64#include "llvm/IR/IntrinsicsAMDGPU.h"
93#define DEBUG_TYPE "irtranslator"
99 cl::desc(
"Should enable CSE in irtranslator"),
117 MF.getProperties().setFailedISel();
121 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
122 R << (
" (in function: " + MF.getName() +
")").str();
124 if (TPC.isGlobalISelAbortEnabled())
141 DILocationVerifier() =
default;
142 ~DILocationVerifier() =
default;
144 const Instruction *getCurrentInst()
const {
return CurrInst; }
145 void setCurrentInst(
const Instruction *Inst) { CurrInst = Inst; }
147 void erasingInstr(MachineInstr &
MI)
override {}
148 void changingInstr(MachineInstr &
MI)
override {}
149 void changedInstr(MachineInstr &
MI)
override {}
151 void createdInstr(MachineInstr &
MI)
override {
152 assert(getCurrentInst() &&
"Inserted instruction without a current MI");
157 <<
" was copied to " <<
MI);
163 (
MI.getParent()->isEntryBlock() && !
MI.getDebugLoc()) ||
164 (
MI.isDebugInstr())) &&
165 "Line info was not transferred to all instructions");
187IRTranslator::ValueToVRegInfo::VRegListT &
188IRTranslator::allocateVRegs(
const Value &Val) {
189 auto VRegsIt = VMap.findVRegs(Val);
190 if (VRegsIt != VMap.vregs_end())
191 return *VRegsIt->second;
192 auto *Regs = VMap.getVRegs(Val);
193 auto *Offsets = VMap.getOffsets(Val);
196 Offsets->empty() ? Offsets :
nullptr);
197 for (
unsigned i = 0; i < SplitTys.
size(); ++i)
203 auto VRegsIt = VMap.findVRegs(Val);
204 if (VRegsIt != VMap.vregs_end())
205 return *VRegsIt->second;
208 return *VMap.getVRegs(Val);
211 auto *VRegs = VMap.getVRegs(Val);
212 auto *Offsets = VMap.getOffsets(Val);
216 "Don't know how to create an empty vreg");
220 Offsets->empty() ? Offsets :
nullptr);
223 for (
auto Ty : SplitTys)
224 VRegs->push_back(
MRI->createGenericVirtualRegister(Ty));
232 while (
auto Elt =
C.getAggregateElement(Idx++)) {
233 auto EltRegs = getOrCreateVRegs(*Elt);
237 assert(SplitTys.size() == 1 &&
"unexpectedly split LLT");
238 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
241 OptimizationRemarkMissed
R(
"gisel-irtranslator",
"GISelFailure",
242 MF->getFunction().getSubprogram(),
243 &MF->getFunction().getEntryBlock());
244 R <<
"unable to translate constant: " <<
ore::NV(
"Type", Val.
getType());
253int IRTranslator::getOrCreateFrameIndex(
const AllocaInst &AI) {
254 auto [MapEntry,
Inserted] = FrameIndices.try_emplace(&AI);
256 return MapEntry->second;
263 Size = std::max<uint64_t>(
Size, 1u);
265 int &FI = MapEntry->second;
266 FI = MF->getFrameInfo().CreateStackObject(
Size, AI.
getAlign(),
false, &AI);
272 return SI->getAlign();
274 return LI->getAlign();
280 OptimizationRemarkMissed
R(
"gisel-irtranslator",
"", &
I);
281 R <<
"unable to translate memop: " <<
ore::NV(
"Opcode", &
I);
287 MachineBasicBlock *
MBB = FuncInfo.getMBB(&BB);
288 assert(
MBB &&
"BasicBlock was not encountered before");
293 assert(NewPred &&
"new predecessor must be a real MachineBasicBlock");
294 MachinePreds[
Edge].push_back(NewPred);
301 return U.getType()->getScalarType()->isBFloatTy() ||
303 return V->getType()->getScalarType()->isBFloatTy();
307bool IRTranslator::translateBinaryOp(
unsigned Opcode,
const User &U,
316 Register Op0 = getOrCreateVReg(*
U.getOperand(0));
317 Register Op1 = getOrCreateVReg(*
U.getOperand(1));
329bool IRTranslator::translateUnaryOp(
unsigned Opcode,
const User &U,
334 Register Op0 = getOrCreateVReg(*
U.getOperand(0));
346 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
349bool IRTranslator::translateCompare(
const User &U,
355 Register Op0 = getOrCreateVReg(*
U.getOperand(0));
356 Register Op1 = getOrCreateVReg(*
U.getOperand(1));
361 MIRBuilder.
buildICmp(Pred, Res, Op0, Op1, Flags);
369 MIRBuilder.
buildFCmp(Pred, Res, Op0, Op1, Flags);
377 if (Ret && DL->getTypeStoreSize(
Ret->getType()).isZero())
382 VRegs = getOrCreateVRegs(*Ret);
385 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
386 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
387 &RI, &MIRBuilder.
getMBB(), SwiftError.getFunctionArg());
393 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
396void IRTranslator::emitBranchForMergedCondition(
405 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
408 Condition = InvertCond ?
FC->getInversePredicate() :
FC->getPredicate();
411 SwitchCG::CaseBlock CB(Condition,
false, BOp->getOperand(0),
412 BOp->getOperand(1),
nullptr,
TBB, FBB, CurBB,
413 CurBuilder->getDebugLoc(), TProb, FProb);
414 SL->SwitchCases.push_back(CB);
420 SwitchCG::CaseBlock CB(
422 nullptr,
TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
423 SL->SwitchCases.push_back(CB);
428 return I->getParent() == BB;
432void IRTranslator::findMergedConditions(
437 using namespace PatternMatch;
438 assert((
Opc == Instruction::And ||
Opc == Instruction::Or) &&
439 "Expected Opc to be AND/OR");
445 findMergedConditions(NotCond,
TBB, FBB, CurBB, SwitchBB,
Opc, TProb, FProb,
451 const Value *BOpOp0, *BOpOp1;
465 if (BOpc == Instruction::And)
466 BOpc = Instruction::Or;
467 else if (BOpc == Instruction::Or)
468 BOpc = Instruction::And;
474 bool BOpIsInOrAndTree = BOpc && BOpc ==
Opc && BOp->
hasOneUse();
478 emitBranchForMergedCondition(
Cond,
TBB, FBB, CurBB, SwitchBB, TProb, FProb,
485 MachineBasicBlock *TmpBB =
489 if (
Opc == Instruction::Or) {
510 auto NewTrueProb = TProb / 2;
511 auto NewFalseProb = TProb / 2 + FProb;
513 findMergedConditions(BOpOp0,
TBB, TmpBB, CurBB, SwitchBB,
Opc, NewTrueProb,
514 NewFalseProb, InvertCond);
520 findMergedConditions(BOpOp1,
TBB, FBB, TmpBB, SwitchBB,
Opc, Probs[0],
521 Probs[1], InvertCond);
523 assert(
Opc == Instruction::And &&
"Unknown merge op!");
543 auto NewTrueProb = TProb + FProb / 2;
544 auto NewFalseProb = FProb / 2;
546 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB,
Opc, NewTrueProb,
547 NewFalseProb, InvertCond);
553 findMergedConditions(BOpOp1,
TBB, FBB, TmpBB, SwitchBB,
Opc, Probs[0],
554 Probs[1], InvertCond);
558bool IRTranslator::shouldEmitAsBranches(
559 const std::vector<SwitchCG::CaseBlock> &Cases) {
561 if (Cases.size() != 2)
566 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
567 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
568 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
569 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
575 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
576 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
580 Cases[0].TrueBB == Cases[1].ThisBB)
583 Cases[0].FalseBB == Cases[1].ThisBB)
592 auto &CurMBB = MIRBuilder.
getMBB();
598 !CurMBB.isLayoutSuccessor(Succ0MBB))
602 for (
const BasicBlock *Succ :
successors(&BrInst))
603 CurMBB.addSuccessor(&getMBB(*Succ));
610 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.
getSuccessor(1));
629 using namespace PatternMatch;
631 if (!TLI->isJumpExpensive() && CondI && CondI->
hasOneUse() &&
632 !BrInst.
hasMetadata(LLVMContext::MD_unpredictable)) {
635 const Value *BOp0, *BOp1;
637 Opcode = Instruction::And;
639 Opcode = Instruction::Or;
643 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
644 getEdgeProbability(&CurMBB, Succ0MBB),
645 getEdgeProbability(&CurMBB, Succ1MBB),
647 assert(SL->SwitchCases[0].ThisBB == &CurMBB &&
"Unexpected lowering!");
650 if (shouldEmitAsBranches(SL->SwitchCases)) {
652 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
653 SL->SwitchCases.erase(SL->SwitchCases.begin());
659 for (
unsigned I = 1,
E = SL->SwitchCases.size();
I !=
E; ++
I)
660 MF->erase(SL->SwitchCases[
I].ThisBB);
662 SL->SwitchCases.clear();
669 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
670 CurBuilder->getDebugLoc());
674 emitSwitchCase(CB, &CurMBB, *CurBuilder);
682 Src->addSuccessorWithoutProb(Dst);
686 Prob = getEdgeProbability(Src, Dst);
687 Src->addSuccessor(Dst, Prob);
693 const BasicBlock *SrcBB = Src->getBasicBlock();
694 const BasicBlock *DstBB = Dst->getBasicBlock();
698 auto SuccSize = std::max<uint32_t>(
succ_size(SrcBB), 1);
699 return BranchProbability(1, SuccSize);
701 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
705 using namespace SwitchCG;
708 BranchProbabilityInfo *BPI = FuncInfo.BPI;
710 Clusters.reserve(
SI.getNumCases());
711 for (
const auto &
I :
SI.cases()) {
712 MachineBasicBlock *Succ = &getMBB(*
I.getCaseSuccessor());
713 assert(Succ &&
"Could not find successor mbb in mapping");
714 const ConstantInt *CaseVal =
I.getCaseValue();
715 BranchProbability Prob =
717 : BranchProbability(1,
SI.getNumCases() + 1);
718 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
721 MachineBasicBlock *DefaultMBB = &getMBB(*
SI.getDefaultDest());
728 MachineBasicBlock *SwitchMBB = &getMBB(*
SI.getParent());
731 if (Clusters.empty()) {
738 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB,
nullptr,
nullptr);
739 SL->findBitTestClusters(Clusters, &SI);
742 dbgs() <<
"Case clusters: ";
743 for (
const CaseCluster &
C : Clusters) {
744 if (
C.Kind == CC_JumpTable)
746 if (
C.Kind == CC_BitTests)
749 C.Low->getValue().print(
dbgs(),
true);
750 if (
C.Low !=
C.High) {
752 C.High->getValue().print(
dbgs(),
true);
759 assert(!Clusters.empty());
763 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
764 WorkList.push_back({SwitchMBB,
First,
Last,
nullptr,
nullptr, DefaultProb});
766 while (!WorkList.empty()) {
767 SwitchWorkListItem
W = WorkList.pop_back_val();
769 unsigned NumClusters =
W.LastCluster -
W.FirstCluster + 1;
771 if (NumClusters > 3 &&
774 splitWorkItem(WorkList, W,
SI.getCondition(), SwitchMBB, MIB);
778 if (!lowerSwitchWorkItem(W,
SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
788 using namespace SwitchCG;
789 assert(
W.FirstCluster->Low->getValue().slt(
W.LastCluster->Low->getValue()) &&
790 "Clusters not sorted?");
791 assert(
W.LastCluster -
W.FirstCluster + 1 >= 2 &&
"Too small to split!");
793 auto [LastLeft, FirstRight, LeftProb, RightProb] =
794 SL->computeSplitWorkItemInfo(W);
799 assert(PivotCluster >
W.FirstCluster);
800 assert(PivotCluster <=
W.LastCluster);
805 const ConstantInt *Pivot = PivotCluster->Low;
814 MachineBasicBlock *LeftMBB;
815 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
816 FirstLeft->Low ==
W.GE &&
817 (FirstLeft->High->getValue() + 1LL) == Pivot->
getValue()) {
818 LeftMBB = FirstLeft->MBB;
820 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
821 FuncInfo.MF->
insert(BBI, LeftMBB);
823 {LeftMBB, FirstLeft, LastLeft,
W.GE, Pivot,
W.DefaultProb / 2});
829 MachineBasicBlock *RightMBB;
830 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
W.LT &&
831 (FirstRight->High->getValue() + 1ULL) ==
W.LT->getValue()) {
832 RightMBB = FirstRight->MBB;
834 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
835 FuncInfo.MF->
insert(BBI, RightMBB);
837 {RightMBB, FirstRight, LastRight, Pivot,
W.LT,
W.DefaultProb / 2});
845 if (
W.MBB == SwitchMBB)
846 emitSwitchCase(CB, SwitchMBB, MIB);
848 SL->SwitchCases.push_back(CB);
854 assert(
JT.Reg &&
"Should lower JT Header first!");
869 MachineIRBuilder MIB(*HeaderBB->
getParent());
876 Register SwitchOpReg = getOrCreateVReg(SValue);
878 auto Sub = MIB.
