clang  3.9.0
CGExprComplex.cpp
Go to the documentation of this file.
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Metadata.h"
25 #include <algorithm>
26 using namespace clang;
27 using namespace CodeGen;
28 
29 //===----------------------------------------------------------------------===//
30 // Complex Expression Emitter
31 //===----------------------------------------------------------------------===//
32 
34 
35 /// Return the complex type that we are meant to emit.
37  type = type.getCanonicalType();
38  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39  return comp;
40  } else {
41  return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42  }
43 }
44 
45 namespace {
46 class ComplexExprEmitter
47  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48  CodeGenFunction &CGF;
50  bool IgnoreReal;
51  bool IgnoreImag;
52 public:
53  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54  : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55  }
56 
57 
58  //===--------------------------------------------------------------------===//
59  // Utilities
60  //===--------------------------------------------------------------------===//
61 
62  bool TestAndClearIgnoreReal() {
63  bool I = IgnoreReal;
64  IgnoreReal = false;
65  return I;
66  }
67  bool TestAndClearIgnoreImag() {
68  bool I = IgnoreImag;
69  IgnoreImag = false;
70  return I;
71  }
72 
73  /// EmitLoadOfLValue - Given an expression with complex type that represents a
74  /// value l-value, this method emits the address of the l-value, then loads
75  /// and returns the result.
76  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77  return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78  }
79 
80  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81 
82  /// EmitStoreOfComplex - Store the specified real/imag parts into the
83  /// specified value pointer.
84  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85 
86  /// Emit a cast from complex value Val to DestType.
87  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88  QualType DestType, SourceLocation Loc);
89  /// Emit a cast from scalar value Val to DestType.
90  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91  QualType DestType, SourceLocation Loc);
92 
93  //===--------------------------------------------------------------------===//
94  // Visitor Methods
95  //===--------------------------------------------------------------------===//
96 
97  ComplexPairTy Visit(Expr *E) {
98  ApplyDebugLocation DL(CGF, E);
100  }
101 
102  ComplexPairTy VisitStmt(Stmt *S) {
103  S->dump(CGF.getContext().getSourceManager());
104  llvm_unreachable("Stmt can't have complex result type!");
105  }
106  ComplexPairTy VisitExpr(Expr *S);
107  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
108  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109  return Visit(GE->getResultExpr());
110  }
111  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
113  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114  return Visit(PE->getReplacement());
115  }
116 
117  // l-values.
118  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
119  if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
120  if (result.isReference())
121  return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
122  E->getExprLoc());
123 
124  llvm::Constant *pair = result.getValue();
125  return ComplexPairTy(pair->getAggregateElement(0U),
126  pair->getAggregateElement(1U));
127  }
128  return EmitLoadOfLValue(E);
129  }
130  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
131  return EmitLoadOfLValue(E);
132  }
133  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
134  return CGF.EmitObjCMessageExpr(E).getComplexVal();
135  }
136  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
137  ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
138  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
139  if (E->isGLValue())
140  return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
141  return CGF.getOpaqueRValueMapping(E).getComplexVal();
142  }
143 
144  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
145  return CGF.EmitPseudoObjectRValue(E).getComplexVal();
146  }
147 
148  // FIXME: CompoundLiteralExpr
149 
150  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
151  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
152  // Unlike for scalars, we don't have to worry about function->ptr demotion
153  // here.
154  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
155  }
156  ComplexPairTy VisitCastExpr(CastExpr *E) {
157  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
158  CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
159  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
160  }
161  ComplexPairTy VisitCallExpr(const CallExpr *E);
162  ComplexPairTy VisitStmtExpr(const StmtExpr *E);
163 
164  // Operators.
165  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
166  bool isInc, bool isPre) {
167  LValue LV = CGF.EmitLValue(E->getSubExpr());
168  return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
169  }
170  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
171  return VisitPrePostIncDec(E, false, false);
172  }
173  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
174  return VisitPrePostIncDec(E, true, false);
175  }
176  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
177  return VisitPrePostIncDec(E, false, true);
178  }
179  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
180  return VisitPrePostIncDec(E, true, true);
181  }
182  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
183  ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
184  TestAndClearIgnoreReal();
185  TestAndClearIgnoreImag();
186  return Visit(E->getSubExpr());
187  }
188  ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
189  ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
190  // LNot,Real,Imag never return complex.
