clang  3.9.0
MicrosoftMangle.cpp
Go to the documentation of this file.
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
27 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Support/JamCRC.h"
32 #include "llvm/Support/MD5.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 using namespace clang;
36 
37 namespace {
38 
39 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
40  raw_ostream &OS;
42 
43  msvc_hashing_ostream(raw_ostream &OS)
44  : llvm::raw_svector_ostream(Buffer), OS(OS) {}
45  ~msvc_hashing_ostream() override {
46  StringRef MangledName = str();
47  bool StartsWithEscape = MangledName.startswith("\01");
48  if (StartsWithEscape)
49  MangledName = MangledName.drop_front(1);
50  if (MangledName.size() <= 4096) {
51  OS << str();
52  return;
53  }
54 
55  llvm::MD5 Hasher;
56  llvm::MD5::MD5Result Hash;
57  Hasher.update(MangledName);
58  Hasher.final(Hash);
59 
60  SmallString<32> HexString;
61  llvm::MD5::stringifyResult(Hash, HexString);
62 
63  if (StartsWithEscape)
64  OS << '\01';
65  OS << "??@" << HexString << '@';
66  }
67 };
68 
69 /// \brief Retrieve the declaration context that should be used when mangling
70 /// the given declaration.
71 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
72  // The ABI assumes that lambda closure types that occur within
73  // default arguments live in the context of the function. However, due to
74  // the way in which Clang parses and creates function declarations, this is
75  // not the case: the lambda closure type ends up living in the context
76  // where the function itself resides, because the function declaration itself
77  // had not yet been created. Fix the context here.
78  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
79  if (RD->isLambda())
80  if (ParmVarDecl *ContextParam =
81  dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
82  return ContextParam->getDeclContext();
83  }
84 
85  // Perform the same check for block literals.
86  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
87  if (ParmVarDecl *ContextParam =
88  dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
89  return ContextParam->getDeclContext();
90  }
91 
92  const DeclContext *DC = D->getDeclContext();
93  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
94  return getEffectiveDeclContext(cast<Decl>(DC));
95  }
96 
97  return DC->getRedeclContext();
98 }
99 
100 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
101  return getEffectiveDeclContext(cast<Decl>(DC));
102 }
103 
104 static const FunctionDecl *getStructor(const NamedDecl *ND) {
105  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
106  return FTD->getTemplatedDecl();
107 
108  const auto *FD = cast<FunctionDecl>(ND);
109  if (const auto *FTD = FD->getPrimaryTemplate())
110  return FTD->getTemplatedDecl();
111 
112  return FD;
113 }
114 
115 static bool isLambda(const NamedDecl *ND) {
116  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
117  if (!Record)
118  return false;
119 
120  return Record->isLambda();
121 }
122 
123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
124 /// Microsoft Visual C++ ABI.
125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
126  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
127  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
128  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
129  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
130  llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
131  llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
132 
133 public:
134  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
135  : MicrosoftMangleContext(Context, Diags) {}
136  bool shouldMangleCXXName(const NamedDecl *D) override;
137  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
138  void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
139  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
140  raw_ostream &) override;
141  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
142  raw_ostream &) override;
143  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145  raw_ostream &) override;
146  void mangleCXXVFTable(const CXXRecordDecl *Derived,
148  raw_ostream &Out) override;
149  void mangleCXXVBTable(const CXXRecordDecl *Derived,
151  raw_ostream &Out) override;
152  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
153  const CXXRecordDecl *DstRD,
154  raw_ostream &Out) override;
155  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
156  bool IsUnaligned, uint32_t NumEntries,
157  raw_ostream &Out) override;
158  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
159  raw_ostream &Out) override;
160  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
161  CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
162  int32_t VBPtrOffset, uint32_t VBIndex,
163  raw_ostream &Out) override;
164  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
165  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
166  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
167  uint32_t NVOffset, int32_t VBPtrOffset,
168  uint32_t VBTableOffset, uint32_t Flags,
169  raw_ostream &Out) override;
170  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
171  raw_ostream &Out) override;
172  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
173  raw_ostream &Out) override;
174  void
175  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
177  raw_ostream &Out) override;
178  void mangleTypeName(QualType T, raw_ostream &) override;
179  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
180  raw_ostream &) override;
181  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
182  raw_ostream &) override;
183  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
184  raw_ostream &) override;
185  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
186  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
187  raw_ostream &Out) override;
188  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
189  void mangleDynamicAtExitDestructor(const VarDecl *D,
190  raw_ostream &Out) override;
191  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
192  raw_ostream &Out) override;
193  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
194  raw_ostream &Out) override;
195  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
196  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
197  const DeclContext *DC = getEffectiveDeclContext(ND);
198  if (!DC->isFunctionOrMethod())
199  return false;
200 
201  // Lambda closure types are already numbered, give out a phony number so
202  // that they demangle nicely.
203  if (isLambda(ND)) {
204  disc = 1;
205  return true;
206  }
207 
208  // Use the canonical number for externally visible decls.
209  if (ND->isExternallyVisible()) {
210  disc = getASTContext().getManglingNumber(ND);
211  return true;
212  }
213 
214  // Anonymous tags are already numbered.
215  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
216  if (!Tag->hasNameForLinkage() &&
217  !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
218  !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
219  return false;
220  }
221 
222  // Make up a reasonable number for internal decls.
223  unsigned &discriminator = Uniquifier[ND];
224  if (!discriminator)
225  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
226  disc = discriminator + 1;
227  return true;
228  }
229 
230  unsigned getLambdaId(const CXXRecordDecl *RD) {
231  assert(RD->isLambda() && "RD must be a lambda!");
232  assert(!RD->isExternallyVisible() && "RD must not be visible!");
233  assert(RD->getLambdaManglingNumber() == 0 &&
234  "RD must not have a mangling number!");
236  Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
237  return Result.first->second;
238  }
239 
240 private:
241  void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
242 };
243 
244 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
245 /// Microsoft Visual C++ ABI.
246 class MicrosoftCXXNameMangler {
247  MicrosoftMangleContextImpl &Context;
248  raw_ostream &Out;
249 
250  /// The "structor" is the top-level declaration being mangled, if
251  /// that's not a template specialization; otherwise it's the pattern
252  /// for that specialization.
