LLVM 22.0.0git
LoopUtils.cpp
Go to the documentation of this file.
1//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines common loop utility functions.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/ScopeExit.h"
17#include "llvm/ADT/SetVector.h"
33#include "llvm/IR/DIBuilder.h"
34#include "llvm/IR/Dominators.h"
37#include "llvm/IR/MDBuilder.h"
38#include "llvm/IR/Module.h"
41#include "llvm/IR/ValueHandle.h"
43#include "llvm/Pass.h"
45#include "llvm/Support/Debug.h"
49
50using namespace llvm;
51using namespace llvm::PatternMatch;
52
53#define DEBUG_TYPE "loop-utils"
54
55static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
56static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
57
59 MemorySSAUpdater *MSSAU,
60 bool PreserveLCSSA) {
61 bool Changed = false;
62
63 // We re-use a vector for the in-loop predecesosrs.
64 SmallVector<BasicBlock *, 4> InLoopPredecessors;
65
66 auto RewriteExit = [&](BasicBlock *BB) {
67 assert(InLoopPredecessors.empty() &&
68 "Must start with an empty predecessors list!");
69 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
70
71 // See if there are any non-loop predecessors of this exit block and
72 // keep track of the in-loop predecessors.
73 bool IsDedicatedExit = true;
74 for (auto *PredBB : predecessors(BB))
75 if (L->contains(PredBB)) {
76 if (isa<IndirectBrInst>(PredBB->getTerminator()))
77 // We cannot rewrite exiting edges from an indirectbr.
78 return false;
79
80 InLoopPredecessors.push_back(PredBB);
81 } else {
82 IsDedicatedExit = false;
83 }
84
85 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
86
87 // Nothing to do if this is already a dedicated exit.
88 if (IsDedicatedExit)
89 return false;
90
91 auto *NewExitBB = SplitBlockPredecessors(
92 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
93
94 if (!NewExitBB)
96 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
97 << *L << "\n");
98 else
99 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
100 << NewExitBB->getName() << "\n");
101 return true;
102 };
103
104 // Walk the exit blocks directly rather than building up a data structure for
105 // them, but only visit each one once.
107 for (auto *BB : L->blocks())
108 for (auto *SuccBB : successors(BB)) {
109 // We're looking for exit blocks so skip in-loop successors.
110 if (L->contains(SuccBB))
111 continue;
112
113 // Visit each exit block exactly once.
114 if (!Visited.insert(SuccBB).second)
115 continue;
116
117 Changed |= RewriteExit(SuccBB);
118 }
119
120 return Changed;
121}
122
123/// Returns the instructions that use values defined in the loop.
126
127 for (auto *Block : L->getBlocks())
128 // FIXME: I believe that this could use copy_if if the Inst reference could
129 // be adapted into a pointer.
130 for (auto &Inst : *Block) {
131 auto Users = Inst.users();
132 if (any_of(Users, [&](User *U) {
133 auto *Use = cast<Instruction>(U);
134 return !L->contains(Use->getParent());
135 }))
136 UsedOutside.push_back(&Inst);
137 }
138
139 return UsedOutside;
140}
141
143 // By definition, all loop passes need the LoopInfo analysis and the
144 // Dominator tree it depends on. Because they all participate in the loop
145 // pass manager, they must also preserve these.
150
151 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
152 // here because users shouldn't directly get them from this header.
153 extern char &LoopSimplifyID;
154 extern char &LCSSAID;
159 // This is used in the LPPassManager to perform LCSSA verification on passes
160 // which preserve lcssa form
163
164 // Loop passes are designed to run inside of a loop pass manager which means
165 // that any function analyses they require must be required by the first loop
166 // pass in the manager (so that it is computed before the loop pass manager
167 // runs) and preserved by all loop pasess in the manager. To make this
168 // reasonably robust, the set needed for most loop passes is maintained here.
169 // If your loop pass requires an analysis not listed here, you will need to
170 // carefully audit the loop pass manager nesting structure that results.
178 // FIXME: When all loop passes preserve MemorySSA, it can be required and
179 // preserved here instead of the individual handling in each pass.
180}
181
182/// Manually defined generic "LoopPass" dependency initialization. This is used
183/// to initialize the exact set of passes from above in \c
184/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
185/// with:
186///
187/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
188///
189/// As-if "LoopPass" were a pass.
202
203/// Create MDNode for input string.
204static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
205 LLVMContext &Context = TheLoop->getHeader()->getContext();
206 Metadata *MDs[] = {
207 MDString::get(Context, Name),
208 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
209 return MDNode::get(Context, MDs);
210}
211
212/// Set input string into loop metadata by keeping other values intact.
213/// If the string is already in loop metadata update value if it is
214/// different.
215void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
216 unsigned V) {
218 // If the loop already has metadata, retain it.
219 MDNode *LoopID = TheLoop->getLoopID();
220 if (LoopID) {
221 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
222 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
223 // If it is of form key = value, try to parse it.
224 if (Node->getNumOperands() == 2) {
225 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
226 if (S && S->getString() == StringMD) {
227 ConstantInt *IntMD =
229 if (IntMD && IntMD->getSExtValue() == V)
230 // It is already in place. Do nothing.
231 return;
232 // We need to update the value, so just skip it here and it will
233 // be added after copying other existed nodes.
234 continue;
235 }
236 }
237 MDs.push_back(Node);
238 }
239 }
240 // Add new metadata.
241 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
242 // Replace current metadata node with new one.
243 LLVMContext &Context = TheLoop->getHeader()->getContext();
244 MDNode *NewLoopID = MDNode::get(Context, MDs);
245 // Set operand 0 to refer to the loop id itself.
246 NewLoopID->replaceOperandWith(0, NewLoopID);
247 TheLoop->setLoopID(NewLoopID);
248}
249
250std::optional<ElementCount>
252 std::optional<int> Width =
253 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
254
255 if (Width) {
256 std::optional<int> IsScalable = getOptionalIntLoopAttribute(
257 TheLoop, "llvm.loop.vectorize.scalable.enable");
258 return ElementCount::get(*Width, IsScalable.value_or(false));
259 }
260
261 return std::nullopt;
262}
263
264std::optional<MDNode *> llvm::makeFollowupLoopID(
265 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
266 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
267 if (!OrigLoopID) {
268 if (AlwaysNew)
269 return nullptr;
270 return std::nullopt;
271 }
272
273 assert(OrigLoopID->getOperand(0) == OrigLoopID);
274
275 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
276 bool InheritSomeAttrs =
277 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
279 MDs.push_back(nullptr);
280
281 bool Changed = false;
282 if (InheritAllAttrs || InheritSomeAttrs) {
283 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
284 MDNode *Op = cast<MDNode>(Existing.get());
285
286 auto InheritThisAttribute = [InheritSomeAttrs,
287 InheritOptionsExceptPrefix](MDNode *Op) {
288 if (!InheritSomeAttrs)
289 return false;
290
291 // Skip malformatted attribute metadata nodes.
292 if (Op->getNumOperands() == 0)
293 return true;
294 Metadata *NameMD = Op->getOperand(0).get();
295 if (!isa<MDString>(NameMD))
296 return true;
297 StringRef AttrName = cast<MDString>(NameMD)->getString();
298
299 // Do not inherit excluded attributes.
300 return !AttrName.starts_with(InheritOptionsExceptPrefix);
301 };
302
303 if (InheritThisAttribute(Op))
304 MDs.push_back(Op);
305 else
306 Changed = true;
307 }
308 } else {
309 // Modified if we dropped at least one attribute.
310 Changed = OrigLoopID->getNumOperands() > 1;
311 }
312
313 bool HasAnyFollowup = false;
314 for (StringRef OptionName : FollowupOptions) {
315 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
316 if (!FollowupNode)
317 continue;
318
319 HasAnyFollowup = true;
320 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
321 MDs.push_back(Option.get());
322 Changed = true;
323 }
324 }
325
326 // Attributes of the followup loop not specified explicity, so signal to the
327 // transformation pass to add suitable attributes.
328 if (!AlwaysNew && !HasAnyFollowup)
329 return std::nullopt;
330
331 // If no attributes were added or remove, the previous loop Id can be reused.
332 if (!AlwaysNew && !Changed)
333 return OrigLoopID;
334
335 // No attributes is equivalent to having no !llvm.loop metadata at all.
336 if (MDs.size() == 1)
337 return nullptr;
338
339 // Build the new loop ID.
340 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
341 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
342 return FollowupLoopID;
343}
344
348
352
354 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
355 return TM_SuppressedByUser;
356
357 std::optional<int> Count =
358 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
359 if (Count)
361
362 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
363 return TM_ForcedByUser;
364
365 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
366 return TM_ForcedByUser;
367
369 return TM_Disable;
370
371 return TM_Unspecified;
372}
373
375 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
376 return TM_SuppressedByUser;
377
378 std::optional<int> Count =
379 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
380 if (Count)
382
383 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
384 return TM_ForcedByUser;
385
387 return TM_Disable;
388
389 return TM_Unspecified;
390}
391
393 std::optional<bool> Enable =
394 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
395
396 if (Enable == false)
397 return TM_SuppressedByUser;
398
399 std::optional<ElementCount> VectorizeWidth =
401 std::optional<int> InterleaveCount =
402 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
403
404 // 'Forcing' vector width and interleave count to one effectively disables
405 // this tranformation.
406 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
407 InterleaveCount == 1)
408 return TM_SuppressedByUser;
409
410 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
411 return TM_Disable;
412
413 if (Enable == true)
414 return TM_ForcedByUser;
415
416 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
417 return TM_Disable;
418
419 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
420 return TM_Enable;
421
423 return TM_Disable;
424
425 return TM_Unspecified;
426}
427
429 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
430 return TM_ForcedByUser;
431
433 return TM_Disable;
434
435 return TM_Unspecified;
436}
437
439 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
440 return TM_SuppressedByUser;
441
443 return TM_Disable;
444
445 return TM_Unspecified;
446}
447
448/// Does a BFS from a given node to all of its children inside a given loop.
449/// The returned vector of basic blocks includes the starting point.
451 DomTreeNode *N,
452 const Loop *CurLoop) {
454 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
455 // Only include subregions in the top level loop.
