
LLVM vs. GCC on RISC-V Using SPEC CPU
Benchmarks: Methods, Gaps, and Optimizations

Yongtai Li, Chunyu Liao, Ji Qiu
PLCT Lab. ISCAS
{liyongtai, chunyu, qiuji}@iscas.ac.cn

2025/6/10

1

Table of Contents

Background & Motivation

Methods

Gaps

Optimizations

Conclusion & Future Work

2

Background & Motivation
RISC-V is growing fast in both embedded systems and high-performance
computing. Code size is crucial for embedded systems, while dynamic instruction
count matters a lot for HPC.

SPEC CPU, as an industry-standard benchmark, evaluates compiler performance
across diverse workloads.
Our goal is to analyze how LLVM and GCC perform in these aspects and identify
potential improvements.

3

Methods

How We Tested

1. Build Compilers & Benchmarks

2. Run and collect data

3. Automation

4

Build Compilers & Benchmarks
Hardware: Milk-V Pioneer Box, 64 cores C920
Commit: GGC - d28ea8e5a704, LLVM - c9a6e993f7b3

Flags: -Ofast , -flto for C/C++, -Ofast for fortran

Targets: rv64gc_zba_zbb_zbs , rv64gcv_zba_zbb_zbs

5

Prepare the runtime environment, which includes input data and the speccmds.cmd file.

runcpu --config label.cfg --action runsetup intspeed

exchage2_r.exe : Placeholder for the executable to be tested.

puzzles.txt : Input data.

speccmds.cmd , compare.cmd : Control files

6

We can use the specinvoke command to see how the tests run as described in
speccmds.cmd

$ specinvoke -n speccmds.cmd
 # specinvoke r4356
 # Invoked as: specinvoke -n speccmds.cmd
 # timer ticks over every 1000 ns
 # Use another -n on the command line to see chdir commands and env dump
 # Starting run for copy #0
 ../run_base_refrate_llvm-c9a6e993f7b3-rv64gc_zba_zbb_zbs-64.0000/\
 exchange2_r_base.llvm-c9a6e993f7b3-rv64gc_zba_zbb_zbs-64 6 > exchange2.txt 2>> exchange2.err
 specinvoke exit: rc=0

7

Data Collection
Code Size: strip binaries and measure their sizes.

DIC: Run tests using QEMU with the insn plugin.

$ path/to/qemu-riscv64 -plugin path/to/plugin/libinsn.so -d plugin ./demo
 cpu 0 insns: 20250610
 total insns: 20250610

https://qemu-stsquad.readthedocs.io/en/latest/devel/tcg-plugins.html
https://github.com/qemu/qemu/blob/master/tests/tcg/plugins/insn.c

8

https://qemu-stsquad.readthedocs.io/en/latest/devel/tcg-plugins.html
https://github.com/qemu/qemu/blob/master/tests/tcg/plugins/insn.c

Automation
Now we can run any of the SPEC CPU benchmarks in QEMU and get the instruction
count for it.
But such a process is tedious and inefficient, so we wrote an automated tool to handle
this.
It has a web frontend that uploads a tarball containing several benchmark binaries, and
then it can run these tests simultaneously using multiple QEMU processes

9

https://github.com/sihuan/countspec

10

https://github.com/sihuan/countspec

11

Code Size Comparison

12

Google
Sheet
QR Code

13

Dynamic Instruction Count

14

Dynamic Instruction Count

15

Dynamic Instruction Count

16

Optimizations

548_exchange_r

The 548.exchange2_r benchmark is a Sudoku solver for 9×9 grids, written in Fortran 95
with approximately 1,600 lines of code. The program heavily relies on recursion, with a
maximum recursion depth of up to 8 levels. Notably, it does not perform any floating-
point operations, focusing entirely on integer computations.

The performance difference between GCC and LLVM is significant: LLVM executes
approximately twice as many dynamic instructions. This trend holds consistently across
both x86 and ARM architectures.

https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.html

17

https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.html

Subsequent experiments were conducted exclusively on the RV64GC platform, primarily
utilizing the objdump and perf tools for analysis.

How to manually compile this 548_exchange benchmark?

flang-new -c -o exchange2.fppized.o -march=rv64gc -Ofast exchange2.fppized.f90
flang-new -march=rv64gc -Ofast exchange2.fppized.o -o exchange2_r

How to manually run the tests?

./exchange2_r 0 # test size, solve the first problem in `puzzles.txt`

./exchange2_r 6 # ref size, solve all the six problems in `puzzles.txt`

18

We used perf to record
some data for test size
tests:

perf stat ./exchange2_r 0
perf report

19

Based on the preliminary analysis of perf , the digits_2 function in the GCC version
has been split into forms like __brute_force_MOD_digits_2.constprop.${1-7}.isra.0 ,
and the static assembly code lines of these functions are much smaller than those in
LLVM.

20

In GCC, the hotspot function digits_2 is split into several specialized versions. This
specialization is caused by interprocedural constant propagation optimization (IPA-CP).
One of the main effects of this optimization is the elimination of conditional branches.

Therefore, the assembly line count for each specialized version of the function is
smaller.

The corresponding optimization pass in LLVM is IPSCCP Pass.

21

Disable this optimization in GCC by add the -fno-ipa-cp flag

gcc -fno-ipa-cp gcc

exchange2_r 0 93,554,141,493 55,981,214,885

The number of instructions has almost doubled!