253  const NamedDecl *Structor;
254  unsigned StructorType;
255 
256  typedef llvm::SmallVector<std::string, 10> BackRefVec;
257  BackRefVec NameBackReferences;
258 
259  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
260  ArgBackRefMap TypeBackReferences;
261 
262  typedef std::set<int> PassObjectSizeArgsSet;
263  PassObjectSizeArgsSet PassObjectSizeArgs;
264 
265  ASTContext &getASTContext() const { return Context.getASTContext(); }
266 
267  // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
268  // this check into mangleQualifiers().
269  const bool PointersAre64Bit;
270 
271 public:
272  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
273 
274  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
275  : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
276  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
277  64) {}
278 
279  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
281  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
282  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
283  64) {}
284 
285  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
287  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
288  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
289  64) {}
290 
291  raw_ostream &getStream() const { return Out; }
292 
293  void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
294  void mangleName(const NamedDecl *ND);
295  void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
296  void mangleVariableEncoding(const VarDecl *VD);
297  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
298  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
299  const CXXMethodDecl *MD);
300  void mangleVirtualMemPtrThunk(
301  const CXXMethodDecl *MD,
303  void mangleNumber(int64_t Number);
304  void mangleTagTypeKind(TagTypeKind TK);
305  void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
306  ArrayRef<StringRef> NestedNames = None);
307  void mangleType(QualType T, SourceRange Range,
308  QualifierMangleMode QMM = QMM_Mangle);
309  void mangleFunctionType(const FunctionType *T,
310  const FunctionDecl *D = nullptr,
311  bool ForceThisQuals = false);
312  void mangleNestedName(const NamedDecl *ND);
313 
314 private:
315  void mangleUnqualifiedName(const NamedDecl *ND) {
316  mangleUnqualifiedName(ND, ND->getDeclName());
317  }
318  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
319  void mangleSourceName(StringRef Name);
320  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
321  void mangleCXXDtorType(CXXDtorType T);
322  void mangleQualifiers(Qualifiers Quals, bool IsMember);
323  void mangleRefQualifier(RefQualifierKind RefQualifier);
324  void manglePointerCVQualifiers(Qualifiers Quals);
325  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
326 
327  void mangleUnscopedTemplateName(const TemplateDecl *ND);
328  void
329  mangleTemplateInstantiationName(const TemplateDecl *TD,
330  const TemplateArgumentList &TemplateArgs);
331  void mangleObjCMethodName(const ObjCMethodDecl *MD);
332 
333  void mangleArgumentType(QualType T, SourceRange Range);
334  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
335 
336  // Declare manglers for every type class.
337 #define ABSTRACT_TYPE(CLASS, PARENT)
338 #define NON_CANONICAL_TYPE(CLASS, PARENT)
339 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
340  Qualifiers Quals, \
341  SourceRange Range);
342 #include "clang/AST/TypeNodes.def"
343 #undef ABSTRACT_TYPE
344 #undef NON_CANONICAL_TYPE
345 #undef TYPE
346 
347  void mangleType(const TagDecl *TD);
348  void mangleDecayedArrayType(const ArrayType *T);
349  void mangleArrayType(const ArrayType *T);
350  void mangleFunctionClass(const FunctionDecl *FD);
351  void mangleCallingConvention(CallingConv CC);
352  void mangleCallingConvention(const FunctionType *T);
353  void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
354  void mangleExpression(const Expr *E);
355  void mangleThrowSpecification(const FunctionProtoType *T);
356 
357  void mangleTemplateArgs(const TemplateDecl *TD,
358  const TemplateArgumentList &TemplateArgs);
359  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
360  const NamedDecl *Parm);
361 };
362 }
363 
364 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
365  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
366  LanguageLinkage L = FD->getLanguageLinkage();
367  // Overloadable functions need mangling.
368  if (FD->hasAttr<OverloadableAttr>())
369  return true;
370 
371  // The ABI expects that we would never mangle "typical" user-defined entry
372  // points regardless of visibility or freestanding-ness.
373  //
374  // N.B. This is distinct from asking about "main". "main" has a lot of
375  // special rules associated with it in the standard while these
376  // user-defined entry points are outside of the purview of the standard.
377  // For example, there can be only one definition for "main" in a standards
378  // compliant program; however nothing forbids the existence of wmain and
379  // WinMain in the same translation unit.
380  if (FD->isMSVCRTEntryPoint())
381  return false;
382 
383  // C++ functions and those whose names are not a simple identifier need
384  // mangling.
385  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
386  return true;
387 
388  // C functions are not mangled.
389  if (L == CLanguageLinkage)
390  return false;
391  }
392 
393  // Otherwise, no mangling is done outside C++ mode.
394  if (!getASTContext().getLangOpts().CPlusPlus)
395  return false;
396 
397  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
398  // C variables are not mangled.
399  if (VD->isExternC())
400  return false;
401 
402  // Variables at global scope with non-internal linkage are not mangled.
403  const DeclContext *DC = getEffectiveDeclContext(D);
404  // Check for extern variable declared locally.
405  if (DC->isFunctionOrMethod() && D->hasLinkage())
406  while (!DC->isNamespace() && !DC->isTranslationUnit())
407  DC = getEffectiveParentContext(DC);
408 
409  if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
410  !isa<VarTemplateSpecializationDecl>(D) &&
411  D->getIdentifier() != nullptr)
412  return false;
413  }
414 
415  return true;
416 }
417 
418 bool
419 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
420  return true;
421 }
422 
423 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
424  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
425  // Therefore it's really important that we don't decorate the
426  // name with leading underscores or leading/trailing at signs. So, by
427  // default, we emit an asm marker at the start so we get the name right.
428  // Callers can override this with a custom prefix.
429 
430  // <mangled-name> ::= ? <name> <type-encoding>
431  Out << Prefix;
432  mangleName(D);
433  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
434  mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
435  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
436  mangleVariableEncoding(VD);
437  else
438  llvm_unreachable("Tried to mangle unexpected NamedDecl!");
439 }
440 
441 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
442  bool ShouldMangle) {
443  // <type-encoding> ::= <function-class> <function-type>
444 
445  // Since MSVC operates on the type as written and not the canonical type, it
446  // actually matters which decl we have here. MSVC appears to choose the
447  // first, since it is most likely to be the declaration in a header file.
448  FD = FD->getFirstDecl();
449 
450  // We should never ever see a FunctionNoProtoType at this point.
451  // We don't even know how to mangle their types anyway :).
452  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
453 
454  // extern "C" functions can hold entities that must be mangled.