456 BasicBlock *BB = DTN->getBlock();
457 if (CurLoop->contains(BB))
458 Worklist.push_back(DTN->getBlock());
459 };
460
461 AddRegionToWorklist(N);
462
463 for (size_t I = 0; I < Worklist.size(); I++) {
464 for (DomTreeNode *Child : DT->getNode(Worklist[I])->children())
465 AddRegionToWorklist(Child);
466 }
467
468 return Worklist;
469}
470
472 int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
473 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
474 Value *IncV = PN->getIncomingValue(LatchIdx);
475
476 for (User *U : PN->users())
477 if (U != Cond && U != IncV) return false;
478
479 for (User *U : IncV->users())
480 if (U != Cond && U != PN) return false;
481 return true;
482}
483
484
486 LoopInfo *LI, MemorySSA *MSSA) {
487 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
488 auto *Preheader = L->getLoopPreheader();
489 assert(Preheader && "Preheader should exist!");
490
491 std::unique_ptr<MemorySSAUpdater> MSSAU;
492 if (MSSA)
493 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
494
495 // Now that we know the removal is safe, remove the loop by changing the
496 // branch from the preheader to go to the single exit block.
497 //
498 // Because we're deleting a large chunk of code at once, the sequence in which
499 // we remove things is very important to avoid invalidation issues.
500
501 // Tell ScalarEvolution that the loop is deleted. Do this before
502 // deleting the loop so that ScalarEvolution can look at the loop
503 // to determine what it needs to clean up.
504 if (SE) {
505 SE->forgetLoop(L);
507 }
508
509 Instruction *OldTerm = Preheader->getTerminator();
510 assert(!OldTerm->mayHaveSideEffects() &&
511 "Preheader must end with a side-effect-free terminator");
512 assert(OldTerm->getNumSuccessors() == 1 &&
513 "Preheader must have a single successor");
514 // Connect the preheader to the exit block. Keep the old edge to the header
515 // around to perform the dominator tree update in two separate steps
516 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
517 // preheader -> header.
518 //
519 //
520 // 0. Preheader 1. Preheader 2. Preheader
521 // | | | |
522 // V | V |
523 // Header <--\ | Header <--\ | Header <--\
524 // | | | | | | | | | | |
525 // | V | | | V | | | V |
526 // | Body --/ | | Body --/ | | Body --/
527 // V V V V V
528 // Exit Exit Exit
529 //
530 // By doing this is two separate steps we can perform the dominator tree
531 // update without using the batch update API.
532 //
533 // Even when the loop is never executed, we cannot remove the edge from the
534 // source block to the exit block. Consider the case where the unexecuted loop
535 // branches back to an outer loop. If we deleted the loop and removed the edge
536 // coming to this inner loop, this will break the outer loop structure (by
537 // deleting the backedge of the outer loop). If the outer loop is indeed a
538 // non-loop, it will be deleted in a future iteration of loop deletion pass.
539 IRBuilder<> Builder(OldTerm);
540
541 auto *ExitBlock = L->getUniqueExitBlock();
542 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
543 if (ExitBlock) {
544 assert(ExitBlock && "Should have a unique exit block!");
545 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
546
547 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
548 // Remove the old branch. The conditional branch becomes a new terminator.
549 OldTerm->eraseFromParent();
550
551 // Rewrite phis in the exit block to get their inputs from the Preheader
552 // instead of the exiting block.
553 for (PHINode &P : ExitBlock->phis()) {
554 // Set the zero'th element of Phi to be from the preheader and remove all
555 // other incoming values. Given the loop has dedicated exits, all other
556 // incoming values must be from the exiting blocks.
557 int PredIndex = 0;
558 P.setIncomingBlock(PredIndex, Preheader);
559 // Removes all incoming values from all other exiting blocks (including
560 // duplicate values from an exiting block).
561 // Nuke all entries except the zero'th entry which is the preheader entry.
562 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
563 /* DeletePHIIfEmpty */ false);
564
565 assert((P.getNumIncomingValues() == 1 &&
566 P.getIncomingBlock(PredIndex) == Preheader) &&
567 "Should have exactly one value and that's from the preheader!");
568 }
569
570 if (DT) {
571 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
572 if (MSSA) {
573 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
574 *DT);
575 if (VerifyMemorySSA)
576 MSSA->verifyMemorySSA();
577 }
578 }
579
580 // Disconnect the loop body by branching directly to its exit.
581 Builder.SetInsertPoint(Preheader->getTerminator());
582 Builder.CreateBr(ExitBlock);
583 // Remove the old branch.
584 Preheader->getTerminator()->eraseFromParent();
585 } else {
586 assert(L->hasNoExitBlocks() &&
587 "Loop should have either zero or one exit blocks.");
588
589 Builder.SetInsertPoint(OldTerm);
590 Builder.CreateUnreachable();
591 Preheader->getTerminator()->eraseFromParent();
592 }
593
594 if (DT) {
595 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
596 if (MSSA) {
597 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
598 *DT);
599 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
600 L->block_end());
601 MSSAU->removeBlocks(DeadBlockSet);
602 if (VerifyMemorySSA)
603 MSSA->verifyMemorySSA();
604 }
605 }
606
607 // Use a map to unique and a vector to guarantee deterministic ordering.
609 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
610
611 if (ExitBlock) {
612 // Given LCSSA form is satisfied, we should not have users of instructions
613 // within the dead loop outside of the loop. However, LCSSA doesn't take
614 // unreachable uses into account. We handle them here.
615 // We could do it after drop all references (in this case all users in the
616 // loop will be already eliminated and we have less work to do but according
617 // to API doc of User::dropAllReferences only valid operation after dropping
618 // references, is deletion. So let's substitute all usages of
619 // instruction from the loop with poison value of corresponding type first.
620 for (auto *Block : L->blocks())
621 for (Instruction &I : *Block) {
622 auto *Poison = PoisonValue::get(I.getType());
623 for (Use &U : llvm::make_early_inc_range(I.uses())) {
624 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
625 if (L->contains(Usr->getParent()))
626 continue;
627 // If we have a DT then we can check that uses outside a loop only in
628 // unreachable block.
629 if (DT)
631 "Unexpected user in reachable block");
632 U.set(Poison);
633 }
634
635 // For one of each variable encountered, preserve a debug record (set
636 // to Poison) and transfer it to the loop exit. This terminates any
637 // variable locations that were set during the loop.
638 for (DbgVariableRecord &DVR :
639 llvm::make_early_inc_range(filterDbgVars(I.getDbgRecordRange()))) {
640 DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
641 DVR.getDebugLoc().get());
642 if (!DeadDebugSet.insert(Key).second)
643 continue;
644 // Unlinks the DVR from it's container, for later insertion.
645 DVR.removeFromParent();
646 DeadDbgVariableRecords.push_back(&DVR);
647 }
648 }
649
650 // After the loop has been deleted all the values defined and modified
651 // inside the loop are going to be unavailable. Values computed in the
652 // loop will have been deleted, automatically causing their debug uses
653 // be be replaced with undef. Loop invariant values will still be available.
654 // Move dbg.values out the loop so that earlier location ranges are still
655 // terminated and loop invariant assignments are preserved.
656 DIBuilder DIB(*ExitBlock->getModule());
657 BasicBlock::iterator InsertDbgValueBefore =
658 ExitBlock->getFirstInsertionPt();
659 assert(InsertDbgValueBefore != ExitBlock->end() &&
660 "There should be a non-PHI instruction in exit block, else these "
661 "instructions will have no parent.");
662
663 // Due to the "head" bit in BasicBlock::iterator, we're going to insert
664 // each DbgVariableRecord right at the start of the block, wheras dbg.values
665 // would be repeatedly inserted before the first instruction. To replicate
666 // this behaviour, do it backwards.
667 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
668 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
669 }
670
671 // Remove the block from the reference counting scheme, so that we can
672 // delete it freely later.
673 for (auto *Block : L->blocks())
674 Block->dropAllReferences();
675
676 if (MSSA && VerifyMemorySSA)
677 MSSA->verifyMemorySSA();
678
679 if (LI) {
680 // Erase the instructions and the blocks without having to worry
681 // about ordering because we already dropped the references.
682 // NOTE: This iteration is safe because erasing the block does not remove
683 // its entry from the loop's block list. We do that in the next section.
684 for (BasicBlock *BB : L->blocks())
685 BB->eraseFromParent();
686
687 // Finally, the blocks from loopinfo. This has to happen late because
688 // otherwise our loop iterators won't work.
689
691 for (BasicBlock *BB : blocks)
692 LI->removeBlock(BB);
693
694 // The last step is to update LoopInfo now that we've eliminated this loop.
695 // Note: LoopInfo::erase remove the given loop and relink its subloops with
696 // its parent. While removeLoop/removeChildLoop remove the given loop but
697 // not relink its subloops, which is what we want.
698 if (Loop *ParentLoop = L->getParentLoop()) {
699 Loop::iterator I = find(*ParentLoop, L);
700 assert(I != ParentLoop->end() && "Couldn't find loop");
701 ParentLoop->removeChildLoop(I);
702 } else {
703 Loop::iterator I = find(*LI, L);
704 assert(I != LI->end() && "Couldn't find loop");
705 LI->removeLoop(I);
706 }
707 LI->destroy(L);
708 }
709}
710
712 LoopInfo &LI, MemorySSA *MSSA) {
713 auto *Latch = L->getLoopLatch();
714 assert(Latch && "multiple latches not yet supported");
715 auto *Header = L->getHeader();
716 Loop *OutermostLoop = L->getOutermostLoop();
717
718 SE.forgetLoop(L);
720
721 std::unique_ptr<MemorySSAUpdater> MSSAU;
722 if (MSSA)
723 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
724
725 // Update the CFG and domtree. We chose to special case a couple of
726 // of common cases for code quality and test readability reasons.
727 [&]() -> void {
728 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
729 if (!BI->isConditional()) {
730 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
731 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
732 MSSAU.get());
733 return;
734 }
735
736 // Conditional latch/exit - note that latch can be shared by inner
737 // and outer loop so the other target doesn't need to an exit
738 if (L->isLoopExiting(Latch)) {
739 // TODO: Generalize ConstantFoldTerminator so that it can be used
740 // here without invalidating LCSSA or MemorySSA. (Tricky case for
741 // LCSSA: header is an exit block of a preceeding sibling loop w/o
742 // dedicated exits.)
743 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
744 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
745
746 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
747 Header->removePredecessor(Latch, true);
748
749 IRBuilder<> Builder(BI);
750 auto *NewBI = Builder.CreateBr(ExitBB);
751 // Transfer the metadata to the new branch instruction (minus the
752 // loop info since this is no longer a loop)
753 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
754 LLVMContext::MD_annotation});
755
756 BI->eraseFromParent();
757 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
758 if (MSSA)
759 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
760 return;
761 }
762 }
763
764 // General case. By splitting the backedge, and then explicitly making it
765 // unreachable we gracefully handle corner cases such as switch and invoke
766 // termiantors.
