clang  3.9.0
LiteralSupport.cpp
Go to the documentation of this file.
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/ConvertUTF.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 using namespace clang;
25 
26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27  switch (kind) {
28  default: llvm_unreachable("Unknown token type!");
29  case tok::char_constant:
30  case tok::string_literal:
31  case tok::utf8_char_constant:
32  case tok::utf8_string_literal:
33  return Target.getCharWidth();
34  case tok::wide_char_constant:
35  case tok::wide_string_literal:
36  return Target.getWCharWidth();
37  case tok::utf16_char_constant:
38  case tok::utf16_string_literal:
39  return Target.getChar16Width();
40  case tok::utf32_char_constant:
41  case tok::utf32_string_literal:
42  return Target.getChar32Width();
43  }
44 }
45 
47  FullSourceLoc TokLoc,
48  const char *TokBegin,
49  const char *TokRangeBegin,
50  const char *TokRangeEnd) {
51  SourceLocation Begin =
52  Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
53  TokLoc.getManager(), Features);
55  Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
56  TokLoc.getManager(), Features);
57  return CharSourceRange::getCharRange(Begin, End);
58 }
59 
60 /// \brief Produce a diagnostic highlighting some portion of a literal.
61 ///
62 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
63 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
64 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
66  const LangOptions &Features, FullSourceLoc TokLoc,
67  const char *TokBegin, const char *TokRangeBegin,
68  const char *TokRangeEnd, unsigned DiagID) {
69  SourceLocation Begin =
70  Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
71  TokLoc.getManager(), Features);
72  return Diags->Report(Begin, DiagID) <<
73  MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
74 }
75 
76 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
77 /// either a character or a string literal.
78 static unsigned ProcessCharEscape(const char *ThisTokBegin,
79  const char *&ThisTokBuf,
80  const char *ThisTokEnd, bool &HadError,
81  FullSourceLoc Loc, unsigned CharWidth,
82  DiagnosticsEngine *Diags,
83  const LangOptions &Features) {
84  const char *EscapeBegin = ThisTokBuf;
85 
86  // Skip the '\' char.
87  ++ThisTokBuf;
88 
89  // We know that this character can't be off the end of the buffer, because
90  // that would have been \", which would not have been the end of string.
91  unsigned ResultChar = *ThisTokBuf++;
92  switch (ResultChar) {
93  // These map to themselves.
94  case '\\': case '\'': case '"': case '?': break;
95 
96  // These have fixed mappings.
97  case 'a':
98  // TODO: K&R: the meaning of '\\a' is different in traditional C
99  ResultChar = 7;
100  break;
101  case 'b':
102  ResultChar = 8;
103  break;
104  case 'e':
105  if (Diags)
106  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
107  diag::ext_nonstandard_escape) << "e";
108  ResultChar = 27;
109  break;
110  case 'E':
111  if (Diags)
112  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
113  diag::ext_nonstandard_escape) << "E";
114  ResultChar = 27;
115  break;
116  case 'f':
117  ResultChar = 12;
118  break;
119  case 'n':
120  ResultChar = 10;
121  break;
122  case 'r':
123  ResultChar = 13;
124  break;
125  case 't':
126  ResultChar = 9;
127  break;
128  case 'v':
129  ResultChar = 11;
130  break;
131  case 'x': { // Hex escape.
132  ResultChar = 0;
133  if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
134  if (Diags)
135  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
136  diag::err_hex_escape_no_digits) << "x";
137  HadError = 1;
138  break;
139  }
140 
141  // Hex escapes are a maximal series of hex digits.
142  bool Overflow = false;
143  for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
144  int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
145  if (CharVal == -1) break;
146  // About to shift out a digit?
147  if (ResultChar & 0xF0000000)
148  Overflow = true;
149  ResultChar <<= 4;
150  ResultChar |= CharVal;
151  }
152 
153  // See if any bits will be truncated when evaluated as a character.
154  if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
155  Overflow = true;
156  ResultChar &= ~0U >> (32-CharWidth);
157  }
158 
159  // Check for overflow.
160  if (Overflow && Diags) // Too many digits to fit in
161  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
162  diag::err_escape_too_large) << 0;
163  break;
164  }
165  case '0': case '1': case '2': case '3':
166  case '4': case '5': case '6': case '7': {
167  // Octal escapes.
168  --ThisTokBuf;
169  ResultChar = 0;
170 
171  // Octal escapes are a series of octal digits with maximum length 3.
172  // "\0123" is a two digit sequence equal to "\012" "3".
173  unsigned NumDigits = 0;
174  do {
175  ResultChar <<= 3;
176  ResultChar |= *ThisTokBuf++ - '0';
177  ++NumDigits;
178  } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
179  ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
180 
181  // Check for overflow. Reject '\777', but not L'\777'.
182  if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
183  if (Diags)
184  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
185  diag::err_escape_too_large) << 1;
186  ResultChar &= ~0U >> (32-CharWidth);
187  }
188  break;
189  }
190 
191  // Otherwise, these are not valid escapes.
192  case '(': case '{': case '[': case '%':
193  // GCC accepts these as extensions. We warn about them as such though.
194  if (Diags)
195  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
196  diag::ext_nonstandard_escape)
197  << std::string(1, ResultChar);
198  break;
199  default:
200  if (!Diags)
201  break;
202 
203  if (isPrintable(ResultChar))
204  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
205  diag::ext_unknown_escape)
206  << std::string(1, ResultChar);
207  else
208  Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
209  diag::ext_unknown_escape)
210  << "x" + llvm::utohexstr(ResultChar);
211  break;
212  }
213 
214  return ResultChar;
215 }
216 
217 static void appendCodePoint(unsigned Codepoint,
219  char ResultBuf[4];
220  char *ResultPtr = ResultBuf;
221  bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
222  (void)Res;
223  assert(Res && "Unexpected conversion failure");
224  Str.append(ResultBuf, ResultPtr);
225 }
226 
228  for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
229  if (*I != '\\') {
230  Buf.push_back(*I);
231  continue;
232  }
233 
234  ++I;
235  assert(*I == 'u' || *I == 'U');
236 
237  unsigned NumHexDigits;
238  if (*I == 'u')
239  NumHexDigits = 4;
240  else
241  NumHexDigits = 8;
242 
243  assert(I + NumHexDigits <= E);
244 
245  uint32_t CodePoint = 0;
246  for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
247  unsigned Value = llvm::hexDigitValue(*I);
248  assert(Value != -1U);
249 
250  CodePoint <<= 4;
251  CodePoint += Value;
252  }
253 
254  appendCodePoint(CodePoint, Buf);
255  --I;
256  }
257 }
258 
259 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
260 /// return the UTF32.
261 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
262  const char *ThisTokEnd,
263  uint32_t &UcnVal, unsigned short &UcnLen,
264  FullSourceLoc Loc, DiagnosticsEngine *Diags,
265  const LangOptions &Features,
266  bool in_char_string_literal = false) {
267  const char *UcnBegin = ThisTokBuf;
268 
269  // Skip the '\u' char's.
270  ThisTokBuf += 2;
271 
272  if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
273  if (Diags)
274  Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
275  diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
276  return false;
277  }
278  UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
279  unsigned short UcnLenSave = UcnLen;
280  for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
281  int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
282  if (CharVal == -1) break;
283  UcnVal <<= 4;
284  UcnVal |= CharVal;
285  }
286  // If we didn't consume the proper number of digits, there is a problem.