455  // As it stands, these functions still need to get expressed in the full
456  // external name. They have their class and type omitted, replaced with '9'.
457  if (ShouldMangle) {
458  // We would like to mangle all extern "C" functions using this additional
459  // component but this would break compatibility with MSVC's behavior.
460  // Instead, do this when we know that compatibility isn't important (in
461  // other words, when it is an overloaded extern "C" function).
462  if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
463  Out << "$$J0";
464 
465  mangleFunctionClass(FD);
466 
467  mangleFunctionType(FT, FD);
468  } else {
469  Out << '9';
470  }
471 }
472 
473 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
474  // <type-encoding> ::= <storage-class> <variable-type>
475  // <storage-class> ::= 0 # private static member
476  // ::= 1 # protected static member
477  // ::= 2 # public static member
478  // ::= 3 # global
479  // ::= 4 # static local
480 
481  // The first character in the encoding (after the name) is the storage class.
482  if (VD->isStaticDataMember()) {
483  // If it's a static member, it also encodes the access level.
484  switch (VD->getAccess()) {
485  default:
486  case AS_private: Out << '0'; break;
487  case AS_protected: Out << '1'; break;
488  case AS_public: Out << '2'; break;
489  }
490  }
491  else if (!VD->isStaticLocal())
492  Out << '3';
493  else
494  Out << '4';
495  // Now mangle the type.
496  // <variable-type> ::= <type> <cvr-qualifiers>
497  // ::= <type> <pointee-cvr-qualifiers> # pointers, references
498  // Pointers and references are odd. The type of 'int * const foo;' gets
499  // mangled as 'QAHA' instead of 'PAHB', for example.
500  SourceRange SR = VD->getSourceRange();
501  QualType Ty = VD->getType();
502  if (Ty->isPointerType() || Ty->isReferenceType() ||
503  Ty->isMemberPointerType()) {
504  mangleType(Ty, SR, QMM_Drop);
505  manglePointerExtQualifiers(
506  Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
507  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
508  mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
509  // Member pointers are suffixed with a back reference to the member
510  // pointer's class name.
511  mangleName(MPT->getClass()->getAsCXXRecordDecl());
512  } else
513  mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
514  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
515  // Global arrays are funny, too.
516  mangleDecayedArrayType(AT);
517  if (AT->getElementType()->isArrayType())
518  Out << 'A';
519  else
520  mangleQualifiers(Ty.getQualifiers(), false);
521  } else {
522  mangleType(Ty, SR, QMM_Drop);
523  mangleQualifiers(Ty.getQualifiers(), false);
524  }
525 }
526 
527 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
528  const ValueDecl *VD) {
529  // <member-data-pointer> ::= <integer-literal>
530  // ::= $F <number> <number>
531  // ::= $G <number> <number> <number>
532 
533  int64_t FieldOffset;
534  int64_t VBTableOffset;
535  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
536  if (VD) {
537  FieldOffset = getASTContext().getFieldOffset(VD);
538  assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
539  "cannot take address of bitfield");
540  FieldOffset /= getASTContext().getCharWidth();
541 
542  VBTableOffset = 0;
543 
544  if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
545  FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
546  } else {
547  FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
548 
549  VBTableOffset = -1;
550  }
551 
552  char Code = '\0';
553  switch (IM) {
554  case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
555  case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
556  case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
557  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
558  }
559 
560  Out << '$' << Code;
561 
562  mangleNumber(FieldOffset);
563 
564  // The C++ standard doesn't allow base-to-derived member pointer conversions
565  // in template parameter contexts, so the vbptr offset of data member pointers
566  // is always zero.
567  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
568  mangleNumber(0);
569  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
570  mangleNumber(VBTableOffset);
571 }
572 
573 void
574 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
575  const CXXMethodDecl *MD) {
576  // <member-function-pointer> ::= $1? <name>
577  // ::= $H? <name> <number>
578  // ::= $I? <name> <number> <number>
579  // ::= $J? <name> <number> <number> <number>
580 
581  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
582 
583  char Code = '\0';
584  switch (IM) {
585  case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
586  case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
587  case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
588  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
589  }
590 
591  // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
592  // thunk.
593  uint64_t NVOffset = 0;
594  uint64_t VBTableOffset = 0;
595  uint64_t VBPtrOffset = 0;
596  if (MD) {
597  Out << '$' << Code << '?';
598  if (MD->isVirtual()) {
599  MicrosoftVTableContext *VTContext =
600  cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
602  VTContext->getMethodVFTableLocation(GlobalDecl(MD));
603  mangleVirtualMemPtrThunk(MD, ML);
604  NVOffset = ML.VFPtrOffset.getQuantity();
605  VBTableOffset = ML.VBTableIndex * 4;
606  if (ML.VBase) {
607  const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
608  VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
609  }
610  } else {
611  mangleName(MD);
612  mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
613  }
614 
615  if (VBTableOffset == 0 &&
616  IM == MSInheritanceAttr::Keyword_virtual_inheritance)
617  NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
618  } else {
619  // Null single inheritance member functions are encoded as a simple nullptr.
620  if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
621  Out << "$0A@";
622  return;
623  }
624  if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
625  VBTableOffset = -1;
626  Out << '$' << Code;
627  }
628 
629  if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
630  mangleNumber(static_cast<uint32_t>(NVOffset));
631  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
632  mangleNumber(VBPtrOffset);
633  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
634  mangleNumber(VBTableOffset);
635 }
636 
637 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
638  const CXXMethodDecl *MD,
640  // Get the vftable offset.
641  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
642  getASTContext().getTargetInfo().getPointerWidth(0));
643  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
644 
645  Out << "?_9";
646  mangleName(MD->getParent());
647  Out << "$B";
648  mangleNumber(OffsetInVFTable);
649  Out << 'A';
650  mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
651 }
652 
653 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
654  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
655 
656  // Always start with the unqualified name.
657  mangleUnqualifiedName(ND);
658 
659  mangleNestedName(ND);
660 
661  // Terminate the whole name with an '@'.
662  Out << '@';
663 }
664 
665 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
666  // <non-negative integer> ::= A@ # when Number == 0
667  // ::= <decimal digit> # when 1 <= Number <= 10
668  // ::= <hex digit>+ @ # when Number >= 10
669  //
670  // <number> ::= [?] <non-negative integer>
671 
672  uint64_t Value = static_cast<uint64_t>(Number);
673  if (Number < 0) {
674  Value = -Value;
675  Out << '?';
676  }
677 
678  if (Value == 0)
679  Out << "A@";
680  else if (Value >= 1 && Value <= 10)
681  Out << (Value - 1);
682  else {
683  // Numbers that are not encoded as decimal digits are represented as nibbles
684  // in the range of ASCII characters 'A' to 'P'.