191  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
192  return Visit(E->getSubExpr());
193  }
194  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
195  return Visit(DAE->getExpr());
196  }
197  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
199  return Visit(DIE->getExpr());
200  }
201  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
202  CGF.enterFullExpression(E);
204  return Visit(E->getSubExpr());
205  }
206  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
207  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
208  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
209  llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
210  return ComplexPairTy(Null, Null);
211  }
212  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
213  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
214  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
215  llvm::Constant *Null =
216  llvm::Constant::getNullValue(CGF.ConvertType(Elem));
217  return ComplexPairTy(Null, Null);
218  }
219 
220  struct BinOpInfo {
221  ComplexPairTy LHS;
222  ComplexPairTy RHS;
223  QualType Ty; // Computation Type.
224  };
225 
226  BinOpInfo EmitBinOps(const BinaryOperator *E);
227  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
228  ComplexPairTy (ComplexExprEmitter::*Func)
229  (const BinOpInfo &),
230  RValue &Val);
231  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
232  ComplexPairTy (ComplexExprEmitter::*Func)
233  (const BinOpInfo &));
234 
235  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
236  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
237  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
238  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
239 
240  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
241  const BinOpInfo &Op);
242 
243  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
244  return EmitBinAdd(EmitBinOps(E));
245  }
246  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
247  return EmitBinSub(EmitBinOps(E));
248  }
249  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
250  return EmitBinMul(EmitBinOps(E));
251  }
252  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
253  return EmitBinDiv(EmitBinOps(E));
254  }
255 
256  // Compound assignments.
257  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
258  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
259  }
260  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
261  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
262  }
263  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
264  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
265  }
266  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
267  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
268  }
269 
270  // GCC rejects rem/and/or/xor for integer complex.
271  // Logical and/or always return int, never complex.
272 
273  // No comparisons produce a complex result.
274 
275  LValue EmitBinAssignLValue(const BinaryOperator *E,
276  ComplexPairTy &Val);
277  ComplexPairTy VisitBinAssign (const BinaryOperator *E);
278  ComplexPairTy VisitBinComma (const BinaryOperator *E);
279 
280 
282  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
283  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
284 
285  ComplexPairTy VisitInitListExpr(InitListExpr *E);
286 
287  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288  return EmitLoadOfLValue(E);
289  }
290 
291  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
292 
293  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
294  return CGF.EmitAtomicExpr(E).getComplexVal();
295  }
296 };
297 } // end anonymous namespace.
298 
299 //===----------------------------------------------------------------------===//
300 // Utilities
301 //===----------------------------------------------------------------------===//
302 
304  QualType complexType) {
305  CharUnits offset = CharUnits::Zero();
306  return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
307 }
308 
310  QualType complexType) {
311  QualType eltType = complexType->castAs<ComplexType>()->getElementType();
312  CharUnits offset = getContext().getTypeSizeInChars(eltType);
313  return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
314 }
315 
316 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
317 /// load the real and imaginary pieces, returning them as Real/Imag.
318 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
319  SourceLocation loc) {
320  assert(lvalue.isSimple() && "non-simple complex l-value?");
321  if (lvalue.getType()->isAtomicType())
322  return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
323 
324  Address SrcPtr = lvalue.getAddress();
325  bool isVolatile = lvalue.isVolatileQualified();
326 
327  llvm::Value *Real = nullptr, *Imag = nullptr;
328 
329  if (!IgnoreReal || isVolatile) {
330  Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
331  Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
332  }
333 
334  if (!IgnoreImag || isVolatile) {
335  Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
336  Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
337  }
338 
339  return ComplexPairTy(Real, Imag);
340 }
341 
342 /// EmitStoreOfComplex - Store the specified real/imag parts into the
343 /// specified value pointer.
344 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
345  bool isInit) {
346  if (lvalue.getType()->isAtomicType() ||
347  (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
348  return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
349 
350  Address Ptr = lvalue.getAddress();
351  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
352  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
353 
354  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
355  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
356 }
357 
358 
359 
360 //===----------------------------------------------------------------------===//
361 // Visitor Methods
362 //===----------------------------------------------------------------------===//
363 
364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
365  CGF.ErrorUnsupported(E, "complex expression");
366  llvm::Type *EltTy =
367  CGF.ConvertType(getComplexType(E->getType())->getElementType());
368  llvm::Value *U = llvm::UndefValue::get(EltTy);
369  return ComplexPairTy(U, U);
370 }
371 
372 ComplexPairTy ComplexExprEmitter::
373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
374  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
375  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
376 }
377 
378 
379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
380  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
381  return EmitLoadOfLValue(E);
382 
383  return CGF.EmitCallExpr(E).getComplexVal();
384 }
385 
386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
388  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
389  assert(RetAlloca.isValid() && "Expected complex return value");
390  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
391  E->getExprLoc());
392 }
393 
394 /// Emit a cast from complex value Val to DestType.