287  if (UcnLenSave) {
288  if (Diags)
289  Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
290  diag::err_ucn_escape_incomplete);
291  return false;
292  }
293 
294  // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
295  if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
296  UcnVal > 0x10FFFF) { // maximum legal UTF32 value
297  if (Diags)
298  Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
299  diag::err_ucn_escape_invalid);
300  return false;
301  }
302 
303  // C++11 allows UCNs that refer to control characters and basic source
304  // characters inside character and string literals
305  if (UcnVal < 0xa0 &&
306  (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
307  bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
308  if (Diags) {
309  char BasicSCSChar = UcnVal;
310  if (UcnVal >= 0x20 && UcnVal < 0x7f)
311  Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
312  IsError ? diag::err_ucn_escape_basic_scs :
313  diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
314  << StringRef(&BasicSCSChar, 1);
315  else
316  Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
317  IsError ? diag::err_ucn_control_character :
318  diag::warn_cxx98_compat_literal_ucn_control_character);
319  }
320  if (IsError)
321  return false;
322  }
323 
324  if (!Features.CPlusPlus && !Features.C99 && Diags)
325  Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
326  diag::warn_ucn_not_valid_in_c89_literal);
327 
328  return true;
329 }
330 
331 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
332 /// which this UCN will occupy.
333 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
334  const char *ThisTokEnd, unsigned CharByteWidth,
335  const LangOptions &Features, bool &HadError) {
336  // UTF-32: 4 bytes per escape.
337  if (CharByteWidth == 4)
338  return 4;
339 
340  uint32_t UcnVal = 0;
341  unsigned short UcnLen = 0;
342  FullSourceLoc Loc;
343 
344  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
345  UcnLen, Loc, nullptr, Features, true)) {
346  HadError = true;
347  return 0;
348  }
349 
350  // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
351  if (CharByteWidth == 2)
352  return UcnVal <= 0xFFFF ? 2 : 4;
353 
354  // UTF-8.
355  if (UcnVal < 0x80)
356  return 1;
357  if (UcnVal < 0x800)
358  return 2;
359  if (UcnVal < 0x10000)
360  return 3;
361  return 4;
362 }
363 
364 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
365 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
366 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
367 /// we will likely rework our support for UCN's.
368 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
369  const char *ThisTokEnd,
370  char *&ResultBuf, bool &HadError,
371  FullSourceLoc Loc, unsigned CharByteWidth,
372  DiagnosticsEngine *Diags,
373  const LangOptions &Features) {
374  typedef uint32_t UTF32;
375  UTF32 UcnVal = 0;
376  unsigned short UcnLen = 0;
377  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
378  Loc, Diags, Features, true)) {
379  HadError = true;
380  return;
381  }
382 
383  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
384  "only character widths of 1, 2, or 4 bytes supported");
385 
386  (void)UcnLen;
387  assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
388 
389  if (CharByteWidth == 4) {
390  // FIXME: Make the type of the result buffer correct instead of
391  // using reinterpret_cast.
392  UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
393  *ResultPtr = UcnVal;
394  ResultBuf += 4;
395  return;
396  }
397 
398  if (CharByteWidth == 2) {
399  // FIXME: Make the type of the result buffer correct instead of
400  // using reinterpret_cast.
401  UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
402 
403  if (UcnVal <= (UTF32)0xFFFF) {
404  *ResultPtr = UcnVal;
405  ResultBuf += 2;
406  return;
407  }
408 
409  // Convert to UTF16.
410  UcnVal -= 0x10000;
411  *ResultPtr = 0xD800 + (UcnVal >> 10);
412  *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
413  ResultBuf += 4;
414  return;
415  }
416 
417  assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
418 
419  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
420  // The conversion below was inspired by:
421  // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
422  // First, we determine how many bytes the result will require.
423  typedef uint8_t UTF8;
424 
425  unsigned short bytesToWrite = 0;
426  if (UcnVal < (UTF32)0x80)
427  bytesToWrite = 1;
428  else if (UcnVal < (UTF32)0x800)
429  bytesToWrite = 2;
430  else if (UcnVal < (UTF32)0x10000)
431  bytesToWrite = 3;
432  else
433  bytesToWrite = 4;
434 
435  const unsigned byteMask = 0xBF;
436  const unsigned byteMark = 0x80;
437 
438  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
439  // into the first byte, depending on how many bytes follow.
440  static const UTF8 firstByteMark[5] = {
441  0x00, 0x00, 0xC0, 0xE0, 0xF0
442  };
443  // Finally, we write the bytes into ResultBuf.
444  ResultBuf += bytesToWrite;
445  switch (bytesToWrite) { // note: everything falls through.
446  case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
447  case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
448  case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
449  case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
450  }
451  // Update the buffer.
452  ResultBuf += bytesToWrite;
453 }
454 
455 
456 /// integer-constant: [C99 6.4.4.1]
457 /// decimal-constant integer-suffix
458 /// octal-constant integer-suffix
459 /// hexadecimal-constant integer-suffix
460 /// binary-literal integer-suffix [GNU, C++1y]
461 /// user-defined-integer-literal: [C++11 lex.ext]
462 /// decimal-literal ud-suffix
463 /// octal-literal ud-suffix
464 /// hexadecimal-literal ud-suffix
465 /// binary-literal ud-suffix [GNU, C++1y]
466 /// decimal-constant:
467 /// nonzero-digit
468 /// decimal-constant digit
469 /// octal-constant:
470 /// 0
471 /// octal-constant octal-digit
472 /// hexadecimal-constant:
473 /// hexadecimal-prefix hexadecimal-digit
474 /// hexadecimal-constant hexadecimal-digit
475 /// hexadecimal-prefix: one of
476 /// 0x 0X
477 /// binary-literal:
478 /// 0b binary-digit
479 /// 0B binary-digit
480 /// binary-literal binary-digit
481 /// integer-suffix:
482 /// unsigned-suffix [long-suffix]
483 /// unsigned-suffix [long-long-suffix]
484 /// long-suffix [unsigned-suffix]
485 /// long-long-suffix [unsigned-sufix]
486 /// nonzero-digit:
487 /// 1 2 3 4 5 6 7 8 9
488 /// octal-digit:
489 /// 0 1 2 3 4 5 6 7
490 /// hexadecimal-digit:
491 /// 0 1 2 3 4 5 6 7 8 9
492 /// a b c d e f
493 /// A B C D E F
494 /// binary-digit:
495 /// 0
496 /// 1
497 /// unsigned-suffix: one of
498 /// u U
499 /// long-suffix: one of
500 /// l L
501 /// long-long-suffix: one of
502 /// ll LL
503 ///
504 /// floating-constant: [C99 6.4.4.2]
505 /// TODO: add rules...
506 ///
508  SourceLocation TokLoc,
509  Preprocessor &PP)
510  : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
511 
512  // This routine assumes that the range begin/end matches the regex for integer
513  // and FP constants (specifically, the 'pp-number' regex), and assumes that
514  // the byte at "*end" is both valid and not part of the regex. Because of
515  // this, it doesn't have to check for 'overscan' in various places.
516  assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
517 
518  s = DigitsBegin = ThisTokBegin;
519  saw_exponent = false;
520  saw_period = false;
521  saw_ud_suffix = false;
522  isLong = false;
523  isUnsigned = false;
524  isLongLong = false;
525  isHalf = false;
526  isFloat = false;
527  isImaginary = false;
528  isFloat128 = false;
529  MicrosoftInteger = 0;
530  hadError = false;
531 
532  if (*s == '0') { // parse radix
533  ParseNumberStartingWithZero(TokLoc);
534  if (hadError)
535  return;
536  } else { // the first digit is non-zero
537  radix = 10;
538  s = SkipDigits(s);
539  if (s == ThisTokEnd) {
540  // Done.