685  // The number 0x123450 would be encoded as 'BCDEFA'
686  char EncodedNumberBuffer[sizeof(uint64_t) * 2];
687  MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
688  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
689  for (; Value != 0; Value >>= 4)
690  *I++ = 'A' + (Value & 0xf);
691  Out.write(I.base(), I - BufferRef.rbegin());
692  Out << '@';
693  }
694 }
695 
696 static const TemplateDecl *
697 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
698  // Check if we have a function template.
699  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
700  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
701  TemplateArgs = FD->getTemplateSpecializationArgs();
702  return TD;
703  }
704  }
705 
706  // Check if we have a class template.
707  if (const ClassTemplateSpecializationDecl *Spec =
708  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
709  TemplateArgs = &Spec->getTemplateArgs();
710  return Spec->getSpecializedTemplate();
711  }
712 
713  // Check if we have a variable template.
714  if (const VarTemplateSpecializationDecl *Spec =
715  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
716  TemplateArgs = &Spec->getTemplateArgs();
717  return Spec->getSpecializedTemplate();
718  }
719 
720  return nullptr;
721 }
722 
723 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
725  // <unqualified-name> ::= <operator-name>
726  // ::= <ctor-dtor-name>
727  // ::= <source-name>
728  // ::= <template-name>
729 
730  // Check if we have a template.
731  const TemplateArgumentList *TemplateArgs = nullptr;
732  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
733  // Function templates aren't considered for name back referencing. This
734  // makes sense since function templates aren't likely to occur multiple
735  // times in a symbol.
736  if (isa<FunctionTemplateDecl>(TD)) {
737  mangleTemplateInstantiationName(TD, *TemplateArgs);
738  Out << '@';
739  return;
740  }
741 
742  // Here comes the tricky thing: if we need to mangle something like
743  // void foo(A::X<Y>, B::X<Y>),
744  // the X<Y> part is aliased. However, if you need to mangle
745  // void foo(A::X<A::Y>, A::X<B::Y>),
746  // the A::X<> part is not aliased.
747  // That said, from the mangler's perspective we have a structure like this:
748  // namespace[s] -> type[ -> template-parameters]
749  // but from the Clang perspective we have
750  // type [ -> template-parameters]
751  // \-> namespace[s]
752  // What we do is we create a new mangler, mangle the same type (without
753  // a namespace suffix) to a string using the extra mangler and then use
754  // the mangled type name as a key to check the mangling of different types
755  // for aliasing.
756 
757  llvm::SmallString<64> TemplateMangling;
758  llvm::raw_svector_ostream Stream(TemplateMangling);
759  MicrosoftCXXNameMangler Extra(Context, Stream);
760  Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
761 
762  mangleSourceName(TemplateMangling);
763  return;
764  }
765 
766  switch (Name.getNameKind()) {
768  if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
769  mangleSourceName(II->getName());
770  break;
771  }
772 
773  // Otherwise, an anonymous entity. We must have a declaration.
774  assert(ND && "mangling empty name without declaration");
775 
776  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
777  if (NS->isAnonymousNamespace()) {
778  Out << "?A@";
779  break;
780  }
781  }
782 
783  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
784  // We must have an anonymous union or struct declaration.
785  const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
786  assert(RD && "expected variable decl to have a record type");
787  // Anonymous types with no tag or typedef get the name of their
788  // declarator mangled in. If they have no declarator, number them with
789  // a $S prefix.
791  // Get a unique id for the anonymous struct.
792  Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
793  mangleSourceName(Name.str());
794  break;
795  }
796 
797  // We must have an anonymous struct.
798  const TagDecl *TD = cast<TagDecl>(ND);
799  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
800  assert(TD->getDeclContext() == D->getDeclContext() &&
801  "Typedef should not be in another decl context!");
802  assert(D->getDeclName().getAsIdentifierInfo() &&
803  "Typedef was not named!");
804  mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
805  break;
806  }
807 
808  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
809  if (Record->isLambda()) {
810  llvm::SmallString<10> Name("<lambda_");
811  unsigned LambdaId;
812  if (Record->getLambdaManglingNumber())
813  LambdaId = Record->getLambdaManglingNumber();
814  else
815  LambdaId = Context.getLambdaId(Record);
816 
817  Name += llvm::utostr(LambdaId);
818  Name += ">";
819 
820  mangleSourceName(Name);
821  break;
822  }
823  }
824 
825  llvm::SmallString<64> Name("<unnamed-type-");
826  if (DeclaratorDecl *DD =
827  Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
828  // Anonymous types without a name for linkage purposes have their
829  // declarator mangled in if they have one.
830  Name += DD->getName();
831  } else if (TypedefNameDecl *TND =
833  TD)) {
834  // Anonymous types without a name for linkage purposes have their
835  // associate typedef mangled in if they have one.
836  Name += TND->getName();
837  } else {
838  // Otherwise, number the types using a $S prefix.
839  Name += "$S";
840  Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
841  }
842  Name += ">";
843  mangleSourceName(Name.str());
844  break;
845  }
846 
850  llvm_unreachable("Can't mangle Objective-C selector names here!");
851 
853  if (Structor == getStructor(ND)) {
855  Out << "?_O";
856  return;
857  }
859  Out << "?_F";
860  return;
861  }
862  }
863  Out << "?0";
864  return;
865 
867  if (ND == Structor)
868  // If the named decl is the C++ destructor we're mangling,
869  // use the type we were given.
870  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
871  else
872  // Otherwise, use the base destructor name. This is relevant if a
873  // class with a destructor is declared within a destructor.
874  mangleCXXDtorType(Dtor_Base);
875  break;
876 
878  // <operator-name> ::= ?B # (cast)
879  // The target type is encoded as the return type.
