AsiaLLVM Developers' Meeting, June 10, 2025, Tokyo, Japan

ONNX-MLIR: An MLIR-based Compiler for ONNX AI models

Tung D. Le (speaker), Alexandre E Eichenberger, Tong Chen, Haruki Imai, Yasushi Negishi, Kiyokuni Kawachiya

IBM Research

https://github.com/onnx/onnx-mlir

Presenting the work of many other people!

- Compile an ONNX AI model to an optimized binary for inferencing using
 - MLIR to perform high-level transformations
 - LLVM to perform low-level optimizations and code generation
- GitHub (open-source): https://github.com/onnx/onnx-mlir
 - Initially developed by IBM Research since 2019
 - > 100 contributors from AMD, ByteDance, Groq, Microsoft, etc.

- A reference ONNX dialect in MLIR
- Easy to write optimizations for CPU and custom accelerators
 - From high-level (e.g., graph level) to low-level (e.g., instruction level)
- Easy to deploy
 - Stand-alone driver and runtime support in C/C++/Java/Python
 - Integration into other applications
- Continuously tested
 - Unit tests for each operation and ONNX model zoo
 - x86, Arm, Power, z/Architecture
 - Windows, Linux, z/OS, macOS
 - C/C++/Java/Python

Core Dialects and Transformations

ONNX Dialect

- Presentation of an ONNX model in MLIR language
- Additional operation, EntryPoint, to specify the entry function for doing inference

ONNX Model

ONNX Model represented in MLIR language

ONNX Dialect

ONNX Dialect is automatically generated by a python script from the ONNX specification

```
Add
                                    def ONNXAddOp:ONNX Op<"Add",
                                     [Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
Performs element-wise binary addition (
                                     let summary = "ONNX Add operation";
This operator supports multidirectional
                                     let description = [{
                                     Performs element-wise binary addition (with Numpy-style broadcasting support).
(Opset 14 change): Extend supported ty
                                     This operator supports **multidirectional (i.e., Numpy-style) broadcasting **; for more details please
Version
                                    check [the doc](Broadcasting.md).
This version of the operator has been av
                                     (Opset 14 change): Extend supported types to include uint8, int8, uint16, and int16.
Other versions of this operator: 1, 6, 7, 1;
                                     let arguments = (ins AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
Inputs
                                                                       TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>,
A (differentiable): T
                                                                         TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>.
 First operand.
                                                                         TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$A,
                                                       AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
B (differentiable): T
                                                                         TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>,
 Second operand.
                                                                         TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>,
                                                                         TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$B);
Outputs
                                     let results = (outs AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
c (differentiable): T
                                                                       TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>,
 Result, has same element type as two
                                                                       TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>,
                                                                       TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$C);
Type Constraints
                                     let hasVerifier = 1;
                                     let hasCanonicalizer = 1;
T: tensor(uint8), tensor(uint16), tens
tensor(float16), tensor(float), tensor(c
 Constrain input and output types to al
```


- Each ONNX operator has multiple versions
 - Each version may have different specification, e.g.
 - Squeeze version 1 has one input (data) and one attribute (axes)
 - Squeeze version 11 the same as version 1
 - Squeeze version 13 has two inputs (data and axes)
- onnx-mlir supports lowering for the latest version only.
- When importing an operator with an old version, it is converted into the **closest** newer version, e.g.
 - We have two rewritten rules for Squeeze to convert
 - version 1 to 11
 - version 11 to 13
 - If there were a new version, say 15, only one rule is needed to convert version 13 to 15

Krnl Dialect

- Operations to define loop iterations:
 - krnl.define_loops to define loops, krnl.iterate to iterate over loops
- Operations for optimizations:
 - krnl.block for tiling, krnl.permute for permutation, etc.

• Problem:

- ONNX Shape Inference: generate literal values or question marks at compute time.
- **Shape Lowering**: generate literals or create operations that compute shapes at *runtime*.
- Index expressions (IndexExpr and subclasses)
 - Polymorphic class that represents computations over shapes (e.g. add/ceil/select...).
- ShapeHelper (ONNXOpShapeHelper and subclasses)
 - Encapsulate how to compute the shape for a give ONNX operation.
 - Each ONNX operation defines its own/reuse a subclass.
 - Runtime code is generated if a builder is given. Otherwise, question marks.