541  } else {
542  ParseDecimalOrOctalCommon(TokLoc);
543  if (hadError)
544  return;
545  }
546  }
547 
548  SuffixBegin = s;
549  checkSeparator(TokLoc, s, CSK_AfterDigits);
550 
551  // Parse the suffix. At this point we can classify whether we have an FP or
552  // integer constant.
553  bool isFPConstant = isFloatingLiteral();
554  const char *ImaginarySuffixLoc = nullptr;
555 
556  // Loop over all of the characters of the suffix. If we see something bad,
557  // we break out of the loop.
558  for (; s != ThisTokEnd; ++s) {
559  switch (*s) {
560  case 'h': // FP Suffix for "half".
561  case 'H':
562  // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
563  if (!PP.getLangOpts().Half) break;
564  if (!isFPConstant) break; // Error for integer constant.
565  if (isHalf || isFloat || isLong) break; // HH, FH, LH invalid.
566  isHalf = true;
567  continue; // Success.
568  case 'f': // FP Suffix for "float"
569  case 'F':
570  if (!isFPConstant) break; // Error for integer constant.
571  if (isHalf || isFloat || isLong || isFloat128)
572  break; // HF, FF, LF, QF invalid.
573  isFloat = true;
574  continue; // Success.
575  case 'q': // FP Suffix for "__float128"
576  case 'Q':
577  if (!isFPConstant) break; // Error for integer constant.
578  if (isHalf || isFloat || isLong || isFloat128)
579  break; // HQ, FQ, LQ, QQ invalid.
580  isFloat128 = true;
581  continue; // Success.
582  case 'u':
583  case 'U':
584  if (isFPConstant) break; // Error for floating constant.
585  if (isUnsigned) break; // Cannot be repeated.
586  isUnsigned = true;
587  continue; // Success.
588  case 'l':
589  case 'L':
590  if (isLong || isLongLong) break; // Cannot be repeated.
591  if (isHalf || isFloat || isFloat128) break; // LH, LF, LQ invalid.
592 
593  // Check for long long. The L's need to be adjacent and the same case.
594  if (s[1] == s[0]) {
595  assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
596  if (isFPConstant) break; // long long invalid for floats.
597  isLongLong = true;
598  ++s; // Eat both of them.
599  } else {
600  isLong = true;
601  }
602  continue; // Success.
603  case 'i':
604  case 'I':
605  if (PP.getLangOpts().MicrosoftExt) {
607  break;
608 
609  if (!isFPConstant) {
610  // Allow i8, i16, i32, and i64.
611  switch (s[1]) {
612  case '8':
613  s += 2; // i8 suffix
614  MicrosoftInteger = 8;
615  break;
616  case '1':
617  if (s[2] == '6') {
618  s += 3; // i16 suffix
619  MicrosoftInteger = 16;
620  }
621  break;
622  case '3':
623  if (s[2] == '2') {
624  s += 3; // i32 suffix
625  MicrosoftInteger = 32;
626  }
627  break;
628  case '6':
629  if (s[2] == '4') {
630  s += 3; // i64 suffix
631  MicrosoftInteger = 64;
632  }
633  break;
634  default:
635  break;
636  }
637  }
638  if (MicrosoftInteger) {
639  assert(s <= ThisTokEnd && "didn't maximally munch?");
640  break;
641  }
642  }
643  // "i", "if", and "il" are user-defined suffixes in C++1y.
644  if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
645  break;
646  // fall through.
647  case 'j':
648  case 'J':
649  if (isImaginary) break; // Cannot be repeated.
650  isImaginary = true;
651  ImaginarySuffixLoc = s;
652  continue; // Success.
653  }
654  // If we reached here, there was an error or a ud-suffix.
655  break;
656  }
657 
658  if (s != ThisTokEnd) {
659  // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
660  expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
661  if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
662  // Any suffix pieces we might have parsed are actually part of the
663  // ud-suffix.
664  isLong = false;
665  isUnsigned = false;
666  isLongLong = false;
667  isFloat = false;
668  isHalf = false;
669  isImaginary = false;
670  MicrosoftInteger = 0;
671 
672  saw_ud_suffix = true;
673  return;
674  }
675 
676  // Report an error if there are any.
677  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
678  diag::err_invalid_suffix_constant)
679  << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin) << isFPConstant;
680  hadError = true;
681  return;
682  }
683 
684  if (isImaginary) {
685  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
686  ImaginarySuffixLoc - ThisTokBegin),
687  diag::ext_imaginary_constant);
688  }
689 }
690 
691 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
692 /// numbers. It issues an error for illegal digits, and handles floating point
693 /// parsing. If it detects a floating point number, the radix is set to 10.
694 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
695  assert((radix == 8 || radix == 10) && "Unexpected radix");
696 
697  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
698  // the code is using an incorrect base.
699  if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
700  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
701  diag::err_invalid_digit) << StringRef(s, 1) << (radix == 8 ? 1 : 0);
702  hadError = true;
703  return;
704  }
705 
706  if (*s == '.') {
707  checkSeparator(TokLoc, s, CSK_AfterDigits);
708  s++;
709  radix = 10;
710  saw_period = true;
711  checkSeparator(TokLoc, s, CSK_BeforeDigits);
712  s = SkipDigits(s); // Skip suffix.
713  }
714  if (*s == 'e' || *s == 'E') { // exponent
715  checkSeparator(TokLoc, s, CSK_AfterDigits);
716  const char *Exponent = s;
717  s++;
718  radix = 10;
719  saw_exponent = true;
720  if (*s == '+' || *s == '-') s++; // sign
721  const char *first_non_digit = SkipDigits(s);
722  if (containsDigits(s, first_non_digit)) {
723  checkSeparator(TokLoc, s, CSK_BeforeDigits);
724  s = first_non_digit;
725  } else {
726  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
727  diag::err_exponent_has_no_digits);
728  hadError = true;
729  return;
730  }
731  }
732 }
733 
734 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
735 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
736 /// treat it as an invalid suffix.
738  StringRef Suffix) {
739  if (!LangOpts.CPlusPlus11 || Suffix.empty())
740  return false;
741 
742  // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
743  if (Suffix[0] == '_')
744  return true;
745 
746  // In C++11, there are no library suffixes.
747  if (!LangOpts.CPlusPlus14)
748  return false;
749 
750  // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
751  // Per tweaked N3660, "il", "i", and "if" are also used in the library.
752  return llvm::StringSwitch<bool>(Suffix)
753  .Cases("h", "min", "s", true)
754  .Cases("ms", "us", "ns", true)
755  .Cases("il", "i", "if", true)
756  .Default(false);
757 }
758 
759 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
760  const char *Pos,
761  CheckSeparatorKind IsAfterDigits) {
762  if (IsAfterDigits == CSK_AfterDigits) {
763  if (Pos == ThisTokBegin)
764  return;
765  --Pos;
766  } else if (Pos == ThisTokEnd)
767  return;
768 
769  if (isDigitSeparator(*Pos))
770  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
771  diag::err_digit_separator_not_between_digits)
772  << IsAfterDigits;
773 }
774 
775 /// ParseNumberStartingWithZero - This method is called when the first character
776 /// of the number is found to be a zero. This means it is either an octal
777 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
778 /// a floating point number (01239.123e4). Eat the prefix, determining the
779 /// radix etc.