395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
396  QualType SrcType,
397  QualType DestType,
398  SourceLocation Loc) {
399  // Get the src/dest element type.
400  SrcType = SrcType->castAs<ComplexType>()->getElementType();
401  DestType = DestType->castAs<ComplexType>()->getElementType();
402 
403  // C99 6.3.1.6: When a value of complex type is converted to another
404  // complex type, both the real and imaginary parts follow the conversion
405  // rules for the corresponding real types.
406  Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
407  Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
408  return Val;
409 }
410 
411 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
412  QualType SrcType,
413  QualType DestType,
414  SourceLocation Loc) {
415  // Convert the input element to the element type of the complex.
416  DestType = DestType->castAs<ComplexType>()->getElementType();
417  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
418 
419  // Return (realval, 0).
420  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
421 }
422 
423 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
424  QualType DestTy) {
425  switch (CK) {
426  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
427 
428  // Atomic to non-atomic casts may be more than a no-op for some platforms and
429  // for some types.
430  case CK_AtomicToNonAtomic:
431  case CK_NonAtomicToAtomic:
432  case CK_NoOp:
433  case CK_LValueToRValue:
434  case CK_UserDefinedConversion:
435  return Visit(Op);
436 
437  case CK_LValueBitCast: {
438  LValue origLV = CGF.EmitLValue(Op);
439  Address V = origLV.getAddress();
440  V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
441  return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
442  }
443 
444  case CK_BitCast:
445  case CK_BaseToDerived:
446  case CK_DerivedToBase:
447  case CK_UncheckedDerivedToBase:
448  case CK_Dynamic:
449  case CK_ToUnion:
450  case CK_ArrayToPointerDecay:
451  case CK_FunctionToPointerDecay:
452  case CK_NullToPointer:
453  case CK_NullToMemberPointer:
454  case CK_BaseToDerivedMemberPointer:
455  case CK_DerivedToBaseMemberPointer:
456  case CK_MemberPointerToBoolean:
457  case CK_ReinterpretMemberPointer:
458  case CK_ConstructorConversion:
459  case CK_IntegralToPointer:
460  case CK_PointerToIntegral:
461  case CK_PointerToBoolean:
462  case CK_ToVoid:
463  case CK_VectorSplat:
464  case CK_IntegralCast:
465  case CK_BooleanToSignedIntegral:
466  case CK_IntegralToBoolean:
467  case CK_IntegralToFloating:
468  case CK_FloatingToIntegral:
469  case CK_FloatingToBoolean:
470  case CK_FloatingCast:
471  case CK_CPointerToObjCPointerCast:
472  case CK_BlockPointerToObjCPointerCast:
473  case CK_AnyPointerToBlockPointerCast:
474  case CK_ObjCObjectLValueCast:
475  case CK_FloatingComplexToReal:
476  case CK_FloatingComplexToBoolean:
477  case CK_IntegralComplexToReal:
478  case CK_IntegralComplexToBoolean:
479  case CK_ARCProduceObject:
480  case CK_ARCConsumeObject:
481  case CK_ARCReclaimReturnedObject:
482  case CK_ARCExtendBlockObject:
483  case CK_CopyAndAutoreleaseBlockObject:
484  case CK_BuiltinFnToFnPtr:
485  case CK_ZeroToOCLEvent:
486  case CK_AddressSpaceConversion:
487  llvm_unreachable("invalid cast kind for complex value");
488 
489  case CK_FloatingRealToComplex:
490  case CK_IntegralRealToComplex:
491  return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
492  DestTy, Op->getExprLoc());
493 
494  case CK_FloatingComplexCast:
495  case CK_FloatingComplexToIntegralComplex:
496  case CK_IntegralComplexCast:
497  case CK_IntegralComplexToFloatingComplex:
498  return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
499  Op->getExprLoc());
500  }
501 
502  llvm_unreachable("unknown cast resulting in complex value");
503 }
504 
505 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
506  TestAndClearIgnoreReal();
507  TestAndClearIgnoreImag();
508  ComplexPairTy Op = Visit(E->getSubExpr());
509 
510  llvm::Value *ResR, *ResI;
511  if (Op.first->getType()->isFloatingPointTy()) {
512  ResR = Builder.CreateFNeg(Op.first, "neg.r");
513  ResI = Builder.CreateFNeg(Op.second, "neg.i");
514  } else {
515  ResR = Builder.CreateNeg(Op.first, "neg.r");
516  ResI = Builder.CreateNeg(Op.second, "neg.i");
517  }
518  return ComplexPairTy(ResR, ResI);
519 }
520 
521 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
522  TestAndClearIgnoreReal();
523  TestAndClearIgnoreImag();
524  // ~(a+ib) = a + i*-b
525  ComplexPairTy Op = Visit(E->getSubExpr());
526  llvm::Value *ResI;