767 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
768
769 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
770 (void)changeToUnreachable(BackedgeBB->getTerminator(),
771 /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
772 }();
773
774 // Erase (and destroy) this loop instance. Handles relinking sub-loops
775 // and blocks within the loop as needed.
776 LI.erase(L);
777
778 // If the loop we broke had a parent, then changeToUnreachable might have
779 // caused a block to be removed from the parent loop (see loop_nest_lcssa
780 // test case in zero-btc.ll for an example), thus changing the parent's
781 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
782 // loop which might have a had a block removed.
783 if (OutermostLoop != L)
784 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
785}
786
787
788/// Checks if \p L has an exiting latch branch. There may also be other
789/// exiting blocks. Returns branch instruction terminating the loop
790/// latch if above check is successful, nullptr otherwise.
792 BasicBlock *Latch = L->getLoopLatch();
793 if (!Latch)
794 return nullptr;
795
796 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
797 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
798 return nullptr;
799
800 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
801 LatchBR->getSuccessor(1) == L->getHeader()) &&
802 "At least one edge out of the latch must go to the header");
803
804 return LatchBR;
805}
806
807struct DbgLoop {
808 const Loop *L;
809 explicit DbgLoop(const Loop *L) : L(L) {}
810};
811
812#ifndef NDEBUG
814 OS << "function ";
815 D.L->getHeader()->getParent()->printAsOperand(OS, /*PrintType=*/false);
816 return OS << " " << *D.L;
817}
818#endif // NDEBUG
819
820static std::optional<unsigned> estimateLoopTripCount(Loop *L) {
821 // Currently we take the estimate exit count only from the loop latch,
822 // ignoring other exiting blocks. This can overestimate the trip count
823 // if we exit through another exit, but can never underestimate it.
824 // TODO: incorporate information from other exits
825 BranchInst *ExitingBranch = getExpectedExitLoopLatchBranch(L);
826 if (!ExitingBranch) {
827 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to find exiting "
828 << "latch branch of required form in " << DbgLoop(L)
829 << "\n");
830 return std::nullopt;
831 }
832
833 // To estimate the number of times the loop body was executed, we want to
834 // know the number of times the backedge was taken, vs. the number of times
835 // we exited the loop.
836 uint64_t LoopWeight, ExitWeight;
837 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) {
838 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to extract branch "
839 << "weights for " << DbgLoop(L) << "\n");
840 return std::nullopt;
841 }
842
843 if (L->contains(ExitingBranch->getSuccessor(1)))
844 std::swap(LoopWeight, ExitWeight);
845
846 if (!ExitWeight) {
847 // Don't have a way to return predicated infinite
848 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed because of zero exit "
849 << "probability for " << DbgLoop(L) << "\n");
850 return std::nullopt;
851 }
852
853 // Estimated exit count is a ratio of the loop weight by the weight of the
854 // edge exiting the loop, rounded to nearest.
855 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
856
857 // When ExitCount + 1 would wrap in unsigned, saturate at UINT_MAX.
858 if (ExitCount >= std::numeric_limits<unsigned>::max())
859 return std::numeric_limits<unsigned>::max();
860
861 // Estimated trip count is one plus estimated exit count.
862 uint64_t TC = ExitCount + 1;
863 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Estimated trip count of " << TC
864 << " for " << DbgLoop(L) << "\n");
865 return TC;
866}
867
868std::optional<unsigned>
870 unsigned *EstimatedLoopInvocationWeight) {
871 // If EstimatedLoopInvocationWeight, we do not support this loop if
872 // getExpectedExitLoopLatchBranch returns nullptr.
873 //
874 // FIXME: Also, this is a stop-gap solution for nested loops. It avoids
875 // mistaking LLVMLoopEstimatedTripCount metadata to be for an outer loop when
876 // it was created for an inner loop. The problem is that loop metadata is
877 // attached to the branch instruction in the loop latch block, but that can be
878 // shared by the loops. A solution is to attach loop metadata to loop headers
879 // instead, but that would be a large change to LLVM.
880 //
881 // Until that happens, we work around the problem as follows.
882 // getExpectedExitLoopLatchBranch (which also guards
883 // setLoopEstimatedTripCount) returns nullptr for a loop unless the loop has
884 // one latch and that latch has exactly two successors one of which is an exit
885 // from the loop. If the latch is shared by nested loops, then that condition
886 // might hold for the inner loop but cannot hold for the outer loop:
887 // - Because the latch is shared, it must have at least two successors: the
888 // inner loop header and the outer loop header, which is also an exit for
889 // the inner loop. That satisifies the condition for the inner loop.
890 // - To satsify the condition for the outer loop, the latch must have a third
891 // successor that is an exit for the outer loop. But that violates the
892 // condition for both loops.
893 BranchInst *ExitingBranch = getExpectedExitLoopLatchBranch(L);
894 if (!ExitingBranch)
895 return std::nullopt;
896
897 // If requested, either compute *EstimatedLoopInvocationWeight or return
898 // nullopt if cannot.
899 //
900 // TODO: Eventually, once all passes have migrated away from setting branch
901 // weights to indicate estimated trip counts, this function will drop the
902 // EstimatedLoopInvocationWeight parameter.
903 if (EstimatedLoopInvocationWeight) {
904 uint64_t LoopWeight = 0, ExitWeight = 0; // Inits expected to be unused.
905 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
906 return std::nullopt;
907 if (L->contains(ExitingBranch->getSuccessor(1)))
908 std::swap(LoopWeight, ExitWeight);
909 if (!ExitWeight)
910 return std::nullopt;
911 *EstimatedLoopInvocationWeight = ExitWeight;
912 }
913
914 // Return the estimated trip count from metadata unless the metadata is
915 // missing or has no value.
917 LLVM_DEBUG(dbgs() << "getLoopEstimatedTripCount: "
918 << LLVMLoopEstimatedTripCount << " metadata has trip "
919 << "count of " << *TC << " for " << DbgLoop(L) << "\n");
920 return TC;
921 }
922
923 // Estimate the trip count from latch branch weights.
924 return estimateLoopTripCount(L);
925}
926
928 Loop *L, unsigned EstimatedTripCount,
929 std::optional<unsigned> EstimatedloopInvocationWeight) {
930 // If EstimatedLoopInvocationWeight, we do not support this loop if
931 // getExpectedExitLoopLatchBranch returns nullptr.
932 //
933 // FIXME: See comments in getLoopEstimatedTripCount for why this is required
934 // here regardless of EstimatedLoopInvocationWeight.
936 if (!LatchBranch)
937 return false;
938
939 // Set the metadata.
941
942 // At the moment, we currently support changing the estimated trip count in
943 // the latch branch's branch weights only. We could extend this API to
944 // manipulate estimated trip counts for any exit.
945 //
946 // TODO: Eventually, once all passes have migrated away from setting branch
947 // weights to indicate estimated trip counts, we will not set branch weights
948 // here at all.
949 if (!EstimatedloopInvocationWeight)
950 return true;
951
952 // Calculate taken and exit weights.
953 unsigned LatchExitWeight = 0;
954 unsigned BackedgeTakenWeight = 0;
955
956 if (EstimatedTripCount != 0) {
957 LatchExitWeight = *EstimatedloopInvocationWeight;
958 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
959 }
960
961 // Make a swap if back edge is taken when condition is "false".
962 if (LatchBranch->getSuccessor(0) != L->getHeader())
963 std::swap(BackedgeTakenWeight, LatchExitWeight);
964
965 // Set/Update profile metadata.