880  Out << "?B";
881  break;
882 
884  mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
885  break;
886 
888  Out << "?__K";
889  mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
890  break;
891  }
892 
894  llvm_unreachable("Can't mangle a using directive name!");
895  }
896 }
897 
898 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
899  // <postfix> ::= <unqualified-name> [<postfix>]
900  // ::= <substitution> [<postfix>]
901  const DeclContext *DC = getEffectiveDeclContext(ND);
902 
903  while (!DC->isTranslationUnit()) {
904  if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
905  unsigned Disc;
906  if (Context.getNextDiscriminator(ND, Disc)) {
907  Out << '?';
908  mangleNumber(Disc);
909  Out << '?';
910  }
911  }
912 
913  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
914  DiagnosticsEngine &Diags = Context.getDiags();
915  unsigned DiagID =
917  "cannot mangle a local inside this block yet");
918  Diags.Report(BD->getLocation(), DiagID);
919 
920  // FIXME: This is completely, utterly, wrong; see ItaniumMangle
921  // for how this should be done.
922  Out << "__block_invoke" << Context.getBlockId(BD, false);
923  Out << '@';
924  continue;
925  } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
926  mangleObjCMethodName(Method);
927  } else if (isa<NamedDecl>(DC)) {
928  ND = cast<NamedDecl>(DC);
929  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
930  mangle(FD, "?");
931  break;
932  } else
933  mangleUnqualifiedName(ND);
934  }
935  DC = DC->getParent();
936  }
937 }
938 
939 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
940  // Microsoft uses the names on the case labels for these dtor variants. Clang
941  // uses the Itanium terminology internally. Everything in this ABI delegates
942  // towards the base dtor.
943  switch (T) {
944  // <operator-name> ::= ?1 # destructor
945  case Dtor_Base: Out << "?1"; return;
946  // <operator-name> ::= ?_D # vbase destructor
947  case Dtor_Complete: Out << "?_D"; return;
948  // <operator-name> ::= ?_G # scalar deleting destructor
949  case Dtor_Deleting: Out << "?_G"; return;
950  // <operator-name> ::= ?_E # vector deleting destructor
951  // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
952  // it.
953  case Dtor_Comdat:
954  llvm_unreachable("not expecting a COMDAT");
955  }
956  llvm_unreachable("Unsupported dtor type?");
957 }
958 
959 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
960  SourceLocation Loc) {
961  switch (OO) {
962  // ?0 # constructor
963  // ?1 # destructor
964  // <operator-name> ::= ?2 # new
965  case OO_New: Out << "?2"; break;
966  // <operator-name> ::= ?3 # delete
967  case OO_Delete: Out << "?3"; break;
968  // <operator-name> ::= ?4 # =
969  case OO_Equal: Out << "?4"; break;
970  // <operator-name> ::= ?5 # >>
971  case OO_GreaterGreater: Out << "?5"; break;
972  // <operator-name> ::= ?6 # <<
973  case OO_LessLess: Out << "?6"; break;
974  // <operator-name> ::= ?7 # !
975  case OO_Exclaim: Out << "?7"; break;
976  // <operator-name> ::= ?8 # ==
977  case OO_EqualEqual: Out << "?8"; break;
978  // <operator-name> ::= ?9 # !=
979  case OO_ExclaimEqual: Out << "?9"; break;
980  // <operator-name> ::= ?A # []
981  case OO_Subscript: Out << "?A"; break;
982  // ?B # conversion
983  // <operator-name> ::= ?C # ->
984  case OO_Arrow: Out << "?C"; break;
985  // <operator-name> ::= ?D # *
986  case OO_Star: Out << "?D"; break;
987  // <operator-name> ::= ?E # ++
988  case OO_PlusPlus: Out << "?E"; break;
989  // <operator-name> ::= ?F # --
990  case OO_MinusMinus: Out << "?F"; break;
991  // <operator-name> ::= ?G # -
992  case OO_Minus: Out << "?G"; break;
993  // <operator-name> ::= ?H # +
994  case OO_Plus: Out << "?H"; break;
995  // <operator-name> ::= ?I # &
996  case OO_Amp: Out << "?I"; break;
997  // <operator-name> ::= ?J # ->*
998  case OO_ArrowStar: Out << "?J"; break;
999  // <operator-name> ::= ?K # /
1000  case OO_Slash: Out << "?K"; break;
1001  // <operator-name> ::= ?L # %
1002  case OO_Percent: Out << "?L"; break;
1003  // <operator-name> ::= ?M # <
1004  case OO_Less: Out << "?M"; break;
1005  // <operator-name> ::= ?N # <=
1006  case OO_LessEqual: Out << "?N"; break;
1007  // <operator-name> ::= ?O # >
1008  case OO_Greater: Out << "?O"; break;
1009  // <operator-name> ::= ?P # >=
1010  case OO_GreaterEqual: Out << "?P"; break;
1011  // <operator-name> ::= ?Q # ,
1012  case OO_Comma: Out << "?Q"; break;
1013  // <operator-name> ::= ?R # ()
1014  case OO_Call: Out << "?R"; break;
1015  // <operator-name> ::= ?S # ~
1016  case OO_Tilde: Out << "?S"; break;
1017  // <operator-name> ::= ?T # ^
1018  case OO_Caret: Out << "?T"; break;
1019  // <operator-name> ::= ?U # |
1020  case OO_Pipe: Out << "?U"; break;
1021  // <operator-name> ::= ?V # &&
1022  case OO_AmpAmp: Out << "?V"; break;
1023  // <operator-name> ::= ?W # ||
1024  case OO_PipePipe: Out << "?W"; break;
1025  // <operator-name> ::= ?X # *=
1026  case OO_StarEqual: Out << "?X"; break;
1027  // <operator-name> ::= ?Y # +=
1028  case OO_PlusEqual: Out << "?Y"; break;
1029  // <operator-name> ::= ?Z # -=
1030  case OO_MinusEqual: Out << "?Z"; break;
1031  // <operator-name> ::= ?_0 # /=
1032  case OO_SlashEqual: Out << "?_0"; break;
1033  // <operator-name> ::= ?_1 # %=
1034  case OO_PercentEqual: Out << "?_1"; break;
1035  // <operator-name> ::= ?_2 # >>=
1036  case OO_GreaterGreaterEqual: Out << "?_2"; break;
1037  // <operator-name> ::= ?_3 # <<=
1038  case OO_LessLessEqual: Out << "?_3"; break;
1039  // <operator-name> ::= ?_4 # &=
1040  case OO_AmpEqual: Out << "?_4"; break;
1041  // <operator-name> ::= ?_5 # |=
1042  case OO_PipeEqual: Out << "?_5"; break;