780 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
781  assert(s[0] == '0' && "Invalid method call");
782  s++;
783 
784  int c1 = s[0];
785 
786  // Handle a hex number like 0x1234.
787  if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
788  s++;
789  assert(s < ThisTokEnd && "didn't maximally munch?");
790  radix = 16;
791  DigitsBegin = s;
792  s = SkipHexDigits(s);
793  bool HasSignificandDigits = containsDigits(DigitsBegin, s);
794  if (s == ThisTokEnd) {
795  // Done.
796  } else if (*s == '.') {
797  s++;
798  saw_period = true;
799  const char *floatDigitsBegin = s;
800  s = SkipHexDigits(s);
801  if (containsDigits(floatDigitsBegin, s))
802  HasSignificandDigits = true;
803  if (HasSignificandDigits)
804  checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
805  }
806 
807  if (!HasSignificandDigits) {
808  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
809  diag::err_hex_constant_requires)
810  << PP.getLangOpts().CPlusPlus << 1;
811  hadError = true;
812  return;
813  }
814 
815  // A binary exponent can appear with or with a '.'. If dotted, the
816  // binary exponent is required.
817  if (*s == 'p' || *s == 'P') {
818  checkSeparator(TokLoc, s, CSK_AfterDigits);
819  const char *Exponent = s;
820  s++;
821  saw_exponent = true;
822  if (*s == '+' || *s == '-') s++; // sign
823  const char *first_non_digit = SkipDigits(s);
824  if (!containsDigits(s, first_non_digit)) {
825  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
826  diag::err_exponent_has_no_digits);
827  hadError = true;
828  return;
829  }
830  checkSeparator(TokLoc, s, CSK_BeforeDigits);
831  s = first_non_digit;
832 
833  if (!PP.getLangOpts().HexFloats)
834  PP.Diag(TokLoc, PP.getLangOpts().CPlusPlus
835  ? diag::ext_hex_literal_invalid
836  : diag::ext_hex_constant_invalid);
837  else if (PP.getLangOpts().CPlusPlus1z)
838  PP.Diag(TokLoc, diag::warn_cxx1z_hex_literal);
839  } else if (saw_period) {
840  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
841  diag::err_hex_constant_requires)
842  << PP.getLangOpts().CPlusPlus << 0;
843  hadError = true;
844  }
845  return;
846  }
847 
848  // Handle simple binary numbers 0b01010
849  if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
850  // 0b101010 is a C++1y / GCC extension.
851  PP.Diag(TokLoc,
852  PP.getLangOpts().CPlusPlus14
853  ? diag::warn_cxx11_compat_binary_literal
854  : PP.getLangOpts().CPlusPlus
855  ? diag::ext_binary_literal_cxx14
856  : diag::ext_binary_literal);
857  ++s;
858  assert(s < ThisTokEnd && "didn't maximally munch?");
859  radix = 2;
860  DigitsBegin = s;
861  s = SkipBinaryDigits(s);
862  if (s == ThisTokEnd) {
863  // Done.
864  } else if (isHexDigit(*s)) {
865  PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
866  diag::err_invalid_digit) << StringRef(s, 1) << 2;
867  hadError = true;
868  }
869  // Other suffixes will be diagnosed by the caller.
870  return;
871  }
872 
873  // For now, the radix is set to 8. If we discover that we have a
874  // floating point constant, the radix will change to 10. Octal floating
875  // point constants are not permitted (only decimal and hexadecimal).
876  radix = 8;
877  DigitsBegin = s;
878  s = SkipOctalDigits(s);
879  if (s == ThisTokEnd)
880  return; // Done, simple octal number like 01234
881 
882  // If we have some other non-octal digit that *is* a decimal digit, see if
883  // this is part of a floating point number like 094.123 or 09e1.
884  if (isDigit(*s)) {
885  const char *EndDecimal = SkipDigits(s);
886  if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
887  s = EndDecimal;
888  radix = 10;
889  }
890  }
891 
892  ParseDecimalOrOctalCommon(TokLoc);
893 }
894 
895 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
896  switch (Radix) {
897  case 2:
898  return NumDigits <= 64;
899  case 8:
900  return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
901  case 10:
902  return NumDigits <= 19; // floor(log10(2^64))
903  case 16:
904  return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
905  default:
906  llvm_unreachable("impossible Radix");
907  }
908 }
909 
910 /// GetIntegerValue - Convert this numeric literal value to an APInt that
911 /// matches Val's input width. If there is an overflow, set Val to the low bits
912 /// of the result and return true. Otherwise, return false.
914  // Fast path: Compute a conservative bound on the maximum number of
915  // bits per digit in this radix. If we can't possibly overflow a
916  // uint64 based on that bound then do the simple conversion to
917  // integer. This avoids the expensive overflow checking below, and
918  // handles the common cases that matter (small decimal integers and
919  // hex/octal values which don't overflow).
920  const unsigned NumDigits = SuffixBegin - DigitsBegin;
921  if (alwaysFitsInto64Bits(radix, NumDigits)) {
922  uint64_t N = 0;
923  for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
924  if (!isDigitSeparator(*Ptr))
925  N = N * radix + llvm::hexDigitValue(*Ptr);
926 
927  // This will truncate the value to Val's input width. Simply check
928  // for overflow by comparing.
929  Val = N;
930  return Val.getZExtValue() != N;
931  }
932 
933  Val = 0;
934  const char *Ptr = DigitsBegin;
935 
936  llvm::APInt RadixVal(Val.getBitWidth(), radix);
937  llvm::APInt CharVal(Val.getBitWidth(), 0);
938  llvm::APInt OldVal = Val;
939 
940  bool OverflowOccurred = false;
941  while (Ptr < SuffixBegin) {
942  if (isDigitSeparator(*Ptr)) {
943  ++Ptr;
944  continue;
945  }
946 
947  unsigned C = llvm::hexDigitValue(*Ptr++);
948 
949  // If this letter is out of bound for this radix, reject it.
950  assert(C < radix && "NumericLiteralParser ctor should have rejected this");
951 
952  CharVal = C;
953 
954  // Add the digit to the value in the appropriate radix. If adding in digits
955  // made the value smaller, then this overflowed.
956  OldVal = Val;
957 
958  // Multiply by radix, did overflow occur on the multiply?
959  Val *= RadixVal;
960  OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
961 
962  // Add value, did overflow occur on the value?