buildSub({SwitchTy}, SwitchOpReg, FirstCst);
883 const LLT PtrScalarTy =
LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
886 JT.Reg =
Sub.getReg(0);
897 auto Cst = getOrCreateVReg(
938 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
952 "Can only handle SLE ranges");
963 const LLT CmpTy = MRI->getType(CmpOpReg);
964 auto Sub = MIB.
buildSub({CmpTy}, CmpOpReg, CondLHS);
999 bool FallthroughUnreachable) {
1000 using namespace SwitchCG;
1001 MachineFunction *CurMF = SwitchMBB->
getParent();
1003 JumpTableHeader *JTH = &SL->JTCases[
I->JTCasesIndex].first;
1004 SwitchCG::JumpTable *
JT = &SL->JTCases[
I->JTCasesIndex].second;
1005 BranchProbability DefaultProb =
W.DefaultProb;
1008 MachineBasicBlock *JumpMBB =
JT->MBB;
1009 CurMF->
insert(BBI, JumpMBB);
1019 auto JumpProb =
I->Prob;
1020 auto FallthroughProb = UnhandledProbs;
1028 if (*SI == DefaultMBB) {
1029 JumpProb += DefaultProb / 2;
1030 FallthroughProb -= DefaultProb / 2;
1035 addMachineCFGPred({SwitchMBB->
getBasicBlock(), (*SI)->getBasicBlock()},
1040 if (FallthroughUnreachable)
1041 JTH->FallthroughUnreachable =
true;
1043 if (!JTH->FallthroughUnreachable)
1044 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
1045 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
1050 JTH->HeaderBB = CurMBB;
1051 JT->Default = Fallthrough;
1054 if (CurMBB == SwitchMBB) {
1055 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
1057 JTH->Emitted =
true;
1064 bool FallthroughUnreachable,
1069 using namespace SwitchCG;
1072 if (
I->Low ==
I->High) {
1088 CaseBlock CB(Pred, FallthroughUnreachable,
LHS,
RHS, MHS,
I->MBB, Fallthrough,
1091 emitSwitchCase(CB, SwitchMBB, MIB);
1097 MachineIRBuilder &MIB = *CurBuilder;
1101 Register SwitchOpReg = getOrCreateVReg(*
B.SValue);
1103 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1105 auto RangeSub = MIB.
buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1110 LLT MaskTy = SwitchOpTy;
1116 for (
const SwitchCG::BitTestCase &Case :
B.Cases) {
1126 if (SwitchOpTy != MaskTy)
1132 MachineBasicBlock *
MBB =
B.Cases[0].ThisBB;
1134 if (!
B.FallthroughUnreachable)
1135 addSuccessorWithProb(SwitchBB,
B.Default,
B.DefaultProb);
1136 addSuccessorWithProb(SwitchBB,
MBB,
B.Prob);
1140 if (!
B.FallthroughUnreachable) {
1144 RangeSub, RangeCst);
1158 MachineIRBuilder &MIB = *CurBuilder;
1164 if (PopCount == 1) {
1167 auto MaskTrailingZeros =
1172 }
else if (PopCount == BB.
Range) {
1174 auto MaskTrailingOnes =
1181 auto SwitchVal = MIB.
buildShl(SwitchTy, CstOne,
Reg);
1185 auto AndOp = MIB.
buildAnd(SwitchTy, SwitchVal, CstMask);
1192 addSuccessorWithProb(SwitchBB,
B.TargetBB,
B.ExtraProb);
1194 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1212bool IRTranslator::lowerBitTestWorkItem(
1218 bool FallthroughUnreachable) {
1219 using namespace SwitchCG;
1220 MachineFunction *CurMF = SwitchMBB->
getParent();
1222 BitTestBlock *BTB = &SL->BitTestCases[
I->BTCasesIndex];
1224 for (BitTestCase &BTC : BTB->Cases)
1225 CurMF->
insert(BBI, BTC.ThisBB);
1228 BTB->Parent = CurMBB;
1229 BTB->Default = Fallthrough;
1231 BTB->DefaultProb = UnhandledProbs;
1235 if (!BTB->ContiguousRange) {
1236 BTB->Prob += DefaultProb / 2;
1237 BTB->DefaultProb -= DefaultProb / 2;
1240 if (FallthroughUnreachable)
1241 BTB->FallthroughUnreachable =
true;
1244 if (CurMBB == SwitchMBB) {
1245 emitBitTestHeader(*BTB, SwitchMBB);
1246 BTB->Emitted =
true;
1256 using namespace SwitchCG;
1257 MachineFunction *CurMF = FuncInfo.MF;
1258 MachineBasicBlock *NextMBB =
nullptr;
1260 if (++BBI != FuncInfo.MF->end())
1269 [](
const CaseCluster &a,
const CaseCluster &b) {
1270 return a.Prob != b.Prob
1272 : a.Low->getValue().slt(b.Low->getValue());
1277 for (CaseClusterIt
I =
W.LastCluster;
I >
W.FirstCluster;) {
1279 if (
I->Prob >
W.LastCluster->Prob)
1281 if (
I->Kind == CC_Range &&
I->MBB == NextMBB) {
1289 BranchProbability DefaultProb =
W.DefaultProb;
1290 BranchProbability UnhandledProbs = DefaultProb;
1291 for (CaseClusterIt
I =
W.FirstCluster;
I <=
W.LastCluster; ++
I)
1292 UnhandledProbs +=
I->Prob;
1294 MachineBasicBlock *CurMBB =
W.MBB;
1295 for (CaseClusterIt
I =
W.FirstCluster,
E =
W.LastCluster;
I <=
E; ++
I) {
1296 bool FallthroughUnreachable =
false;
1297 MachineBasicBlock *Fallthrough;
1298 if (
I ==
W.LastCluster) {
1300 Fallthrough = DefaultMBB;
1305 CurMF->
insert(BBI, Fallthrough);
1307 UnhandledProbs -=
I->Prob;
1311 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1312 DefaultProb, UnhandledProbs,
I, Fallthrough,
1313 FallthroughUnreachable)) {
1321 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1322 UnhandledProbs,
I, Fallthrough,
1323 FallthroughUnreachable)) {
1330 if (!lowerSwitchRangeWorkItem(
I,
Cond, Fallthrough,
1331 FallthroughUnreachable, UnhandledProbs,
1332 CurMBB, MIB, SwitchMBB)) {
1339 CurMBB = Fallthrough;
1345bool IRTranslator::translateIndirectBr(
const User &U,
1353 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1354 MachineBasicBlock &CurBB = MIRBuilder.
getMBB();
1355 for (
const BasicBlock *Succ :
successors(&BrInst)) {
1359 if (!AddedSuccessors.
insert(Succ).second)
1369 return Arg->hasSwiftErrorAttr();
1377 TypeSize StoreSize = DL->getTypeStoreSize(LI.
getType());
1382 ArrayRef<uint64_t>
Offsets = *VMap.getOffsets(LI);
1387 Type *OffsetIRTy = DL->getIndexType(
Ptr->getType());
1391 assert(Regs.
size() == 1 &&
"swifterror should be single pointer");
1393 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.
getMBB(),
Ptr);
1399 TLI->getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1401 if (AA->pointsToConstantMemory(
1409 for (
unsigned i = 0; i < Regs.
size(); ++i) {
1414 Align BaseAlign = getMemOpAlign(LI);
1415 auto MMO = MF->getMachineMemOperand(
1416 Ptr, Flags, MRI->getType(Regs[i]),
1419 MIRBuilder.
buildLoad(Regs[i], Addr, *MMO);
1427 if (DL->getTypeStoreSize(
SI.getValueOperand()->getType()).isZero())
1431 ArrayRef<uint64_t>
Offsets = *VMap.getOffsets(*
SI.getValueOperand());
1434 Type *OffsetIRTy = DL->getIndexType(
SI.getPointerOperandType());
1437 if (CLI->supportSwiftError() &&
isSwiftError(
SI.getPointerOperand())) {
1438 assert(Vals.
size() == 1 &&
"swifterror should be single pointer");
1440 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.
getMBB(),
1441 SI.getPointerOperand());
1448 for (
unsigned i = 0; i < Vals.
size(); ++i) {
1452 MachinePointerInfo
Ptr(
SI.getPointerOperand(), Offsets[i] / 8);
1453 Align BaseAlign = getMemOpAlign(SI);
1454 auto MMO = MF->getMachineMemOperand(
1455 Ptr, Flags, MRI->getType(Vals[i]),
1457 SI.getSyncScopeID(),
SI.getOrdering());
1464 const Value *Src = U.getOperand(0);
1473 for (
auto Idx : EVI->indices())
1476 for (
auto Idx : IVI->indices())
1483 DL.getIndexedOffsetInType(Src->getType(), Indices));
1486bool IRTranslator::translateExtractValue(
const User &U,
1488 const Value *Src =
U.getOperand(0);
1491 ArrayRef<uint64_t>
Offsets = *VMap.getOffsets(*Src);
1493 auto &DstRegs = allocateVRegs(U);
1495 for (
unsigned i = 0; i < DstRegs.size(); ++i)
1496 DstRegs[i] = SrcRegs[Idx++];
1501bool IRTranslator::translateInsertValue(
const User &U,
1503 const Value *Src =
U.getOperand(0);
1505 auto &DstRegs = allocateVRegs(U);
1506 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1509 auto *InsertedIt = InsertedRegs.
