
Data-Tiling in IREE: Achieving High
Performance Through Compiler Design

Hanhan Wang, AMD

What is IREE?

● A retargetable MLIR-based compiler for ML programs.
● Take ML workloads from various frontends (PyTorch, Jax, etc.) and execute

on different backends (x86, Arm, NVIDIA GPUs, AMD GPUs, etc.)
● https://github.com/iree-org/iree

*HLO

TOSA

Torch-MLIR

TensorFlow
JAX

TFLite

PyTorch
ONNX

IREE compilation

 Inputs dialects
- Linalg (99%)
- LinalgExt (1%)

Flatbuffer (.vmfb)

Device-side Code
- Obj file
- PTX
- SPIR-V

Host Side
- VM Byte code

Host/Device model

https://github.com/iree-org/iree

IREE Compiler Design

Global
Optimizations

● Canonicalization
● Basic Fusion
● Transpose/Reshape

propagation
● etc

Flow Dialect
Dispatch
Creation

Partition program into
dispatches

● Expected to be executed
by many workers

● Workers for a dispatch
not expected to
synchronize

● Scratchspace memory
perf worker

● Host side code captures
dependences between
dispatches

Host/Device
Split

Stream Dialect
Scheduling

Optimizations

Host

Most of
scheduling is
architecture
agnostic

*.vmfb

Device side
CodeGeneration

HAL Dialect
Command Buffer

Generation

Device

Architecture
dependent
phase

ML execution: traditional “library approach” flow

Target ISA

Matmul kernel

Matmul library

ML execution libraryML model (e.g.
PyTorch) Graph compiler

Legend:

Compiler transformation

Library code (calls)

Easy way out

Popular in ML compilers: delegating primitives to libraries.

Result is sub-optimal:

● Usual “mode switch” design caveats.
● Results in a trade-off, not a combination, of scalability (of the compiler) and

performance (of the library).
● Loss of fusion opportunities at library-delegation boundaries.

ML execution: traditional “library approach” flow

Target ISA

Matmul kernel

Matmul library

ML execution libraryML model (e.g.
PyTorch) Graph compiler

Legend:

Design constraint flow

Design constraints flow from the bottom up

Design ground-truth constraint

Data-Tiling

Introducing layout transformations is not hard in itself.

What is hard is making that fit in the progressive-lowerings design of a retargetable compiler.

Source Dispatch
Creation Stream HAL CodeGen

SetEncodingPass:

Add attributes encoding
the role of that tensor
as, say, accumulator in
a f32 matmul

MaterializeEncodingPass:

linalg.pack : tensor<?x?xf32>
 into tensor<?x?x16x16xf32>

linalg.mmt4d

SpecializeEncodingPass:

Convert verbose encodings
into serialized encodings.

stream.tensor.sizeof
on(#device_a)
tensor<?x?xf32, #enc>

tensor<?x?xf32>

linalg.matmul

Verbose Encodings

#lhs_enc = #iree_encoding.encoding<
 operand_index = 0 : index,
 op_type = matmul,
 element_types = [f32, f32, f32],
 user_indexing_maps = [#map, #map1, #map2],
 iteration_sizes = [?, ?, ?]>

%encoded_lhs = iree_encoding.set_encoding %lhs :
tensor<?x?xf32> -> tensor<?x?xf32, #lhs_enc>

Verbose
Encoding

Stream

util.global private @device_a =
#hal.device.target<...>

stream.tensor.sizeof
on(#hal.device.affinity<@device_a>)
tensor<?x?xf32, #lhs_enc>{%d0, %d1}
: index

What does it mean?
How do I allocate a

buffer for the tensor?

IREE defines executable targets in IR that describes the properties.

Stream dialect doesn’t care about executable target details, but it needs to know affinities for
scheduling optimizations, including memory allocation for data-flow between dispatches.

The encoding resolvers
implement a couple of
interfaces to help lowerings.

