LLVM
15.0.0git
|
Functions | |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the | jump (sometimes). We should(a) model this |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary | operator will stackify with its user before its operands. However, if moving the binary operator to its user moves it to a place where its operands can 't be moved to, it would be better to leave it in place, or perhaps move it up, so that it can stackify its operands. A binary operator has two operands and one result, so in such cases there could be a net win by preferring the operands. Instruction ordering has a significant influence on register stackification and coloring. Consider experimenting with the MachineScheduler (enable via enableMachineScheduler) and determine if it can be configured to schedule instructions advantageously for this purpose. WebAssemblyRegStackify currently assumes that the stack must be empty after an instruction with no return values |
Variables | |
The object format emitted by the WebAssembly backed is documented | in |
The object format emitted by the WebAssembly backed is documented see the home | page |
The object format emitted by the WebAssembly backed is documented see the home | tools |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on | clang |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on | musl |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main | options |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown | emscripten |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C | libraries |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem | emulation |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more | information |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more | see |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more | br_if |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and(b) extend the stackifier to utilize it. The min/max instructions aren 't exactly a< b?a we should do similar optimizations for WebAssembly AArch64 runs | SeparateConstOffsetFromGEPPass |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and(b) extend the stackifier to utilize it. The min/max instructions aren 't exactly a< b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too | Also |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and(b) extend the stackifier to utilize it. The min/max instructions aren 't exactly a< b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too it has an option to run SimplifyCFG after running the AtomicExpand pass Would this be useful for us too Register stackification uses the VALUE_STACK physical register to impose ordering dependencies on instructions with stack operands This is | pessimistic |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp | Similarly |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned | pass |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such | calls |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing | optimizeSelect |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing | optimizeCompareInstr |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing | optimizeCondBranch |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing | optimizeLoadInstr |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same | constant |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like | this |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const | i32 = |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee | $push6 = |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local | copy = |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register | coloring |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating | code |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means | that |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for | example |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be | extended |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly | rewritten |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly to take full advantage of what WebAssembly permits Add support for mergeable sections in the Wasm | writer |
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the jump | ( | sometimes | ) |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary operator will stackify with its user before its operands. However, if moving the binary operator to its user moves it to a place where its operands can 't be moved to, it would be better to leave it in place, or perhaps move it up, so that it can stackify its operands. A binary operator has two operands and one result, so in such cases there could be a net win by preferring the operands. Instruction ordering has a significant influence on register stackification and coloring. Consider experimenting with the MachineScheduler | ( | enable via | enableMachineScheduler | ) |
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $push6 = |
Definition at line 100 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and (b) extend the stackifier to utilize it. The min/max instructions aren't exactly a<b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too Also |
Definition at line 55 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more br_if |
Definition at line 41 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such calls |
Definition at line 76 of file README.txt.
Definition at line 19 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating code |
Definition at line 120 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register coloring |
Definition at line 119 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same constant |
Definition at line 91 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local copy = |
Definition at line 101 of file README.txt.