527  if (Op.second->getType()->isFloatingPointTy())
528  ResI = Builder.CreateFNeg(Op.second, "conj.i");
529  else
530  ResI = Builder.CreateNeg(Op.second, "conj.i");
531 
532  return ComplexPairTy(Op.first, ResI);
533 }
534 
535 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
536  llvm::Value *ResR, *ResI;
537 
538  if (Op.LHS.first->getType()->isFloatingPointTy()) {
539  ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
540  if (Op.LHS.second && Op.RHS.second)
541  ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
542  else
543  ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
544  assert(ResI && "Only one operand may be real!");
545  } else {
546  ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
547  assert(Op.LHS.second && Op.RHS.second &&
548  "Both operands of integer complex operators must be complex!");
549  ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
550  }
551  return ComplexPairTy(ResR, ResI);
552 }
553 
554 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
555  llvm::Value *ResR, *ResI;
556  if (Op.LHS.first->getType()->isFloatingPointTy()) {
557  ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
558  if (Op.LHS.second && Op.RHS.second)
559  ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
560  else
561  ResI = Op.LHS.second ? Op.LHS.second
562  : Builder.CreateFNeg(Op.RHS.second, "sub.i");
563  assert(ResI && "Only one operand may be real!");
564  } else {
565  ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
566  assert(Op.LHS.second && Op.RHS.second &&
567  "Both operands of integer complex operators must be complex!");
568  ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
569  }
570  return ComplexPairTy(ResR, ResI);
571 }
572 
573 /// \brief Emit a libcall for a binary operation on complex types.
574 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
575  const BinOpInfo &Op) {
576  CallArgList Args;
577  Args.add(RValue::get(Op.LHS.first),
578  Op.Ty->castAs<ComplexType>()->getElementType());
579  Args.add(RValue::get(Op.LHS.second),
580  Op.Ty->castAs<ComplexType>()->getElementType());
581  Args.add(RValue::get(Op.RHS.first),
582  Op.Ty->castAs<ComplexType>()->getElementType());
583  Args.add(RValue::get(Op.RHS.second),
584  Op.Ty->castAs<ComplexType>()->getElementType());
585 
586  // We *must* use the full CG function call building logic here because the
587  // complex type has special ABI handling. We also should not forget about
588  // special calling convention which may be used for compiler builtins.
589 
590  // We create a function qualified type to state that this call does not have
591  // any exceptions.
593  EPI = EPI.withExceptionSpec(
595  SmallVector<QualType, 4> ArgsQTys(
596  4, Op.Ty->castAs<ComplexType>()->getElementType());
597  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
598  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
599  Args, cast<FunctionType>(FQTy.getTypePtr()), false);
600 
601  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
602  llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
603  llvm::Instruction *Call;
604 
605  RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
606  FQTy->getAs<FunctionProtoType>(), &Call);
607  cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
608  return Res.getComplexVal();
609 }
610 
611 /// \brief Lookup the libcall name for a given floating point type complex
612 /// multiply.
614  switch (Ty->getTypeID()) {
615  default:
616  llvm_unreachable("Unsupported floating point type!");
617  case llvm::Type::HalfTyID:
618  return "__mulhc3";
619  case llvm::Type::FloatTyID:
620  return "__mulsc3";
621  case llvm::Type::DoubleTyID:
622  return "__muldc3";
623  case llvm::Type::PPC_FP128TyID:
624  return "__multc3";
625  case llvm::Type::X86_FP80TyID:
626  return "__mulxc3";
627  case llvm::Type::FP128TyID:
628  return "__multc3";
629  }
630 }
631 
632 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
633 // typed values.
634 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
635  using llvm::Value;
636  Value *ResR, *ResI;
637  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
638 
639  if (Op.LHS.first->getType()->isFloatingPointTy()) {
640  // The general formulation is:
641  // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
642  //
643  // But we can fold away components which would be zero due to a real
644  // operand according to C11 Annex G.5.1p2.
645  // FIXME: C11 also provides for imaginary types which would allow folding
646  // still more of this within the type system.
