
Safety at Scale: Advancing
Safety with 100s MLoC of C++

AsiaLLVM 2025
Kinuko Yasuda (Google)

Jun 10, 2025

Memory Safety, and C++’s (remarkable) unsafeness

Amount of the concerns, in numbers

● 50 years of memory unsafety, causing C++ services to crash and be
attacked

● Our internal analysis estimates 75% of CVEs used in zero-day exploits
are memory safety vulnerabilities

● In 2025, we keep seeing CVEs in the industry because of memory safety
issues (e.g. CVE-2025-1414, CVE-2025-22457)

Most (if not all)* of these would not have happened in the first place if they
were written in memory-safe languages, e.g. Rust
*) caveat JIT cases, unsafe part of MSL etc

The Problem Space in Our Scope

Memory Safety Spatial safety
Temporal safety
Type safety
Initialization safety
Data-race safety

Nullptr safety
Integer overflow safety
more! Dereference of nullptr

Out-of-bounds data
access

Use of uninitialized
memory

Use-after-free,
use-after-return,
double free, …

Spatial safety
Temporal safety

Many forms of UB, many forms of safety issues

Scale of C++ at Google

Lines of code O(1,000,000,000)

Pointer declarations O(10,000,000)

Source files O(1,000,000)

Production services O(100,000)

Developers O(10,000)

Google’s approaches for Memory Safety

Bug detection techniques like sanitizers and fuzzing allowed us to see the
size of the problem, however they are not enough to move the needle for
O(1B) LoC of C++

Two-pronged approach:

● Progressively and consistently adopt memory-safe languages (MSLs)
in new development wherever possible

● Retrofitting safety to our existing C++ codebase, with a stronger
focus on prevention and hardening at scale⬅ today’s focus

Spatial safety: Retrofitting spatial safety to our
C++ code base

Temporal safety: Pushing the boundaries of
limitations for C++ safety

Spatial safety issues in C++

Classic, but pretty common, and heavily exploited

int foo(const vector<int>& v) {
 ... // complex offset computation
 return v[offset];
}

void bar(int *p) {
 ...
 int x = p[i];
 ...
}

Simple solution, big challenges

If the memory access is outside the intended range, we’ll get UB…

int foo(const vector<int>& v) {
 ... // cryptic offset computation
 return v[offset];
}

Implement bounds
checking in common
data structures, e.g. in

std::vector

Solution: Insert runtime bounds checking

Libc++ Hardened Mode

Challenge: communicate why it makes sense despite the concerns of
● potential increase of deterministic crashes (that were previously heisenbugs)
● additional overhead for bounds-checking

across O(10^5) production services through measurement

Small steps…

First attempt made in late 2022, enabling it in development build only

1. Enabled in tests only
2. Baked in pre-prod, conducted

performance evaluations
3. Piloted with a small set of prod

services

 towards eventually enabling it by default

Surfaced O(1000) bugs
in each of tests-only,
pre-prod, entire prod

enablement steps

4. Eventually expanded to our
entire infrastructure (2024)
E.g. Search, Gmail, Drive,
YouTube, Maps, etc

Results and observations in retrospect

Our speculation: We thought that bounds checking would be too expensive for
production deployment

https://chandlerc.blog/posts/2024/11/story-time-bounds-checking/

The results: only 0.3% performance impact across our services on average

Our speculation: We thought that bounds checking would be too expensive for
production deployment

Results and observations in retrospect

https://chandlerc.blog/posts/2024/11/story-time-bounds-checking/

The results: only 0.3% performance impact across our services on average

Increased industry
awareness that we

need these checks in
production binaries

MSVC had added
such checks long
time ago, Apple

drove LLVM RFC for
safe buffers in C++

Multiple languages
with bounds checking
drove improvements in

LLVM
Profile-guided

optimizations (PGO)
for another big

difference

Apple’s performant libc++
hardening impl work, we

also contributed a fix that
pushed 0.35% to 0.3%!

Impact: preventing exploits, improved reliability
Disrupted or would have prevented internal red team exercises

Uncovered over 1,000 bugs, would prevent 1000-2000 bugs each year

30% reduction in Segmentation faults across our fleet

libc++ hardening
globally enabled

Next steps: Safe Buffers, and enable more hardening

● Following Apple’s RFC for safe buffers in C++
● “Automated” migration of code to use bounds-checkable containers

○ Reminder: O(10^7) pointers in our codebase!
○ Challenge: Where a buffer is built/decl’d, and where it is used, are often different
○ Needs to build pointer-flow graphs for each TU, and combine them to solve

across codebase

● Combined with compiler-assisted bounds checking where possible

Expect to be in a much better position for spatial safety in coming years!