963  // (a + b) ult b <=> overflow
964  Val += CharVal;
965  OverflowOccurred |= Val.ult(CharVal);
966  }
967  return OverflowOccurred;
968 }
969 
970 llvm::APFloat::opStatus
971 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
972  using llvm::APFloat;
973 
974  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
975 
977  StringRef Str(ThisTokBegin, n);
978  if (Str.find('\'') != StringRef::npos) {
979  Buffer.reserve(n);
980  std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
981  &isDigitSeparator);
982  Str = Buffer;
983  }
984 
985  return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
986 }
987 
988 
989 /// \verbatim
990 /// user-defined-character-literal: [C++11 lex.ext]
991 /// character-literal ud-suffix
992 /// ud-suffix:
993 /// identifier
994 /// character-literal: [C++11 lex.ccon]
995 /// ' c-char-sequence '
996 /// u' c-char-sequence '
997 /// U' c-char-sequence '
998 /// L' c-char-sequence '
999 /// u8' c-char-sequence ' [C++1z lex.ccon]
1000 /// c-char-sequence:
1001 /// c-char
1002 /// c-char-sequence c-char
1003 /// c-char:
1004 /// any member of the source character set except the single-quote ',
1005 /// backslash \, or new-line character
1006 /// escape-sequence
1007 /// universal-character-name
1008 /// escape-sequence:
1009 /// simple-escape-sequence
1010 /// octal-escape-sequence
1011 /// hexadecimal-escape-sequence
1012 /// simple-escape-sequence:
1013 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1014 /// octal-escape-sequence:
1015 /// \ octal-digit
1016 /// \ octal-digit octal-digit
1017 /// \ octal-digit octal-digit octal-digit
1018 /// hexadecimal-escape-sequence:
1019 /// \x hexadecimal-digit
1020 /// hexadecimal-escape-sequence hexadecimal-digit
1021 /// universal-character-name: [C++11 lex.charset]
1022 /// \u hex-quad
1023 /// \U hex-quad hex-quad
1024 /// hex-quad:
1025 /// hex-digit hex-digit hex-digit hex-digit
1026 /// \endverbatim
1027 ///
1029  SourceLocation Loc, Preprocessor &PP,
1030  tok::TokenKind kind) {
1031  // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1032  HadError = false;
1033 
1034  Kind = kind;
1035 
1036  const char *TokBegin = begin;
1037 
1038  // Skip over wide character determinant.
1039  if (Kind != tok::char_constant)
1040  ++begin;
1041  if (Kind == tok::utf8_char_constant)
1042  ++begin;
1043 
1044  // Skip over the entry quote.
1045  assert(begin[0] == '\'' && "Invalid token lexed");
1046  ++begin;
1047 
1048  // Remove an optional ud-suffix.
1049  if (end[-1] != '\'') {
1050  const char *UDSuffixEnd = end;
1051  do {
1052  --end;
1053  } while (end[-1] != '\'');
1054  // FIXME: Don't bother with this if !tok.hasUCN().
1055  expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1056  UDSuffixOffset = end - TokBegin;
1057  }
1058 
1059  // Trim the ending quote.
1060  assert(end != begin && "Invalid token lexed");
1061  --end;
1062 
1063  // FIXME: The "Value" is an uint64_t so we can handle char literals of
1064  // up to 64-bits.
1065  // FIXME: This extensively assumes that 'char' is 8-bits.
1066  assert(PP.getTargetInfo().getCharWidth() == 8 &&
1067  "Assumes char is 8 bits");
1068  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1069  (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1070  "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1071  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1072  "Assumes sizeof(wchar) on target is <= 64");
1073 
1074  SmallVector<uint32_t, 4> codepoint_buffer;
1075  codepoint_buffer.resize(end - begin);
1076  uint32_t *buffer_begin = &codepoint_buffer.front();
1077  uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1078 
1079  // Unicode escapes representing characters that cannot be correctly
1080  // represented in a single code unit are disallowed in character literals
1081  // by this implementation.
1082  uint32_t largest_character_for_kind;
1083  if (tok::wide_char_constant == Kind) {
1084  largest_character_for_kind =
1085  0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1086  } else if (tok::utf8_char_constant == Kind) {
1087  largest_character_for_kind = 0x7F;
1088  } else if (tok::utf16_char_constant == Kind) {
1089  largest_character_for_kind = 0xFFFF;
1090  } else if (tok::utf32_char_constant == Kind) {
1091  largest_character_for_kind = 0x10FFFF;
1092  } else {
1093  largest_character_for_kind = 0x7Fu;
1094  }
1095 
1096  while (begin != end) {
1097  // Is this a span of non-escape characters?
1098  if (begin[0] != '\\') {
1099  char const *start = begin;
1100  do {
1101  ++begin;
1102  } while (begin != end && *begin != '\\');
1103 
1104  char const *tmp_in_start = start;
1105  uint32_t *tmp_out_start = buffer_begin;
1106  ConversionResult res =
1107  ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1108  reinterpret_cast<UTF8 const *>(begin),
1109  &buffer_begin, buffer_end, strictConversion);
1110  if (res != conversionOK) {
1111  // If we see bad encoding for unprefixed character literals, warn and
1112  // simply copy the byte values, for compatibility with gcc and
1113  // older versions of clang.
1114  bool NoErrorOnBadEncoding = isAscii();
1115  unsigned Msg = diag::err_bad_character_encoding;
1116  if (NoErrorOnBadEncoding)
1117  Msg = diag::warn_bad_character_encoding;
1118  PP.Diag(Loc, Msg);
1119  if (NoErrorOnBadEncoding) {
1120  start = tmp_in_start;
1121  buffer_begin = tmp_out_start;
1122  for (; start != begin; ++start, ++buffer_begin)
1123  *buffer_begin = static_cast<uint8_t>(*start);
1124  } else {
1125  HadError = true;
1126  }
1127  } else {
1128  for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1129  if (*tmp_out_start > largest_character_for_kind) {
1130  HadError = true;
1131  PP.Diag(Loc, diag::err_character_too_large);
1132  }
1133  }
1134  }
1135 
1136  continue;
1137  }
1138  // Is this a Universal Character Name escape?
1139  if (begin[1] == 'u' || begin[1] == 'U') {
1140  unsigned short UcnLen = 0;
1141  if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1142  FullSourceLoc(Loc, PP.getSourceManager()),
1143  &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1144  HadError = true;
1145  } else if (*buffer_begin > largest_character_for_kind) {
1146  HadError = true;
1147  PP.Diag(Loc, diag::err_character_too_large);
1148  }
1149 
1150  ++buffer_begin;
1151  continue;
1152  }
1153  unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1154  uint64_t result =
1155  ProcessCharEscape(TokBegin, begin, end, HadError,
1156  FullSourceLoc(Loc,PP.getSourceManager()),
1157  CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1158  *buffer_begin++ = result;
1159  }
1160 
1161  unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1162 
1163  if (NumCharsSoFar > 1) {
1164  if (isWide())
1165  PP.Diag(Loc, diag::warn_extraneous_char_constant);
1166  else if (isAscii() && NumCharsSoFar == 4)
1167  PP.Diag(Loc, diag::ext_four_char_character_literal);
1168  else if (isAscii())
1169  PP.Diag(Loc, diag::ext_multichar_character_literal);
1170  else
1171  PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1172  IsMultiChar = true;
1173  } else {
1174  IsMultiChar = false;
1175  }
1176 
1177  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1178 
1179  // Narrow character literals act as though their value is concatenated
1180  // in this implementation, but warn on overflow.