22

Manually running an extra IPSCCP Pass

flang-new -c -emit-llvm -o exchange2.fppized.ll -march=rv64gc -Ofast exchange2.fppized.f90
opt -passes="ipsccp" exchange2.fppized.ll -o exchange2.fppized.ipsccp.ll
flang-new -march=rv64gc -Ofast fppized.ipsccp.ll -o exchange2_r

llvm llvm with extra IPSCCP

exchange2_r 0 114,450,486,604 70,380,347,586

The number of instructions has decreased, and through disassembly, it was found that
digits_2 was also split into something like _QMbrute_forcePdigits_2.specialized.3 .

23

Repeatedly running the IPSCCP pass after the inliner pipeline will be effective.

24

$ objdump -D exchange2_r_patched_llvm | grep "digits_2.*:$"
0000000000011ab0 <_QMbrute_forcePdigits_2>:
0000000000018a4e <_QMbrute_forcePdigits_2.specialized.1>:
0000000000019820 <_QMbrute_forcePdigits_2.specialized.2>:
000000000001a436 <_QMbrute_forcePdigits_2.specialized.3>:
000000000001ae78 <_QMbrute_forcePdigits_2.specialized.4>:
000000000001ba8e <_QMbrute_forcePdigits_2.specialized.5>:
000000000001c7e6 <_QMbrute_forcePdigits_2.specialized.6>:
000000000001d072 <_QMbrute_forcePdigits_2.specialized.7>:
000000000001dad0 <_QMbrute_forcePdigits_2.specialized.8>:

25

Compiler Instructions on rv64gc

GCC #d28ea8e5 55,965,728,914

LLVM #62d44fbd 105,416,890,241

LLVM #62d44fbd with patch 62,693,427,761

Compiler cpu_atom instructions on x86_64

LLVM #62d44fbd 100,147,914,793

LLVM #62d44fbd with patch 53,077,337,115

26

BUT
Running IPSCCP twice causes a massive compile-time regression

Simply running Argument Promotion before IPSCCP is enough

https://github.com/llvm/llvm-project/pull/111163

27

https://github.com/llvm/llvm-project/pull/111163

473.astar

471.astar (pronounced: A-star) is derived from a portable 2D path-finding library that is
used in game's AI. This library implements three different path-finding algorithms: First
is the well known A* algorithm for maps with passable and non-passable terrain types.
Second is a modification of the A* path finding algorithm for maps with different terrain
types and different move speed. Third is an implementation of A* algorithm for graphs.
This is formed by map regions with neighborhood relationship. The library also includes
pseudo-intellectual functions for map region determination.

https://www.spec.org/cpu2006/Docs/473.astar.html

28

https://www.spec.org/cpu2006/Docs/473.astar.html

perf report， GCC ↓ —————————————————— LLVM ↓

29

The key function snippet:

void way2obj::releasepoint(i32 px, i32 py) {
 i32 x,y;
 i32 x1,y1,x2,y2;
 i32 mindist,dist;
 bool flcenter;

 if (waymap[px+py*mapsizex].fillnum==fillnum)
 return;
 // ... omitted ...
}

30

31

Shrink Wrap Optimization
GCC's implementation

More sophisticated, resulting in fewer dynamic instructions

LLVM's implementation

Relatively simpler, with certain optimization opportunities missed

Compilation time considerations

Potential breakage of debugging tools (like unwinding)

32

Manually adjusting the placement of
some callee-saved register
saves/restores (s2-s11) in the LLVM-
generated assembly for this function,
get a 3.8% reduction in dynamic
instructions for the entire 473.astar
benchmark.

33

In summary, we now recognize that Shrink Wrap optimization plays a significant role in
473.astar.

Notably, active optimization efforts are underway in LLVM:

#119359 [llvm] Support save/restore point splitting in shrink-wrap by enoskova-sc

#90819 [RISCV][WIP] Let RA do the CSR saves by mgudim

34

Conclusion & Future Work
LLVM and new flang are ready for real-world workloads on RISC-V.

LLVM produces smaller C/C++ binaries but struggles with Fortran.
GCC is better at reducing dynamic instruction count in integer workloads.

LLVM’s auto-vectorization for floating-point workloads is ahead of GCC.

Enhanced Automation Pipeline

Intelligent Data Presentation

LLVM Version Benchmarking & Regression Guard

35

Resources
Code Size data: https://docs.google.com/spreadsheets/d/1e6sAkT1kZa8LQo4MWgT-
NomF8fSHnClrJMVTrxktUAM
DIC data:
https://docs.google.com/spreadsheets/d/1BSSc5XRr_QUmEgupRs3MgUJ4pICWsNW_X2
5vADO7DBY
countspec: https://github.com/sihuan/countspec

36

https://docs.google.com/spreadsheets/d/1e6sAkT1kZa8LQo4MWgT-NomF8fSHnClrJMVTrxktUAM
https://docs.google.com/spreadsheets/d/1e6sAkT1kZa8LQo4MWgT-NomF8fSHnClrJMVTrxktUAM
https://docs.google.com/spreadsheets/d/1BSSc5XRr_QUmEgupRs3MgUJ4pICWsNW_X25vADO7DBY
https://docs.google.com/spreadsheets/d/1BSSc5XRr_QUmEgupRs3MgUJ4pICWsNW_X25vADO7DBY
https://github.com/sihuan/countspec

Thanks

37

