
June 10th, 2025

Wendi Urribarri

Functional Safety Engineer
Global Safety & Quality LoB
wendi.urribarri@woven.toyota

LLVM in the Automotive
Industry
Bringing Functional Safety to Open Source

June 10th, 2025

Wendi Urribarri

Functional Safety Engineer
Global Safety & Quality LoB
wendi.urribarri@woven.toyota

LLVM in the Automotive
Industry
Bringing Functional Safety to Open Source

3

Safety-critical industries

4

Safety-critical industries

Certain failures could cause
serious harm, injuries,
damage, or loss of life

5

Automotive Industry

Increase of software
components in road

vehicles

Increase in significance of
Functional Safety

e.g. Advanced Driver Assistance Systems
(ADAS), Autonomous Driving (AD),

Software Defined Vehicle (SDV) 

6

Making sure systems behave safely even when something
goes wrong, by preventing, detecting, handling e.g.,
● Hardware defects

○ Steering angle sensor stuck at zero → Steering locked while driving
● Software bugs

○ Buffer overflow in the perception stack → Incorrect detection or
classification of other vehicles and pedestrians

Functional Safety

7

Functional Safety standard in the
automotive industry:

ISO 26262

Safety Standards

Rigorous development processes
Prescribed requirements, guidelines, practices
to ensure safety at each level (systems,
hardware, software)

Sub-processes: specification, design,
implementation, testing, safety analyses,
configuration, calibration, tracking of changes,
versioning, documentation, release…

8

Software development tools are part of
the safety equation because they

support functional safety

9

Software tools can
introduce or fail to
detect errors, and
undermine even

the best designed
system

10

Confidence in the use of software tools

● Follow a structured, evidence-based process
for tool development

● Evaluate the level of “confidence” that the
software tool can be used “properly” in a
safety-related context

● When higher confidence is necessary, ensure
its reliability and correct functioning

11

1 - Tool Definition Identification and specification

● Intended usage/Use cases
● Inputs and Outputs
● Functions/Features
● Execution environment
● Configuration options
● Expected behavior under anomalous conditions
● Known Issues and their

workarounds/countermeasures
● Versioning and Change tracking
● Pre-determined max ASIL of usage

12

2 - Tool Evaluation Identify:

● Potential malfunctions and their impact
● Measures that can be applied to

prevent or detect them
● Determine the Tool Confidence Level

“Simplified dysfunctional analysis”

13

3 - Tool
Qualification

When tool confidence level is insufficient,
provide QA evidence of the tool itself
This can involve:

● Introducing new prevention, detection, or error
handling mechanisms inside the tool
○ e.g., adding an option to use Alive2 to analyse

and verify LLVM code and transformations
● Checks:

○ Verification and Validation
○ Development process assessment

14

4 - Means for
verification of
appropriate usage

Provide means to the final users for
verification of appropriate usage of the tool
Summary of use constraints, conditions, restrictions,
limitations, resulting from previous steps

Usually given in a manual

15

Can we create a shared, open
qualification path for LLVM that

benefits both industry and community?

16

Envision the
possibility

Could we explore the interest in qualifying
LLVM-based compilers upstream?

If so, could this evolve into a meaningful,
collaborative effort, useful and
understandable to LLVM contributors,
companies, and tool vendors, beyond just
safety compliance?

17

01
Evolving compiler infrastructure

LLVM is large, evolving, and highly
configurable

02
Missing structured quality evidence

OSS workflows and quality evidence would
need to become more comprehensive,
documented

03
Fragmented qualification landscape

Today, most tool qualification is proprietary,
expensive, and duplicated across companies

Many vendors have independently and
privately qualified their LLVM-based
compilers

Challenges

18

Complementary role to that of LLVM’s
Security Group, focused on systematic
assurance and tool reliability, e.g.,

● Participate in quality of each release
● Discuss safety-relevant issues (e.g., risk analysis,

known bugs analysis)
● Provide specifications
● Identify missing tests and resolve the gaps
● Encourage and review upstream changes that

could aid qualification

Vision of a Safety Group

19

A collaborative effort to qualifying
LLVM-based compilers in open source,
scaling up incrementally, e.g.,

● Develop reusable quality arguments, test suites,
docs…

● Shared validation & audit strategies
● Documentation & Traceability

Precedents exist: Linux kernel safety efforts by ELISA
project & Linux Foundation, CompCert, Ferrocene...