begin();
1511 for (
unsigned i = 0; i < DstRegs.size(); ++i) {
1512 if (DstOffsets[i] >=
Offset && InsertedIt != InsertedRegs.
end())
1513 DstRegs[i] = *InsertedIt++;
1515 DstRegs[i] = SrcRegs[i];
1521bool IRTranslator::translateSelect(
const User &U,
1523 Register Tst = getOrCreateVReg(*
U.getOperand(0));
1532 for (
unsigned i = 0; i < ResRegs.
size(); ++i) {
1533 MIRBuilder.
buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1539bool IRTranslator::translateCopy(
const User &U,
const Value &V,
1542 auto &Regs = *VMap.getVRegs(U);
1544 Regs.push_back(Src);
1545 VMap.getOffsets(U)->push_back(0);
1554bool IRTranslator::translateBitCast(
const User &U,
1562 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1564 return translateCopy(U, *
U.getOperand(0), MIRBuilder);
1567 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1570bool IRTranslator::translateCast(
unsigned Opcode,
const User &U,
1585bool IRTranslator::translateGetElementPtr(
const User &U,
1587 Value &Op0 = *
U.getOperand(0);
1591 Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1594 uint32_t PtrAddFlags = 0;
1600 auto PtrAddFlagsWithConst = [&](int64_t
Offset) {
1610 unsigned VectorWidth = 0;
1614 bool WantSplatVector =
false;
1618 WantSplatVector = VectorWidth > 1;
1623 if (WantSplatVector && !PtrTy.
isVector()) {
1630 OffsetIRTy = DL->getIndexType(PtrIRTy);
1637 const Value *Idx = GTI.getOperand();
1638 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1640 Offset += DL->getStructLayout(StTy)->getElementOffset(
Field);
1643 uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
1648 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) {
1649 Offset += ElementSize * *Val;
1658 PtrAddFlagsWithConst(
Offset))
1663 Register IdxReg = getOrCreateVReg(*Idx);
1664 LLT IdxTy = MRI->getType(IdxReg);
1665 if (IdxTy != OffsetTy) {
1666 if (!IdxTy.
isVector() && WantSplatVector) {
1679 if (ElementSize != 1) {
1690 MIRBuilder.
buildMul(OffsetTy, IdxReg, ElementSizeMIB, ScaleFlags)
1693 GepOffsetReg = IdxReg;
1697 MIRBuilder.
buildPtrAdd(PtrTy, BaseReg, GepOffsetReg, PtrAddFlags)
1706 MIRBuilder.
buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0),
1707 PtrAddFlagsWithConst(
Offset));
1711 MIRBuilder.
buildCopy(getOrCreateVReg(U), BaseReg);
1715bool IRTranslator::translateMemFunc(
const CallInst &CI,
1725 unsigned MinPtrSize = UINT_MAX;
1726 for (
auto AI = CI.
arg_begin(), AE = CI.
arg_end(); std::next(AI) != AE; ++AI) {
1727 Register SrcReg = getOrCreateVReg(**AI);
1728 LLT SrcTy = MRI->getType(SrcReg);
1730 MinPtrSize = std::min<unsigned>(SrcTy.
getSizeInBits(), MinPtrSize);
1738 if (MRI->getType(SizeOpReg) != SizeTy)
1750 ConstantInt *CopySize =
nullptr;
1753 DstAlign = MCI->getDestAlign().valueOrOne();
1754 SrcAlign = MCI->getSourceAlign().valueOrOne();
1757 DstAlign = MMI->getDestAlign().valueOrOne();
1758 SrcAlign = MMI->getSourceAlign().valueOrOne();
1762 DstAlign = MSI->getDestAlign().valueOrOne();
1765 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1781 if (AA && CopySize &&
1782 AA->pointsToConstantMemory(MemoryLocation(
1792 ICall.addMemOperand(
1793 MF->getMachineMemOperand(MachinePointerInfo(CI.
getArgOperand(0)),
1794 StoreFlags, 1, DstAlign, AAInfo));
1795 if (Opcode != TargetOpcode::G_MEMSET)
1796 ICall.addMemOperand(MF->getMachineMemOperand(
1797 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1802bool IRTranslator::translateTrap(
const CallInst &CI,
1805 StringRef TrapFuncName =
1806 CI.
getAttributes().getFnAttr(
"trap-func-name").getValueAsString();
1807 if (TrapFuncName.
empty()) {
1808 if (Opcode == TargetOpcode::G_UBSANTRAP) {
1817 CallLowering::CallLoweringInfo
Info;
1818 if (Opcode == TargetOpcode::G_UBSANTRAP)
1825 return CLI->lowerCall(MIRBuilder,
Info);
1828bool IRTranslator::translateVectorInterleave2Intrinsic(
1831 "This function can only be called on the interleave2 intrinsic!");
1835 Register Res = getOrCreateVReg(CI);
1837 LLT OpTy = MRI->getType(Op0);
1844bool IRTranslator::translateVectorDeinterleave2Intrinsic(
1847 "This function can only be called on the deinterleave2 intrinsic!");
1854 LLT ResTy = MRI->getType(Res[0]);
1863void IRTranslator::getStackGuard(
Register DstReg,
1865 const TargetRegisterInfo *
TRI = MF->getSubtarget().getRegisterInfo();
1866 MRI->setRegClass(DstReg,
TRI->getPointerRegClass());
1868 MIRBuilder.
buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1870 Value *
Global = TLI->getSDagStackGuard(*MF->getFunction().getParent());
1874 unsigned AddrSpace =
Global->getType()->getPointerAddressSpace();
1875 LLT PtrTy =
LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1877 MachinePointerInfo MPInfo(
Global);
1880 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1881 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1882 MIB.setMemRefs({MemRef});
1885bool IRTranslator::translateOverflowIntrinsic(
const CallInst &CI,
unsigned Op,
1889 Op, {ResRegs[0], ResRegs[1]},
1895bool IRTranslator::translateFixedPointIntrinsic(
unsigned Op,
const CallInst &CI,
1897 Register Dst = getOrCreateVReg(CI);
1901 MIRBuilder.
buildInstr(
Op, {Dst}, { Src0, Src1, Scale });
1909 case Intrinsic::acos:
1910 return TargetOpcode::G_FACOS;
1911 case Intrinsic::asin:
1912 return TargetOpcode::G_FASIN;
1913 case Intrinsic::atan:
1914 return TargetOpcode::G_FATAN;
1915 case Intrinsic::atan2:
1916 return TargetOpcode::G_FATAN2;
1917 case Intrinsic::bswap:
1918 return TargetOpcode::G_BSWAP;
1919 case Intrinsic::bitreverse:
1920 return TargetOpcode::G_BITREVERSE;
1921 case Intrinsic::fshl:
1922 return TargetOpcode::G_FSHL;
1923 case Intrinsic::fshr:
1924 return TargetOpcode::G_FSHR;
1925 case Intrinsic::ceil:
1926 return TargetOpcode::G_FCEIL;
1927 case Intrinsic::cos:
1928 return TargetOpcode::G_FCOS;
1929 case Intrinsic::cosh:
1930 return TargetOpcode::G_FCOSH;
1931 case Intrinsic::ctpop:
1932 return TargetOpcode::G_CTPOP;
1933 case Intrinsic::exp:
1934 return TargetOpcode::G_FEXP;
1935 case Intrinsic::exp2:
1936 return TargetOpcode::G_FEXP2;
1937 case Intrinsic::exp10:
1938 return TargetOpcode::G_FEXP10;
1939 case Intrinsic::fabs:
1940 return TargetOpcode::G_FABS;
1941 case Intrinsic::copysign:
1942 return TargetOpcode::G_FCOPYSIGN;
1943 case Intrinsic::minnum:
1944 return TargetOpcode::G_FMINNUM;
1945 case Intrinsic::maxnum:
1946 return TargetOpcode::G_FMAXNUM;
1947 case Intrinsic::minimum:
1948 return TargetOpcode::G_FMINIMUM;
1949 case Intrinsic::maximum:
1950 return TargetOpcode::G_FMAXIMUM;
1951 case Intrinsic::minimumnum:
1952 return TargetOpcode::G_FMINIMUMNUM;
1953 case Intrinsic::maximumnum:
1954 return TargetOpcode::G_FMAXIMUMNUM;
1955 case Intrinsic::canonicalize:
1956 return TargetOpcode::G_FCANONICALIZE;
1957 case Intrinsic::floor:
1958 return TargetOpcode::G_FFLOOR;
1959 case Intrinsic::fma:
1960 return TargetOpcode::G_FMA;
1961 case Intrinsic::log:
1962 return TargetOpcode::G_FLOG;
1963 case Intrinsic::log2:
1964 return TargetOpcode::G_FLOG2;
1965 case Intrinsic::log10:
1966 return TargetOpcode::G_FLOG10;
1967 case Intrinsic::ldexp:
1968 return TargetOpcode::G_FLDEXP;
1969 case Intrinsic::nearbyint:
1970 return TargetOpcode::G_FNEARBYINT;
1971 case Intrinsic::pow:
1972 return TargetOpcode::G_FPOW;
1973 case Intrinsic::powi:
1974 return TargetOpcode::G_FPOWI;
1975 case Intrinsic::rint:
1976 return TargetOpcode::G_FRINT;
1977 case Intrinsic::round:
1978 return TargetOpcode::G_INTRINSIC_ROUND;
1979 case Intrinsic::roundeven:
1980 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1981 case Intrinsic::sin:
1982 return TargetOpcode::G_FSIN;
1983 case Intrinsic::sinh:
1984 return TargetOpcode::G_FSINH;
1985 case Intrinsic::sqrt:
1986 return TargetOpcode::G_FSQRT;
1987 case Intrinsic::tan:
1988 return TargetOpcode::G_FTAN;
1989 case Intrinsic::tanh:
1990 return TargetOpcode::G_FTANH;
1991 case Intrinsic::trunc:
1992 return TargetOpcode::G_INTRINSIC_TRUNC;
1993 case Intrinsic::readcyclecounter:
1994 return TargetOpcode::G_READCYCLECOUNTER;
1995 case Intrinsic::readsteadycounter:
1996 return TargetOpcode::G_READSTEADYCOUNTER;
1997 case Intrinsic::ptrmask:
1998 return TargetOpcode::G_PTRMASK;
1999 case Intrinsic::lrint:
2000 return TargetOpcode::G_INTRINSIC_LRINT;
2001 case Intrinsic::llrint:
2002 return TargetOpcode::G_INTRINSIC_LLRINT;
2004 case Intrinsic::vector_reduce_fmin:
2005 return TargetOpcode::G_VECREDUCE_FMIN;
2006 case Intrinsic::vector_reduce_fmax:
2007 return TargetOpcode::G_VECREDUCE_FMAX;
2008 case Intrinsic::vector_reduce_fminimum:
2009 return TargetOpcode::G_VECREDUCE_FMINIMUM;
2010 case Intrinsic::vector_reduce_fmaximum:
2011 return TargetOpcode::G_VECREDUCE_FMAXIMUM;
2012 case Intrinsic::vector_reduce_add:
2013 return TargetOpcode::G_VECREDUCE_ADD;
2014 case Intrinsic::vector_reduce_mul:
2015 return TargetOpcode::G_VECREDUCE_MUL;
2016 case Intrinsic::vector_reduce_and:
2017 return TargetOpcode::G_VECREDUCE_AND;
2018 case Intrinsic::vector_reduce_or:
2019 return TargetOpcode::G_VECREDUCE_OR;
2020 case Intrinsic::vector_reduce_xor:
2021 return TargetOpcode::G_VECREDUCE_XOR;
2022 case Intrinsic::vector_reduce_smax:
2023 return TargetOpcode::G_VECREDUCE_SMAX;
2024 case Intrinsic::vector_reduce_smin:
2025 return TargetOpcode::G_VECREDUCE_SMIN;
2026 case Intrinsic::vector_reduce_umax:
2027 return TargetOpcode::G_VECREDUCE_UMAX;
2028 case Intrinsic::vector_reduce_umin:
2029 return TargetOpcode::G_VECREDUCE_UMIN;
2030 case Intrinsic::experimental_vector_compress:
2031 return TargetOpcode::G_VECTOR_COMPRESS;
2032 case Intrinsic::lround:
2033 return TargetOpcode::G_LROUND;
2034 case Intrinsic::llround:
2035 return TargetOpcode::G_LLROUND;
2036 case Intrinsic::get_fpenv:
2037 return TargetOpcode::G_GET_FPENV;
2038 case Intrinsic::get_fpmode:
2039 return TargetOpcode::G_GET_FPMODE;
2044bool IRTranslator::translateSimpleIntrinsic(
const CallInst &CI,
2048 unsigned Op = getSimpleIntrinsicOpcode(
ID);
2056 for (
const auto &Arg : CI.