IBM Telum on-chip AI accelerator (zAIU)

- A new on-chip accelerator for AI on IBM Z machines
 - · High-speed and real-time inferencing at scale
 - More than 6 TFLOPs of 16-bit floating point processing power
- IBM Z Deep Learning Library (zDNN)
 - A very thin wrapper in C for neural-network-processing-assist (NNPA) instructions
 - A set of primitives: matmul, conv, lstm, etc.
 - E.g., zdnn_status zdnn_add(
 const zdnn_ztensor *input_a,
 const zdnn_ztensor *input_b,
 zdnn_ztensor *output);
 - Open sourced at: https://github.com/IBM/zDNN

IBM Telum Chip in z16 mainframes

IBM z16 mainframe

Support zAIU Accelerator

- zHigh represents high-level operations for accelerator
 - Tensor-based representation of zDNN APIs
 - Operations for for data transformation
- zLow represents low-level operations on actual memory
 - Memory buffer allocation
 - Operation's signature is like zDNN API's one

Representation of zTensor in MLIR

Other lowering paths

Memory buffer optimization

- onnx-mlir initially had its own bufferization to optimize buffer reuse
- MLIR introduced a bufferization
 - We updated onnx-mlir to use the new bufferization
- MLIR introduced a new bufferization
 - We updated onnx-mlir to use the new bufferization
 - Found that runtime performance was lost by 2x, and reported to MLIR
 - We introduced a compile flag in onnx-mlir to switch between the old and new one
- Finally the new bufferization has worked well and we are using it

Attribute for big contants

- onnx-mlir initially used DenseElementsAttr for storing learned weights
- Memory consumption during compilation was really big
 - Memory increased after each constant folding => peak memory was 5x large than the model size
- Temporary solution:
 - Manually allocate buffers for constant folding
 - Only create DenseElementsAttr at the end of constant folding
 - Memory consumption is still 2x of the model size.
- MLIR introduced ElementsAttr interface that allows defining custom storage.
- onnx-mlir created DisposableElementsAttr based on ElementsAttr
 - Memory consumption is close to the model size

LLVM tools: slow compilation time for AI models

```
Total Execution Time: 174.1031 seconds
----Wall Time---- ----Name----
0.0032 ( 0.0%) [onnx-mlir] Loading Dialects
1.5719 ( 0.9%) [onnx-mlir] Importing ONNX Model to MLIR Module from "bert-base-uncased-onnx-18.onnx"
32.4585 ( 18.6%) [onnx-mlir] Compiling and Optimizing MLIR Module
84.0119 ( 48.3%) [onnx-mlir] Translating MLIR Module to LLVM and Generating LLVM Optimized Bitcode (llvm opt)
54.6438 ( 31.4%) [onnx-mlir] Generating Object from LLVM Bitcode (llvm llc)
1.3087 ( 0.8%) [onnx-mlir] Linking and Generating the Output Shared Library
0.1052 ( 0.1%) Rest
174.1031 (100.0%) Total
```

Exporting all constant values to an external file before calling LLVM tools

```
Total Execution Time: 139.0119 seconds
----Wall Time---- ----Name----
0.0033 ( 0.0%) [onnx-mlir] Loading Dialects
1.5862 ( 1.1%) [onnx-mlir] Importing ONNX Model to MLIR Module from "bert-base-uncased-onnx-18.onnx"
32.7726 ( 23.6%) [onnx-mlir] Compiling and Optimizing MLIR Module
46.6286 ( 33.5%) [onnx-mlir] Translating MLIR Module to LLVM and Generating LLVM Optimized Bitcode (11vm opt)
57.9360 ( 41.7%) [onnx-mlir] Generating Object from LLVM Bitcode (11vm 11c)
0.0663 ( 0.0%) [onnx-mlir] Linking and Generating the Output Shared Library
0.0189 ( 0.0%) Rest
139.0119 (100.0%) Total
```


- We submit patches in MLIR when needed
 - Big-endian related issues
 - Memref normalization in the case of dynamic dimensions
 - Affine loop fusion enhancement
- We actively follow and involve in discussion on https://discourse.llvm.org/

Thank you for your attention!