1181  bool multi_char_too_long = false;
1182  if (isAscii() && isMultiChar()) {
1183  LitVal = 0;
1184  for (size_t i = 0; i < NumCharsSoFar; ++i) {
1185  // check for enough leading zeros to shift into
1186  multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1187  LitVal <<= 8;
1188  LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1189  }
1190  } else if (NumCharsSoFar > 0) {
1191  // otherwise just take the last character
1192  LitVal = buffer_begin[-1];
1193  }
1194 
1195  if (!HadError && multi_char_too_long) {
1196  PP.Diag(Loc, diag::warn_char_constant_too_large);
1197  }
1198 
1199  // Transfer the value from APInt to uint64_t
1200  Value = LitVal.getZExtValue();
1201 
1202  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1203  // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1204  // character constants are not sign extended in the this implementation:
1205  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1206  if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1207  PP.getLangOpts().CharIsSigned)
1208  Value = (signed char)Value;
1209 }
1210 
1211 /// \verbatim
1212 /// string-literal: [C++0x lex.string]
1213 /// encoding-prefix " [s-char-sequence] "
1214 /// encoding-prefix R raw-string
1215 /// encoding-prefix:
1216 /// u8
1217 /// u
1218 /// U
1219 /// L
1220 /// s-char-sequence:
1221 /// s-char
1222 /// s-char-sequence s-char
1223 /// s-char:
1224 /// any member of the source character set except the double-quote ",
1225 /// backslash \, or new-line character
1226 /// escape-sequence
1227 /// universal-character-name
1228 /// raw-string:
1229 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1230 /// r-char-sequence:
1231 /// r-char
1232 /// r-char-sequence r-char
1233 /// r-char:
1234 /// any member of the source character set, except a right parenthesis )
1235 /// followed by the initial d-char-sequence (which may be empty)
1236 /// followed by a double quote ".
1237 /// d-char-sequence:
1238 /// d-char
1239 /// d-char-sequence d-char
1240 /// d-char:
1241 /// any member of the basic source character set except:
1242 /// space, the left parenthesis (, the right parenthesis ),
1243 /// the backslash \, and the control characters representing horizontal
1244 /// tab, vertical tab, form feed, and newline.
1245 /// escape-sequence: [C++0x lex.ccon]
1246 /// simple-escape-sequence
1247 /// octal-escape-sequence
1248 /// hexadecimal-escape-sequence
1249 /// simple-escape-sequence:
1250 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1251 /// octal-escape-sequence:
1252 /// \ octal-digit
1253 /// \ octal-digit octal-digit
1254 /// \ octal-digit octal-digit octal-digit
1255 /// hexadecimal-escape-sequence:
1256 /// \x hexadecimal-digit
1257 /// hexadecimal-escape-sequence hexadecimal-digit
1258 /// universal-character-name:
1259 /// \u hex-quad
1260 /// \U hex-quad hex-quad
1261 /// hex-quad:
1262 /// hex-digit hex-digit hex-digit hex-digit
1263 /// \endverbatim
1264 ///
1267  Preprocessor &PP, bool Complain)
1268  : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1269  Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
1270  MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1271  ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1272  init(StringToks);
1273 }
1274 
1275 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1276  // The literal token may have come from an invalid source location (e.g. due
1277  // to a PCH error), in which case the token length will be 0.
1278  if (StringToks.empty() || StringToks[0].getLength() < 2)
1279  return DiagnoseLexingError(SourceLocation());
1280 
1281  // Scan all of the string portions, remember the max individual token length,
1282  // computing a bound on the concatenated string length, and see whether any
1283  // piece is a wide-string. If any of the string portions is a wide-string
1284  // literal, the result is a wide-string literal [C99 6.4.5p4].
1285  assert(!StringToks.empty() && "expected at least one token");
1286  MaxTokenLength = StringToks[0].getLength();
1287  assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1288  SizeBound = StringToks[0].getLength()-2; // -2 for "".
1289  Kind = StringToks[0].getKind();
1290 
1291  hadError = false;
1292 
1293  // Implement Translation Phase #6: concatenation of string literals
1294  /// (C99 5.1.1.2p1). The common case is only one string fragment.
1295  for (unsigned i = 1; i != StringToks.size(); ++i) {
1296  if (StringToks[i].getLength() < 2)
1297  return DiagnoseLexingError(StringToks[i].getLocation());
1298 
1299  // The string could be shorter than this if it needs cleaning, but this is a
1300  // reasonable bound, which is all we need.
1301  assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1302  SizeBound += StringToks[i].getLength()-2; // -2 for "".
1303 
1304  // Remember maximum string piece length.
1305  if (StringToks[i].getLength() > MaxTokenLength)
1306  MaxTokenLength = StringToks[i].getLength();
1307 
1308  // Remember if we see any wide or utf-8/16/32 strings.
1309  // Also check for illegal concatenations.
1310  if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1311  if (isAscii()) {
1312  Kind = StringToks[i].getKind();
1313  } else {
1314  if (Diags)
1315  Diags->Report(StringToks[i].getLocation(),
1316  diag::err_unsupported_string_concat);
1317  hadError = true;
1318  }
1319  }
1320  }
1321 
1322  // Include space for the null terminator.
1323  ++SizeBound;
1324 
1325  // TODO: K&R warning: "traditional C rejects string constant concatenation"
1326 
1327  // Get the width in bytes of char/wchar_t/char16_t/char32_t
1328  CharByteWidth = getCharWidth(Kind, Target);
1329  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1330  CharByteWidth /= 8;
1331 
1332  // The output buffer size needs to be large enough to hold wide characters.
1333  // This is a worst-case assumption which basically corresponds to L"" "long".
1334  SizeBound *= CharByteWidth;
1335 
1336  // Size the temporary buffer to hold the result string data.
1337  ResultBuf.resize(SizeBound);
1338 
1339  // Likewise, but for each string piece.
1340  SmallString<512> TokenBuf;
1341  TokenBuf.resize(MaxTokenLength);
1342 
1343  // Loop over all the strings, getting their spelling, and expanding them to
1344  // wide strings as appropriate.
1345  ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1346 
1347  Pascal = false;
1348 
1349  SourceLocation UDSuffixTokLoc;
1350 
1351  for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1352  const char *ThisTokBuf = &TokenBuf[0];
1353  // Get the spelling of the token, which eliminates trigraphs, etc. We know
1354  // that ThisTokBuf points to a buffer that is big enough for the whole token
1355  // and 'spelled' tokens can only shrink.
1356  bool StringInvalid = false;
1357  unsigned ThisTokLen =
1358  Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1359  &StringInvalid);
1360  if (StringInvalid)
1361  return DiagnoseLexingError(StringToks[i].getLocation());
1362 
1363  const char *ThisTokBegin = ThisTokBuf;
1364  const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1365 
1366  // Remove an optional ud-suffix.
1367  if (ThisTokEnd[-1] != '"') {
1368  const char *UDSuffixEnd = ThisTokEnd;
1369  do {
1370  --ThisTokEnd;
1371  } while (ThisTokEnd[-1] != '"');
1372 
1373  StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1374 
1375  if (UDSuffixBuf.empty()) {
1376  if (StringToks[i].hasUCN())
1377  expandUCNs(UDSuffixBuf, UDSuffix);
1378  else
1379  UDSuffixBuf.assign(UDSuffix);
1380  UDSuffixToken = i;
1381  UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1382  UDSuffixTokLoc = StringToks[i].getLocation();
1383  } else {
1384  SmallString<32> ExpandedUDSuffix;
1385  if (StringToks[i].hasUCN()) {
1386  expandUCNs(ExpandedUDSuffix, UDSuffix);
1387  UDSuffix = ExpandedUDSuffix;
1388  }
1389 
1390  // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1391  // result of a concatenation involving at least one user-defined-string-
1392  // literal, all the participating user-defined-string-literals shall
1393  // have the same ud-suffix.
1394  if (UDSuffixBuf != UDSuffix) {
1395  if (Diags) {
1396  SourceLocation TokLoc = StringToks[i].getLocation();
1397  Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1398  << UDSuffixBuf << UDSuffix
1399  << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1400  << SourceRange(TokLoc, TokLoc);
1401  }
1402  hadError = true;
1403  }
1404  }
1405  }
1406 
1407  // Strip the end quote.
1408  --ThisTokEnd;
1409 
1410  // TODO: Input character set mapping support.
