
ONNX-MLIR:
An MLIR-based Compiler
for ONNX AI models

Tung D. Le (speaker), Alexandre E Eichenberger, Tong Chen,
Haruki Imai, Yasushi Negishi, Kiyokuni Kawachiya

IBM Research

Presenting the work of many other people!

https://github.com/onnx/onnx-mlir

1

AsiaLLVM Developers' Meeting, June 10, 2025, Tokyo, Japan

https://github.com/onnx/onnx-mlir

2

What is onnx-mlir?
• Compile an ONNX AI model to an optimized binary for inferencing using

• MLIR to perform high-level transformations
• LLVM to perform low-level optimizations and code generation

• GitHub (open-source): https://github.com/onnx/onnx-mlir
• Initially developed by IBM Research since 2019
• > 100 contributors from AMD, ByteDance, Groq, Microsoft, etc.
• Cited by ~90 scientific papers

ONNX
models LLVM IR

- MLIR representation of ONNX models
- Code transformation and optimization

x86

IBM Power

IBM Z

Accelerators
(e.g., IBM zAIU)

ARM

https://github.com/onnx/onnx-mlir

• A reference ONNX dialect in MLIR
• Easy to write optimizations for CPU and custom accelerators
• From high-level (e.g., graph level) to low-level (e.g., instruction level)

• Easy to deploy
• Stand-alone driver and runtime support in C/C++/Java/Python
• Integration into other applications

• Continuously tested
• Unit tests for each operation and ONNX model zoo
• x86, Arm, Power, z/Architecture
• Windows, Linux, z/OS, macOS
• C/C++/Java/Python

Design goals

3

Core Dialects and Transformations

New dialect in onnx-mlir

Dialect in MLIR

ONNX

Krnl Std
Loop & Calls

Affine
Affine & Std

Std

DNN

Instructions LLVM

Object creator, Linker, etc. (LLVM tools)

--convert-onnx-to-krnl

--convert-krnl-to-affine

--convert-all-to-llvm

Executable/Library

ONNX model

- Type/shape inference,
- Graph optimizations
- Constant propagation
- Canonicalization, etc.

- Loop optimizations: Tile, skew,
transpose, etc.

- Canonicalization, etc.

- Loop fusion,
- Memref dataflow optimization,
- Memory pool management,
- Canonicalization, etc.

--convert-all-to-llvm

4

• Presentation of an ONNX model in MLIR language
• Additional operation, EntryPoint, to specify the

entry function for doing inference

ONNX Dialect

ONNX Model ONNX Model represented in MLIR language

Importer

5

• ONNX Dialect is automatically generated by a python script from the ONNX specification

ONNX Dialect

Specification of Add operator in ONNX

def ONNXAddOp:ONNX_Op<"Add",
 [Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
 let summary = "ONNX Add operation";
 let description = [{
 Performs element-wise binary addition (with Numpy-style broadcasting support).

 This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please
check [the doc](Broadcasting.md).

 (Opset 14 change): Extend supported types to include uint8, int8, uint16, and int16.
 }];
 let arguments = (ins AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
 TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>,
 TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>,
 TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$A,
 AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
 TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>,
 TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>,
 TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$B);
 let results = (outs AnyTypeOf<[TensorOf<[UI8]>, TensorOf<[UI16]>, TensorOf<[UI32]>,
 TensorOf<[UI64]>, TensorOf<[I8]>, TensorOf<[I16]>,
 TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[F16]>,
 TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[BF16]>]>:$C);
 let hasVerifier = 1;
 let hasCanonicalizer = 1;
}

6

• Each ONNX operator has multiple versions
• Each version may have different specification, e.g.

• Squeeze version 1 has one input (data) and one attribute (axes)
• Squeeze version 11 the same as version 1
• Squeeze version 13 has two inputs (data and axes)

• onnx-mlir supports lowering for the latest version only.
• When importing an operator with an old version, it is converted

into the closest newer version, e.g.
• We have two rewritten rules for Squeeze to convert

• version 1 to 11
• version 11 to 13

• If there were a new version, say 15, only one rule is needed to convert
version 13 to 15

Version Handling

7

• Operations to define loop iterations:
• krnl.define_loops to define loops, krnl.iterate to iterate over loops

• Operations for optimizations:
• krnl.block for tiling, krnl.permute for permutation, etc.

Krnl Dialect

(Original) Loop definition

Iteration domain
using original loops

Affine schedule for blocking/tiling

Scalar computation
using original loops

Convert to
Affine dialect

8

• Problem:
• ONNX Shape Inference: generate literal values or question marks at

compute time.
• Shape Lowering: generate literals or create operations that compute

shapes at runtime.
• Index expressions (IndexExpr and subclasses)
• Polymorphic class that represents computations over shapes (e.g.

add/ceil/select…).
• ShapeHelper (ONNXOpShapeHelper and subclasses)
• Encapsulate how to compute the shape for a give ONNX operation.
• Each ONNX operation defines its own/reuse a subclass.
• Runtime code is generated if a builder is given. Otherwise, question marks.