Spatial safety: Retrofitting spatial safety to our
C++ code base

Temporal safety: Pushing the boundaries of
limitations for C++ safety

Temporal safety issues in C++

Yet another classic bug category, but huge source of crashes and exploits

Object* obj_;
obj_ = new Object();
...

void useObj() {
 obj_->doSomething();
}

void freeObj() {
 delete obj_;
}

std::string_view getSV() {
 std::string local = "stack";
 return local; // ⚠UaR
}

// ⚠UaF

Various solutions proposed… many involve runtime cost

Runtime mechanism and/or checks

● Garbage-collection
● Ref-counting
● Lock and key
● Zapping and quarantining, possibly combined with other techniques
● Never-free memory
● …

The cost has become significantly cheaper, but still n times more expensive
than bounds checking

Static solution: borrow checking?

● Semantics of “Ownership” concept in safer dialects of C/C++ eventually
evolved as “Borrow checking” in Rust

● Temporal safety errors can be statically avoided at compile-time

single exclusive mutable reference
⊕

multiple shared immutable references

Sounds nice? What is needed?

Static solution: borrow checking?

● Semantics of “Ownership” concept in safer dialects of C/C++ eventually
evolved as “Borrow checking” in Rust

● Temporal safety errors can be statically avoided at compile-time

single exclusive mutable reference
⊕

multiple shared immutable references
Lifetime information

at analysis
boundaries

Exclusive mutability

Sounds nice? What is needed?

Large discrepancy
from existing design

philosophy of C++

Let’s step back… and see what might still be possible

Long story short: we explored the solution space in Clang extensions,
with a focus on deployability and safety benefits in existing C++ code

We started with: lifetimebound and gsl::Pointer
● Community support: available since Clang 7 (2018~), MSVC 17.7 (2022~)
● Limited expressivity, however can tell lifetime contracts for subset cases

of what Rust’s lifetimes or [RFC] Lifetime annotations for C++ can cover
● These can add information that is lacking in C++ code otherwise

Can catch simple, statement-local violations in initialization cases like:

What the analysis could cover, and what it didn’t

Looks promising! However it couldn’t detect simpler variations like following:

std::string_view sv = absl::StrCat("Hello!", "world");

std::span<const int> ints = { 17, 19 };

std::string_view sv;
sv = absl::StrCat("returns", "temporary");

assignment case 😣

std::optional<string_view> osv = tmpString(); Nested case 😣

const Object* obj_;
obj_ = std::make_unique<Object>(var).get();

assignment case 😣

Can catch simple, statement-local violations in initialization cases like:

Extended the coverage of analysis in Clang 17+

We improved the analysis implementation, and they can be all caught today:

std::string_view sv = absl::StrCat("Hello!", "world");

std::span<const int> ints = { 17, 19 };

std::string_view sv;
sv = absl::StrCat("returns", "temporary");

assignment case ☺

std::optional<string_view> osv = tmpString(); Nested case ☺

const Object* obj_;
obj_ = std::make_unique<Object>(var).get();

assignment case ☺

More cases that are newly supported in Clang 20+
std::span<int> makeSpan() {
 int local[3] = {1, 2, 3};
 return std::span<int>(local);
}

returning stack address

void test() {
 std::vector<std::string_view> vsv;
 for (int i = 0; i < kBatchSize; ++i)
 vsv.push_back(absl::StrCat("/batch/", i));
}

standard container cases

struct S2 { std::string s2; };
void test() {
 std::string_view v = S2().s2; // dangling
}

Initialization from gsl::Owner

Limitation: can only express limited relationships

struct S {
 void capture(const std::string& x) { this->x = x; };
 std::string_view x;
};

void test(S& s) {
 s.capture(createTmpString()); // ⚠'s' captures a reference to a temporary
}

x is captured by ‘this’

lifetimebound can only cover the following contracts:
● A parameter of a function is referenced by its return value
● this object is referenced by the return value of its member function

But can’t express the following cases:
● A parameter of a member function is referenced by this object
● A parameter of a function is referenced by another parameter or a global variable