Referenced by llvm::PBQP::RegAlloc::AllowedRegVector::AllowedRegVector(), llvm::SmallString< 256 >::append(), llvm::objcopy::coff::AuxSymbol::AuxSymbol(), buildRPathLoadCommand(), llvm::StringRef::copy(), llvm::copy(), llvm::createLibcall(), llvm::createMemLibcall(), llvm::objcopy::deepWriteArchive(), llvm::DiagnosticInfoIROptimization::DiagnosticInfoIROptimization(), llvm::objcopy::wasm::dumpSectionToFile(), dumpSectionToFile(), llvm::detail::BCRecordCoding< BCArray< ElementTy > >::emit(), llvm::LiveRange::findIndexesLiveAt(), llvm::DwarfDebug::getMD5AsBytes(), llvm::slpvectorizer::BoUpSLP::getTreeCost(), llvm::User::growHungoffUses(), llvm::SmallVectorImpl< uint64_t >::insert(), llvm::SparseBitVector< ElementSize >::intersectWithComplement(), llvm::LinearPolyBase< StackOffset >::LinearPolyBase(), loadBinaryFormat(), AbstractManglingParser< ManglingParser< Alloc >, Alloc >::makeNodeArray(), llvm::PBQP::Matrix::Matrix(), mergeVectorRegsToResultRegs(), llvm::PBQP::RegAlloc::NodeMetadata::NodeMetadata(), PODSmallVector< Node *, 8 >::operator=(), llvm::SmallVectorImpl< uint64_t >::operator=(), llvm::OwningArrayRef< T >::OwningArrayRef(), PODSmallVector< Node *, 8 >::PODSmallVector(), llvm::CallBase::populateBundleOperandInfos(), promoteToConstantPool(), llvm::PHINode::removeIncomingValue(), reorderSubVector(), repeat(), llvm::SDDbgValue::SDDbgValue(), llvm::SmallPtrSetImplBase::swap(), updateLoadCommandPayloadString(), llvm::PBQP::Vector::Vector(), and llvm::objcopy::elf::ELFSectionWriter< ELFT >::visit().
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown emscripten |
Definition at line 26 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem emulation |
Definition at line 27 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for example |
Definition at line 131 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be extended |
Definition at line 149 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const i32 = |
Definition at line 95 of file README.txt.
Definition at line 11 of file README.txt.
Referenced by llvm::sys::getSwappedBytes(), llvm::reverseBits(), and llvm::object::viewAs().
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more information |
Definition at line 29 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C libraries |
Definition at line 27 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on musl |
Definition at line 20 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeCompareInstr |
Definition at line 81 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeCondBranch |
Definition at line 81 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeLoadInstr |
Definition at line 82 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeSelect |
Definition at line 81 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main options |
Definition at line 24 of file README.txt.
Referenced by llvm::LTOModule::createFromBuffer(), llvm::LTOModule::createFromFile(), llvm::LTOModule::createFromOpenFile(), llvm::LTOModule::createFromOpenFileSlice(), llvm::LTOModule::createInLocalContext(), llvm::gcovOneInput(), LLVMCreateMCJITCompilerForModule(), and LLVMInitializeMCJITCompilerOptions().
Definition at line 16 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned pass |
Definition at line 73 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and (b) extend the stackifier to utilize it. The min/max instructions aren't exactly a<b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too it has an option to run SimplifyCFG after running the AtomicExpand pass Would this be useful for us too Register stackification uses the VALUE_STACK physical register to impose ordering dependencies on instructions with stack operands This is pessimistic |
Definition at line 62 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly rewritten |
Definition at line 149 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more see |
Definition at line 41 of file README.txt.
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and (b) extend the stackifier to utilize it. The min/max instructions aren't exactly a<b?a we should do similar optimizations for WebAssembly AArch64 runs SeparateConstOffsetFromGEPPass |
Definition at line 42 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp Similarly |
Definition at line 67 of file README.txt.
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means that |
Definition at line 130 of file README.txt.
Referenced by llvm::APInt::APInt(), llvm::SetVector< llvm::MCSection *, SmallVector< llvm::MCSection *, N >, SmallDenseSet< llvm::MCSection *, N > >::operator!=(), llvm::APInt::operator=(), llvm::AnonStructTypeKeyInfo::KeyTy::operator==(), llvm::FunctionTypeKeyInfo::KeyTy::operator==(), llvm::SetVector< llvm::MCSection *, SmallVector< llvm::MCSection *, N >, SmallDenseSet< llvm::MCSection *, N > >::operator==(), llvm::User::OpFrom(), and llvm::SmallPtrSetImpl< llvm::MachineBasicBlock * >::SmallPtrSetImplBase().
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like this |
Definition at line 94 of file README.txt.
Definition at line 16 of file README.txt.
Referenced by llvm::object::MachOObjectFile::getBuildTool().
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly to take full advantage of what WebAssembly permits Add support for mergeable sections in the Wasm writer |
Definition at line 154 of file README.txt.