args())
2059 MIRBuilder.
buildInstr(
Op, {getOrCreateVReg(CI)}, VRegs,
2067 case Intrinsic::experimental_constrained_fadd:
2068 return TargetOpcode::G_STRICT_FADD;
2069 case Intrinsic::experimental_constrained_fsub:
2070 return TargetOpcode::G_STRICT_FSUB;
2071 case Intrinsic::experimental_constrained_fmul:
2072 return TargetOpcode::G_STRICT_FMUL;
2073 case Intrinsic::experimental_constrained_fdiv:
2074 return TargetOpcode::G_STRICT_FDIV;
2075 case Intrinsic::experimental_constrained_frem:
2076 return TargetOpcode::G_STRICT_FREM;
2077 case Intrinsic::experimental_constrained_fma:
2078 return TargetOpcode::G_STRICT_FMA;
2079 case Intrinsic::experimental_constrained_sqrt:
2080 return TargetOpcode::G_STRICT_FSQRT;
2081 case Intrinsic::experimental_constrained_ldexp:
2082 return TargetOpcode::G_STRICT_FLDEXP;
2088bool IRTranslator::translateConstrainedFPIntrinsic(
2108std::optional<MCRegister> IRTranslator::getArgPhysReg(
Argument &Arg) {
2109 auto VRegs = getOrCreateVRegs(Arg);
2110 if (VRegs.
size() != 1)
2111 return std::nullopt;
2114 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
2115 if (!VRegDef || !VRegDef->isCopy())
2116 return std::nullopt;
2117 return VRegDef->getOperand(1).getReg().asMCReg();
2120bool IRTranslator::translateIfEntryValueArgument(
bool isDeclare,
Value *Val,
2132 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
2134 LLVM_DEBUG(
dbgs() <<
"Dropping dbg." << (isDeclare ?
"declare" :
"value")
2135 <<
": expression is entry_value but "
2136 <<
"couldn't find a physical register\n");
2144 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL);
2156 case Intrinsic::experimental_convergence_anchor:
2157 return TargetOpcode::CONVERGENCECTRL_ANCHOR;
2158 case Intrinsic::experimental_convergence_entry:
2159 return TargetOpcode::CONVERGENCECTRL_ENTRY;
2160 case Intrinsic::experimental_convergence_loop:
2161 return TargetOpcode::CONVERGENCECTRL_LOOP;
2165bool IRTranslator::translateConvergenceControlIntrinsic(
2168 Register OutputReg = getOrCreateConvergenceTokenVReg(CI);
2171 if (
ID == Intrinsic::experimental_convergence_loop) {
2173 assert(Bundle &&
"Expected a convergence control token.");
2175 getOrCreateConvergenceTokenVReg(*Bundle->Inputs[0].get());
2185 if (ORE->enabled()) {
2187 MemoryOpRemark
R(*ORE,
"gisel-irtranslator-memsize", *DL, *LibInfo);
2195 if (translateSimpleIntrinsic(CI,
ID, MIRBuilder))
2201 case Intrinsic::lifetime_start:
2202 case Intrinsic::lifetime_end: {
2205 MF->getFunction().hasOptNone())
2208 unsigned Op =
ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
2209 : TargetOpcode::LIFETIME_END;
2218 case Intrinsic::fake_use: {
2220 for (
const auto &Arg : CI.
args())
2222 MIRBuilder.
buildInstr(TargetOpcode::FAKE_USE, {}, VRegs);
2223 MF->setHasFakeUses(
true);
2226 case Intrinsic::dbg_declare: {
2233 case Intrinsic::dbg_label: {
2239 "Expected inlined-at fields to agree");
2244 case Intrinsic::vaend:
2248 case Intrinsic::vastart: {
2250 unsigned ListSize = TLI->getVaListSizeInBits(*DL) / 8;
2253 MIRBuilder.
buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*
Ptr)})
2254 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(
Ptr),
2256 ListSize, Alignment));
2259 case Intrinsic::dbg_assign:
2266 case Intrinsic::dbg_value: {
2273 case Intrinsic::uadd_with_overflow:
2274 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2275 case Intrinsic::sadd_with_overflow:
2276 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2277 case Intrinsic::usub_with_overflow:
2278 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2279 case Intrinsic::ssub_with_overflow:
2280 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2281 case Intrinsic::umul_with_overflow:
2282 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2283 case Intrinsic::smul_with_overflow:
2284 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2285 case Intrinsic::uadd_sat:
2286 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2287 case Intrinsic::sadd_sat:
2288 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2289 case Intrinsic::usub_sat:
2290 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2291 case Intrinsic::ssub_sat:
2292 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2293 case Intrinsic::ushl_sat:
2294 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2295 case Intrinsic::sshl_sat:
2296 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2297 case Intrinsic::umin:
2298 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2299 case Intrinsic::umax:
2300 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2301 case Intrinsic::smin:
2302 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2303 case Intrinsic::smax:
2304 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2305 case Intrinsic::abs:
2307 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2308 case Intrinsic::smul_fix:
2309 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2310 case Intrinsic::umul_fix:
2311 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2312 case Intrinsic::smul_fix_sat:
2313 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2314 case Intrinsic::umul_fix_sat:
2315 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2316 case Intrinsic::sdiv_fix:
2317 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2318 case Intrinsic::udiv_fix:
2319 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2320 case Intrinsic::sdiv_fix_sat:
2321 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2322 case Intrinsic::udiv_fix_sat:
2323 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2324 case Intrinsic::fmuladd: {
2325 const TargetMachine &
TM = MF->getTarget();
2326 Register Dst = getOrCreateVReg(CI);
2331 TLI->isFMAFasterThanFMulAndFAdd(*MF,
2332 TLI->getValueType(*DL, CI.
getType()))) {
2335 MIRBuilder.
buildFMA(Dst, Op0, Op1, Op2,
2346 case Intrinsic::convert_from_fp16:
2352 case Intrinsic::convert_to_fp16:
2358 case Intrinsic::frexp: {
2365 case Intrinsic::modf: {
2367 MIRBuilder.
buildModf(VRegs[0], VRegs[1],
2372 case Intrinsic::sincos: {
2379 case Intrinsic::fptosi_sat:
2383 case Intrinsic::fptoui_sat:
2387 case Intrinsic::memcpy_inline:
2388 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2389 case Intrinsic::memcpy:
2390 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2391 case Intrinsic::memmove:
2392 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2393 case Intrinsic::memset:
2394 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2395 case Intrinsic::eh_typeid_for: {
2398 unsigned TypeID = MF->getTypeIDFor(GV);
2402 case Intrinsic::objectsize:
2405 case Intrinsic::is_constant:
2408 case Intrinsic::stackguard:
2409 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2411 case Intrinsic::stackprotector: {
2414 if (TLI->useLoadStackGuardNode(*CI.
getModule())) {
2415 GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2416 getStackGuard(GuardVal, MIRBuilder);
2421 int FI = getOrCreateFrameIndex(*Slot);
2422 MF->getFrameInfo().setStackProtectorIndex(FI);
2425 GuardVal, getOrCreateVReg(*Slot),
2432 case Intrinsic::stacksave: {
2433 MIRBuilder.
buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {});
2436 case Intrinsic::stackrestore: {
2437 MIRBuilder.
buildInstr(TargetOpcode::G_STACKRESTORE, {},
2441 case Intrinsic::cttz:
2442 case Intrinsic::ctlz: {
2444 bool isTrailing =
ID == Intrinsic::cttz;
2445 unsigned Opcode = isTrailing
2446 ? Cst->
isZero() ? TargetOpcode::G_CTTZ
2447 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2448 : Cst->
isZero() ? TargetOpcode::G_CTLZ
2449 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2450 MIRBuilder.
buildInstr(Opcode, {getOrCreateVReg(CI)},
2454 case Intrinsic::invariant_start: {
2458 case Intrinsic::invariant_end:
2460 case Intrinsic::expect:
2461 case Intrinsic::expect_with_probability:
2462 case Intrinsic::annotation:
2463 case Intrinsic::ptr_annotation:
2464 case Intrinsic::launder_invariant_group:
2465 case Intrinsic::strip_invariant_group: {
2467 MIRBuilder.
buildCopy(getOrCreateVReg(CI),
2471 case Intrinsic::assume:
2472 case Intrinsic::experimental_noalias_scope_decl:
2473 case Intrinsic::var_annotation:
2474 case Intrinsic::sideeffect:
2477 case Intrinsic::read_volatile_register:
2478 case Intrinsic::read_register: {
2481 .
buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2485 case Intrinsic::write_register: {
2487 MIRBuilder.
buildInstr(TargetOpcode::G_WRITE_REGISTER)
2492 case Intrinsic::localescape: {
2493 MachineBasicBlock &EntryMBB = MF->front();
2498 for (
unsigned Idx = 0,
E = CI.
arg_size(); Idx <
E; ++Idx) {
2505 MF->getContext().getOrCreateFrameAllocSymbol(EscapedName, Idx);
2518 case Intrinsic::vector_reduce_fadd:
2519 case Intrinsic::vector_reduce_fmul: {
2522 Register Dst = getOrCreateVReg(CI);
2528 Opc =
ID == Intrinsic::vector_reduce_fadd
2529 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2530 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2531 if (!MRI->getType(VecSrc).isVector())
2532 Opc =
ID == Intrinsic::vector_reduce_fadd ? TargetOpcode::G_FADD
2533 : TargetOpcode::G_FMUL;
2541 if (
ID == Intrinsic::vector_reduce_fadd) {
2542 Opc = TargetOpcode::G_VECREDUCE_FADD;
2543 ScalarOpc = TargetOpcode::G_FADD;
2545 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2546 ScalarOpc = TargetOpcode::G_FMUL;
2548 LLT DstTy = MRI->getType(Dst);
2551 MIRBuilder.
buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2556 case Intrinsic::trap:
2557 return translateTrap(CI, MIRBuilder, TargetOpcode::G_TRAP);
2558 case Intrinsic::debugtrap:
2559 return translateTrap(CI, MIRBuilder, TargetOpcode::G_DEBUGTRAP);
2560 case Intrinsic::ubsantrap:
2561 return translateTrap(CI, MIRBuilder, TargetOpcode::G_UBSANTRAP);
2562 case Intrinsic::allow_runtime_check:
2563 case Intrinsic::allow_ubsan_check:
2564 MIRBuilder.
buildCopy(getOrCreateVReg(CI),
2567 case Intrinsic::amdgcn_cs_chain:
2568 case Intrinsic::amdgcn_call_whole_wave:
2569 return translateCallBase(CI, MIRBuilder);
2570 case Intrinsic::fptrunc_round: {
2575 std::optional<RoundingMode> RoundMode =
2580 .
buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2581 {getOrCreateVReg(CI)},
2583 .addImm((
int)*RoundMode);
2587 case Intrinsic::is_fpclass: {
2592 .
buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2593 {getOrCreateVReg(*FpValue)})
2598 case Intrinsic::set_fpenv: {
2603 case Intrinsic::reset_fpenv:
2606 case Intrinsic::set_fpmode: {
2611 case Intrinsic::reset_fpmode:
2614 case Intrinsic::get_rounding:
2617 case Intrinsic::set_rounding:
2620 case Intrinsic::vscale: {
2624 case Intrinsic::scmp:
2625 MIRBuilder.
buildSCmp(getOrCreateVReg(CI),
2629 case Intrinsic::ucmp:
2630 MIRBuilder.
buildUCmp(getOrCreateVReg(CI),
2634 case Intrinsic::vector_extract:
2635 return translateExtractVector(CI, MIRBuilder);
2636 case Intrinsic::vector_insert:
2637 return translateInsertVector(CI, MIRBuilder);
2638 case Intrinsic::stepvector: {
2642 case Intrinsic::prefetch: {
2649 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags,
2652 MIRBuilder.
buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType,
2658 case Intrinsic::vector_interleave2:
2659 case Intrinsic::vector_deinterleave2: {
2667 return translateVectorInterleave2Intrinsic(CI, MIRBuilder);
2669 return translateVectorDeinterleave2Intrinsic(CI, MIRBuilder);
2672#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2673 case Intrinsic::INTRINSIC:
2674#include "llvm/IR/ConstrainedOps.def"
2677 case Intrinsic::experimental_convergence_anchor:
2678 case Intrinsic::experimental_convergence_entry:
2679 case Intrinsic::experimental_convergence_loop:
2680 return translateConvergenceControlIntrinsic(CI,
ID, MIRBuilder);
2685bool IRTranslator::translateInlineAsm(
const CallBase &CB,
2690 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2694 dbgs() <<
"Inline asm lowering is not supported for this target yet\n");
2699 MIRBuilder, CB, [&](
const Value &Val) {
return getOrCreateVRegs(Val); });
2702bool IRTranslator::translateCallBase(
const CallBase &CB,
2709 for (
const auto &Arg : CB.
args()) {
2711 assert(SwiftInVReg == 0 &&
"Expected only one swift error argument");
2713 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2714 MIRBuilder.
buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2715 &CB, &MIRBuilder.
getMBB(), Arg));
2718 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.
getMBB(), Arg);
2721 Args.push_back(getOrCreateVRegs(*Arg));
2725 if (ORE->enabled()) {
2727 MemoryOpRemark
R(*ORE,
"gisel-irtranslator-memsize", *DL, *LibInfo);
2733 std::optional<CallLowering::PtrAuthInfo> PAI;
2738 const Value *
Key = Bundle->Inputs[0];
2745 if (!CalleeCPA || !
isa<Function>(CalleeCPA->getPointer()) ||
2746 !CalleeCPA->isKnownCompatibleWith(
Key, Discriminator, *DL)) {
2748 Register DiscReg = getOrCreateVReg(*Discriminator);
2756 const auto &Token = *Bundle->Inputs[0].get();
2757 ConvergenceCtrlToken = getOrCreateConvergenceTokenVReg(Token);
2763 bool Success = CLI->lowerCall(
2764 MIRBuilder, CB, Res, Args, SwiftErrorVReg, PAI, ConvergenceCtrlToken,
2769 assert(!HasTailCall &&
"Can't tail call return twice from block?");
2770 const TargetInstrInfo *
TII = MF->getSubtarget().getInstrInfo();
2786 if (
F && (
F->hasDLLImportStorageClass() ||
2787 (MF->getTarget().getTargetTriple().isOSWindows() &&
2788 F->hasExternalWeakLinkage())))
2800 return translateInlineAsm(CI, MIRBuilder);
2804 if (translateCallBase(CI, MIRBuilder)) {
2813 if (translateKnownIntrinsic(CI,
ID, MIRBuilder))
2818 ResultRegs = getOrCreateVRegs(CI);
2833 assert(CI->getBitWidth() <= 64 &&
2834 "large intrinsic immediates not handled");
2835 MIB.
addImm(CI->getSExtValue());
2840 auto *MD = MDVal->getMetadata();
2844 MDN =
MDNode::get(MF->getFunction().getContext(), ConstMD);
2851 if (VRegs.
size() > 1)
2858 TargetLowering::IntrinsicInfo
Info;
2860 if (TLI->getTgtMemIntrinsic(
Info, CI, *MF,
ID)) {
2862 DL->getABITypeAlign(
Info.memVT.getTypeForEVT(
F->getContext())));
2863 LLT MemTy =
Info.memVT.isSimple()
2865 : LLT::scalar(
Info.memVT.getStoreSizeInBits());
2869 MachinePointerInfo MPI;
2871 MPI = MachinePointerInfo(
Info.ptrVal,
Info.offset);
2872 else if (
Info.fallbackAddressSpace)
2873 MPI = MachinePointerInfo(*
Info.fallbackAddressSpace);
2881 auto *Token = Bundle->Inputs[0].get();
2882 Register TokenReg = getOrCreateVReg(*Token);
2890bool IRTranslator::findUnwindDestinations(
2912 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2918 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2919 UnwindDests.back().first->setIsEHScopeEntry();
2920 UnwindDests.back().first->setIsEHFuncletEntry();
2925 for (
const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2926 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2928 if (IsMSVCCXX || IsCoreCLR)
2929 UnwindDests.back().first->setIsEHFuncletEntry();
2931 UnwindDests.back().first->setIsEHScopeEntry();
2933 NewEHPadBB = CatchSwitch->getUnwindDest();
2938 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2939 if (BPI && NewEHPadBB)
2941 EHPadBB = NewEHPadBB;
2946bool IRTranslator::translateInvoke(
const User &U,
2949 MCContext &
Context = MF->getContext();
2954 const Function *Fn =
I.getCalledFunction();
2961 if (
I.hasDeoptState())
2975 (MF->getTarget().getTargetTriple().isOSWindows() &&
2979 bool LowerInlineAsm =
I.isInlineAsm();
2980 bool NeedEHLabel =
true;
2986 MIRBuilder.
buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2987 BeginSymbol =
Context.createTempSymbol();
2991 if (LowerInlineAsm) {
2992 if (!translateInlineAsm(
I, MIRBuilder))
2994 }
else if (!translateCallBase(
I, MIRBuilder))
2999 EndSymbol =
Context.createTempSymbol();
3004 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3005 MachineBasicBlock *InvokeMBB = &MIRBuilder.
getMBB();
3006 BranchProbability EHPadBBProb =
3010 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
3013 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
3014 &ReturnMBB = getMBB(*ReturnBB);
3016 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
3017 for (
auto &UnwindDest : UnwindDests) {
3018 UnwindDest.first->setIsEHPad();
3019 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3024 assert(BeginSymbol &&
"Expected a begin symbol!");
3025 assert(EndSymbol &&
"Expected an end symbol!");
3026 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
3029 MIRBuilder.
buildBr(ReturnMBB);
3033bool IRTranslator::translateCallBr(
const User &U,
3039bool IRTranslator::translateLandingPad(
const User &U,
3043 MachineBasicBlock &
MBB = MIRBuilder.
getMBB();
3049 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
3050 if (TLI->getExceptionPointerRegister(PersonalityFn) == 0 &&
3051 TLI->getExceptionSelectorRegister(PersonalityFn) == 0)
3063 MIRBuilder.
buildInstr(TargetOpcode::EH_LABEL)
3068 const TargetRegisterInfo &
TRI = *MF->getSubtarget().getRegisterInfo();
3069 if (
auto *RegMask =
TRI.getCustomEHPadPreservedMask(*MF))
3070 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
3079 assert(Tys.
size() == 2 &&
"Only two-valued landingpads are supported");
3082 Register ExceptionReg = TLI->getExceptionPointerRegister(PersonalityFn);
3088 MIRBuilder.
buildCopy(ResRegs[0], ExceptionReg);
3090 Register SelectorReg = TLI->getExceptionSelectorRegister(PersonalityFn);
3095 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
3096 MIRBuilder.
buildCopy(PtrVReg, SelectorReg);
3097 MIRBuilder.
buildCast(ResRegs[1], PtrVReg);
3102bool IRTranslator::translateAlloca(
const User &U,
3110 Register Res = getOrCreateVReg(AI);
3111 int FI = getOrCreateFrameIndex(AI);
3117 if (MF->getTarget().getTargetTriple().isOSWindows())
3122 Type *IntPtrIRTy = DL->getIntPtrType(AI.
getType());
3124 if (MRI->getType(NumElts) != IntPtrTy) {
3125 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
3132 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
3134 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
3135 MIRBuilder.
buildMul(AllocSize, NumElts, TySize);
3140 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
3142 auto AllocAdd = MIRBuilder.
buildAdd(IntPtrTy, AllocSize, SAMinusOne,
3146 auto AlignedAlloc = MIRBuilder.
buildAnd(IntPtrTy, AllocAdd, AlignCst);
3148 Align Alignment = std::max(AI.
getAlign(), DL->getPrefTypeAlign(Ty));
3149 if (Alignment <= StackAlign)
3150 Alignment =
Align(1);
3153 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
3154 assert(MF->getFrameInfo().hasVarSizedObjects());
3163 MIRBuilder.
buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
3164 {getOrCreateVReg(*
U.getOperand(0)),
3165 DL->getABITypeAlign(
U.getType()).value()});
3169bool IRTranslator::translateUnreachable(
const User &U,
3172 if (!UI.shouldLowerToTrap(MF->getTarget().Options.TrapUnreachable,
3173 MF->getTarget().Options.NoTrapAfterNoreturn))
3180bool IRTranslator::translateInsertElement(
const User &U,
3185 FVT && FVT->getNumElements() == 1)
3186 return translateCopy(U, *
U.getOperand(1), MIRBuilder);
3189 Register Val = getOrCreateVReg(*
U.getOperand(0));
3190 Register Elt = getOrCreateVReg(*
U.getOperand(1));
3191 unsigned PreferredVecIdxWidth = TLI->getVectorIdxWidth(*DL);
3194 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3195 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3196 auto *NewIdxCI = ConstantInt::get(CI->
getContext(), NewIdx);
3197 Idx = getOrCreateVReg(*NewIdxCI);
3201 Idx = getOrCreateVReg(*
U.getOperand(2));
3202 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
3203 const LLT VecIdxTy =
LLT::scalar(PreferredVecIdxWidth);
3210bool IRTranslator::translateInsertVector(
const User &U,
3213 Register Vec = getOrCreateVReg(*
U.getOperand(0));
3214 Register Elt = getOrCreateVReg(*
U.getOperand(1));
3217 unsigned PreferredVecIdxWidth = TLI->getVectorIdxWidth(*DL);
3222 CI = ConstantInt::get(CI->
getContext(), NewIdx);
3227 ResultType && ResultType->getNumElements() == 1) {
3229 InputType && InputType->getNumElements() == 1) {
3233 return translateCopy(U, *
U.getOperand(0), MIRBuilder);
3239 Register Idx = getOrCreateVReg(*CI);
3247 Register Idx = getOrCreateVReg(*CI);
3248 auto ScaledIndex = MIRBuilder.