966 setBranchWeights(*LatchBranch, {BackedgeTakenWeight, LatchExitWeight},
967 /*IsExpected=*/false);
968
969 return true;
970}
971
974 if (!LatchBranch)
976 bool FirstTargetIsLoop = LatchBranch->getSuccessor(0) == L->getHeader();
977 return getBranchProbability(LatchBranch, FirstTargetIsLoop);
978}
979
982 if (!LatchBranch)
983 return false;
984 bool FirstTargetIsLoop = LatchBranch->getSuccessor(0) == L->getHeader();
985 return setBranchProbability(LatchBranch, P, FirstTargetIsLoop);
986}
987
989 bool ForFirstTarget) {
990 if (B->getNumSuccessors() != 2)
992 uint64_t Weight0, Weight1;
993 if (!extractBranchWeights(*B, Weight0, Weight1))
995 uint64_t Denominator = Weight0 + Weight1;
996 if (Denominator == 0)
998 if (!ForFirstTarget)
999 std::swap(Weight0, Weight1);
1000 return BranchProbability::getBranchProbability(Weight0, Denominator);
1001}
1002
1004 bool ForFirstTarget) {
1005 if (B->getNumSuccessors() != 2)
1006 return false;
1007 BranchProbability Prob0 = P;
1008 BranchProbability Prob1 = P.getCompl();
1009 if (!ForFirstTarget)
1010 std::swap(Prob0, Prob1);
1011 setBranchWeights(*B, {Prob0.getNumerator(), Prob1.getNumerator()},
1012 /*IsExpected=*/false);
1013 return true;
1014}
1015
1017 ScalarEvolution &SE) {
1018 Loop *OuterL = InnerLoop->getParentLoop();
1019 if (!OuterL)
1020 return true;
1021
1022 // Get the backedge taken count for the inner loop
1023 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1024 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
1025 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
1026 !InnerLoopBECountSC->getType()->isIntegerTy())
1027 return false;
1028
1029 // Get whether count is invariant to the outer loop
1031 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
1033 return false;
1034
1035 return true;
1036}
1037
1039 switch (RK) {
1040 default:
1041 llvm_unreachable("Unexpected recurrence kind");
1043 case RecurKind::Sub:
1044 case RecurKind::Add:
1045 return Intrinsic::vector_reduce_add;
1046 case RecurKind::Mul:
1047 return Intrinsic::vector_reduce_mul;
1048 case RecurKind::And:
1049 return Intrinsic::vector_reduce_and;
1050 case RecurKind::Or:
1051 return Intrinsic::vector_reduce_or;
1052 case RecurKind::Xor:
1053 return Intrinsic::vector_reduce_xor;
1054 case RecurKind::FMulAdd:
1055 case RecurKind::FAdd:
1056 return Intrinsic::vector_reduce_fadd;
1057 case RecurKind::FMul:
1058 return Intrinsic::vector_reduce_fmul;
1059 case RecurKind::SMax:
1060 return Intrinsic::vector_reduce_smax;
1061 case RecurKind::SMin:
1062 return Intrinsic::vector_reduce_smin;
1063 case RecurKind::UMax:
1064 return Intrinsic::vector_reduce_umax;
1065 case RecurKind::UMin:
1066 return Intrinsic::vector_reduce_umin;
1067 case RecurKind::FMax:
1068 case RecurKind::FMaxNum:
1069 return Intrinsic::vector_reduce_fmax;
1070 case RecurKind::FMin:
1071 case RecurKind::FMinNum:
1072 return Intrinsic::vector_reduce_fmin;
1074 return Intrinsic::vector_reduce_fmaximum;
1076 return Intrinsic::vector_reduce_fminimum;
1078 return Intrinsic::vector_reduce_fmax;
1080 return Intrinsic::vector_reduce_fmin;
1081 }
1082}
1083
1085 switch (IID) {
1086 default:
1087 llvm_unreachable("Unexpected intrinsic id");
1088 case Intrinsic::umin:
1089 return Intrinsic::vector_reduce_umin;
1090 case Intrinsic::umax:
1091 return Intrinsic::vector_reduce_umax;
1092 case Intrinsic::smin:
1093 return Intrinsic::vector_reduce_smin;
1094 case Intrinsic::smax:
1095 return Intrinsic::vector_reduce_smax;
1096 }
1097}
1098
1099// This is the inverse to getReductionForBinop
1101 switch (RdxID) {
1102 case Intrinsic::vector_reduce_fadd:
1103 return Instruction::FAdd;
1104 case Intrinsic::vector_reduce_fmul:
1105 return Instruction::FMul;
1106 case Intrinsic::vector_reduce_add:
1107 return Instruction::Add;
1108 case Intrinsic::vector_reduce_mul:
1109 return Instruction::Mul;
1110 case Intrinsic::vector_reduce_and:
1111 return Instruction::And;
1112 case Intrinsic::vector_reduce_or:
1113 return Instruction::Or;
1114 case Intrinsic::vector_reduce_xor:
1115 return Instruction::Xor;
1116 case Intrinsic::vector_reduce_smax:
1117 case Intrinsic::vector_reduce_smin:
1118 case Intrinsic::vector_reduce_umax:
1119 case Intrinsic::vector_reduce_umin:
1120 return Instruction::ICmp;
1121 case Intrinsic::vector_reduce_fmax:
1122 case Intrinsic::vector_reduce_fmin:
1123 return Instruction::FCmp;
1124 default:
1125 llvm_unreachable("Unexpected ID");
1126 }
1127}
1128
1129// This is the inverse to getArithmeticReductionInstruction
1131 switch (Opc) {
1132 default:
1133 break;
1134 case Instruction::Add:
1135 return Intrinsic::vector_reduce_add;
1136 case Instruction::Mul:
1137 return Intrinsic::vector_reduce_mul;
1138 case Instruction::And:
1139 return Intrinsic::vector_reduce_and;
1140 case Instruction::Or:
1141 return Intrinsic::vector_reduce_or;
1142 case Instruction::Xor:
1143 return Intrinsic::vector_reduce_xor;
1144 }
1146}
1147
1149 switch (RdxID) {
1150 default:
1151 llvm_unreachable("Unknown min/max recurrence kind");
1152 case Intrinsic::vector_reduce_umin:
1153 return Intrinsic::umin;
1154 case Intrinsic::vector_reduce_umax:
1155 return Intrinsic::umax;
1156 case Intrinsic::vector_reduce_smin:
1157 return Intrinsic::smin;
1158 case Intrinsic::vector_reduce_smax:
1159 return Intrinsic::smax;
1160 case Intrinsic::vector_reduce_fmin:
1161 return Intrinsic::minnum;
1162 case Intrinsic::vector_reduce_fmax:
1163 return Intrinsic::maxnum;
1164 case Intrinsic::vector_reduce_fminimum:
1165 return Intrinsic::minimum;
1166 case Intrinsic::vector_reduce_fmaximum:
1167 return Intrinsic::maximum;
1168 }
1169}
1170
1172 switch (RK) {
1173 default:
1174 llvm_unreachable("Unknown min/max recurrence kind");
1175 case RecurKind::UMin:
1176 return Intrinsic::umin;
1177 case RecurKind::UMax:
1178 return Intrinsic::umax;
1179 case RecurKind::SMin:
1180 return Intrinsic::smin;
1181 case RecurKind::SMax:
1182 return Intrinsic::smax;
1183 case RecurKind::FMin:
1184 case RecurKind::FMinNum:
1185 return Intrinsic::minnum;
1186 case RecurKind::FMax:
1187 case RecurKind::FMaxNum:
1188 return Intrinsic::maxnum;
1190 return Intrinsic::minimum;
1192 return Intrinsic::maximum;
1194 return Intrinsic::minimumnum;
1196 return Intrinsic::maximumnum;
1197 }
1198}
1199
1201 switch (RdxID) {
1202 case Intrinsic::vector_reduce_smax:
1203 return RecurKind::SMax;
1204 case Intrinsic::vector_reduce_smin:
1205 return RecurKind::SMin;
1206 case Intrinsic::vector_reduce_umax:
1207 return RecurKind::UMax;
1208 case Intrinsic::vector_reduce_umin:
1209 return RecurKind::UMin;
1210 case Intrinsic::vector_reduce_fmax:
1211 return RecurKind::FMax;
1212 case Intrinsic::vector_reduce_fmin:
1213 return RecurKind::FMin;
1214 default:
1215 return RecurKind::None;
1216 }
1217}
1218
1220 switch (RK) {
1221 default:
1222 llvm_unreachable("Unknown min/max recurrence kind");
1223 case RecurKind::UMin:
1224 return CmpInst::ICMP_ULT;
1225 case RecurKind::UMax:
1226 return CmpInst::ICMP_UGT;
1227 case RecurKind::SMin:
1228 return CmpInst::ICMP_SLT;
1229 case RecurKind::SMax:
1230 return CmpInst::ICMP_SGT;
1231 case RecurKind::FMin:
1232 return CmpInst::FCMP_OLT;
1233 case RecurKind::FMax:
1234 return CmpInst::FCMP_OGT;
1235 // We do not add FMinimum/FMaximum recurrence kind here since there is no
1236 // equivalent predicate which compares signed zeroes according to the
1237 // semantics of the intrinsics (llvm.minimum/maximum).
1238 }
1239}
1240
1242 Value *Right) {
1243 Type *Ty = Left->getType();
1244 if (Ty->isIntOrIntVectorTy() ||
1245 (RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum ||
1249 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1250 "rdx.minmax");
1251 }
1253 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1254 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1255 return Select;
1256}
1257
1258// Helper to generate an ordered reduction.
1260 unsigned Op, RecurKind RdxKind) {
1261 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1262
1263 // Extract and apply reduction ops in ascending order:
1264 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1265 Value *Result = Acc;
1266 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1267 Value *Ext =
1268 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1269
1270 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1271 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1272 "bin.rdx");
1273 } else {
1275 "Invalid min/max");
1276 Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1277 }
1278 }
1279
1280 return Result;
1281}
1282
1283// Helper to generate a log2 shuffle reduction.
1285 unsigned Op,
1287 RecurKind RdxKind) {
1288 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1289 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1290 // and vector ops, reducing the set of values being computed by half each
1291 // round.
1292 assert(isPowerOf2_32(VF) &&
1293 "Reduction emission only supported for pow2 vectors!");
1294 // Note: fast-math-flags flags are controlled by the builder configuration
1295 // and are assumed to apply to all generated arithmetic instructions. Other
1296 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1297 // of the builder configuration, and since they're not passed explicitly,
1298 // will never be relevant here. Note that it would be generally unsound to
1299 // propagate these from an intrinsic call to the expansion anyways as we/
1300 // change the order of operations.
1301 auto BuildShuffledOp = [&Builder, &Op,
1302 &RdxKind](SmallVectorImpl<int> &ShuffleMask,
1303 Value *&TmpVec) -> void {
1304 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1305 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1306 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1307 "bin.rdx");
1308 } else {
1310 "Invalid min/max");
1311 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1312 }
1313 };
1314
1315 Value *TmpVec = Src;
1317 SmallVector<int, 32> ShuffleMask(VF);
1318 for (unsigned stride = 1; stride < VF; stride <<= 1) {
1319 // Initialise the mask with undef.
1320 llvm::fill(ShuffleMask, -1);
1321 for (unsigned j = 0; j < VF; j += stride << 1) {
1322 ShuffleMask[j] = j + stride;
1323 }
1324 BuildShuffledOp(ShuffleMask, TmpVec);
1325 }
1326 } else {
1327 SmallVector<int, 32> ShuffleMask(VF);
1328 for (unsigned i = VF; i != 1; i >>= 1) {
1329 // Move the upper half of the vector to the lower half.
1330 for (unsigned j = 0; j != i / 2; ++j)
1331 ShuffleMask[j] = i / 2 + j;
1332
1333 // Fill the rest of the mask with undef.
1334 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1335 BuildShuffledOp(ShuffleMask, TmpVec);
1336 }
1337 }
1338 // The result is in the first element of the vector.
1339 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1340}
1341
1343 Value *InitVal, PHINode *OrigPhi) {
1344 Value *NewVal = nullptr;
1345
1346 // First use the original phi to determine the new value we're trying to
1347 // select from in the loop.
1348 SelectInst *SI = nullptr;
1349 for (auto *U : OrigPhi->users()) {
1350 if ((SI = dyn_cast<SelectInst>(U)))
1351 break;
1352 }
1353 assert(SI && "One user of the original phi should be a select");
1354
1355 if (SI->getTrueValue() == OrigPhi)
1356 NewVal = SI->getFalseValue();
1357 else {
1358 assert(SI->getFalseValue() == OrigPhi &&
1359 "At least one input to the select should be the original Phi");
1360 NewVal = SI->getTrueValue();
1361 }
1362
1363 // If any predicate is true it means that we want to select the new value.
1364 Value *AnyOf =
1365 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1366 // The compares in the loop may yield poison, which propagates through the
1367 // bitwise ORs. Freeze it here before the condition is used.
1368 AnyOf = Builder.CreateFreeze(AnyOf);
1369 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
1370}
1371
1373 RecurKind RdxKind, Value *Start,
1374 Value *Sentinel) {
1375 bool IsSigned = RecurrenceDescriptor::isSignedRecurrenceKind(RdxKind);
1376 bool IsMaxRdx = RecurrenceDescriptor::isFindLastIVRecurrenceKind(RdxKind);
1377 Value *MaxRdx = Src->getType()->isVectorTy()
1378 ? (IsMaxRdx ? Builder.CreateIntMaxReduce(Src, IsSigned)
1379 : Builder.CreateIntMinReduce(Src, IsSigned))
1380 : Src;
1381 // Correct the final reduction result back to the start value if the maximum
1382 // reduction is sentinel value.