1043  // <operator-name> ::= ?_6 # ^=
1044  case OO_CaretEqual: Out << "?_6"; break;
1045  // ?_7 # vftable
1046  // ?_8 # vbtable
1047  // ?_9 # vcall
1048  // ?_A # typeof
1049  // ?_B # local static guard
1050  // ?_C # string
1051  // ?_D # vbase destructor
1052  // ?_E # vector deleting destructor
1053  // ?_F # default constructor closure
1054  // ?_G # scalar deleting destructor
1055  // ?_H # vector constructor iterator
1056  // ?_I # vector destructor iterator
1057  // ?_J # vector vbase constructor iterator
1058  // ?_K # virtual displacement map
1059  // ?_L # eh vector constructor iterator
1060  // ?_M # eh vector destructor iterator
1061  // ?_N # eh vector vbase constructor iterator
1062  // ?_O # copy constructor closure
1063  // ?_P<name> # udt returning <name>
1064  // ?_Q # <unknown>
1065  // ?_R0 # RTTI Type Descriptor
1066  // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1067  // ?_R2 # RTTI Base Class Array
1068  // ?_R3 # RTTI Class Hierarchy Descriptor
1069  // ?_R4 # RTTI Complete Object Locator
1070  // ?_S # local vftable
1071  // ?_T # local vftable constructor closure
1072  // <operator-name> ::= ?_U # new[]
1073  case OO_Array_New: Out << "?_U"; break;
1074  // <operator-name> ::= ?_V # delete[]
1075  case OO_Array_Delete: Out << "?_V"; break;
1076 
1077  case OO_Conditional: {
1078  DiagnosticsEngine &Diags = Context.getDiags();
1079  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1080  "cannot mangle this conditional operator yet");
1081  Diags.Report(Loc, DiagID);
1082  break;
1083  }
1084 
1085  case OO_Coawait: {
1086  DiagnosticsEngine &Diags = Context.getDiags();
1087  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1088  "cannot mangle this operator co_await yet");
1089  Diags.Report(Loc, DiagID);
1090  break;
1091  }
1092 
1093  case OO_None:
1095  llvm_unreachable("Not an overloaded operator");
1096  }
1097 }
1098 
1099 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1100  // <source name> ::= <identifier> @
1101  BackRefVec::iterator Found =
1102  std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1103  if (Found == NameBackReferences.end()) {
1104  if (NameBackReferences.size() < 10)
1105  NameBackReferences.push_back(Name);
1106  Out << Name << '@';
1107  } else {
1108  Out << (Found - NameBackReferences.begin());
1109  }
1110 }
1111 
1112 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1113  Context.mangleObjCMethodName(MD, Out);
1114 }
1115 
1116 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1117  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1118  // <template-name> ::= <unscoped-template-name> <template-args>
1119  // ::= <substitution>
1120  // Always start with the unqualified name.
1121 
1122  // Templates have their own context for back references.
1123  ArgBackRefMap OuterArgsContext;
1124  BackRefVec OuterTemplateContext;
1125  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1126  NameBackReferences.swap(OuterTemplateContext);
1127  TypeBackReferences.swap(OuterArgsContext);
1128  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1129 
1130  mangleUnscopedTemplateName(TD);
1131  mangleTemplateArgs(TD, TemplateArgs);
1132 
1133  // Restore the previous back reference contexts.
1134  NameBackReferences.swap(OuterTemplateContext);
1135  TypeBackReferences.swap(OuterArgsContext);
1136  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1137 }
1138 
1139 void
1140 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1141  // <unscoped-template-name> ::= ?$ <unqualified-name>
1142  Out << "?$";
1143  mangleUnqualifiedName(TD);
1144 }
1145 
1146 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1147  bool IsBoolean) {
1148  // <integer-literal> ::= $0 <number>
1149  Out << "$0";
1150  // Make sure booleans are encoded as 0/1.
1151  if (IsBoolean && Value.getBoolValue())
1152  mangleNumber(1);
1153  else if (Value.isSigned())
1154  mangleNumber(Value.getSExtValue());
1155  else
1156  mangleNumber(Value.getZExtValue());
1157 }
1158 
1159 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1160  // See if this is a constant expression.
1161  llvm::APSInt Value;
1162  if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1163  mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1164  return;
1165  }
1166 
1167  // Look through no-op casts like template parameter substitutions.
1168  E = E->IgnoreParenNoopCasts(Context.getASTContext());
1169 
1170  const CXXUuidofExpr *UE = nullptr;
1171  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1172  if (UO->getOpcode() == UO_AddrOf)
1173  UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1174  } else
1175  UE = dyn_cast<CXXUuidofExpr>(E);
1176 
1177  if (UE) {
1178  // If we had to peek through an address-of operator, treat this like we are
1179  // dealing with a pointer type. Otherwise, treat it like a const reference.
1180  //
1181  // N.B. This matches up with the handling of TemplateArgument::Declaration
1182  // in mangleTemplateArg
1183  if (UE == E)
1184  Out << "$E?";
1185  else
1186  Out << "$1?";
1187 
1188  // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1189  // const __s_GUID _GUID_{lower case UUID with underscores}
1190  StringRef Uuid = UE->getUuidStr();
1191  std::string Name = "_GUID_" + Uuid.lower();
1192  std::replace(Name.begin(), Name.end(), '-', '_');
1193 
1194  mangleSourceName(Name);
1195  // Terminate the whole name with an '@'.
1196  Out << '@';
1197  // It's a global variable.
1198  Out << '3';
1199  // It's a struct called __s_GUID.
1200  mangleArtificalTagType(TTK_Struct, "__s_GUID");
1201  // It's const.
1202  Out << 'B';
1203  return;
1204  }
1205 
1206  // As bad as this diagnostic is, it's better than crashing.
