Total Execution Time: 174.1031 seconds
 ----Wall Time----  ----Name----
  0.0032 (  0.0%)  [onnx-mlir] Loading Dialects
  1.5719 (  0.9%)  [onnx-mlir] Importing ONNX Model to MLIR Module from "bert-base-uncased-onnx-18.onnx"
 32.4585 ( 18.6%)  [onnx-mlir] Compiling and Optimizing MLIR Module  
 84.0119 ( 48.3%)  [onnx-mlir] Translating MLIR Module to LLVM and Generating LLVM Optimized Bitcode (llvm opt)
 54.6438 ( 31.4%)  [onnx-mlir] Generating Object from LLVM Bitcode (llvm llc)

  1.3087 (  0.8%)  [onnx-mlir] Linking and Generating the Output Shared Library
  0.1052 (  0.1%)  Rest
 174.1031 (100.0%)  Total

Total Execution Time: 139.0119 seconds
 ----Wall Time----  ----Name----
  0.0033 (  0.0%)  [onnx-mlir] Loading Dialects
  1.5862 (  1.1%)  [onnx-mlir] Importing ONNX Model to MLIR Module from "bert-base-uncased-onnx-18.onnx"
 32.7726 ( 23.6%)  [onnx-mlir] Compiling and Optimizing MLIR Module
 46.6286 ( 33.5%)  [onnx-mlir] Translating MLIR Module to LLVM and Generating LLVM Optimized Bitcode (llvm opt)
 57.9360 ( 41.7%)  [onnx-mlir] Generating Object from LLVM Bitcode (llvm llc)

  0.0663 (  0.0%)  [onnx-mlir] Linking and Generating the Output Shared Library
  0.0189 (  0.0%)  Rest
 139.0119 (100.0%)  Total

Exporting all constant values to an external file before calling LLVM tools



• We submit patches in MLIR when needed
• Big-endian related issues
• Memref normalization in the case of dynamic dimensions
• Affine loop fusion enhancement

• We actively follow and involve in discussion on 
https://discourse.llvm.org/
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Interacting with MLIR community

https://discourse.llvm.org/
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ONNX 
models LLVM IR

- MLIR representation of ONNX models
- Code transformation and optimization
- GitHub: https://github.com/onnx/onnx-mlir

x86

IBM Power

IBM Z

Accelerators 
(e.g., IBM zAIU)

ARM

Thank you for your attention!

https://github.com/onnx/onnx-mlir