647 
648  if (Op.LHS.second && Op.RHS.second) {
649  // If both operands are complex, emit the core math directly, and then
650  // test for NaNs. If we find NaNs in the result, we delegate to a libcall
651  // to carefully re-compute the correct infinity representation if
652  // possible. The expectation is that the presence of NaNs here is
653  // *extremely* rare, and so the cost of the libcall is almost irrelevant.
654  // This is good, because the libcall re-computes the core multiplication
655  // exactly the same as we do here and re-tests for NaNs in order to be
656  // a generic complex*complex libcall.
657 
658  // First compute the four products.
659  Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
660  Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
661  Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
662  Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
663 
664  // The real part is the difference of the first two, the imaginary part is
665  // the sum of the second.
666  ResR = Builder.CreateFSub(AC, BD, "mul_r");
667  ResI = Builder.CreateFAdd(AD, BC, "mul_i");
668 
669  // Emit the test for the real part becoming NaN and create a branch to
670  // handle it. We test for NaN by comparing the number to itself.
671  Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
672  llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
673  llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
674  llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
675  llvm::BasicBlock *OrigBB = Branch->getParent();
676 
677  // Give hint that we very much don't expect to see NaNs.
678  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
679  llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
680  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
681 
682  // Now test the imaginary part and create its branch.
683  CGF.EmitBlock(INaNBB);
684  Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
685  llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
686  Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
687  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
688 
689  // Now emit the libcall on this slowest of the slow paths.
690  CGF.EmitBlock(LibCallBB);
691  Value *LibCallR, *LibCallI;
692  std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
693  getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
694  Builder.CreateBr(ContBB);
695 
696  // Finally continue execution by phi-ing together the different
697  // computation paths.
698  CGF.EmitBlock(ContBB);
699  llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
700  RealPHI->addIncoming(ResR, OrigBB);
701  RealPHI->addIncoming(ResR, INaNBB);
702  RealPHI->addIncoming(LibCallR, LibCallBB);
703  llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
704  ImagPHI->addIncoming(ResI, OrigBB);
705  ImagPHI->addIncoming(ResI, INaNBB);
706  ImagPHI->addIncoming(LibCallI, LibCallBB);
707  return ComplexPairTy(RealPHI, ImagPHI);
708  }
709  assert((Op.LHS.second || Op.RHS.second) &&
710  "At least one operand must be complex!");
711 
712  // If either of the operands is a real rather than a complex, the
713  // imaginary component is ignored when computing the real component of the
714  // result.
715  ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
716 
717  ResI = Op.LHS.second
718  ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
719  : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
720  } else {
721  assert(Op.LHS.second && Op.RHS.second &&
722  "Both operands of integer complex operators must be complex!");
723  Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
724  Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
725  ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
726 
727  Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
728  Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
729  ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
730  }
731  return ComplexPairTy(ResR, ResI);
732 }
733 
734 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
735 // typed values.
736 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
737  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
738  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
739 
740 
741  llvm::Value *DSTr, *DSTi;
742  if (LHSr->getType()->isFloatingPointTy()) {
743  // If we have a complex operand on the RHS, we delegate to a libcall to
744  // handle all of the complexities and minimize underflow/overflow cases.
745  //
746  // FIXME: We would be able to avoid the libcall in many places if we
747  // supported imaginary types in addition to complex types.
748  if (RHSi) {
749  BinOpInfo LibCallOp = Op;
750  // If LHS was a real, supply a null imaginary part.