Encoding Resolver

#executable_target_x86_64 =
 #hal.executable.target<"llvm-cpu", "xyz", {
 iree.encoding.resolver = #iree_cpu.cpu_encoding_layout<>,
 target_triple="x86_64-xyz-xyz",
 cpu_features="+avx512f"}>
util.global private @device_a =
 #hal.device.target<[#executable_target_x86_64]>

util.func {
 stream.tensor.sizeof on(#hal.device.affinity<@device_a>)
 tensor<?x?xf32, #enc>{%d0, %d1} : index
}

Encoding States and Interfaces

Verbose
Encoding

Serialized
Encoding

Physical
Operations and Types

LayoutResolverAttr:

An interface that help resolve
verbose encodings into
serialized/specialized encodings.

Attribute
getLayout(RankedTensorType type):

Returns an attribute that represents
a serialized layout.

SerializableAttr:

An interface that describes
encoding properties and should
have enough information for later
transformation.

Value calculateStorageSizeInBytes(
 RankedTensorType type,
 ValueRange dynamicDims)

Returns the storage size (in bytes) for
the tensor types with an optional
encoding.

LayoutMaterializerAttr:

An interface that provides a
set of interface method to
materialize encodings to
physical
operations/types/etc.

Mainly used in CodeGen.

Encoding Specialization

IREE runs the SpecializeEncoding pass that converts verbose encodings into serialized
encodings using LayoutResolverAttr interface.

The CPU encoding resolver implements
LayoutResolverAttr.

#lhs_encoding = #iree_encoding.encoding<
 operand_index = 0 : index,
 op_type = matmul,
 element_types = [f32, f32, f32],
 user_indexing_maps = [#map, #map1, #map2],
 iteration_sizes = [?, ?, ?]>

#lhs_encoding = #iree_encoding.layout<[
 #iree_cpu.cpu_encoding_layout<configuration = {
 encoding_info = {
 innerDimsPos = [0, 1],
 innerTileSizes = [16, 1],
 outerDimsPerm = [0, 1]
 }
 }>
]>

linalg.pack %src padding_value(%zero: f32)
 outer_dims_perm = [0, 1]
 inner_dims_pos = [0, 1]
 inner_tiles = [16, 1
 : tensor<?x?xf32> into tensor<?x?x16x16xf32>

LayoutResolverAttr::getLayout()

Encode Tensors into Storage Formats

The `stream.tensor.*` ops on tensor-like objects are transformed into
encoding-erased asynchronous `stream.async.*` ops and resolves (if possible)
symbolic encoding ops such as `stream.tensor.sizeof` into their final values.

#lhs_encoding = #iree_encoding.layout<[
 #iree_cpu.cpu_encoding_layout<configuration = {
 encoding_info = {
 innerDimsPos = [0, 1],
 innerTileSizes = [16, 1],
 outerDimsPerm = [0, 1]
 }
 }>
]>

util.func {
 %0 = stream.tensor.sizeof on(#hal.device.affinity<@device_a>)
 tensor<?x?xf32, #lhs_encoding>{%d0, %d1} : index
 util.return %0 : index
}

util.func {
 %0 = arith.ceildivsi %d0, %c16
 %1 = arith.muli %0, %c16
 %2 = arith.muli %1, %d1
 %3 = arith.muli %2, %c4
 util.return %3 : index
}

SerializableAttr::
calculateStorageSizeInBytes()

Encoding Summary

There are categories of encodings:

● Encoding Type Attribute: expected to be attached on encoding types. E.g.,
iree_encoding.encoding<op_type=matmul, …>

● Encoding Resolver: used to resolve and transform encoding type attributes.

There are three states of encoding type attribute:

● Verbose encoding
● Serialized encoding
● Physical operations and types

Encoding Summary - Cont

An encoding resolver implements some Encoding interfaces that transform
encoding type attributes between the states:

● LayoutResolverAttr: resolve verbose encodings into serialized/specialized
encodings.

● SerializableAttr: describes encoding properties that have enough information
for further transformation.

● LayoutMaterializerAttr: provides a set of interface methods to materialize
encodings to physical operations/types/etc.