9

Index Expression

• A new on-chip accelerator for AI on IBM Z machines
• High-speed and real-time inferencing at scale
• More than 6 TFLOPs of 16-bit floating point processing power

• IBM Z Deep Learning Library (zDNN)
• A very thin wrapper in C for neural-network-processing-assist

(NNPA) instructions
• A set of primitives: matmul, conv, lstm, etc.
• E.g., zdnn_status zdnn_add(
 const zdnn_ztensor *input_a,
 const zdnn_ztensor *input_b,
 zdnn_ztensor *output);
• Open sourced at: https://github.com/IBM/zDNN

10

IBM Telum on-chip AI accelerator (zAIU)

IBM Telum Chip in
z16 mainframes

IBM z16 mainframe

https://github.com/IBM/zDNN

• zHigh represents high-level operations
for accelerator
• Tensor-based representation of zDNN APIs
• Operations for for data transformation

• zLow represents low-level operations
on actual memory
• Memory buffer allocation
• Operation’s signature is like zDNN API’s one

11

Support zAIU Accelerator

Krnl Std
Loop & Calls

Affine
Affine & Std

Std

DNN

Instructions

Object creator, Linker, etc. (LLVM tools)

--convert-onnx-to-krnl

--convert-krnl-to-affine

--convert-all-to-llvm

Executable/Library

zLow

New dialect for
accelerator

Dialect in
onnx-mlir

Dialect in
MLIR

LLVM

ONNX

zHigh

12

Representation of zTensor in MLIR

#tiling = affine_map<(d0, d1) -> (0, d1/64, 0, d0/32, d0%32, d1%64)>
%0 = memref.alloc() {alignment = 4096 : i64} : memref<4x8xf16, #tiling>

tensor<4x8xf32>

tensor<4x8xf32, #zhigh.encoding<{dataLayout = "2D"}>>

to zHigh dialect

to zLow dialect: buffer allocation, element mapping using affine functions

Original shape is preserved
throughout the transformation

Tensor in ONNX dialect

zTensor in zHigh dialect

MemRef in zLow dialect

13

Other lowering paths
ONNX

Krnl Std
Loop & Calls

Affine
Affine & Std

Std

DNN

Instructions

Object creator, Linker, etc. (LLVM tools)

--convert-onnx-to-krnl

--convert-krnl-to-affine

--convert-all-to-llvm

Executable/Library

zHigh

zLow

Dialect for zAIU
accelerator

Dialect in
onnx-mlir

Dialect in
MLIR

LLVM

StableHLOTOSA

• onnx-mlir initially had its own bufferization to optimize buffer
reuse
• MLIR introduced a bufferization
• We updated onnx-mlir to use the new bufferization

• MLIR introduced a new bufferization
• We updated onnx-mlir to use the new bufferization
• Found that runtime performance was lost by 2x, and reported to MLIR
• We introduced a compile flag in onnx-mlir to switch between the old and

new one
• Finally the new bufferization has worked well and we are using it

14

Memory buffer optimization

• onnx-mlir initially used DenseElementsAttr for storing learned weights
• Memory consumption during compilation was really big

• Memory increased after each constant folding => peak memory was 5x large
than the model size

• Temporary solution:
• Manually allocate buffers for constant folding
• Only create DenseElementsAttr at the end of constant folding
• Memory consumption is still 2x of the model size.

• MLIR introduced ElementsAttr interface that allows defining custom
storage.
• onnx-mlir created DisposableElementsAttr based on ElementsAttr

• Memory consumption is close to the model size

15

Attribute for big contants

16

LLVM tools: slow compilation time for AI models

 Total Execution Time: 174.1031 seconds
 ----Wall Time---- ----Name----
 0.0032 (0.0%) [onnx-mlir] Loading Dialects
 1.5719 (0.9%) [onnx-mlir] Importing ONNX Model to MLIR Module from "bert-base-uncased-onnx-18.onnx"
 32.4585 (18.6%) [onnx-mlir] Compiling and Optimizing MLIR Module
 84.0119 (48.3%) [onnx-mlir] Translating MLIR Module to LLVM and Generating LLVM Optimized Bitcode (llvm opt)
 54.6438 (31.4%) [onnx-mlir] Generating Object from LLVM Bitcode (llvm llc)

 1.3087 (0.8%) [onnx-mlir] Linking and Generating the Output Shared Library
 0.1052 (0.1%) Rest
 174.1031 (100.0%) Total

Total Execution Time: 139.0119 seconds
 ----Wall Time---- ----Name----
 0.0033 (0.0%) [onnx-mlir] Loading Dialects
 1.5862 (1.1%) [onnx-mlir] Importing ONNX Model to MLIR Module from "bert-base-uncased-onnx-18.onnx"
 32.7726 (23.6%) [onnx-mlir] Compiling and Optimizing MLIR Module
 46.6286 (33.5%) [onnx-mlir] Translating MLIR Module to LLVM and Generating LLVM Optimized Bitcode (llvm opt)
 57.9360 (41.7%) [onnx-mlir] Generating Object from LLVM Bitcode (llvm llc)

 0.0663 (0.0%) [onnx-mlir] Linking and Generating the Output Shared Library
 0.0189 (0.0%) Rest
 139.0119 (100.0%) Total

Exporting all constant values to an external file before calling LLVM tools

• We submit patches in MLIR when needed
• Big-endian related issues
• Memref normalization in the case of dynamic dimensions
• Affine loop fusion enhancement

• We actively follow and involve in discussion on
https://discourse.llvm.org/

17

Interacting with MLIR community

https://discourse.llvm.org/

18

ONNX
models LLVM IR

- MLIR representation of ONNX models
- Code transformation and optimization
- GitHub: https://github.com/onnx/onnx-mlir

x86

IBM Power

IBM Z

Accelerators
(e.g., IBM zAIU)

ARM

Thank you for your attention!

https://github.com/onnx/onnx-mlir