1207  DiagnosticsEngine &Diags = Context.getDiags();
1208  unsigned DiagID = Diags.getCustomDiagID(
1209  DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1210  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1211  << E->getSourceRange();
1212 }
1213 
1214 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1215  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1216  // <template-args> ::= <template-arg>+
1217  const TemplateParameterList *TPL = TD->getTemplateParameters();
1218  assert(TPL->size() == TemplateArgs.size() &&
1219  "size mismatch between args and parms!");
1220 
1221  unsigned Idx = 0;
1222  for (const TemplateArgument &TA : TemplateArgs.asArray())
1223  mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1224 }
1225 
1226 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1227  const TemplateArgument &TA,
1228  const NamedDecl *Parm) {
1229  // <template-arg> ::= <type>
1230  // ::= <integer-literal>
1231  // ::= <member-data-pointer>
1232  // ::= <member-function-pointer>
1233  // ::= $E? <name> <type-encoding>
1234  // ::= $1? <name> <type-encoding>
1235  // ::= $0A@
1236  // ::= <template-args>
1237 
1238  switch (TA.getKind()) {
1240  llvm_unreachable("Can't mangle null template arguments!");
1242  llvm_unreachable("Can't mangle template expansion arguments!");
1243  case TemplateArgument::Type: {
1244  QualType T = TA.getAsType();
1245  mangleType(T, SourceRange(), QMM_Escape);
1246  break;
1247  }
1249  const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1250  if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1251  mangleMemberDataPointer(
1252  cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1253  cast<ValueDecl>(ND));
1254  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1255  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1256  if (MD && MD->isInstance()) {
1257  mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1258  } else {
1259  Out << "$1?";
1260  mangleName(FD);
1261  mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1262  }
1263  } else {
1264  mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1265  }
1266  break;
1267  }
1269  mangleIntegerLiteral(TA.getAsIntegral(),
1270  TA.getIntegralType()->isBooleanType());
1271  break;
1273  QualType T = TA.getNullPtrType();
1274  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1275  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1276  if (MPT->isMemberFunctionPointerType() &&
1277  !isa<FunctionTemplateDecl>(TD)) {
1278  mangleMemberFunctionPointer(RD, nullptr);
1279  return;
1280  }
1281  if (MPT->isMemberDataPointer()) {
1282  if (!isa<FunctionTemplateDecl>(TD)) {
1283  mangleMemberDataPointer(RD, nullptr);
1284  return;
1285  }
1286  // nullptr data pointers are always represented with a single field
1287  // which is initialized with either 0 or -1. Why -1? Well, we need to
1288  // distinguish the case where the data member is at offset zero in the
1289  // record.
1290  // However, we are free to use 0 *if* we would use multiple fields for
1291  // non-nullptr member pointers.
1292  if (!RD->nullFieldOffsetIsZero()) {
1293  mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1294  return;
1295  }
1296  }
1297  }
1298  mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1299  break;
1300  }
1302  mangleExpression(TA.getAsExpr());
1303  break;
1304  case TemplateArgument::Pack: {
1305  ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1306  if (TemplateArgs.empty()) {
1307  if (isa<TemplateTypeParmDecl>(Parm) ||
1308  isa<TemplateTemplateParmDecl>(Parm))
1309  // MSVC 2015 changed the mangling for empty expanded template packs,
1310  // use the old mangling for link compatibility for old versions.
1311  Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1313  ? "$$V"
1314  : "$$$V");
1315  else if (isa<NonTypeTemplateParmDecl>(Parm))
1316  Out << "$S";
1317  else
1318  llvm_unreachable("unexpected template parameter decl!");
1319  } else {
1320  for (const TemplateArgument &PA : TemplateArgs)
1321  mangleTemplateArg(TD, PA, Parm);
1322  }
1323  break;
1324  }
1326  const NamedDecl *ND =
1328  if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1329  mangleType(TD);
1330  } else if (isa<TypeAliasDecl>(ND)) {
1331  Out << "$$Y";
1332  mangleName(ND);
1333  } else {
1334  llvm_unreachable("unexpected template template NamedDecl!");
1335  }
1336  break;
1337  }
1338  }
1339 }
1340 
1341 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1342  bool IsMember) {
1343  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1344  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1345  // 'I' means __restrict (32/64-bit).
1346  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1347  // keyword!
1348  // <base-cvr-qualifiers> ::= A # near
1349  // ::= B # near const
1350  // ::= C # near volatile
1351  // ::= D # near const volatile
1352  // ::= E # far (16-bit)
1353  // ::= F # far const (16-bit)
1354  // ::= G # far volatile (16-bit)
1355  // ::= H # far const volatile (16-bit)
1356  // ::= I # huge (16-bit)
1357  // ::= J # huge const (16-bit)
1358  // ::= K # huge volatile (16-bit)
1359  // ::= L # huge const volatile (16-bit)
1360  // ::= M <basis> # based
1361  // ::= N <basis> # based const
1362  // ::= O <basis> # based volatile
1363  // ::= P <basis> # based const volatile
1364  // ::= Q # near member
1365  // ::= R # near const member
1366  // ::= S # near volatile member
1367  // ::= T # near const volatile member
1368  // ::= U # far member (16-bit)
1369  // ::= V # far const member (16-bit)
1370  // ::= W # far volatile member (16-bit)
1371  // ::= X # far const volatile member (16-bit)
1372  // ::= Y # huge member (16-bit)
1373  // ::= Z # huge const member (16-bit)
1374  // ::= 0 # huge volatile member (16-bit)
1375  // ::= 1 # huge const volatile member (16-bit)
1376  // ::= 2 <basis> # based member
1377  // ::= 3 <basis> # based const member
1378  // ::= 4 <basis> # based volatile member
1379  // ::= 5 <basis> # based const volatile member
1380  // ::= 6 # near function (pointers only)
1381  // ::= 7 # far function (pointers only)
1382  // ::= 8 # near method (pointers only)
1383  // ::= 9 # far method (pointers only)
1384  // ::= _A <basis> # based function (pointers only)
1385  // ::= _B <basis> # based function (far?) (pointers only)
1386  // ::= _C <basis> # based method (pointers only)
1387  // ::= _D <basis> # based method (far?) (pointers only)
1388  // ::= _E # block (Clang)
1389  // <basis> ::= 0 # __based(void)
1390  // ::= 1 # __based(segment)?
1391  // ::= 2 <name> # __based(name)
1392  // ::= 3 # ?
1393  // ::= 4 # ?
1394  // ::= 5 # not really based
1395  bool HasConst = Quals.hasConst(),
1396  HasVolatile = Quals.hasVolatile();
1397 
1398  if (!IsMember) {
1399  if (HasConst && HasVolatile) {
1400  Out << 'D';
1401  } else if (HasVolatile) {
1402  Out << 'C';
1403  } else if (HasConst) {
1404  Out << 'B';
1405  } else {
1406  Out << 'A';
1407  }
1408  } else {
1409  if (HasConst && HasVolatile) {
1410  Out << 'T';
1411  } else if (HasVolatile) {
1412  Out << 'S';
1413  } else if (HasConst) {
1414  Out << 'R';
1415  } else {
1416  Out << 'Q';
1417  }
1418  }
1419 
1420  // FIXME: For now, just drop all extension qualifiers on the floor.