A “is referenced
by” B ⇒

A “should outlive” B

lifetime_capture_by for “referenced (captured) by X”

struct S {
 void set(const std::string& x [[clang::lifetime_capture_by(this)]]) {
 this->x = x;
 };
 std::string_view x;
}; captured by ‘this’

void addToSet(std::string_view s [[clang::lifetime_capture_by(set)]],
 std::set<std::string_view>& set) {
 set.insert(s);
} captured by another parameter

To express “a parameter is referenced (=~ captured) by X” cases

std::set<std::string_view> globalSet;
void addToGlobalSet(std::string_view s [[clang::lifetime_capture_by(global)]]) {
 globalSet.insert(s);
} captured by a global variable

Deployment

Steps we followed:

● Added the annotations to a set of key core libraries (absl and others)
● Fixed O(1000) existing violations across our codebase
● Enabled all of the improved analyses as warning-as-error by default

Similar amount of breakages, but much easier than libc++ hardening cases:
● All breakages happen at compile-time, not after they hit production
● Very obvious error locations and reasons; no need to decrypt stack traces
● No performance concerns

One of other learnings: there could be complicated UaFs, but many were also simple
ones-- in retrospect it feels funny how easy it was to introduce such errors

Impact: preventing violations, improved reliability

● Reduced ~35% of use-after-scope in tests
● ~17% of UaFs in production (GWP-Asan reports)

would have been prevented
● Surfacing O(100) warnings per week in the IDE,

preventing future UaFs from landing

Another push for the improved reliability:
~20% drop of unique crashing workloads (moving
average) with Segmentation faults

heap-use-after-free

stack-use-after-scope~35% drop in
stack-use-after

-scope

~20% drop in
unique crashing

workloads

SEGV Baseline

Current analysis doesn’t track lifetimes beyond single statement:

Next steps: flow-sensitive, intra-procedural analysis

std::string_view bar(bool cond) {
 std::string_view view = "default";
 if (cond) {
 std::string local = "local";
 view = local; // No warning!
 }
 return view; // ⚠
}

std::string_view foo() {
 std::string local = "local";
 std::string_view view = "default";
 view = local; // No warning!
 return view; // ⚠
}

● Proposing a new analysis implementation that performs CFG-based, flow-sensitive
points-to analysis inspired by the Rust’s borrow checker (Polonius)
https://discourse.llvm.org/t/rfc-intra-procedural-lifetime-analysis-in-clang/86291

● Still sticking to existing annotations (i.e. lifetimebound), however wishing to lay a better
foundation that can also support Rust-like lifetime annotations if/when Clang adopts it

Advancing safety with the unsafe reality of 100s MLoC of C++

● Invest in the prevention and hardening, where the benefits accrues as future
violations can also be prevented

● Adopting and retrofitting the learnings from Memory-safe languages
○ For Spatial safety: Default-enabled bounds checking everywhere
○ For temporal safety: Lifetime information & analysis
○ For initialization safety: Initialize ALL the things
○ For nullptr safety: Pointers should be able to state nullability contract

● Outcome
○ Surfaced and fixed O(1000) existing violations
○ Would keep preventing O(1000) violations each year
○ Had observable reliability wins
○ Demonstrated security effectiveness (against internal offense exercise)

Wrap up

Resources & RFCs: find us more at

Technical resources and RFCs

● RFC: C++ Buffer Hardening https://discourse.llvm.org/t/rfc-c-buffer-hardening/65734
● RFC: Lifetime annotations for C++

https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377
● Lifetime analysis improvements

https://discourse.llvm.org/t/lifetime-analysis-improvements-in-clang/81374
● RFC: Introduce [[lifetime_capture_by(X)]]

https://discourse.llvm.org/t/rfc-introduce-clang-lifetime-capture-by-x/81371
● RFC: Intra-procedural analysis in Clang

https://discourse.llvm.org/t/rfc-intra-procedural-lifetime-analysis-in-clang/86291

If you’re interested in discussing these topics more with us, join the discussions at
https://discourse.llvm.org/t/rfc-forming-llvm-working-group-on-memory-safety/84434

Thank you ☺

Utkarsh Saxena

Haojian Wu

Yitzhak Mandelbaum

Max Shavrick

Alex Rebert

Christopher Di Bella

Dmytro Hrybenko

Martin Brænne

Ilya Biryukov

Chandler Carruth

Gábor Horváth

Credits to all the active contributors who have been driving this area:

… and many more!