1411 
1412  // Skip marker for wide or unicode strings.
1413  if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1414  ++ThisTokBuf;
1415  // Skip 8 of u8 marker for utf8 strings.
1416  if (ThisTokBuf[0] == '8')
1417  ++ThisTokBuf;
1418  }
1419 
1420  // Check for raw string
1421  if (ThisTokBuf[0] == 'R') {
1422  ThisTokBuf += 2; // skip R"
1423 
1424  const char *Prefix = ThisTokBuf;
1425  while (ThisTokBuf[0] != '(')
1426  ++ThisTokBuf;
1427  ++ThisTokBuf; // skip '('
1428 
1429  // Remove same number of characters from the end
1430  ThisTokEnd -= ThisTokBuf - Prefix;
1431  assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1432 
1433  // C++14 [lex.string]p4: A source-file new-line in a raw string literal
1434  // results in a new-line in the resulting execution string-literal.
1435  StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
1436  while (!RemainingTokenSpan.empty()) {
1437  // Split the string literal on \r\n boundaries.
1438  size_t CRLFPos = RemainingTokenSpan.find("\r\n");
1439  StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
1440  StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
1441 
1442  // Copy everything before the \r\n sequence into the string literal.
1443  if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
1444  hadError = true;
1445 
1446  // Point into the \n inside the \r\n sequence and operate on the
1447  // remaining portion of the literal.
1448  RemainingTokenSpan = AfterCRLF.substr(1);
1449  }
1450  } else {
1451  if (ThisTokBuf[0] != '"') {
1452  // The file may have come from PCH and then changed after loading the
1453  // PCH; Fail gracefully.
1454  return DiagnoseLexingError(StringToks[i].getLocation());
1455  }
1456  ++ThisTokBuf; // skip "
1457 
1458  // Check if this is a pascal string
1459  if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1460  ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1461 
1462  // If the \p sequence is found in the first token, we have a pascal string
1463  // Otherwise, if we already have a pascal string, ignore the first \p
1464  if (i == 0) {
1465  ++ThisTokBuf;
1466  Pascal = true;
1467  } else if (Pascal)
1468  ThisTokBuf += 2;
1469  }
1470 
1471  while (ThisTokBuf != ThisTokEnd) {
1472  // Is this a span of non-escape characters?
1473  if (ThisTokBuf[0] != '\\') {
1474  const char *InStart = ThisTokBuf;
1475  do {
1476  ++ThisTokBuf;
1477  } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1478 
1479  // Copy the character span over.
1480  if (CopyStringFragment(StringToks[i], ThisTokBegin,
1481  StringRef(InStart, ThisTokBuf - InStart)))
1482  hadError = true;
1483  continue;
1484  }
1485  // Is this a Universal Character Name escape?
1486  if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1487  EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1488  ResultPtr, hadError,
1489  FullSourceLoc(StringToks[i].getLocation(), SM),
1490  CharByteWidth, Diags, Features);
1491  continue;
1492  }
1493  // Otherwise, this is a non-UCN escape character. Process it.
1494  unsigned ResultChar =
1495  ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1496  FullSourceLoc(StringToks[i].getLocation(), SM),
1497  CharByteWidth*8, Diags, Features);
1498 
1499  if (CharByteWidth == 4) {
1500  // FIXME: Make the type of the result buffer correct instead of
1501  // using reinterpret_cast.
1502  UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1503  *ResultWidePtr = ResultChar;
1504  ResultPtr += 4;
1505  } else if (CharByteWidth == 2) {
1506  // FIXME: Make the type of the result buffer correct instead of
1507  // using reinterpret_cast.
1508  UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1509  *ResultWidePtr = ResultChar & 0xFFFF;
1510  ResultPtr += 2;
1511  } else {
1512  assert(CharByteWidth == 1 && "Unexpected char width");
1513  *ResultPtr++ = ResultChar & 0xFF;
1514  }
1515  }
1516  }
1517  }
1518 
1519  if (Pascal) {
1520  if (CharByteWidth == 4) {
1521  // FIXME: Make the type of the result buffer correct instead of
1522  // using reinterpret_cast.
1523  UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1524  ResultWidePtr[0] = GetNumStringChars() - 1;
1525  } else if (CharByteWidth == 2) {
1526  // FIXME: Make the type of the result buffer correct instead of
1527  // using reinterpret_cast.
1528  UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1529  ResultWidePtr[0] = GetNumStringChars() - 1;
1530  } else {
1531  assert(CharByteWidth == 1 && "Unexpected char width");
1532  ResultBuf[0] = GetNumStringChars() - 1;
1533  }
1534 
1535  // Verify that pascal strings aren't too large.
1536  if (GetStringLength() > 256) {
1537  if (Diags)
1538  Diags->Report(StringToks.front().getLocation(),
1539  diag::err_pascal_string_too_long)
1540  << SourceRange(StringToks.front().getLocation(),
1541  StringToks.back().getLocation());
1542  hadError = true;
1543  return;
1544  }
1545  } else if (Diags) {
1546  // Complain if this string literal has too many characters.
1547  unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1548 
1549  if (GetNumStringChars() > MaxChars)
1550  Diags->Report(StringToks.front().getLocation(),
1551  diag::ext_string_too_long)
1552  << GetNumStringChars() << MaxChars
1553  << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1554  << SourceRange(StringToks.front().getLocation(),
1555  StringToks.back().getLocation());
1556  }
1557 }
1558 
1559 static const char *resyncUTF8(const char *Err, const char *End) {
1560  if (Err == End)
1561  return End;
1562  End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1563  while (++Err != End && (*Err & 0xC0) == 0x80)
1564  ;
1565  return Err;
1566 }
1567 
1568 /// \brief This function copies from Fragment, which is a sequence of bytes
1569 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
1570 /// Performs widening for multi-byte characters.
1571 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1572  const char *TokBegin,
1573  StringRef Fragment) {
1574  const UTF8 *ErrorPtrTmp;
1575  if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1576  return false;
1577 
1578  // If we see bad encoding for unprefixed string literals, warn and
1579  // simply copy the byte values, for compatibility with gcc and older
1580  // versions of clang.
1581  bool NoErrorOnBadEncoding = isAscii();
1582  if (NoErrorOnBadEncoding) {
1583  memcpy(ResultPtr, Fragment.data(), Fragment.size());
1584  ResultPtr += Fragment.size();
1585  }
1586 
1587  if (Diags) {
1588  const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1589 
1590  FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1591  const DiagnosticBuilder &Builder =
1592  Diag(Diags, Features, SourceLoc, TokBegin,
1593  ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1594  NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1595  : diag::err_bad_string_encoding);
1596 
1597  const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1598  StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1599 
1600  // Decode into a dummy buffer.
1601  SmallString<512> Dummy;
1602  Dummy.reserve(Fragment.size() * CharByteWidth);
1603  char *Ptr = Dummy.data();
1604 
1605  while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1606  const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1607  NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1608  Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1609  ErrorPtr, NextStart);
1610  NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1611  }
1612  }
1613  return !NoErrorOnBadEncoding;
1614 }
1615 
1616 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1617  hadError = true;
1618  if (Diags)
1619  Diags->Report(Loc, diag::err_lexing_string);
1620 }
1621 
1622 /// getOffsetOfStringByte - This function returns the offset of the
1623 /// specified byte of the string data represented by Token. This handles
1624 /// advancing over escape sequences in the string.
1626  unsigned ByteNo) const {
1627  // Get the spelling of the token.