buildMul(
3249 VecIdxTy, MIRBuilder.
buildVScale(VecIdxTy, 1), Idx);
3256 getOrCreateVReg(U), getOrCreateVReg(*
U.getOperand(0)),
3261bool IRTranslator::translateExtractElement(
const User &U,
3265 if (
const FixedVectorType *FVT =
3267 if (FVT->getNumElements() == 1)
3268 return translateCopy(U, *
U.getOperand(0), MIRBuilder);
3271 Register Val = getOrCreateVReg(*
U.getOperand(0));
3272 unsigned PreferredVecIdxWidth = TLI->getVectorIdxWidth(*DL);
3277 auto *NewIdxCI = ConstantInt::get(CI->
getContext(), NewIdx);
3278 Idx = getOrCreateVReg(*NewIdxCI);
3282 Idx = getOrCreateVReg(*
U.getOperand(1));
3283 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
3284 const LLT VecIdxTy =
LLT::scalar(PreferredVecIdxWidth);
3291bool IRTranslator::translateExtractVector(
const User &U,
3294 Register Vec = getOrCreateVReg(*
U.getOperand(0));
3296 unsigned PreferredVecIdxWidth = TLI->getVectorIdxWidth(*DL);
3301 CI = ConstantInt::get(CI->
getContext(), NewIdx);
3306 ResultType && ResultType->getNumElements() == 1) {
3308 InputType && InputType->getNumElements() == 1) {
3311 return translateCopy(U, *
U.getOperand(0), MIRBuilder);
3317 Register Idx = getOrCreateVReg(*CI);
3325 Register Idx = getOrCreateVReg(*CI);
3326 auto ScaledIndex = MIRBuilder.
buildMul(
3327 VecIdxTy, MIRBuilder.
buildVScale(VecIdxTy, 1), Idx);
3334 getOrCreateVReg(*
U.getOperand(0)),
3339bool IRTranslator::translateShuffleVector(
const User &U,
3345 if (
U.getOperand(0)->getType()->isScalableTy()) {
3346 Register Val = getOrCreateVReg(*
U.getOperand(0));
3348 MRI->getType(Val).getElementType(), Val, 0);
3355 Mask = SVI->getShuffleMask();
3358 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
3360 .
buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
3361 {getOrCreateVReg(*
U.getOperand(0)),
3362 getOrCreateVReg(*
U.getOperand(1))})
3363 .addShuffleMask(MaskAlloc);
3370 SmallVector<MachineInstr *, 4> Insts;
3371 for (
auto Reg : getOrCreateVRegs(PI)) {
3372 auto MIB = MIRBuilder.
buildInstr(TargetOpcode::G_PHI, {
Reg}, {});
3376 PendingPHIs.emplace_back(&PI, std::move(Insts));
3380bool IRTranslator::translateAtomicCmpXchg(
const User &U,
3384 auto Flags = TLI->getAtomicMemOperandFlags(
I, *DL);
3386 auto Res = getOrCreateVRegs(
I);
3389 Register Addr = getOrCreateVReg(*
I.getPointerOperand());
3390 Register Cmp = getOrCreateVReg(*
I.getCompareOperand());
3391 Register NewVal = getOrCreateVReg(*
I.getNewValOperand());
3394 OldValRes, SuccessRes, Addr, Cmp, NewVal,
3395 *MF->getMachineMemOperand(
3396 MachinePointerInfo(
I.getPointerOperand()), Flags, MRI->getType(Cmp),
3397 getMemOpAlign(
I),
I.getAAMetadata(),
nullptr,
I.getSyncScopeID(),
3398 I.getSuccessOrdering(),
I.getFailureOrdering()));
3402bool IRTranslator::translateAtomicRMW(
const User &U,
3408 auto Flags = TLI->getAtomicMemOperandFlags(
I, *DL);
3411 Register Addr = getOrCreateVReg(*
I.getPointerOperand());
3412 Register Val = getOrCreateVReg(*
I.getValOperand());
3414 unsigned Opcode = 0;
3415 switch (
I.getOperation()) {
3419 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3422 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3425 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3428 Opcode = TargetOpcode::G_ATOMICRMW_AND;
3431 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3434 Opcode = TargetOpcode::G_ATOMICRMW_OR;
3437 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3440 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3443 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3446 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3449 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3452 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3455 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3458 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3461 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3464 Opcode = TargetOpcode::G_ATOMICRMW_FMAXIMUM;
3467 Opcode = TargetOpcode::G_ATOMICRMW_FMINIMUM;
3470 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3473 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3476 Opcode = TargetOpcode::G_ATOMICRMW_USUB_COND;
3479 Opcode = TargetOpcode::G_ATOMICRMW_USUB_SAT;
3484 Opcode, Res, Addr, Val,
3485 *MF->getMachineMemOperand(MachinePointerInfo(
I.getPointerOperand()),
3486 Flags, MRI->getType(Val), getMemOpAlign(
I),
3487 I.getAAMetadata(),
nullptr,
I.getSyncScopeID(),
3492bool IRTranslator::translateFence(
const User &U,
3500bool IRTranslator::translateFreeze(
const User &U,
3506 "Freeze with different source and destination type?");
3508 for (
unsigned I = 0;
I < DstRegs.
size(); ++
I) {
3515void IRTranslator::finishPendingPhis() {
3518 GISelObserverWrapper WrapperObserver(&
Verifier);
3519 RAIIMFObsDelInstaller ObsInstall(*MF, WrapperObserver);
3521 for (
auto &Phi : PendingPHIs) {
3522 const PHINode *PI =
Phi.first;
3526 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3532 SmallPtrSet<const MachineBasicBlock *, 16> SeenPreds;
3536 for (
auto *Pred : getMachinePredBBs({IRPred, PI->
getParent()})) {
3540 for (
unsigned j = 0;
j < ValRegs.
size(); ++
j) {
3541 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3550void IRTranslator::translateDbgValueRecord(
Value *V,
bool HasArgList,
3556 "Expected inlined-at fields to agree");
3560 if (!V || HasArgList) {
3578 auto *ExprDerefRemoved =
3584 if (translateIfEntryValueArgument(
false, V, Variable, Expression, DL,
3596void IRTranslator::translateDbgDeclareRecord(
Value *
Address,
bool HasArgList,
3602 LLVM_DEBUG(
dbgs() <<
"Dropping debug info for " << *Variable <<
"\n");
3607 "Expected inlined-at fields to agree");
3612 MF->setVariableDbgInfo(Variable, Expression,
3613 getOrCreateFrameIndex(*AI), DL);
3617 if (translateIfEntryValueArgument(
true,
Address, Variable,
3629void IRTranslator::translateDbgInfo(
const Instruction &Inst,
3634 assert(DLR->getLabel() &&
"Missing label");
3635 assert(DLR->getLabel()->isValidLocationForIntrinsic(
3637 "Expected inlined-at fields to agree");
3646 translateDbgDeclareRecord(V, DVR.
hasArgList(), Variable, Expression,
3649 translateDbgValueRecord(V, DVR.
hasArgList(), Variable, Expression,
3654bool IRTranslator::translate(
const Instruction &Inst) {
3656 CurBuilder->setPCSections(Inst.
getMetadata(LLVMContext::MD_pcsections));
