LLVM  14.0.0git
Functions | Variables
lib/Target/WebAssembly/README.txt File Reference

Functions

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the jump (sometimes). We should(a) model this
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary operator will stackify with its user before its operands. However, if moving the binary operator to its user moves it to a place where its operands can 't be moved to, it would be better to leave it in place, or perhaps move it up, so that it can stackify its operands. A binary operator has two operands and one result, so in such cases there could be a net win by preferring the operands. Instruction ordering has a significant influence on register stackification and coloring. Consider experimenting with the MachineScheduler (enable via enableMachineScheduler) and determine if it can be configured to schedule instructions advantageously for this purpose. WebAssemblyRegStackify currently assumes that the stack must be empty after an instruction with no return values
 

Variables

The object format emitted by the WebAssembly backed is documented in
 
The object format emitted by the WebAssembly backed is documented see the home page
 
The object format emitted by the WebAssembly backed is documented see the home tools
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on clang
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on musl
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main options
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown emscripten
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C libraries
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem emulation
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more information
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more see
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more br_if
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and(b) extend the stackifier to utilize it. The min/max instructions aren 't exactly a< b?a we should do similar optimizations for WebAssembly AArch64 runs SeparateConstOffsetFromGEPPass
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and(b) extend the stackifier to utilize it. The min/max instructions aren 't exactly a< b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too Also
 
The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and(b) extend the stackifier to utilize it. The min/max instructions aren 't exactly a< b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too it has an option to run SimplifyCFG after running the AtomicExpand pass Would this be useful for us too Register stackification uses the VALUE_STACK physical register to impose ordering dependencies on instructions with stack operands This is pessimistic
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp Similarly
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned pass
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such calls
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeSelect
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeCompareInstr
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeCondBranch
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeLoadInstr
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same constant
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like this
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const i32 =
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $push6 =
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local copy =
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register coloring
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating code
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means that
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for example
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be extended
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly rewritten
 
we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly to take full advantage of what WebAssembly permits Add support for mergeable sections in the Wasm writer
 

Function Documentation

◆ jump()

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the jump ( sometimes  )

◆ operator will stackify with its user before its operands. However, if moving the binary operator to its user moves it to a place where its operands can 't be moved to, it would be better to leave it in place, or perhaps move it up, so that it can stackify its operands. A binary operator has two operands and one result, so in such cases there could be a net win by preferring the operands. Instruction ordering has a significant influence on register stackification and coloring. Consider experimenting with the MachineScheduler()

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary operator will stackify with its user before its operands. However, if moving the binary operator to its user moves it to a place where its operands can 't be moved to, it would be better to leave it in place, or perhaps move it up, so that it can stackify its operands. A binary operator has two operands and one result, so in such cases there could be a net win by preferring the operands. Instruction ordering has a significant influence on register stackification and coloring. Consider experimenting with the MachineScheduler ( enable via  enableMachineScheduler)

Variable Documentation

◆ $push6

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $push6 =

Definition at line 100 of file README.txt.

◆ Also

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and (b) extend the stackifier to utilize it. The min/max instructions aren't exactly a<b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too Also

Definition at line 55 of file README.txt.

◆ br_if

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more br_if

Definition at line 41 of file README.txt.

◆ calls

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such calls

Definition at line 76 of file README.txt.

◆ clang

We generate the following IR with clang

Definition at line 19 of file README.txt.

◆ code

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating code

Definition at line 120 of file README.txt.

◆ coloring

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register coloring

Definition at line 119 of file README.txt.

◆ constant

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same constant

Definition at line 91 of file README.txt.

◆ copy

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local copy =

◆ emscripten

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown emscripten

Definition at line 26 of file README.txt.

◆ emulation

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem emulation

Definition at line 27 of file README.txt.

◆ example

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for example

Definition at line 131 of file README.txt.

◆ extended

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be extended

Definition at line 149 of file README.txt.

◆ i32

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const i32 =

Definition at line 95 of file README.txt.