751  if (!LHSi)
752  LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
753 
754  StringRef LibCallName;
755  switch (LHSr->getType()->getTypeID()) {
756  default:
757  llvm_unreachable("Unsupported floating point type!");
758  case llvm::Type::HalfTyID:
759  return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
760  case llvm::Type::FloatTyID:
761  return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
762  case llvm::Type::DoubleTyID:
763  return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
764  case llvm::Type::PPC_FP128TyID:
765  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
766  case llvm::Type::X86_FP80TyID:
767  return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
768  case llvm::Type::FP128TyID:
769  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
770  }
771  }
772  assert(LHSi && "Can have at most one non-complex operand!");
773 
774  DSTr = Builder.CreateFDiv(LHSr, RHSr);
775  DSTi = Builder.CreateFDiv(LHSi, RHSr);
776  } else {
777  assert(Op.LHS.second && Op.RHS.second &&
778  "Both operands of integer complex operators must be complex!");
779  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
780  llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
781  llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
782  llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
783 
784  llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
785  llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
786  llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
787 
788  llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
789  llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
790  llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
791 
792  if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
793  DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
794  DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
795  } else {
796  DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
797  DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
798  }
799  }
800 
801  return ComplexPairTy(DSTr, DSTi);
802 }
803 
804 ComplexExprEmitter::BinOpInfo
805 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
806  TestAndClearIgnoreReal();
807  TestAndClearIgnoreImag();
808  BinOpInfo Ops;
809  if (E->getLHS()->getType()->isRealFloatingType())
810  Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
811  else
812  Ops.LHS = Visit(E->getLHS());
813  if (E->getRHS()->getType()->isRealFloatingType())
814  Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
815  else
816  Ops.RHS = Visit(E->getRHS());
817 
818  Ops.Ty = E->getType();
819  return Ops;
820 }
821 
822 
823 LValue ComplexExprEmitter::
824 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
825  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
826  RValue &Val) {
827  TestAndClearIgnoreReal();
828  TestAndClearIgnoreImag();
829  QualType LHSTy = E->getLHS()->getType();
830  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
831  LHSTy = AT->getValueType();
832 
833  BinOpInfo OpInfo;
834 
835  // Load the RHS and LHS operands.
836  // __block variables need to have the rhs evaluated first, plus this should
837  // improve codegen a little.
838  OpInfo.Ty = E->getComputationResultType();
839  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
840 
841  // The RHS should have been converted to the computation type.
842  if (E->getRHS()->getType()->isRealFloatingType()) {
843  assert(
844  CGF.getContext()
845  .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
846  OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
847  } else {
848  assert(CGF.getContext()
849  .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
850  OpInfo.RHS = Visit(E->getRHS());
851  }
852 
853  LValue LHS = CGF.EmitLValue(E->getLHS());
854 
855  // Load from the l-value and convert it.
856  SourceLocation Loc = E->getExprLoc();
857  if (LHSTy->isAnyComplexType()) {
858  ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
859  OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
860  } else {
861  llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
862  // For floating point real operands we can directly pass the scalar form
863  // to the binary operator emission and potentially get more efficient code.
864  if (LHSTy->isRealFloatingType()) {
865  if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
866  LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
867  OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
868  } else {
869  OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
870  }
871  }
872 
873  // Expand the binary operator.
874  ComplexPairTy Result = (this->*Func)(OpInfo);
875 
876  // Truncate the result and store it into the LHS lvalue.
877  if (LHSTy->isAnyComplexType()) {
878  ComplexPairTy ResVal =
879  EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
880  EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
881  Val = RValue::getComplex(ResVal);
882  } else {
883  llvm::Value *ResVal =
884  CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
885  CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
886  Val = RValue::get(ResVal);
887  }
888 
889  return LHS;
890 }
891 
892 // Compound assignments.
893 ComplexPairTy ComplexExprEmitter::
894 EmitCompoundAssign(const CompoundAssignOperator *E,
895  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
896  RValue Val;
897  LValue LV = EmitCompoundAssignLValue(E, Func, Val);
898 
899  // The result of an assignment in C is the assigned r-value.
900  if (!CGF.getLangOpts().CPlusPlus)
901  return Val.getComplexVal();
902 
903  // If the lvalue is non-volatile, return the computed value of the assignment.
904  if (!LV.isVolatileQualified())
905  return Val.getComplexVal();
906 
907  return EmitLoadOfLValue(LV, E->getExprLoc());
908 }
909 
910 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
911  ComplexPairTy &Val) {
912  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
913  E->getRHS()->getType()) &&
914  "Invalid assignment");
915  TestAndClearIgnoreReal();
916  TestAndClearIgnoreImag();
917 
918  // Emit the RHS. __block variables need the RHS evaluated first.
919  Val = Visit(E->getRHS());
920 
921  // Compute the address to store into.
922  LValue LHS = CGF.EmitLValue(E->getLHS());
923 
924  // Store the result value into the LHS lvalue.
925  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
926 
927  return LHS;
928 }
929 
930 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
931  ComplexPairTy Val;
932  LValue LV = EmitBinAssignLValue(E, Val);
933 
934  // The result of an assignment in C is the assigned r-value.
935  if (!CGF.getLangOpts().CPlusPlus)
936  return Val;
937 
938  // If the lvalue is non-volatile, return the computed value of the assignment.