Unlocked
Optimizations

Fusion, Hoisting, Constant Evaluation

As IREE is a retargetable compiler, it can see the whole program and fuse
encoding ops with producers easily; enables hoisting and constant evaluation.

%enc_lhs = flow.dispatch.region {
 %1 = linalg.reduction
 %2 = linalg.elementwise ins(%1)
 %3 = iree_encoding.set_encoding %2:
 tensor<?x?xf32> -> tensor<?x?xf32, #lhs_enc>
 flow.return %2
}

%matmul = flow.dispatch.region {
 %1 = linalg.matmul ins(%enc_lhs, %enc_weight)
 outs(%enc_dest) -> tensor<?x?xf32, #out_enc>
 %2 = iree_encoding.unset_encoding %1 :
 tensor<?x?xf32, #out_enc> -> tensor<?x?xf32>
 %result = linalg.elementwise ins(%2 ...)
 flow.return %result
}

util.global private @__weight : tensor<?x?xf32>
%enc_weight = flow.dispatch.region {
 %1 = iree_encoding.set_encoding %__weight:
 tensor<?x?xf32> -> tensor<?x?xf32, #rhs_enc>
 flow.return %1
}

Encoding Propagation - Working in Progress

Furthermore, we can do encoding propagation globally, which is similar to
data-layout propagation.

%enc_lhs = flow.dispatch.region {
 %1 = linalg.elementwise ins(%collapse_shape)
 %2 = iree_encoding.set_encoding %1:
 tensor<?x?xf32> -> tensor<?x?xf32, #lhs_enc>
 flow.return %2
}

%producer = flow.dispatch.region {
 %1 = linalg.elementwise
 flow.return %1
}

%collapse_shape = tensor.collaps_shape %producer

%enc_lhs = flow.dispatch.region {
 %1 = linalg.elementwise ins(%enc_src)
 flow.return %1
}

%enc_producer = flow.dispatch.region {
 %1 = linalg.elementwise
 %encoded = iree_encoding.set_encoding %1:
 tensor<?x?xf32> -> tensor<?x?xf32, #enc>
 flow.return %encoded
}

%enc_src = tensor.collaps_shape %ecn_prdocuer

Multi-Device - Working in Progress

We have been developing the multi-device feature in IREE, including
homogeneous computing and heterogeneous computing.

Demo for running matmul chain in heterogeneous computing concept, using
data-tiling: https://hackmd.io/@hwPnnvLBTB-JGVMeh-bCEA/rJL0g0JFke

func.func @multi_device() -> {
 %matmul_a = linalg.matmul
 %transient_op = flow.tensor.transfer %matmul_a
 : tensor<?x?xf32>{%M, %N} to #hal.device.affinity<@device_b>
 %matmul_b = linalg.matmul
 %add = linalg.elementwise_add ins(%transient_op, matmul_b)
 %result_a = flow.tensor.transfer %add
 : tensor<?x?xf32>{%M, %N} to #hal.device.affinity<@device_a>
 return %result
}

https://hackmd.io/@hwPnnvLBTB-JGVMeh-bCEA/rJL0g0JFke

Encodings are NOT Data-Tiling Specifics

IREE has the ability to specialize storage size based on logical tensor dimensions
with target-specific requirement.

Encoding work is a plus, not a requirement.

We have pad-based encoding strategy that allows IREE allocating larger storage
buffer for better cache line fit.

We have been developing split-k and stream-k ideas in IREE compiler concept,
that can use the encoding work: https://github.com/iree-org/iree/issues/21012

https://github.com/iree-org/iree/issues/21012

Future Work

● Move SetEncoding pass from GlobalOptimization phase to DispatchCreation
phase.

○ Enable consumer fusion for matmul kernels.
● Add const-evaluation support after DispatchCreation.
● Encoding Propagation.
● Homogeneous Computing + Data-Tiling
● Heterogeneous Computing + Data-Tiling
● https://github.com/iree-org/iree

https://github.com/iree-org/iree