Vision of an Open Qualification

20

Qualification isn’t just about passing
audits. It’s about building deeper trust

in the compiler’s behavior.

21

The same practices that help us meet
compliance to safety standards can

make LLVM more reliable, transparent,
and robust for all users.

22

Thank you
My email: wendi.urribarri@woven.toyota

My LinkedIn profile: www.linkedin.com/in/uwendi

mailto:wendi.urribarri@woven.toyota
http://www.linkedin.com/in/uwendi

23

Quality, Product Safety, and Functional Safety

Quality 

User-Centricity Product Safety  Performance  Compliance 

Process-Related Aspects  Sustainability and Environment
Impact  Customer Satisfaction  Cost-Effectiveness 

Functional Safety is absence of unreasonable risk
due to hazards caused by malfunctioning

behaviour of Electrical, Electronic or
Programmable Electronic (E/EE/PE) systems

24

Concepts and ideas in ISO 26262

25

Concepts and ideas in ISO 26262

26

Concepts and ideas in ISO 26262

FAILURE (or MALFUNCTION)
the system is not able to

illuminate the room

FAULT
a manufacturing
defect in the fuse

ERROR
electricity is not

conducted properly

27

Types of failures

Random

Systematic

Appear in the hardware only. They occur due to the
aging of HW parts.

Appear in both software and hardware. They occur due
to errors in design or production and are typically able
to be reproduced.

28

Confidence in the
use of compilers

Compilers can introduce bugs

AND

Some kinds of bugs can be hard to
detect by only testing the output file

Coding guidelines do not protect from compiler bugs.
The compiler must be trustworthy.

29

Intended usage/Use cases

Usage scenarios inscribed in the intended purpose

● High level, general descriptions of the ways in which a user can interact with the
software tool

● Written descriptions of “usage scenarios”, “situations” in which the tool may be
useful, or “interactions” between the user and the software tool

● The “tasks” that the users can perform with it

A use case outlines the software tool's expected behavior and outputs as it responds to
a “request” and inputs from the user's point of view

30

Inputs and Outputs

I/O can vary widely depending on the tool’s purpose and
functionality, e.g.:

Inputs Expected outputs

● Data inputs: raw data files, databases, streams… that the
tool processes

● User input through forms, CLI, GUI…
● Configuration settings: parameters or options that

customize how the tool operates
● Commands or instructions: specific commands, queries, or

scripts that direct the tool to perform certain tasks
● External resources: libraries, APIs, or external services that

the tool might access during its operation
● License or authentication: credentials or keys that allow

access to secure features or services

● Processed data: transformed, analyzed, or summarized
data that reflects the tool's processing activities on the
inputs

● Reports or logs: detailed output in the form of reports,
summaries, or logs indicating what actions were
performed and any results

● Alerts or notifications: messages or alerts signifying errors,
updates, or completion of specific tasks

● Visualizations: graphical representations of data or results,
such as charts, graphs, dashboards…

● Exported files or formats: files in specific formats
generated as part of the tool's output

https://docs.google.com/document/d/1FrW6JRG71nWi3UUo9VGytOQOklg9tnIWBJlDqrnqcIE/edit?tab=t.0#bookmark=id.8o2xlwwmu8qz

31

Functions/Features

● Features: specific attributes or capabilities that a software tool offers (often what
attract users to a product)

● Functions: operations or tasks that a software tool can perform (core activities
that the tool is designed to execute)

● Technical properties: underlying technical characteristics of the software tool that
affect its performance and compatibility

32

Execution environment

Context in which the software tool operates, such as a specific
minimum version of an operating system or a database
management system

33

Configuration options

Parameters that modify the behavior of the software tool
● They can alter the fundamental ways in which the software tool works, affect the

qualities of its performance, and potentially change outputs even when the same
inputs are used

● They are helpful for customizing the tool’s usage to suit individual users, groups,
or projects

● They typically come with predetermined “types”, and “default values” or “default
arguments”

● In some scenarios, a software tool may not be configurable by the end user, but
rather by an administrator or an individual with special privileges

34

Expected behaviour under anomalous conditions

Normal expected functioning of the tool in abnormal conditions
This includes the generation and display of:

● Error Messages: specific notifications indicating the occurrence of errors or
malfunctions within the system