1383 Value *Cmp =
1384 Builder.CreateCmp(CmpInst::ICMP_NE, MaxRdx, Sentinel, "rdx.select.cmp");
1385 return Builder.CreateSelect(Cmp, MaxRdx, Start, "rdx.select");
1386}
1387
1389 FastMathFlags Flags) {
1390 bool Negative = false;
1391 switch (RdxID) {
1392 default:
1393 llvm_unreachable("Expecting a reduction intrinsic");
1394 case Intrinsic::vector_reduce_add:
1395 case Intrinsic::vector_reduce_mul:
1396 case Intrinsic::vector_reduce_or:
1397 case Intrinsic::vector_reduce_xor:
1398 case Intrinsic::vector_reduce_and:
1399 case Intrinsic::vector_reduce_fadd:
1400 case Intrinsic::vector_reduce_fmul: {
1401 unsigned Opc = getArithmeticReductionInstruction(RdxID);
1402 return ConstantExpr::getBinOpIdentity(Opc, Ty, false,
1403 Flags.noSignedZeros());
1404 }
1405 case Intrinsic::vector_reduce_umax:
1406 case Intrinsic::vector_reduce_umin:
1407 case Intrinsic::vector_reduce_smin:
1408 case Intrinsic::vector_reduce_smax: {
1410 return ConstantExpr::getIntrinsicIdentity(ScalarID, Ty);
1411 }
1412 case Intrinsic::vector_reduce_fmax:
1413 case Intrinsic::vector_reduce_fmaximum:
1414 Negative = true;
1415 [[fallthrough]];
1416 case Intrinsic::vector_reduce_fmin:
1417 case Intrinsic::vector_reduce_fminimum: {
1418 bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum ||
1419 RdxID == Intrinsic::vector_reduce_fmaximum;
1420 const fltSemantics &Semantics = Ty->getFltSemantics();
1421 return (!Flags.noNaNs() && !PropagatesNaN)
1422 ? ConstantFP::getQNaN(Ty, Negative)
1423 : !Flags.noInfs()
1424 ? ConstantFP::getInfinity(Ty, Negative)
1425 : ConstantFP::get(Ty, APFloat::getLargest(Semantics, Negative));
1426 }
1427 }
1428}
1429
1431 assert((!(K == RecurKind::FMin || K == RecurKind::FMax) ||
1432 (FMF.noNaNs() && FMF.noSignedZeros())) &&
1433 "nnan, nsz is expected to be set for FP min/max reduction.");
1435 return getReductionIdentity(RdxID, Tp, FMF);
1436}
1437
1439 RecurKind RdxKind) {
1440 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1441 auto getIdentity = [&]() {
1442 return getRecurrenceIdentity(RdxKind, SrcVecEltTy,
1443 Builder.getFastMathFlags());
1444 };
1445 switch (RdxKind) {
1447 case RecurKind::Sub:
1448 case RecurKind::Add:
1449 case RecurKind::Mul:
1450 case RecurKind::And:
1451 case RecurKind::Or:
1452 case RecurKind::Xor:
1453 case RecurKind::SMax:
1454 case RecurKind::SMin:
1455 case RecurKind::UMax:
1456 case RecurKind::UMin:
1457 case RecurKind::FMax:
1458 case RecurKind::FMin:
1459 case RecurKind::FMinNum:
1460 case RecurKind::FMaxNum:
1465 return Builder.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind), Src);
1466 case RecurKind::FMulAdd:
1467 case RecurKind::FAdd:
1468 return Builder.CreateFAddReduce(getIdentity(), Src);
1469 case RecurKind::FMul:
1470 return Builder.CreateFMulReduce(getIdentity(), Src);
1471 default:
1472 llvm_unreachable("Unhandled opcode");
1473 }
1474}
1475
1477 RecurKind Kind, Value *Mask, Value *EVL) {
1480 "AnyOf and FindIV reductions are not supported.");
1482 auto VPID = VPIntrinsic::getForIntrinsic(Id);
1484 "No VPIntrinsic for this reduction");
1485 auto *EltTy = cast<VectorType>(Src->getType())->getElementType();
1486 Value *Iden = getRecurrenceIdentity(Kind, EltTy, Builder.getFastMathFlags());
1487 Value *Ops[] = {Iden, Src, Mask, EVL};
1488 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1489}
1490
1492 Value *Src, Value *Start) {
1493 assert((Kind == RecurKind::FAdd || Kind == RecurKind::FMulAdd) &&
1494 "Unexpected reduction kind");
1495 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1496 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1497
1498 return B.CreateFAddReduce(Start, Src);
1499}
1500
1502 Value *Src, Value *Start, Value *Mask,
1503 Value *EVL) {
1504 assert((Kind == RecurKind::FAdd || Kind == RecurKind::FMulAdd) &&
1505 "Unexpected reduction kind");
1506 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1507 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1508
1510 auto VPID = VPIntrinsic::getForIntrinsic(Id);
1512 "No VPIntrinsic for this reduction");
1513 auto *EltTy = cast<VectorType>(Src->getType())->getElementType();
1514 Value *Ops[] = {Start, Src, Mask, EVL};
1515 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1516}
1517
1519 bool IncludeWrapFlags) {
1520 auto *VecOp = dyn_cast<Instruction>(I);
1521 if (!VecOp)
1522 return;
1523 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1524 : dyn_cast<Instruction>(OpValue);
1525 if (!Intersection)
1526 return;
1527 const unsigned Opcode = Intersection->getOpcode();
1528 VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1529 for (auto *V : VL) {
1530 auto *Instr = dyn_cast<Instruction>(V);
1531 if (!Instr)
1532 continue;
1533 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1534 VecOp->andIRFlags(V);
1535 }
1536}
1537
1538bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1539 ScalarEvolution &SE) {
1540 const SCEV *Zero = SE.getZero(S->getType());
1541 return SE.isAvailableAtLoopEntry(S, L) &&
1543}
1544
1546 ScalarEvolution &SE) {
1547 const SCEV *Zero = SE.getZero(S->getType());
1548 return SE.isAvailableAtLoopEntry(S, L) &&
1550}
1551
1552bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1553 ScalarEvolution &SE) {
1554 const SCEV *Zero = SE.getZero(S->getType());
1555 return SE.isAvailableAtLoopEntry(S, L) &&
1557}
1558
1560 ScalarEvolution &SE) {
1561 const SCEV *Zero = SE.getZero(S->getType());
1562 return SE.isAvailableAtLoopEntry(S, L) &&
1564}
1565
1567 bool Signed) {
1568 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1571 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1572 return SE.isAvailableAtLoopEntry(S, L) &&
1573 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1574 SE.getConstant(Min));
1575}
1576
1578 bool Signed) {
1579 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1582 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1583 return SE.isAvailableAtLoopEntry(S, L) &&
1584 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1585 SE.getConstant(Max));
1586}
1587
1588//===----------------------------------------------------------------------===//
1589// rewriteLoopExitValues - Optimize IV users outside the loop.
1590// As a side effect, reduces the amount of IV processing within the loop.
1591//===----------------------------------------------------------------------===//
1592
1593static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1596 Visited.insert(I);
1597 WorkList.push_back(I);
1598 while (!WorkList.empty()) {
1599 const Instruction *Curr = WorkList.pop_back_val();
1600 // This use is outside the loop, nothing to do.
1601 if (!L->contains(Curr))
1602 continue;
1603 // Do we assume it is a "hard" use which will not be eliminated easily?
1604 if (Curr->mayHaveSideEffects())
1605 return true;
1606 // Otherwise, add all its users to worklist.
1607 for (const auto *U : Curr->users()) {
1608 auto *UI = cast<Instruction>(U);
1609 if (Visited.insert(UI).second)
1610 WorkList.push_back(UI);
1611 }
1612 }
1613 return false;
1614}
1615
1616// Collect information about PHI nodes which can be transformed in
1617// rewriteLoopExitValues.
1619 PHINode *PN; // For which PHI node is this replacement?
1620 unsigned Ith; // For which incoming value?
1621 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1622 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1623 bool HighCost; // Is this expansion a high-cost?
1624
1625 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1626 bool H)
1627 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1628 HighCost(H) {}
1629};
1630
1631// Check whether it is possible to delete the loop after rewriting exit
1632// value. If it is possible, ignore ReplaceExitValue and do rewriting
1633// aggressively.
1634static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1635 BasicBlock *Preheader = L->getLoopPreheader();
1636 // If there is no preheader, the loop will not be deleted.
1637 if (!Preheader)
1638 return false;
1639
1640 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1641 // We obviate multiple ExitingBlocks case for simplicity.
1642 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1643 // after exit value rewriting, we can enhance the logic here.
1644 SmallVector<BasicBlock *, 4> ExitingBlocks;
1645 L->getExitingBlocks(ExitingBlocks);
1647 L->getUniqueExitBlocks(ExitBlocks);
1648 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1649 return false;
1650
1651 BasicBlock *ExitBlock = ExitBlocks[0];
1652 BasicBlock::iterator BI = ExitBlock->begin();
1653 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1654 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1655
1656 // If the Incoming value of P is found in RewritePhiSet, we know it
1657 // could be rewritten to use a loop invariant value in transformation
1658 // phase later. Skip it in the loop invariant check below.
1659 bool found = false;
1660 for (const RewritePhi &Phi : RewritePhiSet) {
1661 unsigned i = Phi.Ith;
1662 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1663 found = true;
1664 break;
1665 }
1666 }
1667
1668 Instruction *I;
1669 if (!found && (I = dyn_cast<Instruction>(Incoming)))
1670 if (!L->hasLoopInvariantOperands(I))
1671 return false;
1672
1673 ++BI;
1674 }
1675
1676 for (auto *BB : L->blocks())
1677 if (llvm::any_of(*BB, [](Instruction &I) {
1678 return I.mayHaveSideEffects();
1679 }))
1680 return false;
1681
1682 return true;
1683}
1684
1685/// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1686/// and returns true if this Phi is an induction phi in the loop. When
1687/// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1688static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1690 if (!Phi)
1691 return false;
1692 if (!L->getLoopPreheader())
1693 return false;
1694 if (Phi->getParent() != L->getHeader())
1695 return false;
1696 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1697}
1698
1700 ScalarEvolution *SE,
1701 const TargetTransformInfo *TTI,
1702 SCEVExpander &Rewriter, DominatorTree *DT,
1705 // Check a pre-condition.
