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What is IREE?

● A retargetable MLIR-based compiler for ML programs.
● Take ML workloads from various frontends (PyTorch, Jax, etc.) and execute 

on different backends (x86, Arm, NVIDIA GPUs, AMD GPUs, etc.)
● https://github.com/iree-org/iree
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   Inputs dialects
- Linalg (99%)
- LinalgExt (1%)

Flatbuffer (.vmfb)

Device-side Code
- Obj file
- PTX
- SPIR-V

Host Side
- VM Byte code 

Host/Device model

https://github.com/iree-org/iree


IREE Compiler Design

Global 
Optimizations

● Canonicalization
● Basic Fusion
● Transpose/Reshape 

propagation
● etc

Flow Dialect
Dispatch 
Creation

Partition program into 
dispatches

● Expected to be executed 
by many workers

● Workers for a dispatch 
not expected to 
synchronize

● Scratchspace memory 
perf worker

● Host side code captures 
dependences between 
dispatches

Host/Device
Split

Stream Dialect
Scheduling

Optimizations

Host

Most of
scheduling is
architecture 
agnostic

*.vmfb

Device side 
CodeGeneration

HAL Dialect
Command Buffer 

Generation

Device

Architecture 
dependent
phase



ML execution: traditional “library approach” flow

Target ISA

Matmul kernel

Matmul library

ML execution libraryML model (e.g. 
PyTorch) Graph compiler

Legend:

Compiler transformation

Library code (calls)



Easy way out

Popular in ML compilers: delegating primitives to libraries.

Result is sub-optimal:

● Usual “mode switch” design caveats.
● Results in a trade-off, not a combination, of scalability (of the compiler) and 

performance (of the library).
● Loss of fusion opportunities at library-delegation boundaries.



ML execution: traditional “library approach” flow

Target ISA

Matmul kernel

Matmul library

ML execution libraryML model (e.g. 
PyTorch) Graph compiler

Legend:

Design constraint flow

Design constraints flow from the bottom up

Design ground-truth constraint



Data-Tiling

Introducing layout transformations is not hard in itself.

What is hard is making that fit in the progressive-lowerings design of a retargetable compiler.

Source Dispatch
Creation Stream HAL CodeGen

SetEncodingPass:

Add attributes encoding 
the role of that tensor 
as, say, accumulator in 
a f32 matmul

MaterializeEncodingPass:

linalg.pack : tensor<?x?xf32>
 into tensor<?x?x16x16xf32>

linalg.mmt4d

SpecializeEncodingPass:

Convert verbose encodings 
into serialized encodings.

stream.tensor.sizeof
on(#device_a)
tensor<?x?xf32, #enc>

tensor<?x?xf32>

linalg.matmul



Verbose Encodings

#lhs_enc = #iree_encoding.encoding<
  operand_index = 0 : index,
  op_type =  matmul,
  element_types = [f32, f32, f32],
  user_indexing_maps = [#map, #map1, #map2],
  iteration_sizes = [?, ?, ?]>

%encoded_lhs = iree_encoding.set_encoding %lhs :
tensor<?x?xf32> -> tensor<?x?xf32, #lhs_enc>

Verbose 
Encoding

Stream

util.global private @device_a = 
#hal.device.target<...>

stream.tensor.sizeof
on(#hal.device.affinity<@device_a>)
tensor<?x?xf32, #lhs_enc>{%d0, %d1}
: index

What does it mean?
How do I allocate a 

buffer for the tensor?



IREE defines executable targets in IR that describes the properties.

Stream dialect doesn’t care about executable target details, but it needs to know affinities for 
scheduling optimizations, including memory allocation for data-flow between dispatches.

The encoding resolvers                                                                                               
implement a couple of                                                                                                   
interfaces to help lowerings.