3657 CurBuilder->setMMRAMetadata(Inst.
getMetadata(LLVMContext::MD_mmra));
3659 if (TLI->fallBackToDAGISel(Inst))
3663#define HANDLE_INST(NUM, OPCODE, CLASS) \
3664 case Instruction::OPCODE: \
3665 return translate##OPCODE(Inst, *CurBuilder.get());
3666#include "llvm/IR/Instruction.def"
3675 if (
auto CurrInstDL = CurBuilder->getDL())
3676 EntryBuilder->setDebugLoc(
DebugLoc());
3682 EntryBuilder->buildConstant(
Reg, *CI);
3686 CF = ConstantFP::get(CF->getContext(), CF->getValue());
3687 EntryBuilder->buildFConstant(
Reg, *CF);
3689 EntryBuilder->buildUndef(
Reg);
3691 EntryBuilder->buildConstant(
Reg, 0);
3693 EntryBuilder->buildGlobalValue(
Reg, GV);
3695 Register Addr = getOrCreateVReg(*CPA->getPointer());
3696 Register AddrDisc = getOrCreateVReg(*CPA->getAddrDiscriminator());
3697 EntryBuilder->buildConstantPtrAuth(
Reg, CPA, Addr, AddrDisc);
3699 Constant &Elt = *CAZ->getElementValue(0u);
3701 EntryBuilder->buildSplatVector(
Reg, getOrCreateVReg(Elt));
3705 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3707 return translateCopy(
C, Elt, *EntryBuilder);
3709 EntryBuilder->buildSplatBuildVector(
Reg, getOrCreateVReg(Elt));
3712 if (CV->getNumElements() == 1)
3713 return translateCopy(
C, *CV->getElementAsConstant(0), *EntryBuilder);
3715 for (
unsigned i = 0; i < CV->getNumElements(); ++i) {
3716 Constant &Elt = *CV->getElementAsConstant(i);
3717 Ops.push_back(getOrCreateVReg(Elt));
3719 EntryBuilder->buildBuildVector(
Reg,
Ops);
3721 switch(
CE->getOpcode()) {
3722#define HANDLE_INST(NUM, OPCODE, CLASS) \
3723 case Instruction::OPCODE: \
3724 return translate##OPCODE(*CE, *EntryBuilder.get());
3725#include "llvm/IR/Instruction.def"
3730 if (CV->getNumOperands() == 1)
3731 return translateCopy(
C, *CV->getOperand(0), *EntryBuilder);
3733 for (
unsigned i = 0; i < CV->getNumOperands(); ++i) {
3734 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3736 EntryBuilder->buildBuildVector(
Reg,
Ops);
3738 EntryBuilder->buildBlockAddress(
Reg, BA);
3745bool IRTranslator::finalizeBasicBlock(
const BasicBlock &BB,
3747 for (
auto &BTB : SL->BitTestCases) {
3750 emitBitTestHeader(BTB, BTB.Parent);
3752 BranchProbability UnhandledProb = BTB.Prob;
3753 for (
unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3754 UnhandledProb -= BTB.Cases[
j].ExtraProb;
3756 MachineBasicBlock *
MBB = BTB.Cases[
j].ThisBB;
3765 MachineBasicBlock *NextMBB;
3766 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3769 NextMBB = BTB.Cases[
j + 1].TargetBB;
3770 }
else if (j + 1 == ej) {
3772 NextMBB = BTB.Default;
3775 NextMBB = BTB.Cases[
j + 1].ThisBB;
3778 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
MBB);
3780 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3784 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3785 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3788 BTB.Cases.pop_back();
3794 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3795 BTB.Default->getBasicBlock()};
3796 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3797 if (!BTB.ContiguousRange) {
3798 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3801 SL->BitTestCases.clear();
3803 for (
auto &JTCase : SL->JTCases) {
3805 if (!JTCase.first.Emitted)
3806 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3808 emitJumpTable(JTCase.second, JTCase.second.MBB);
3810 SL->JTCases.clear();
3812 for (
auto &SwCase : SL->SwitchCases)
3813 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3814 SL->SwitchCases.clear();
3818 if (
SP.shouldEmitSDCheck(BB)) {
3819 bool FunctionBasedInstrumentation =
3820 TLI->getSSPStackGuardCheck(*MF->getFunction().getParent());
3821 SPDescriptor.initialize(&BB, &
MBB, FunctionBasedInstrumentation);
3824 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3827 }
else if (SPDescriptor.shouldEmitStackProtector()) {
3828 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3829 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3838 ParentMBB, *MF->getSubtarget().getInstrInfo());
3841 SuccessMBB->
splice(SuccessMBB->
end(), ParentMBB, SplitPoint,
3845 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3849 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3850 if (FailureMBB->
empty()) {
3851 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3856 SPDescriptor.resetPerBBState();
3863 CurBuilder->setInsertPt(*ParentBB, ParentBB->
end());
3867 LLT PtrMemTy =
getLLTForMVT(TLI->getPointerMemTy(*DL));
3873 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3880 ->buildLoad(PtrMemTy, StackSlotPtr,
3885 if (TLI->useStackGuardXorFP()) {
3886 LLVM_DEBUG(
dbgs() <<
"Stack protector xor'ing with FP not yet implemented");
3891 if (
const Function *GuardCheckFn = TLI->getSSPStackGuardCheck(M)) {
3903 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3904 assert(FnTy->getNumParams() == 1 &&
"Invalid function signature");
3905 ISD::ArgFlagsTy
Flags;
3906 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3908 CallLowering::ArgInfo GuardArgInfo(
3909 {GuardVal, FnTy->getParamType(0), {
Flags}});
3911 CallLowering::CallLoweringInfo
Info;
3912 Info.OrigArgs.push_back(GuardArgInfo);
3913 Info.CallConv = GuardCheckFn->getCallingConv();
3916 if (!CLI->lowerCall(MIRBuilder,
Info)) {
3917 LLVM_DEBUG(
dbgs() <<
"Failed to lower call to stack protector check\n");
3929 getStackGuard(Guard, *CurBuilder);
3932 const Value *IRGuard = TLI->getSDagStackGuard(M);
3933 Register GuardPtr = getOrCreateVReg(*IRGuard);
3936 ->buildLoad(PtrMemTy, GuardPtr,
3955 CurBuilder->setInsertPt(*FailureBB, FailureBB->
end());
3957 const RTLIB::Libcall
Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3958 const char *
Name = TLI->getLibcallName(Libcall);
3960 CallLowering::CallLoweringInfo
Info;
3961 Info.CallConv = TLI->getLibcallCallingConv(Libcall);
3965 if (!CLI->lowerCall(*CurBuilder,
Info)) {
3966 LLVM_DEBUG(
dbgs() <<
"Failed to lower call to stack protector fail\n");
3971 const TargetOptions &TargetOpts = TLI->getTargetMachine().Options;
3973 CurBuilder->buildInstr(TargetOpcode::G_TRAP);
3978void IRTranslator::finalizeFunction() {
3981 PendingPHIs.clear();
3983 FrameIndices.clear();
3984 MachinePreds.clear();
3988 EntryBuilder.reset();
3991 SPDescriptor.resetPerFunctionState();
4004 return CI && CI->isMustTailCall();
4018 : TPC->isGISelCSEEnabled();
4019 TLI = MF->getSubtarget().getTargetLowering();
4022 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
4023 CSEInfo = &
Wrapper.get(TPC->getCSEConfig());
4024 EntryBuilder->setCSEInfo(CSEInfo);
4025 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
4026 CurBuilder->setCSEInfo(CSEInfo);
4028 EntryBuilder = std::make_unique<MachineIRBuilder>();
4029 CurBuilder = std::make_unique<MachineIRBuilder>();
4031 CLI = MF->getSubtarget().getCallLowering();
4032 CurBuilder->setMF(*MF);
4033 EntryBuilder->setMF(*MF);
4034 MRI = &MF->getRegInfo();
4035 DL = &
F.getDataLayout();
4036 ORE = std::make_unique<OptimizationRemarkEmitter>(&
F);
4038 TM.resetTargetOptions(
F);
4046 FuncInfo.BPI =
nullptr;
4052 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
4054 SL = std::make_unique<GISelSwitchLowering>(
this, FuncInfo);
4055 SL->init(*TLI, TM, *DL);
4057 assert(PendingPHIs.empty() &&
"stale PHIs");
4061 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
4064 F.getSubprogram(), &
F.getEntryBlock());
4065 R <<
"unable to translate in big endian mode";
4071 auto FinalizeOnReturn =
make_scope_exit([
this]() { finalizeFunction(); });
4076 EntryBuilder->setMBB(*EntryBB);
4078 DebugLoc DbgLoc =
F.getEntryBlock().getFirstNonPHIIt()->getDebugLoc();
4079 SwiftError.setFunction(CurMF);
4080 SwiftError.createEntriesInEntryBlock(DbgLoc);
4082 bool IsVarArg =
F.isVarArg();
4083 bool HasMustTailInVarArgFn =
false;
4086 FuncInfo.MBBMap.resize(
F.getMaxBlockNumber());
4090 MBB = MF->CreateMachineBasicBlock(&BB);
4096 if (!HasMustTailInVarArgFn)
4100 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
4103 EntryBB->addSuccessor(&getMBB(
F.front()));
4105 if (CLI->fallBackToDAGISel(*MF)) {
4107 F.getSubprogram(), &
F.getEntryBlock());
4108 R <<
"unable to lower function: "
4109 <<
ore::NV(
"Prototype",
F.getFunctionType());
4117 if (DL->getTypeStoreSize(Arg.
getType()).isZero())
4122 if (Arg.hasSwiftErrorAttr()) {
4123 assert(VRegs.
size() == 1 &&
"Too many vregs for Swift error");
4124 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
4128 if (!CLI->lowerFormalArguments(*EntryBuilder,
F, VRegArgs, FuncInfo)) {
4130 F.getSubprogram(), &
F.getEntryBlock());
4131 R <<
"unable to lower arguments: "
4132 <<
ore::NV(
"Prototype",
F.getFunctionType());
4139 if (EnableCSE && CSEInfo)
4144 DILocationVerifier Verifier;
4152 CurBuilder->setMBB(
MBB);
4153 HasTailCall =
false;
4163 Verifier.setCurrentInst(&Inst);
4167 translateDbgInfo(Inst, *CurBuilder);
4169 if (translate(Inst))
4174 R <<
"unable to translate instruction: " <<
ore::NV(
"Opcode", &Inst);
4176 if (ORE->allowExtraAnalysis(
"gisel-irtranslator")) {
4177 std::string InstStrStorage;
4181 R <<
": '" << InstStrStorage <<
"'";
4188 if (!finalizeBasicBlock(*BB,
MBB)) {
4190 BB->getTerminator()->getDebugLoc(), BB);
4191 R <<
"unable to translate basic block";
4201 finishPendingPhis();
4203 SwiftError.propagateVRegs();
4208 assert(EntryBB->succ_size() == 1 &&
4209 "Custom BB used for lowering should have only one successor");
4213 "LLVM-IR entry block has a predecessor!?");
4216 NewEntryBB.
splice(NewEntryBB.
begin(), EntryBB, EntryBB->begin(),
4225 EntryBB->removeSuccessor(&NewEntryBB);
4226 MF->remove(EntryBB);
4227 MF->deleteMachineBasicBlock(EntryBB);
4229 assert(&MF->front() == &NewEntryBB &&
4230 "New entry wasn't next in the list of basic block!");
4234 SP.copyToMachineFrameInfo(MF->getFrameInfo());
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Provides analysis for continuously CSEing during GISel passes.
This file implements a version of MachineIRBuilder which CSEs insts within a MachineBasicBlock.
This file describes how to lower LLVM calls to machine code calls.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This contains common code to allow clients to notify changes to machine instr.
const HexagonInstrInfo * TII
IRTranslator LLVM IR static false void reportTranslationError(MachineFunction &MF, const TargetPassConfig &TPC, OptimizationRemarkEmitter &ORE, OptimizationRemarkMissed &R)
static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB)
Returns true if a BasicBlock BB within a variadic function contains a variadic musttail call.
static bool containsBF16Type(const User &U)
static unsigned getConvOpcode(Intrinsic::ID ID)
static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL)
static unsigned getConstrainedOpcode(Intrinsic::ID ID)
static cl::opt< bool > EnableCSEInIRTranslator("enable-cse-in-irtranslator", cl::desc("Should enable CSE in irtranslator"), cl::Optional, cl::init(false))
static bool isValInBlock(const Value *V, const BasicBlock *BB)
static bool isSwiftError(const Value *V)
This file declares the IRTranslator pass.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file describes how to lower LLVM inline asm to machine code INLINEASM.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Implement a low-level type suitable for MachineInstr level instruction selection.
Implement a low-level type suitable for MachineInstr level instruction selection.
Machine Check Debug Module
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
OptimizedStructLayoutField Field
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
std::pair< BasicBlock *, BasicBlock * > Edge
verify safepoint Safepoint IR Verifier
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
an instruction to allocate memory on the stack
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
PointerType * getType() const
Overload to return most specific pointer type.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
const Value * getArraySize() const
Get the number of elements allocated.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
An immutable pass that tracks lazily created AssumptionCache objects.
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
LLVM Basic Block Representation.
unsigned getNumber() const
const Function * getParent() const
Return the enclosing method, or null if none.
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Legacy analysis pass which computes BlockFrequencyInfo.
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Legacy analysis pass which computes BranchProbabilityInfo.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool isInlineAsm() const
Check if this call is an inline asm statement.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_ULE
unsigned less or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
bool isFPPredicate() const
bool isIntPredicate() const
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static LLVM_ABI DIExpression * append(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Append the opcodes Ops to DIExpr.
LLVM_ABI bool startsWithDeref() const
Return whether the first element a DW_OP_deref.
ArrayRef< uint64_t > getElements() const
bool isValidLocationForIntrinsic(const DILocation *DL) const
Check that a location is valid for this label.
A parsed version of the target data layout string in and methods for querying it.
Value * getAddress() const
DILabel * getLabel() const
DebugLoc getDebugLoc() const
Value * getValue(unsigned OpIdx=0) const
DILocalVariable * getVariable() const
DIExpression * getExpression() const
DIExpression * getExpression() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DILocalVariable * getVariable() const
bool isDbgDeclare() const
Class representing an expression and its matching format.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Constant * getPersonalityFn() const
Get the personality function associated with this function.
const Function & getFunction() const
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
The actual analysis pass wrapper.