1706 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1707 "Indvars did not preserve LCSSA!");
1708
1709 SmallVector<BasicBlock*, 8> ExitBlocks;
1710 L->getUniqueExitBlocks(ExitBlocks);
1711
1712 SmallVector<RewritePhi, 8> RewritePhiSet;
1713 // Find all values that are computed inside the loop, but used outside of it.
1714 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1715 // the exit blocks of the loop to find them.
1716 for (BasicBlock *ExitBB : ExitBlocks) {
1717 // If there are no PHI nodes in this exit block, then no values defined
1718 // inside the loop are used on this path, skip it.
1719 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1720 if (!PN) continue;
1721
1722 unsigned NumPreds = PN->getNumIncomingValues();
1723
1724 // Iterate over all of the PHI nodes.
1725 BasicBlock::iterator BBI = ExitBB->begin();
1726 while ((PN = dyn_cast<PHINode>(BBI++))) {
1727 if (PN->use_empty())
1728 continue; // dead use, don't replace it
1729
1730 if (!SE->isSCEVable(PN->getType()))
1731 continue;
1732
1733 // Iterate over all of the values in all the PHI nodes.
1734 for (unsigned i = 0; i != NumPreds; ++i) {
1735 // If the value being merged in is not integer or is not defined
1736 // in the loop, skip it.
1737 Value *InVal = PN->getIncomingValue(i);
1738 if (!isa<Instruction>(InVal))
1739 continue;
1740
1741 // If this pred is for a subloop, not L itself, skip it.
1742 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1743 continue; // The Block is in a subloop, skip it.
1744
1745 // Check that InVal is defined in the loop.
1746 Instruction *Inst = cast<Instruction>(InVal);
1747 if (!L->contains(Inst))
1748 continue;
1749
1750 // Find exit values which are induction variables in the loop, and are
1751 // unused in the loop, with the only use being the exit block PhiNode,
1752 // and the induction variable update binary operator.
1753 // The exit value can be replaced with the final value when it is cheap
1754 // to do so.
1757 PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1758 if (IndPhi) {
1759 if (!checkIsIndPhi(IndPhi, L, SE, ID))
1760 continue;
1761 // This is an induction PHI. Check that the only users are PHI
1762 // nodes, and induction variable update binary operators.
1763 if (llvm::any_of(Inst->users(), [&](User *U) {
1764 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1765 return true;
1766 BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1767 if (B && B != ID.getInductionBinOp())
1768 return true;
1769 return false;
1770 }))
1771 continue;
1772 } else {
1773 // If it is not an induction phi, it must be an induction update
1774 // binary operator with an induction phi user.
1776 if (!B)
1777 continue;
1778 if (llvm::any_of(Inst->users(), [&](User *U) {
1779 PHINode *Phi = dyn_cast<PHINode>(U);
1780 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1781 return true;
1782 return false;
1783 }))
1784 continue;
1785 if (B != ID.getInductionBinOp())
1786 continue;
1787 }
1788 }
1789
1790 // Okay, this instruction has a user outside of the current loop
1791 // and varies predictably *inside* the loop. Evaluate the value it
1792 // contains when the loop exits, if possible. We prefer to start with
1793 // expressions which are true for all exits (so as to maximize
1794 // expression reuse by the SCEVExpander), but resort to per-exit
1795 // evaluation if that fails.
1796 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1797 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1798 !SE->isLoopInvariant(ExitValue, L) ||
1799 !Rewriter.isSafeToExpand(ExitValue)) {
1800 // TODO: This should probably be sunk into SCEV in some way; maybe a
1801 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1802 // most SCEV expressions and other recurrence types (e.g. shift
1803 // recurrences). Is there existing code we can reuse?
1804 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1805 if (isa<SCEVCouldNotCompute>(ExitCount))
1806 continue;
1807 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1808 if (AddRec->getLoop() == L)
1809 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1810 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1811 !SE->isLoopInvariant(ExitValue, L) ||
1812 !Rewriter.isSafeToExpand(ExitValue))
1813 continue;
1814 }
1815
1816 // Computing the value outside of the loop brings no benefit if it is
1817 // definitely used inside the loop in a way which can not be optimized
1818 // away. Avoid doing so unless we know we have a value which computes
1819 // the ExitValue already. TODO: This should be merged into SCEV
1820 // expander to leverage its knowledge of existing expressions.
1821 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1822 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1823 continue;
1824
1825 // Check if expansions of this SCEV would count as being high cost.
1826 bool HighCost = Rewriter.isHighCostExpansion(
1827 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1828
1829 // Note that we must not perform expansions until after
1830 // we query *all* the costs, because if we perform temporary expansion
1831 // inbetween, one that we might not intend to keep, said expansion
1832 // *may* affect cost calculation of the next SCEV's we'll query,
1833 // and next SCEV may errneously get smaller cost.
1834
1835 // Collect all the candidate PHINodes to be rewritten.
1836 Instruction *InsertPt =
1837 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1838 &*Inst->getParent()->getFirstInsertionPt() : Inst;
1839 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1840 }
1841 }
1842 }
1843
1844 // TODO: evaluate whether it is beneficial to change how we calculate
1845 // high-cost: if we have SCEV 'A' which we know we will expand, should we
1846 // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1847 // potentially giving cost bonus to those other SCEV's?
1848
1849 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1850 int NumReplaced = 0;
1851
1852 // Transformation.
1853 for (const RewritePhi &Phi : RewritePhiSet) {
1854 PHINode *PN = Phi.PN;
1855
1856 // Only do the rewrite when the ExitValue can be expanded cheaply.
1857 // If LoopCanBeDel is true, rewrite exit value aggressively.
1860 !LoopCanBeDel && Phi.HighCost)
1861 continue;
1862
1863 Value *ExitVal = Rewriter.expandCodeFor(
1864 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1865
1866 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1867 << '\n'
1868 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1869
1870#ifndef NDEBUG
1871 // If we reuse an instruction from a loop which is neither L nor one of
1872 // its containing loops, we end up breaking LCSSA form for this loop by
1873 // creating a new use of its instruction.
1874 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1875 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1876 if (EVL != L)
1877 assert(EVL->contains(L) && "LCSSA breach detected!");
1878#endif
1879
1880 NumReplaced++;
1881 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1882 PN->setIncomingValue(Phi.Ith, ExitVal);
1883 // It's necessary to tell ScalarEvolution about this explicitly so that
1884 // it can walk the def-use list and forget all SCEVs, as it may not be
1885 // watching the PHI itself. Once the new exit value is in place, there
1886 // may not be a def-use connection between the loop and every instruction
1887 // which got a SCEVAddRecExpr for that loop.
1888 SE->forgetValue(PN);
1889
1890 // If this instruction is dead now, delete it. Don't do it now to avoid
1891 // invalidating iterators.
1892 if (isInstructionTriviallyDead(Inst, TLI))
1893 DeadInsts.push_back(Inst);
1894
1895 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1896 if (PN->getNumIncomingValues() == 1 &&
1897 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1898 PN->replaceAllUsesWith(ExitVal);
1899 PN->eraseFromParent();
1900 }
1901 }
1902
1903 // The insertion point instruction may have been deleted; clear it out
1904 // so that the rewriter doesn't trip over it later.
1905 Rewriter.clearInsertPoint();
1906 return NumReplaced;
1907}
1908
1909/// Utility that implements appending of loops onto a worklist.
1910/// Loops are added in preorder (analogous for reverse postorder for trees),
1911/// and the worklist is processed LIFO.
1912template <typename RangeT>
1914 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1915 // We use an internal worklist to build up the preorder traversal without
1916 // recursion.
1917 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1918
1919 // We walk the initial sequence of loops in reverse because we generally want
1920 // to visit defs before uses and the worklist is LIFO.
1921 for (Loop *RootL : Loops) {
1922 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1923 assert(PreOrderWorklist.empty() &&
1924 "Must start with an empty preorder walk worklist.");
1925 PreOrderWorklist.push_back(RootL);
1926 do {
1927 Loop *L = PreOrderWorklist.pop_back_val();
1928 PreOrderWorklist.append(L->begin(), L->end());
1929 PreOrderLoops.push_back(L);
1930 } while (!PreOrderWorklist.empty());
1931
1932 Worklist.insert(std::move(PreOrderLoops));
1933 PreOrderLoops.clear();
1934 }
1935}
1936
1937template <typename RangeT>
1941}
1942
1943template LLVM_EXPORT_TEMPLATE void
1946
1947template LLVM_EXPORT_TEMPLATE void
1950
1955
1957 LoopInfo *LI, LPPassManager *LPM) {
1958 Loop &New = *LI->AllocateLoop();
1959 if (PL)
1960 PL->addChildLoop(&New);
1961 else
1962 LI->addTopLevelLoop(&New);
1963
1964 if (LPM)
1965 LPM->addLoop(New);
1966
1967 // Add all of the blocks in L to the new loop.
1968 for (BasicBlock *BB : L->blocks())
1969 if (LI->getLoopFor(BB) == L)
1970 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1971
1972 // Add all of the subloops to the new loop.
1973 for (Loop *I : *L)
1974 cloneLoop(I, &New, VM, LI, LPM);
1975
1976 return &New;
1977}
1978
1979/// IR Values for the lower and upper bounds of a pointer evolution. We
1980/// need to use value-handles because SCEV expansion can invalidate previously
1981/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1982/// a previous one.
1988
1989/// Expand code for the lower and upper bound of the pointer group \p CG
1990/// in \p TheLoop. \return the values for the bounds.
1992 Loop *TheLoop, Instruction *Loc,
1993 SCEVExpander &Exp, bool HoistRuntimeChecks) {
1994 LLVMContext &Ctx = Loc->getContext();
1995 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1996
1997 Value *Start = nullptr, *End = nullptr;
1998 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1999 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
2000
2001 // If the Low and High values are themselves loop-variant, then we may want
2002 // to expand the range to include those covered by the outer loop as well.
2003 // There is a trade-off here with the advantage being that creating checks
2004 // using the expanded range permits the runtime memory checks to be hoisted
2005 // out of the outer loop. This reduces the cost of entering the inner loop,
2006 // which can be significant for low trip counts. The disadvantage is that
2007 // there is a chance we may now never enter the vectorized inner loop,
2008 // whereas using a restricted range check could have allowed us to enter at
2009 // least once. This is why the behaviour is not currently the default and is
2010 // controlled by the parameter 'HoistRuntimeChecks'.