Encoding Resolver

#executable_target_x86_64 =
  #hal.executable.target<"llvm-cpu", "xyz", {
    iree.encoding.resolver = #iree_cpu.cpu_encoding_layout<>,
    target_triple="x86_64-xyz-xyz",
    cpu_features="+avx512f"}>
util.global private @device_a =
  #hal.device.target<[#executable_target_x86_64]>

util.func {
  stream.tensor.sizeof on(#hal.device.affinity<@device_a>)
    tensor<?x?xf32, #enc>{%d0, %d1} : index
}



Encoding States and Interfaces

Verbose 
Encoding

Serialized 
Encoding

Physical
Operations and Types

LayoutResolverAttr:

An interface that help resolve 
verbose encodings into 
serialized/specialized encodings.

Attribute 
getLayout(RankedTensorType type):

Returns an attribute that represents 
a serialized layout.

SerializableAttr:

An interface that describes 
encoding properties and should 
have enough information for later 
transformation.

Value calculateStorageSizeInBytes(
  RankedTensorType type,
  ValueRange dynamicDims)

Returns the storage size (in bytes) for 
the tensor types with an optional 
encoding.

LayoutMaterializerAttr:

An interface that provides a 
set of interface method to 
materialize encodings to 
physical 
operations/types/etc.

Mainly used in CodeGen.



Encoding Specialization

IREE runs the SpecializeEncoding pass that converts verbose encodings into serialized 
encodings using LayoutResolverAttr interface.

The CPU encoding resolver implements                                                           
LayoutResolverAttr.

#lhs_encoding = #iree_encoding.encoding<
  operand_index = 0 : index,
  op_type =  matmul,
  element_types = [f32, f32, f32],
  user_indexing_maps = [#map, #map1, #map2],
  iteration_sizes = [?, ?, ?]>

#lhs_encoding = #iree_encoding.layout<[
  #iree_cpu.cpu_encoding_layout<configuration = {
    encoding_info = {
      innerDimsPos = [0, 1],
      innerTileSizes = [16, 1],
      outerDimsPerm = [0, 1]
    }
  }>
]>

linalg.pack %src padding_value(%zero: f32)
  outer_dims_perm = [0, 1]
  inner_dims_pos = [0, 1]
  inner_tiles = [16, 1
  : tensor<?x?xf32> into tensor<?x?x16x16xf32>

LayoutResolverAttr::getLayout()



Encode Tensors into Storage Formats 

The `stream.tensor.*` ops on tensor-like objects are transformed into 
encoding-erased asynchronous `stream.async.*` ops and resolves (if possible) 
symbolic encoding ops such as `stream.tensor.sizeof` into their final values.

#lhs_encoding = #iree_encoding.layout<[
  #iree_cpu.cpu_encoding_layout<configuration = {
    encoding_info = {
      innerDimsPos = [0, 1],
      innerTileSizes = [16, 1],
      outerDimsPerm = [0, 1]
    }
  }>
]>

util.func {
  %0 = stream.tensor.sizeof on(#hal.device.affinity<@device_a>)
    tensor<?x?xf32, #lhs_encoding>{%d0, %d1} : index
  util.return %0 : index
}

util.func {
  %0 = arith.ceildivsi %d0, %c16
  %1 = arith.muli %0, %c16
  %2 = arith.muli %1, %d1
  %3 = arith.muli %2, %c4
  util.return %3 : index
}

SerializableAttr::
calculateStorageSizeInBytes()



Encoding Summary

There are categories of encodings:

● Encoding Type Attribute: expected to be attached on encoding types. E.g., 
iree_encoding.encoding<op_type=matmul, …>

● Encoding Resolver: used to resolve and transform encoding type attributes.

There are three states of encoding type attribute:

● Verbose encoding
● Serialized encoding
● Physical operations and types



Encoding Summary - Cont

An encoding resolver implements some Encoding interfaces that transform 
encoding type attributes between the states:

● LayoutResolverAttr: resolve verbose encodings into serialized/specialized 
encodings.

● SerializableAttr: describes encoding properties that have enough information 
for further transformation.

● LayoutMaterializerAttr: provides a set of interface methods to materialize 
encodings to physical operations/types/etc.