1628  SmallString<32> SpellingBuffer;
1629  SpellingBuffer.resize(Tok.getLength());
1630 
1631  bool StringInvalid = false;
1632  const char *SpellingPtr = &SpellingBuffer[0];
1633  unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1634  &StringInvalid);
1635  if (StringInvalid)
1636  return 0;
1637 
1638  const char *SpellingStart = SpellingPtr;
1639  const char *SpellingEnd = SpellingPtr+TokLen;
1640 
1641  // Handle UTF-8 strings just like narrow strings.
1642  if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1643  SpellingPtr += 2;
1644 
1645  assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1646  SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1647 
1648  // For raw string literals, this is easy.
1649  if (SpellingPtr[0] == 'R') {
1650  assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1651  // Skip 'R"'.
1652  SpellingPtr += 2;
1653  while (*SpellingPtr != '(') {
1654  ++SpellingPtr;
1655  assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1656  }
1657  // Skip '('.
1658  ++SpellingPtr;
1659  return SpellingPtr - SpellingStart + ByteNo;
1660  }
1661 
1662  // Skip over the leading quote
1663  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1664  ++SpellingPtr;
1665 
1666  // Skip over bytes until we find the offset we're looking for.
1667  while (ByteNo) {
1668  assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1669 
1670  // Step over non-escapes simply.
1671  if (*SpellingPtr != '\\') {
1672  ++SpellingPtr;
1673  --ByteNo;
1674  continue;
1675  }
1676 
1677  // Otherwise, this is an escape character. Advance over it.
1678  bool HadError = false;
1679  if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1680  const char *EscapePtr = SpellingPtr;
1681  unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1682  1, Features, HadError);
1683  if (Len > ByteNo) {
1684  // ByteNo is somewhere within the escape sequence.
1685  SpellingPtr = EscapePtr;
1686  break;
1687  }
1688  ByteNo -= Len;
1689  } else {
1690  ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1691  FullSourceLoc(Tok.getLocation(), SM),
1692  CharByteWidth*8, Diags, Features);
1693  --ByteNo;
1694  }
1695  assert(!HadError && "This method isn't valid on erroneous strings");
1696  }
1697 
1698  return SpellingPtr-SpellingStart;
1699 }
SourceManager & getSourceManager() const
Definition: Preprocessor.h:694
static unsigned getSpelling(const Token &Tok, const char *&Buffer, const SourceManager &SourceMgr, const LangOptions &LangOpts, bool *Invalid=nullptr)
getSpelling - This method is used to get the spelling of a token into a preallocated buffer...
Definition: Lexer.cpp:358
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
static LLVM_READONLY bool isDigit(unsigned char c)
Return true if this character is an ASCII digit: [0-9].
Definition: CharInfo.h:94
unsigned getChar16Width() const
getChar16Width/Align - Return the size of 'char16_t' for this target, in bits.
StringLiteralParser(ArrayRef< Token > StringToks, Preprocessor &PP, bool Complain=true)
const SourceManager & getManager() const
std::unique_ptr< llvm::MemoryBuffer > Buffer
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1124
unsigned getChar32Width() const
getChar32Width/Align - Return the size of 'char32_t' for this target, in bits.
iterator begin() const
Definition: Type.h:4235
static LLVM_READONLY bool isPreprocessingNumberBody(unsigned char c)
Return true if this is the body character of a C preprocessing number, which is [a-zA-Z0-9_.
Definition: CharInfo.h:148
static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits)
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
const LangOptions & getLangOpts() const
Definition: Preprocessor.h:690
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, unsigned CharByteWidth, const LangOptions &Features, bool &HadError)
MeasureUCNEscape - Determine the number of bytes within the resulting string which this UCN will occu...
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:135
static bool isValidUDSuffix(const LangOptions &LangOpts, StringRef Suffix)
Determine whether a suffix is a valid ud-suffix.
NumericLiteralParser(StringRef TokSpelling, SourceLocation TokLoc, Preprocessor &PP)
integer-constant: [C99 6.4.4.1] decimal-constant integer-suffix octal-constant integer-suffix hexadec...
SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Char) const
Given a location that specifies the start of a token, return a new location that specifies a characte...
const TargetInfo & getTargetInfo() const
Definition: Preprocessor.h:691
iterator end() const
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Character, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token...
Definition: Lexer.cpp:700
detail::InMemoryDirectory::const_iterator I
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const
Forwarding function for diagnostics.
unsigned getWCharWidth() const
getWCharWidth/Align - Return the size of 'wchar_t' for this target, in bits.
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:873
const SmallVectorImpl< AnnotatedLine * >::const_iterator End
Exposes information about the current target.
CharLiteralParser(const char *begin, const char *end, SourceLocation Loc, Preprocessor &PP, tok::TokenKind kind)
Represents a character-granular source range.
Defines the clang::Preprocessor interface.
static const char * resyncUTF8(const char *Err, const char *End)
char __ovld __cnfn min(char x, char y)
Returns y if y < x, otherwise it returns x.
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file. ...
Definition: Token.h:123
static void appendCodePoint(unsigned Codepoint, llvm::SmallVectorImpl< char > &Str)
const SourceManager & SM
Definition: Format.cpp:1184
static CharSourceRange getCharRange(SourceRange R)
bool GetIntegerValue(llvm::APInt &Val)
GetIntegerValue - Convert this numeric literal value to an APInt that matches Val's input width...
#define false
Definition: stdbool.h:33
Kind
Encodes a location in the source.
llvm::APFloat::opStatus GetFloatValue(llvm::APFloat &Result)
GetFloatValue - Convert this numeric literal to a floating value, using the specified APFloat fltSema...
const TemplateArgument * iterator
Definition: Type.h:4233
static unsigned ProcessCharEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, bool &HadError, FullSourceLoc Loc, unsigned CharWidth, DiagnosticsEngine *Diags, const LangOptions &Features)
ProcessCharEscape - Parse a standard C escape sequence, which can occur in either a character or a st...
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:25
void expandUCNs(SmallVectorImpl< char > &Buf, StringRef Input)
Copy characters from Input to Buf, expanding any UCNs.
DiagnosticsEngine & getDiagnostics() const
Definition: Preprocessor.h:687
static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, char *&ResultBuf, bool &HadError, FullSourceLoc Loc, unsigned CharByteWidth, DiagnosticsEngine *Diags, const LangOptions &Features)
EncodeUCNEscape - Read the Universal Character Name, check constraints and convert the UTF32 to UTF8 ...
static LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:140
detail::InMemoryDirectory::const_iterator E
unsigned getIntWidth() const
getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for this target, in bits.
BoundNodesTreeBuilder *const Builder
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target)
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:43
const StringRef Input
Defines the clang::TargetInfo interface.
unsigned GetStringLength() const
A SourceLocation and its associated SourceManager.
unsigned getLength() const
Definition: Token.h:126
A trivial tuple used to represent a source range.
unsigned GetNumStringChars() const
static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, uint32_t &UcnVal, unsigned short &UcnLen, FullSourceLoc Loc, DiagnosticsEngine *Diags, const LangOptions &Features, bool in_char_string_literal=false)
ProcessUCNEscape - Read the Universal Character Name, check constraints and return the UTF32...
static CharSourceRange MakeCharSourceRange(const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd)
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:97
static LLVM_READONLY bool isHexDigit(unsigned char c)
Return true if this character is an ASCII hex digit: [0-9a-fA-F].
Definition: CharInfo.h:124