2011 if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
2013 auto *HighAR = cast<SCEVAddRecExpr>(High);
2014 auto *LowAR = cast<SCEVAddRecExpr>(Low);
2015 const Loop *OuterLoop = TheLoop->getParentLoop();
2016 ScalarEvolution &SE = *Exp.getSE();
2017 const SCEV *Recur = LowAR->getStepRecurrence(SE);
2018 if (Recur == HighAR->getStepRecurrence(SE) &&
2019 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
2020 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
2021 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch);
2022 if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
2023 OuterExitCount->getType()->isIntegerTy()) {
2024 const SCEV *NewHigh =
2025 cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE);
2026 if (!isa<SCEVCouldNotCompute>(NewHigh)) {
2027 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
2028 "outer loop in order to permit hoisting\n");
2029 High = NewHigh;
2030 Low = cast<SCEVAddRecExpr>(Low)->getStart();
2031 // If there is a possibility that the stride is negative then we have
2032 // to generate extra checks to ensure the stride is positive.
2033 if (!SE.isKnownNonNegative(
2034 SE.applyLoopGuards(Recur, HighAR->getLoop()))) {
2035 Stride = Recur;
2036 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
2037 "positive: "
2038 << *Stride << '\n');
2039 }
2040 }
2041 }
2042 }
2043 }
2044
2045 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
2046 End = Exp.expandCodeFor(High, PtrArithTy, Loc);
2047 if (CG->NeedsFreeze) {
2048 IRBuilder<> Builder(Loc);
2049 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
2050 End = Builder.CreateFreeze(End, End->getName() + ".fr");
2051 }
2052 Value *StrideVal =
2053 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
2054 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
2055 return {Start, End, StrideVal};
2056}
2057
2058/// Turns a collection of checks into a collection of expanded upper and
2059/// lower bounds for both pointers in the check.
2064
2065 // Here we're relying on the SCEV Expander's cache to only emit code for the
2066 // same bounds once.
2067 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
2068 [&](const RuntimePointerCheck &Check) {
2069 PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
2071 Second = expandBounds(Check.second, L, Loc, Exp,
2073 return std::make_pair(First, Second);
2074 });
2075
2076 return ChecksWithBounds;
2077}
2078
2080 Instruction *Loc, Loop *TheLoop,
2081 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
2082 SCEVExpander &Exp, bool HoistRuntimeChecks) {
2083 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
2084 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
2085 auto ExpandedChecks =
2086 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
2087
2088 LLVMContext &Ctx = Loc->getContext();
2089 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
2090 ChkBuilder.SetInsertPoint(Loc);
2091 // Our instructions might fold to a constant.
2092 Value *MemoryRuntimeCheck = nullptr;
2093
2094 for (const auto &[A, B] : ExpandedChecks) {
2095 // Check if two pointers (A and B) conflict where conflict is computed as:
2096 // start(A) <= end(B) && start(B) <= end(A)
2097
2098 assert((A.Start->getType()->getPointerAddressSpace() ==
2099 B.End->getType()->getPointerAddressSpace()) &&
2100 (B.Start->getType()->getPointerAddressSpace() ==
2101 A.End->getType()->getPointerAddressSpace()) &&
2102 "Trying to bounds check pointers with different address spaces");
2103
2104 // [A|B].Start points to the first accessed byte under base [A|B].
2105 // [A|B].End points to the last accessed byte, plus one.
2106 // There is no conflict when the intervals are disjoint:
2107 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2108 //
2109 // bound0 = (B.Start < A.End)
2110 // bound1 = (A.Start < B.End)
2111 // IsConflict = bound0 & bound1
2112 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
2113 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
2114 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2115 if (A.StrideToCheck) {
2116 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
2117 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
2118 "stride.check");
2119 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2120 }
2121 if (B.StrideToCheck) {
2122 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
2123 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
2124 "stride.check");
2125 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2126 }
2127 if (MemoryRuntimeCheck) {
2128 IsConflict =
2129 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2130 }
2131 MemoryRuntimeCheck = IsConflict;
2132 }
2133
2134 Exp.eraseDeadInstructions(MemoryRuntimeCheck);
2135 return MemoryRuntimeCheck;
2136}
2137
2140 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
2141
2142 LLVMContext &Ctx = Loc->getContext();
2143 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
2144 ChkBuilder.SetInsertPoint(Loc);
2145 // Our instructions might fold to a constant.
2146 Value *MemoryRuntimeCheck = nullptr;
2147
2148 auto &SE = *Expander.getSE();
2149 // Map to keep track of created compares, The key is the pair of operands for
2150 // the compare, to allow detecting and re-using redundant compares.
2152 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
2153 Type *Ty = SinkStart->getType();
2154 // Compute VF * IC * AccessSize.
2155 auto *VFTimesICTimesSize =
2156 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
2157 ConstantInt::get(Ty, IC * AccessSize));
2158 Value *Diff =
2159 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc);
2160
2161 // Check if the same compare has already been created earlier. In that case,
2162 // there is no need to check it again.
2163 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesICTimesSize});
2164 if (IsConflict)
2165 continue;
2166
2167 IsConflict =
2168 ChkBuilder.CreateICmpULT(Diff, VFTimesICTimesSize, "diff.check");
2169 SeenCompares.insert({{Diff, VFTimesICTimesSize}, IsConflict});
2170 if (NeedsFreeze)
2171 IsConflict =
2172 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
2173 if (MemoryRuntimeCheck) {
2174 IsConflict =
2175 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2176 }
2177 MemoryRuntimeCheck = IsConflict;
2178 }
2179
2180 Expander.eraseDeadInstructions(MemoryRuntimeCheck);
2181 return MemoryRuntimeCheck;
2182}
2183
2184std::optional<IVConditionInfo>
2186 const MemorySSA &MSSA, AAResults &AA) {
2187 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
2188 if (!TI || !TI->isConditional())
2189 return {};
2190
2191 auto *CondI = dyn_cast<Instruction>(TI->getCondition());
2192 // The case with the condition outside the loop should already be handled
2193 // earlier.
2194 // Allow CmpInst and TruncInsts as they may be users of load instructions
2195 // and have potential for partial unswitching
2196 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI))
2197 return {};
2198
2199 SmallVector<Instruction *> InstToDuplicate;
2200 InstToDuplicate.push_back(CondI);
2201
2202 SmallVector<Value *, 4> WorkList;
2203 WorkList.append(CondI->op_begin(), CondI->op_end());
2204
2205 SmallVector<MemoryAccess *, 4> AccessesToCheck;
2206 SmallVector<MemoryLocation, 4> AccessedLocs;
2207 while (!WorkList.empty()) {
2209 if (!I || !L.contains(I))
2210 continue;
2211
2212 // TODO: support additional instructions.
2214 return {};
2215
2216 // Do not duplicate volatile and atomic loads.
2217 if (auto *LI = dyn_cast<LoadInst>(I))
2218 if (LI->isVolatile() || LI->isAtomic())
2219 return {};
2220
2221 InstToDuplicate.push_back(I);
2222 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
2223 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
2224 // Queue the defining access to check for alias checks.
2225 AccessesToCheck.push_back(MemUse->getDefiningAccess());
2226 AccessedLocs.push_back(MemoryLocation::get(I));
2227 } else {
2228 // MemoryDefs may clobber the location or may be atomic memory
2229 // operations. Bail out.
2230 return {};
2231 }
2232 }
2233 WorkList.append(I->op_begin(), I->op_end());
2234 }
2235
2236 if (InstToDuplicate.empty())
2237 return {};
2238
2239 SmallVector<BasicBlock *, 4> ExitingBlocks;
2240 L.getExitingBlocks(ExitingBlocks);
2241 auto HasNoClobbersOnPath =
2242 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
2243 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
2244 SmallVector<MemoryAccess *, 4> AccessesToCheck)
2245 -> std::optional<IVConditionInfo> {
2246 IVConditionInfo Info;
2247 // First, collect all blocks in the loop that are on a patch from Succ
2248 // to the header.
2250 WorkList.push_back(Succ);
2251 WorkList.push_back(Header);
2253 Seen.insert(Header);
2254 Info.PathIsNoop &=
2255 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2256
2257 while (!WorkList.empty()) {
2258 BasicBlock *Current = WorkList.pop_back_val();
2259 if (!L.contains(Current))
2260 continue;
2261 const auto &SeenIns = Seen.insert(Current);
2262 if (!SeenIns.second)
2263 continue;
2264
2265 Info.PathIsNoop &= all_of(
2266 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2267 WorkList.append(succ_begin(Current), succ_end(Current));
2268 }
2269
2270 // Require at least 2 blocks on a path through the loop. This skips
2271 // paths that directly exit the loop.
2272 if (Seen.size() < 2)
2273 return {};
2274
2275 // Next, check if there are any MemoryDefs that are on the path through
2276 // the loop (in the Seen set) and they may-alias any of the locations in
2277 // AccessedLocs. If that is the case, they may modify the condition and
2278 // partial unswitching is not possible.
2279 SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
2280 while (!AccessesToCheck.empty()) {
2281 MemoryAccess *Current = AccessesToCheck.pop_back_val();
2282 auto SeenI = SeenAccesses.insert(Current);
2283 if (!SeenI.second || !Seen.contains(Current->getBlock()))
2284 continue;
2285
2286 // Bail out if exceeded the threshold.
2287 if (SeenAccesses.size() >= MSSAThreshold)
2288 return {};
2289
2290 // MemoryUse are read-only accesses.
2291 if (isa<MemoryUse>(Current))
2292 continue;
2293
2294 // For a MemoryDef, check if is aliases any of the location feeding
2295 // the original condition.
2296 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
2297 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
2298 return isModSet(
2299 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2300 }))
2301 return {};
2302 }
2303
2304 for (Use &U : Current->uses())
2305 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
2306 }
2307
2308 // We could also allow loops with known trip counts without mustprogress,
2309 // but ScalarEvolution may not be available.
2310 Info.PathIsNoop &= isMustProgress(&L);
2311
2312 // If the path is considered a no-op so far, check if it reaches a
2313 // single exit block without any phis. This ensures no values from the
2314 // loop are used outside of the loop.