939  if (!LV.isVolatileQualified())
940  return Val;
941 
942  return EmitLoadOfLValue(LV, E->getExprLoc());
943 }
944 
945 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
946  CGF.EmitIgnoredExpr(E->getLHS());
947  return Visit(E->getRHS());
948 }
949 
950 ComplexPairTy ComplexExprEmitter::
951 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
952  TestAndClearIgnoreReal();
953  TestAndClearIgnoreImag();
954  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
955  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
956  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
957 
958  // Bind the common expression if necessary.
959  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
960 
961 
963  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
964  CGF.getProfileCount(E));
965 
966  eval.begin(CGF);
967  CGF.EmitBlock(LHSBlock);
968  CGF.incrementProfileCounter(E);
969  ComplexPairTy LHS = Visit(E->getTrueExpr());
970  LHSBlock = Builder.GetInsertBlock();
971  CGF.EmitBranch(ContBlock);
972  eval.end(CGF);
973 
974  eval.begin(CGF);
975  CGF.EmitBlock(RHSBlock);
976  ComplexPairTy RHS = Visit(E->getFalseExpr());
977  RHSBlock = Builder.GetInsertBlock();
978  CGF.EmitBlock(ContBlock);
979  eval.end(CGF);
980 
981  // Create a PHI node for the real part.
982  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
983  RealPN->addIncoming(LHS.first, LHSBlock);
984  RealPN->addIncoming(RHS.first, RHSBlock);
985 
986  // Create a PHI node for the imaginary part.
987  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
988  ImagPN->addIncoming(LHS.second, LHSBlock);
989  ImagPN->addIncoming(RHS.second, RHSBlock);
990 
991  return ComplexPairTy(RealPN, ImagPN);
992 }
993 
994 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
995  return Visit(E->getChosenSubExpr());
996 }
997 
998 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
999  bool Ignore = TestAndClearIgnoreReal();
1000  (void)Ignore;
1001  assert (Ignore == false && "init list ignored");
1002  Ignore = TestAndClearIgnoreImag();
1003  (void)Ignore;
1004  assert (Ignore == false && "init list ignored");
1005 
1006  if (E->getNumInits() == 2) {
1007  llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1008  llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1009  return ComplexPairTy(Real, Imag);
1010  } else if (E->getNumInits() == 1) {
1011  return Visit(E->getInit(0));
1012  }
1013 
1014  // Empty init list intializes to null
1015  assert(E->getNumInits() == 0 && "Unexpected number of inits");
1016  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1017  llvm::Type* LTy = CGF.ConvertType(Ty);
1018  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1019  return ComplexPairTy(zeroConstant, zeroConstant);
1020 }
1021 
1022 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1023  Address ArgValue = Address::invalid();
1024  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1025 
1026  if (!ArgPtr.isValid()) {
1027  CGF.ErrorUnsupported(E, "complex va_arg expression");
1028  llvm::Type *EltTy =
1029  CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1030  llvm::Value *U = llvm::UndefValue::get(EltTy);
1031  return ComplexPairTy(U, U);
1032  }
1033 
1034  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1035  E->getExprLoc());
1036 }
1037 
1038 //===----------------------------------------------------------------------===//
1039 // Entry Point into this File
1040 //===----------------------------------------------------------------------===//
1041 
1042 /// EmitComplexExpr - Emit the computation of the specified expression of
1043 /// complex type, ignoring the result.
1045  bool IgnoreImag) {
1046  assert(E && getComplexType(E->getType()) &&
1047  "Invalid complex expression to emit");
1048 
1049  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1050  .Visit(const_cast<Expr *>(E));
1051 }
1052 
1054  bool isInit) {
1055  assert(E && getComplexType(E->getType()) &&
1056  "Invalid complex expression to emit");
1057  ComplexExprEmitter Emitter(*this);
1058  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1059  Emitter.EmitStoreOfComplex(Val, dest, isInit);
1060 }
1061 
1062 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1064  bool isInit) {
1065  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1066 }
1067 
1068 /// EmitLoadOfComplex - Load a complex number from the specified address.
1070  SourceLocation loc) {
1071  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1072 }
1073 
1075  assert(E->getOpcode() == BO_Assign);
1076  ComplexPairTy Val; // ignored
1077  return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1078 }
1079 
1080 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1081  const ComplexExprEmitter::BinOpInfo &);
1082 
1084  switch (Op) {
1085  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1086  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1087  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1088  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1089  default:
1090  llvm_unreachable("unexpected complex compound assignment");
1091  }
1092 }
1093 
1096  CompoundFunc Op = getComplexOp(E->getOpcode());
1097  RValue Val;
1098  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1099 }
1100 
1103  llvm::Value *&Result) {
1104  CompoundFunc Op = getComplexOp(E->getOpcode());
1105  RValue Val;
1106  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1107  Result = Val.getScalarVal();
1108  return Ret;
1109 }
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:151
Defines the clang::ASTContext interface.
unsigned getNumInits() const
Definition: Expr.h:3776
CastKind getCastKind() const
Definition: Expr.h:2680
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E)
A (possibly-)qualified type.