◆ in

The object format emitted by the WebAssembly backed is documented in

Definition at line 11 of file README.txt.

Referenced by llvm::sys::getSwappedBytes(), llvm::reverseBits(), and llvm::object::viewAs().

◆ information

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more information

Definition at line 29 of file README.txt.

◆ libraries

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C libraries

Definition at line 27 of file README.txt.

◆ musl

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on musl

Definition at line 20 of file README.txt.

◆ optimizeCompareInstr

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeCompareInstr

Definition at line 81 of file README.txt.

◆ optimizeCondBranch

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeCondBranch

Definition at line 81 of file README.txt.

◆ optimizeLoadInstr

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeLoadInstr

Definition at line 82 of file README.txt.

◆ optimizeSelect

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing optimizeSelect

Definition at line 81 of file README.txt.

◆ options

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main options

◆ page

The object format emitted by the WebAssembly backed is documented see the home page

Definition at line 16 of file README.txt.

◆ pass

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned pass

Definition at line 73 of file README.txt.

◆ pessimistic

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and (b) extend the stackifier to utilize it. The min/max instructions aren't exactly a<b?a we should do similar optimizations for WebAssembly AArch64 runs followed by EarlyCSE and LICM Would these be useful to run for WebAssembly too it has an option to run SimplifyCFG after running the AtomicExpand pass Would this be useful for us too Register stackification uses the VALUE_STACK physical register to impose ordering dependencies on instructions with stack operands This is pessimistic

Definition at line 62 of file README.txt.

◆ rewritten

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly rewritten

Definition at line 149 of file README.txt.

◆ see

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more see

Definition at line 41 of file README.txt.

◆ SeparateConstOffsetFromGEPPass

The object format emitted by the WebAssembly backed is documented see the home and packaging for producing WebAssembly applications that can run in browsers and other environments wasi sdk provides a more minimal C C SDK based on llvm and a libc based on for producing WebAssemmbly applictions that use the WASI ABI Rust provides WebAssembly support integrated into Cargo There are two main which provides a relatively minimal environment that has an emphasis on being native wasm32 unknown which uses Emscripten internally and provides standard C C filesystem GL and SDL bindings For more and br_table instructions can support having a value on the value stack across the and (b) extend the stackifier to utilize it. The min/max instructions aren't exactly a<b?a we should do similar optimizations for WebAssembly AArch64 runs SeparateConstOffsetFromGEPPass

Definition at line 42 of file README.txt.

◆ Similarly

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp Similarly

Definition at line 67 of file README.txt.

◆ that

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means that

◆ this

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like this

Definition at line 94 of file README.txt.

◆ tools

The object format emitted by the WebAssembly backed is documented see the home tools

Definition at line 16 of file README.txt.

Referenced by llvm::object::MachOObjectFile::getBuildTool().

◆ writer

we should consider alternate ways to model stack dependencies Lots of things could be done in WebAssemblyTargetTransformInfo cpp there are numerous optimization related hooks that can be overridden in WebAssemblyTargetLowering Instead of the OptimizeReturned which should consider preserving the returned attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too That would also let the WebAssemblyPeephole pass clean up dead defs for such as it does for stores Consider implementing and or getMachineCombinerPatterns Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass When setting multiple variables to the same we currently get code like const It could be done with a smaller encoding like local tee $pop5 local $pop6 WebAssembly registers are implicitly initialized to zero Explicit zeroing is therefore often redundant and could be optimized away Small indices may use smaller encodings than large indices WebAssemblyRegColoring and or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow cpp It may also be worthwhile to do transforms before register particularly when duplicating to allow register coloring to be aware of the duplication WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively WebAssemblyRegStackify is currently a greedy algorithm This means for a binary however wasm doesn t actually require this WebAssemblyRegStackify could be or possibly to take full advantage of what WebAssembly permits Add support for mergeable sections in the Wasm writer

Definition at line 154 of file README.txt.