Simple wrapper that does the following.
Abstract class that contains various methods for clients to notify about changes.
Simple wrapper observer that takes several observers, and calls each one for each event.
void removeObserver(GISelChangeObserver *O)
void addObserver(GISelChangeObserver *O)
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasExternalWeakLinkage() const
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
bool isTailCall(const MachineInstr &MI) const override
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
IRTranslator(CodeGenOptLevel OptLevel=CodeGenOptLevel::None)
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool lowerInlineAsm(MachineIRBuilder &MIRBuilder, const CallBase &CB, std::function< ArrayRef< Register >(const Value &Val)> GetOrCreateVRegs) const
Lower the given inline asm call instruction GetOrCreateVRegs is a callback to materialize a register ...
This instruction inserts a struct field of array element value into an aggregate value.
iterator_range< simple_ilist< DbgRecord >::iterator > getDbgRecordRange() const
Return a range over the DbgRecords attached to this instruction.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI bool hasAllowReassoc() const LLVM_READONLY
Determine whether the allow-reassociation flag is set.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
Value * getPointerOperand()
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
static LocationSize precise(uint64_t Value)
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned pred_size() const
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
void push_back(MachineInstr *MI)
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
succ_iterator succ_begin()
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
LLVM_ABI void sortUniqueLiveIns()
Sorts and uniques the LiveIns vector.
LLVM_ABI bool isPredecessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a predecessor of this block.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHPad(bool V=true)
Indicates the block is a landing pad.
int getStackProtectorIndex() const
Return the index for the stack protector object.
MachineFunctionPass(char &ID)
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
Helper class to build MachineInstr.
MachineInstrBuilder buildFPTOUI_SAT(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_FPTOUI_SAT Src0.
MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
MachineInstrBuilder buildFreeze(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_FREEZE Src.
MachineInstrBuilder buildBr(MachineBasicBlock &Dest)
Build and insert G_BR Dest.
MachineInstrBuilder buildModf(const DstOp &Fract, const DstOp &Int, const SrcOp &Src, std::optional< unsigned > Flags=std::nullopt)
Build and insert Fract, Int = G_FMODF Src.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ADD Op0, Op1.
MachineInstrBuilder buildUndef(const DstOp &Res)
Build and insert Res = IMPLICIT_DEF.
MachineInstrBuilder buildResetFPMode()
Build and insert G_RESET_FPMODE.
MachineInstrBuilder buildFPExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FPEXT Op.
MachineInstrBuilder buildFPTOSI_SAT(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_FPTOSI_SAT Src0.
MachineInstrBuilder buildUCmp(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert a Res = G_UCMP Op0, Op1.
MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI)
Build and insert Res = G_JUMP_TABLE JTI.
MachineInstrBuilder buildGetRounding(const DstOp &Dst)
Build and insert Dst = G_GET_ROUNDING.
MachineInstrBuilder buildSCmp(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert a Res = G_SCMP Op0, Op1.
MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope)
Build and insert G_FENCE Ordering, Scope.
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_SELECT Tst, Op0, Op1.
MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, const SrcOp &Src2, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FMA Op0, Op1, Op2.
MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_MUL Op0, Op1.
MachineInstrBuilder buildInsertSubvector(const DstOp &Res, const SrcOp &Src0, const SrcOp &Src1, unsigned Index)
Build and insert Res = G_INSERT_SUBVECTOR Src0, Src1, Idx.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1)
Build and insert Res = G_AND Op0, Op1.
MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src)
Build and insert an appropriate cast between two registers of equal size.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_SEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO.
MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_SUB Op0, Op1.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MachineInstrBuilder buildVScale(const DstOp &Res, unsigned MinElts)
Build and insert Res = G_VSCALE MinElts.
MachineInstrBuilder buildSplatBuildVector(const DstOp &Res, const SrcOp &Src)
Build and insert Res = G_BUILD_VECTOR with Src replicated to fill the number of elements.
MachineInstrBuilder buildSetFPMode(const SrcOp &Src)
Build and insert G_SET_FPMODE Src.
MachineInstrBuilder buildIndirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instruction expressing the fact that the associated Variable lives in me...
MachineInstrBuilder buildConstDbgValue(const Constant &C, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instructions specifying that Variable is given by C (suitably modified b...
MachineInstrBuilder buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest)
Build and insert G_BRCOND Tst, Dest.
std::optional< MachineInstrBuilder > materializeObjectPtrOffset(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value)
Materialize and insert an instruction with appropriate flags for addressing some offset of an object,...
MachineInstrBuilder buildSetRounding(const SrcOp &Src)
Build and insert G_SET_ROUNDING.
MachineInstrBuilder buildExtractVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Idx)
Build and insert Res = G_EXTRACT_VECTOR_ELT Val, Idx.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ZEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
MachineInstrBuilder buildExtractVectorElementConstant(const DstOp &Res, const SrcOp &Val, const int Idx)
Build and insert Res = G_EXTRACT_VECTOR_ELT Val, Idx.
MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instruction expressing the fact that the associated Variable lives in Re...
MachineInstrBuilder buildDbgLabel(const MDNode *Label)
Build and insert a DBG_LABEL instructions specifying that Label is given.
MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI, Register IndexReg)
Build and insert G_BRJT TablePtr, JTI, IndexReg.
MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size, Align Alignment)
Build and insert Res = G_DYN_STACKALLOC Size, Align.
MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instruction expressing the fact that the associated Variable lives in th...
MachineInstrBuilder buildResetFPEnv()
Build and insert G_RESET_FPENV.
void setDebugLoc(const DebugLoc &DL)
Set the debug location to DL for all the next build instructions.
const MachineBasicBlock & getMBB() const
Getter for the basic block we currently build.
MachineInstrBuilder buildInsertVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Elt, const SrcOp &Idx)
Build and insert Res = G_INSERT_VECTOR_ELT Val, Elt, Idx.
MachineInstrBuilder buildAtomicCmpXchgWithSuccess(const DstOp &OldValRes, const DstOp &SuccessRes, const SrcOp &Addr, const SrcOp &CmpVal, const SrcOp &NewVal, MachineMemOperand &MMO)
Build and insert OldValRes<def>, SuccessRes<def> = / G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr,...
void setMBB(MachineBasicBlock &MBB)
Set the insertion point to the end of MBB.
const DebugLoc & getDebugLoc()
Get the current instruction's debug location.
MachineInstrBuilder buildTrap(bool Debug=false)
Build and insert G_TRAP or G_DEBUGTRAP.
MachineInstrBuilder buildFFrexp(const DstOp &Fract, const DstOp &Exp, const SrcOp &Src, std::optional< unsigned > Flags=std::nullopt)
Build and insert Fract, Exp = G_FFREXP Src.
MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FPTRUNC Op.
MachineInstrBuilder buildFSincos(const DstOp &Sin, const DstOp &Cos, const SrcOp &Src, std::optional< unsigned > Flags=std::nullopt)
Build and insert Sin, Cos = G_FSINCOS Src.
MachineInstrBuilder buildShuffleVector(const DstOp &Res, const SrcOp &Src1, const SrcOp &Src2, ArrayRef< int > Mask)
Build and insert Res = G_SHUFFLE_VECTOR Src1, Src2, Mask.
MachineInstrBuilder buildInstrNoInsert(unsigned Opcode)
Build but don't insert <empty> = Opcode <empty>.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
MachineInstrBuilder buildPrefetch(const SrcOp &Addr, unsigned RW, unsigned Locality, unsigned CacheType, MachineMemOperand &MMO)
Build and insert G_PREFETCH Addr, RW, Locality, CacheType.
MachineInstrBuilder buildExtractSubvector(const DstOp &Res, const SrcOp &Src, unsigned Index)
Build and insert Res = G_EXTRACT_SUBVECTOR Src, Idx0.
const DataLayout & getDataLayout() const
MachineInstrBuilder buildBrIndirect(Register Tgt)
Build and insert G_BRINDIRECT Tgt.
MachineInstrBuilder buildSplatVector(const DstOp &Res, const SrcOp &Val)
Build and insert Res = G_SPLAT_VECTOR Val.
MachineInstrBuilder buildStepVector(const DstOp &Res, unsigned Step)
Build and insert Res = G_STEP_VECTOR Step.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_FCMP PredOp0, Op1.
MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FADD Op0, Op1.
MachineInstrBuilder buildSetFPEnv(const SrcOp &Src)
Build and insert G_SET_FPENV Src.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addMetadata(const MDNode *MD) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
LLVM_ABI void copyIRFlags(const Instruction &I)
Copy all flags to MachineInst MIFlags.
static LLVM_ABI uint32_t copyFlagsFromInstruction(const Instruction &I)
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateES(const char *SymName, unsigned TargetFlags=0)
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Class to install both of the above.
Wrapper class representing virtual and physical registers.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
constexpr bool empty() const
empty - Check if the string is empty.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Primary interface to the complete machine description for the target machine.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
Target-Independent Code Generator Pass Configuration Options.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isAggregateType() const
Return true if the type is an aggregate type.
bool isTokenTy() const
Return true if this is 'token'.
bool isVoidTy() const
Return true if this is 'void'.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
constexpr bool isZero() const
const ParentTy * getParent() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
@ Libcall
The operation should be implemented as a call to some kind of runtime support library.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Undef
Value of the register doesn't matter.
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebIgnore
This corresponds to "fpexcept.ignore".
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< PhiNode * > Phi
NodeAddr< CodeNode * > Code
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
LLVM_ABI MVT getMVTForLLT(LLT Ty)
Get a rough equivalent of an MVT for a given LLT.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
gep_type_iterator gep_type_end(const User *GEP)
MachineBasicBlock::iterator findSplitPointForStackProtector(MachineBasicBlock *BB, const TargetInstrInfo &TII)
Find the split point at which to splice the end of BB into its success stack protector check machine ...
LLVM_ABI LLT getLLTForMVT(MVT Ty)
Get a rough equivalent of an LLT for a given MVT.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
void computeValueLLTs(const DataLayout &DL, Type &Ty, SmallVectorImpl< LLT > &ValueTys, SmallVectorImpl< uint64_t > *Offsets=nullptr, uint64_t StartingOffset=0)
computeValueLLTs - Given an LLVM IR type, compute a sequence of LLTs that represent all the individua...
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
generic_gep_type_iterator<> gep_type_iterator
auto succ_size(const MachineBasicBlock *BB)
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
CodeGenOptLevel
Code generation optimization level.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
@ Success
The lock was released successfully.
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
@ Global
Append to llvm.global_dtors.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU)
Modify analysis usage so it preserves passes required for the SelectionDAG fallback.
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
gep_type_iterator gep_type_begin(const User *GEP)
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI LLT getLLTForType(Type &Ty, const DataLayout &DL)
Construct a low-level type based on an LLVM type.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Pair of physical register and lane mask.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
MachineBasicBlock * Parent
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
BranchProbability TrueProb
MachineBasicBlock * ThisBB
struct PredInfoPair PredInfo
BranchProbability FalseProb
MachineBasicBlock * TrueBB
MachineBasicBlock * FalseBB