Definition: Type.h:598
CompoundStmt * getSubStmt()
Definition: Expr.h:3396
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:65
Address getAddress() const
Definition: CGValue.h:331
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty)
Lookup the libcall name for a given floating point type complex multiply.
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1619
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
const Expr * getResultExpr() const
The generic selection's result expression.
Definition: Expr.h:4481
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2562
Extra information about a function prototype.
Definition: Type.h:3167
LValue EmitComplexAssignmentLValue(const BinaryOperator *E)
Emit an l-value for an assignment (simple or compound) of complex type.
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2936
Address emitAddrOfImagComponent(Address complex, QualType complexType)
An object to manage conditionally-evaluated expressions.
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
bool isVolatileQualified() const
Definition: CGValue.h:252
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
Expr * getSubExpr()
Definition: Expr.h:2684
Expr * getLHS() const
Definition: Expr.h:2943
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
Describes an C or C++ initializer list.
Definition: Expr.h:3746
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:3588
Address emitAddrOfRealComponent(Address complex, QualType complexType)
BinaryOperatorKind
Expr * getTrueExpr() const
Definition: Expr.h:3326
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2897
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1746
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2632
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
bool isValid() const
Definition: Address.h:36
detail::InMemoryDirectory::const_iterator I
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:967
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3073
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1062
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3655
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1799
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1764
Expr - This represents one expression.
Definition: Expr.h:105
static Address invalid()
Definition: Address.h:35
bool isAnyComplexType() const
Definition: Type.h:5545
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
bool isAtomicType() const
Definition: Type.h:5564
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O)
Definition: Type.h:3176
void add(RValue rvalue, QualType type, bool needscopy=false)
Definition: CGCall.h:81
An RAII object to record that we're evaluating a statement expression.
Expr * getSubExpr() const
Definition: Expr.h:1695
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:860
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1668
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3767
bool isGLValue() const
Definition: Expr.h:250
The result type of a method or function.
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1423
QualType getComputationResultType() const
Definition: Expr.h:3118
The l-value was considered opaque, so the alignment was determined from a type.
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:848
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4679
bool isSimple() const
Definition: CGValue.h:246
ASTContext & getContext() const
Encodes a location in the source.
QualType getElementType() const
Definition: Type.h:2131
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:539
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:178
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
Definition: Expr.h:4804
An aligned address.
Definition: Address.h:25
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2734
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5849
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3380
llvm::StringRef getName() const
Return the IR name of the pointer value.
Definition: Address.h:62
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:193
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3092
Represents a C11 generic selection.
Definition: Expr.h:4413
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1272
QualType getType() const
Definition: Expr.h:126
CGFunctionInfo - Class to encapsulate the information about a function definition.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:885
static CompoundFunc getComplexOp(BinaryOperatorKind Op)
const Expr * getExpr() const
Definition: ExprCXX.h:998
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:92
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchers.h:1983
CodeGenFunction::ComplexPairTy ComplexPairTy
Address CreateStructGEP(Address Addr, unsigned Index, CharUnits Offset, const llvm::Twine &Name="")
Definition: CGBuilder.h:183
detail::InMemoryDirectory::const_iterator E
Complex values, per C99 6.2.5p11.
Definition: Type.h:2119
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5818
Expr * getFalseExpr() const
Definition: Expr.h:3332
QualType getCanonicalType() const
Definition: Type.h:5298
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3128
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
const Expr * getSubExpr() const
Definition: Expr.h:1435
ComplexPairTy(ComplexExprEmitter::* CompoundFunc)(const ComplexExprEmitter::BinOpInfo &)
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:2936
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type, returning the result.
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:479
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1037
const Expr * getSubExpr() const
Definition: Expr.h:1635
BoundNodesTreeBuilder *const Builder
Opcode getOpcode() const
Definition: Expr.h:2940
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3547
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2148
Expr * getRHS() const
Definition: Expr.h:2945
QualType getType() const
Definition: CGValue.h:258
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:932
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
const Expr * getInit(unsigned Init) const
Definition: Expr.h:3785
LValue - This represents an lvalue references.
Definition: CGValue.h:152
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:56
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4315