● Warning Messages: alerts that notify users of potential issues or deviations from
expected performance, allowing for preventive measures

● Diagnostic Codes: coded information used to identify and diagnose the root cause
of errors or malfunctions, facilitating troubleshooting and corrective actions

They ensure that the software tool maintains a manageable operation, even in adverse
situations, by informing users of discrepancies and guiding necessary interventions

35

Known issues

Resources for identifying reported abnormal functioning of the
software tool under normal conditions (e.g., bugs)
● Type: classification of the issue, aiding in systematic tracking and resolution
● Description: explanation of the issue
● Status: current state of the issue (e.g., open, in progress, resolved)
● Release: tool version in which the issue was identified
● Severity: evaluation of the issue's potential impact on the system, hardware or

software under development, or on the users, prioritizing resolution efforts
● Workarounds and/or Countermeasures: suggested solutions or temporary fixes to

mitigate the issue until a permanent resolution is implemented

36

Versioning and Change tracking

Practices to manage and document updates, modifications, and
iterations of software throughout its lifecycle

● Versioning: systematic assignment of unique identifiers (versions) to different
iterations of the software

● Change tracking: documenting all modifications made to the software, including
code changes, configuration adjustments, feature additions…

37

Pre-determined max ASIL of usage

Indicates the highest maximum “Automotive Safety Integrity Level”
(ASIL) rating for the requirements allocated to the item or element
that the tool is expected to support in its development
● It denotes the tool's capacity to maintain safety requirements across varying levels

of criticality, thus enabling the reliable development of automotive solutions
across a spectrum of safety concerns

● ASIL spans from ASIL A (basic level of safety integrity) to ASIL D (demanding the
highest safety performance)

38

Software tool requirements

Specific expectations, criteria, and conditions that the software
tool must meet to effectively perform its intended functions and
satisfy user needs

They serve as a blueprint for the development, verification, and
validation of the tool

39

Tool Confidence Level (TCL)

Measure of how much trust we need to place in a software tool
used to develop safety-critical systems
● TCL1, TCL2, TCL3
● Reflects the level of assurance required to use the tool without introducing or

missing dangerous defects
● It tells us how much evidence or rigor we need before we can rely on the tool
● The higher the TCL required, the more we need to show the tool works reliably

and won’t cause undetected issues
● It helps us decide whether a tool can be used as is, or if it needs extra qualification

40

Simplified dysfunctional analysis

Lightweight version of a traditional hazard or failure modes
analysis. We focus on the tool use cases and ask:
● What could go wrong for the given use case? (e.g., a miscompilation, a missed

warning)
● What impact would that have on the final system? (e.g., incorrect behavior in a

safety-critical feature)
● Can we reduce or manage the risk? (e.g., by a manual check of the inputs or the

outputs)

The goal is NOT to prove that the tool is safe, but to understand and manage how
defects in the tool could lead to defects in the product

41

Examples of what the group could do:
● Curate best practices for deterministic use, configuration, testing
● Participate in quality of each release
● Provide specifications for different parts, and tests of their behavior
● Identify missing tests and resolve the gaps
● Discuss known safety-relevant issues (e.g., known bugs, categories, and impacts)
● Align on a scope for future qualification efforts (e.g., a subset of LLVM, only

certain frontends, certain targets)
● Encourage and review upstream changes that could aid qualification
● Serve as a contact point for tool vendors doing work related to safety compliance,

e.g, to ISO 26262, EN 50128, etc.

Safety Group

42

Many benefits, among others:
● Shared effort = Shared benefits
● Transparency = Better trust and reuse
● More robust compiler ecosystem
● Lower entry barriers to safety domains
● Cross-industry alignment

Open Qualification

43

01
Reinforced confidence

Detailed documentation of LLVM’s quality,
such as specifications, traceable assurance
of how code is transformed (e.g., reqs ↔
tests), analysis of known limitations, etc.

02
Augmented bug detection

Catch hard-to-find, subtle bugs or
regressions before they affect end users, by
using innovative verification methods such
as formal verification (e.g. Alive2), added test
suites for LLVM IR, etc.

03
Viable in other high-assurance contexts

Expand LLVM’s reach and impact, allowing it
to compete with proprietary compilers in
high-assurance contexts

Useful beyond safety - Examples