Unlocked 
Optimizations



Fusion, Hoisting, Constant Evaluation

As IREE is a retargetable compiler, it can see the whole program and fuse 
encoding ops with producers easily; enables hoisting and constant evaluation.

%enc_lhs = flow.dispatch.region {
  %1 = linalg.reduction
  %2 = linalg.elementwise ins(%1)
  %3 = iree_encoding.set_encoding %2:
    tensor<?x?xf32> -> tensor<?x?xf32, #lhs_enc>
  flow.return %2
}

%matmul = flow.dispatch.region {
  %1 = linalg.matmul ins(%enc_lhs, %enc_weight)
    outs(%enc_dest) -> tensor<?x?xf32, #out_enc>
  %2 = iree_encoding.unset_encoding %1 :
    tensor<?x?xf32, #out_enc> -> tensor<?x?xf32>
  %result = linalg.elementwise ins(%2 ...)
  flow.return %result
}

util.global private @__weight : tensor<?x?xf32>
%enc_weight = flow.dispatch.region {
  %1 = iree_encoding.set_encoding %__weight:
    tensor<?x?xf32> -> tensor<?x?xf32, #rhs_enc>
  flow.return %1
}



Encoding Propagation - Working in Progress

Furthermore, we can do encoding propagation globally, which is similar to 
data-layout propagation.

%enc_lhs = flow.dispatch.region {
  %1 = linalg.elementwise ins(%collapse_shape)
  %2 = iree_encoding.set_encoding %1:
    tensor<?x?xf32> -> tensor<?x?xf32, #lhs_enc>
  flow.return %2
}

%producer = flow.dispatch.region {
  %1 = linalg.elementwise
  flow.return %1
}

%collapse_shape = tensor.collaps_shape %producer

%enc_lhs = flow.dispatch.region {
  %1 = linalg.elementwise ins(%enc_src)
  flow.return %1
}

%enc_producer = flow.dispatch.region {
  %1 = linalg.elementwise
  %encoded = iree_encoding.set_encoding %1:
    tensor<?x?xf32> -> tensor<?x?xf32, #enc>
  flow.return %encoded
}

%enc_src = tensor.collaps_shape %ecn_prdocuer



Multi-Device - Working in Progress

We have been developing the multi-device feature in IREE, including 
homogeneous computing and heterogeneous computing.

Demo for running matmul chain in heterogeneous computing concept, using 
data-tiling: https://hackmd.io/@hwPnnvLBTB-JGVMeh-bCEA/rJL0g0JFke

func.func @multi_device() -> {
  %matmul_a = linalg.matmul
  %transient_op = flow.tensor.transfer %matmul_a
     : tensor<?x?xf32>{%M, %N} to #hal.device.affinity<@device_b>
  %matmul_b = linalg.matmul
  %add = linalg.elementwise_add ins(%transient_op, matmul_b)
  %result_a = flow.tensor.transfer %add
     : tensor<?x?xf32>{%M, %N} to #hal.device.affinity<@device_a>
  return %result
}

https://hackmd.io/@hwPnnvLBTB-JGVMeh-bCEA/rJL0g0JFke


Encodings are NOT Data-Tiling Specifics

IREE has the ability to specialize storage size based on logical tensor dimensions 
with target-specific requirement.

Encoding work is a plus, not a requirement.

We have pad-based encoding strategy that allows IREE allocating larger storage 
buffer for better cache line fit.

We have been developing split-k and stream-k ideas in IREE compiler concept, 
that can use the encoding work: https://github.com/iree-org/iree/issues/21012

https://github.com/iree-org/iree/issues/21012


Future Work

● Move SetEncoding pass from GlobalOptimization phase to DispatchCreation 
phase.

○ Enable consumer fusion for matmul kernels.
● Add const-evaluation support after DispatchCreation.
● Encoding Propagation.
● Homogeneous Computing + Data-Tiling
● Heterogeneous Computing + Data-Tiling
● https://github.com/iree-org/iree

https://github.com/iree-org/iree