2315 if (Info.PathIsNoop) {
2316 for (auto *Exiting : ExitingBlocks) {
2317 if (!Seen.contains(Exiting))
2318 continue;
2319 for (auto *Succ : successors(Exiting)) {
2320 if (L.contains(Succ))
2321 continue;
2322
2323 Info.PathIsNoop &= Succ->phis().empty() &&
2324 (!Info.ExitForPath || Info.ExitForPath == Succ);
2325 if (!Info.PathIsNoop)
2326 break;
2327 assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2328 "cannot have multiple exit blocks");
2329 Info.ExitForPath = Succ;
2330 }
2331 }
2332 }
2333 if (!Info.ExitForPath)
2334 Info.PathIsNoop = false;
2335
2336 Info.InstToDuplicate = InstToDuplicate;
2337 return Info;
2338 };
2339
2340 // If we branch to the same successor, partial unswitching will not be
2341 // beneficial.
2342 if (TI->getSuccessor(0) == TI->getSuccessor(1))
2343 return {};
2344
2345 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2346 AccessesToCheck)) {
2347 Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2348 return Info;
2349 }
2350 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2351 AccessesToCheck)) {
2352 Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2353 return Info;
2354 }
2355
2356 return {};
2357}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This is the interface for LLVM's primary stateless and local alias analysis.
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_EXPORT_TEMPLATE
Definition Compiler.h:215
This file defines the DenseSet and SmallDenseSet classes.
#define Check(C,...)
This is the interface for a simple mod/ref and alias analysis over globals.
static const HTTPClientCleanup Cleanup
Hexagon Hardware Loops
Module.h This file contains the declarations for the Module class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I)
static const char * LLVMLoopDisableLICM
Definition LoopUtils.cpp:56
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, Loop *TheLoop, Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks)
Expand code for the lower and upper bound of the pointer group CG in TheLoop.
static bool canLoopBeDeleted(Loop *L, SmallVector< RewritePhi, 8 > &RewritePhiSet)
static const char * LLVMLoopDisableNonforced
Definition LoopUtils.cpp:55
static MDNode * createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V)
Create MDNode for input string.
static BranchInst * getExpectedExitLoopLatchBranch(Loop *L)
Checks if L has an exiting latch branch.
static std::optional< unsigned > estimateLoopTripCount(Loop *L)
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, InductionDescriptor &ID)
Checks if it is safe to call InductionDescriptor::isInductionPHI for Phi, and returns true if this Ph...
#define I(x, y, z)
Definition MD5.cpp:58
#define H(x, y, z)
Definition MD5.cpp:57
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t High
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
This file provides a priority worklist.
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a SCEV-based alias analysis.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1120
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:207
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:217
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
Represent the analysis usage information of a pass.
LLVM_ABI AnalysisUsage & addRequiredID(const void *ID)
Definition Pass.cpp:284
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
static BranchProbability getUnknown()
uint32_t getNumerator() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:536
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
Record of a variable value-assignment, aka a non instruction representation of the dbg....
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
iterator_range< iterator > children()
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:316
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
bool noSignedZeros() const
Definition FMF.h:67
bool noNaNs() const
Definition FMF.h:65
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Legacy wrapper pass to provide the GlobalsAAResult object.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2348
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2645
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:1551
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2364
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
A struct for saving information about induction variables.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
void addLoop(Loop &L)
Definition LoopPass.cpp:77
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
typename std::vector< Loop * >::const_iterator iterator
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
iterator end() const
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
The legacy pass manager's analysis pass to compute loop information.
Definition LoopInfo.h:596
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Definition LoopInfo.h:441
LLVM_ABI void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition LoopInfo.cpp:887
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
Definition LoopInfo.cpp:526
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition LoopInfo.cpp:502
Metadata node.
Definition Metadata.h:1078
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
LLVMContext & getContext() const
Definition Metadata.h:1242
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
Tuple of metadata.
Definition Metadata.h:1497
BasicBlock * getBlock() const
Definition MemorySSA.h:162
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
Legacy analysis pass which computes MemorySSA.
Definition MemorySSA.h:993
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition MemorySSA.h:702
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition MemorySSA.h:720
Root of the metadata hierarchy.
Definition Metadata.h:64
void setIncomingValue(unsigned i, Value *V)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:44
Legacy wrapper pass to provide the SCEVAAResult object.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
This class represents the LLVM 'select' instruction.
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Value handle that tracks a Value across RAUW.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
static LLVM_ABI Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:538
iterator_range< user_iterator > users()
Definition Value.h:426
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:314
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:682
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
LLVM_ABI std::optional< ElementCount > getOptionalElementCountLoopAttribute(const Loop *TheLoop)
Find a combination of metadata ("llvm.loop.vectorize.width" and "llvm.loop.vectorize....
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
std::pair< const RuntimeCheckingPtrGroup *, const RuntimeCheckingPtrGroup * > RuntimePointerCheck
A memcheck which made up of a pair of grouped pointers.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
LLVM_ABI bool isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-positive in loop L.
LLVM_ABI std::optional< bool > getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
void appendReversedLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
auto successors(const MachineBasicBlock *BB)
BranchProbability getBranchProbability(BranchInst *B, bool ForFirstTarget)
Based on branch weight metadata, return either:
LLVM_ABI void initializeLoopPassPass(PassRegistry &)
Manually defined generic "LoopPass" dependency initialization.
constexpr from_range_t from_range
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
LLVM_ABI Value * getReductionIdentity(Intrinsic::ID RdxID, Type *Ty, FastMathFlags FMF)
Given information about an @llvm.vector.reduce.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
LLVM_ABI char & LCSSAID
Definition LCSSA.cpp:526
LLVM_ABI char & LoopSimplifyID
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
LLVM_ABI SmallVector< BasicBlock *, 16 > collectChildrenInLoop(DominatorTree *DT, DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
LLVM_ABI void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, unsigned V=0)
Set input string into loop metadata by keeping other values intact.
LLVM_ABI bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned max.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
DomTreeNodeBase< BasicBlock > DomTreeNode
Definition Dominators.h:95
constexpr T divideNearest(U Numerator, V Denominator)
Returns (Numerator / Denominator) rounded by round-half-up.
Definition MathExtras.h:458
LLVM_ABI TransformationMode hasVectorizeTransformation(const Loop *L)
bool setBranchProbability(BranchInst *B, BranchProbability P, bool ForFirstTarget)
Set branch weight metadata for B to indicate that P and 1 - P are the probabilities of control flowin...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1968
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI SmallVector< Instruction *, 8 > findDefsUsedOutsideOfLoop(Loop *L)
Returns the instructions that use values defined in the loop.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI constexpr Intrinsic::ID getReductionIntrinsicID(RecurKind RK)
Returns the llvm.vector.reduce intrinsic that corresponds to the recurrence kind.
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
LLVM_ABI TransformationMode hasUnrollAndJamTransformation(const Loop *L)
LLVM_ABI void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, MemorySSA *MSSA=nullptr)
This function deletes dead loops.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI bool hasDisableAllTransformsHint(const Loop *L)
Look for the loop attribute that disables all transformation heuristic.
LLVM_TEMPLATE_ABI void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
LLVM_ABI cl::opt< unsigned > SCEVCheapExpansionBudget
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI Value * getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, TargetTransformInfo::ReductionShuffle RS, RecurKind MinMaxKind=RecurKind::None)
Generates a vector reduction using shufflevectors to reduce the value.
LLVM_ABI TransformationMode hasUnrollTransformation(const Loop *L)
BranchProbability getLoopProbability(Loop *L)
Based on branch weight metadata, return either:
LLVM_ABI TransformationMode hasDistributeTransformation(const Loop *L)
LLVM_ABI void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always positive in loop L.
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition Local.cpp:2513
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
LLVM_ABI std::optional< int > getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name)
Find named metadata for a loop with an integer value.
bool setLoopProbability(Loop *L, BranchProbability P)
Set branch weight metadata for the latch of L to indicate that, at the end of any iteration,...
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
TargetTransformInfo TTI
LLVM_ABI CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK)
Returns the comparison predicate used when expanding a min/max reduction.
LLVM_ABI TransformationMode hasLICMVersioningTransformation(const Loop *L)
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition MemorySSA.cpp:84
TransformationMode
The mode sets how eager a transformation should be applied.
Definition LoopUtils.h:284
@ TM_Unspecified
The pass can use heuristics to determine whether a transformation should be applied.
Definition LoopUtils.h:287
@ TM_SuppressedByUser
The transformation must not be applied.
Definition LoopUtils.h:307
@ TM_ForcedByUser
The transformation was directed by the user, e.g.
Definition LoopUtils.h:301
@ TM_Disable
The transformation should not be applied.
Definition LoopUtils.h:293
@ TM_Enable
The transformation should be applied without considering a cost model.
Definition LoopUtils.h:290
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
LLVM_ABI bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
template LLVM_TEMPLATE_ABI void appendLoopsToWorklist< Loop & >(Loop &L, SmallPriorityWorklist< Loop *, 4 > &Worklist)
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ None
Not a recurrence.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ FMul
Product of floats.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FAdd
Sum of floats.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
Definition LoopUtils.cpp:58
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always negative in loop L.
constexpr unsigned BitWidth
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
LLVM_ABI bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE)
Check inner loop (L) backedge count is known to be invariant on all iterations of its outer loop.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
LLVM_ABI bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
LLVM_ABI RecurKind getMinMaxReductionRecurKind(Intrinsic::ID RdxID)
Returns the recurence kind used when expanding a min/max reduction.
ReplaceExitVal
Definition LoopUtils.h:550
@ UnusedIndVarInLoop
Definition LoopUtils.h:554
@ OnlyCheapRepl
Definition LoopUtils.h:552
@ AlwaysRepl
Definition LoopUtils.h:555
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned min.
LLVM_ABI bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-negative in loop L.
LLVM_ABI Value * getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, unsigned Op, RecurKind MinMaxKind=RecurKind::None)
Generates an ordered vector reduction using extracts to reduce the value.
LLVM_ABI MDNode * findOptionMDForLoopID(MDNode *LoopID, StringRef Name)
Find and return the loop attribute node for the attribute Name in LoopID.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
@ Enable
Enable colors.
Definition WithColor.h:47
LLVM_ABI Loop * cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, LoopInfo *LI, LPPassManager *LPM)
Recursively clone the specified loop and all of its children, mapping the blocks with the specified m...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
DbgLoop(const Loop *L)
const Loop * L
IR Values for the lower and upper bounds of a pointer evolution.
TrackingVH< Value > Start
TrackingVH< Value > End
Value * StrideToCheck
unsigned Ith
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, bool H)
const SCEV * ExpansionSCEV
PHINode * PN
Instruction * ExpansionPoint
Struct to hold information about a partially invariant condition.
Definition LoopUtils.h:622
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
unsigned AddressSpace
Address space of the involved pointers.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.