1421 }
1422 
1423 void
1424 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1425  // <ref-qualifier> ::= G # lvalue reference
1426  // ::= H # rvalue-reference
1427  switch (RefQualifier) {
1428  case RQ_None:
1429  break;
1430 
1431  case RQ_LValue:
1432  Out << 'G';
1433  break;
1434 
1435  case RQ_RValue:
1436  Out << 'H';
1437  break;
1438  }
1439 }
1440 
1441 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1442  QualType PointeeType) {
1443  bool HasRestrict = Quals.hasRestrict();
1444  if (PointersAre64Bit &&
1445  (PointeeType.isNull() || !PointeeType->isFunctionType()))
1446  Out << 'E';
1447 
1448  if (HasRestrict)
1449  Out << 'I';
1450 
1451  if (Quals.hasUnaligned() ||
1452  (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
1453  Out << 'F';
1454 }
1455 
1456 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1457  // <pointer-cv-qualifiers> ::= P # no qualifiers
1458  // ::= Q # const
1459  // ::= R # volatile
1460  // ::= S # const volatile
1461  bool HasConst = Quals.hasConst(),
1462  HasVolatile = Quals.hasVolatile();
1463 
1464  if (HasConst && HasVolatile) {
1465  Out << 'S';
1466  } else if (HasVolatile) {
1467  Out << 'R';
1468  } else if (HasConst) {
1469  Out << 'Q';
1470  } else {
1471  Out << 'P';
1472  }
1473 }
1474 
1475 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1476  SourceRange Range) {
1477  // MSVC will backreference two canonically equivalent types that have slightly
1478  // different manglings when mangled alone.
1479 
1480  // Decayed types do not match up with non-decayed versions of the same type.
1481  //
1482  // e.g.
1483  // void (*x)(void) will not form a backreference with void x(void)
1484  void *TypePtr;
1485  if (const auto *DT = T->getAs<DecayedType>()) {
1486  QualType OriginalType = DT->getOriginalType();
1487  // All decayed ArrayTypes should be treated identically; as-if they were
1488  // a decayed IncompleteArrayType.
1489  if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1490  OriginalType = getASTContext().getIncompleteArrayType(
1491  AT->getElementType(), AT->getSizeModifier(),
1492  AT->getIndexTypeCVRQualifiers());
1493 
1494  TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1495  // If the original parameter was textually written as an array,
1496  // instead treat the decayed parameter like it's const.
1497  //
1498  // e.g.
1499  // int [] -> int * const
1500  if (OriginalType->isArrayType())
1501  T = T.withConst();
1502  } else {
1503  TypePtr = T.getCanonicalType().getAsOpaquePtr();
1504  }
1505 
1506  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1507 
1508  if (Found == TypeBackReferences.end()) {
1509  size_t OutSizeBefore = Out.tell();
1510 
1511  mangleType(T, Range, QMM_Drop);
1512 
1513  // See if it's worth creating a back reference.
1514  // Only types longer than 1 character are considered
1515  // and only 10 back references slots are available:
1516  bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1517  if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1518  size_t Size = TypeBackReferences.size();
1519  TypeBackReferences[TypePtr] = Size;
1520  }
1521  } else {
1522  Out << Found->second;
1523  }
1524 }
1525 
1526 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1527  const PassObjectSizeAttr *POSA) {
1528  int Type = POSA->getType();
1529 
1530  auto Iter = PassObjectSizeArgs.insert(Type).first;
1531  auto *TypePtr = (const void *)&*Iter;
1532  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1533 
1534  if (Found == TypeBackReferences.end()) {
1535  mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
1536  {"__clang"});
1537 
1538  if (TypeBackReferences.size() < 10) {
1539  size_t Size = TypeBackReferences.size();
1540  TypeBackReferences[TypePtr] = Size;
1541  }
1542  } else {
1543  Out << Found->second;
1544  }
1545 }
1546 
1547 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1548  QualifierMangleMode QMM) {
1549  // Don't use the canonical types. MSVC includes things like 'const' on
1550  // pointer arguments to function pointers that canonicalization strips away.
1551  T = T.getDesugaredType(getASTContext());
1552  Qualifiers Quals = T.getLocalQualifiers();
1553  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1554  // If there were any Quals, getAsArrayType() pushed them onto the array
1555  // element type.
1556  if (QMM == QMM_Mangle)
1557  Out << 'A';
1558  else if (QMM == QMM_Escape || QMM == QMM_Result)
1559  Out << "$$B";
1560  mangleArrayType(AT);
1561  return;
1562  }
1563 
1564  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1565  T->isReferenceType() || T->isBlockPointerType();
1566 
1567  switch (QMM) {
1568  case QMM_Drop:
1569  break;
1570  case QMM_Mangle:
1571  if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1572  Out << '6';
1573  mangleFunctionType(FT);
1574  return;
1575  }
1576  mangleQualifiers(Quals, false);
1577  break;
1578  case QMM_Escape:
1579  if (!IsPointer && Quals) {
1580  Out << "$$C";
1581  mangleQualifiers(Quals, false);
1582  }
1583  break;
1584  case QMM_Result:
1585  // Presence of __unaligned qualifier shouldn't affect mangling here.
1586  Quals.removeUnaligned();
1587  if ((!IsPointer && Quals) || isa<TagType>(T)) {
1588  Out << '?';
1589  mangleQualifiers(Quals, false);
1590  }
1591  break;
1592  }
1593 
1594  const Type *ty = T.getTypePtr();
1595 
1596  switch (ty->getTypeClass()) {
1597 #define ABSTRACT_TYPE(CLASS, PARENT)
1598 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1599  case Type::CLASS: \
1600  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1601  return;
1602 #define TYPE(CLASS, PARENT) \
1603  case Type::CLASS: \
1604  mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1605  break;
1606 #include "clang/AST/TypeNodes.def"
1607 #undef ABSTRACT_TYPE
1608 #undef NON_CANONICAL_TYPE
1609 #undef TYPE
1610  }
1611 }
1612 
1613 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1614  SourceRange Range) {
1615  // <type> ::= <builtin-type>
1616  // <builtin-type> ::= X # void
1617  // ::= C # signed char
1618  // ::= D # char
1619  // ::= E # unsigned char
1620  // ::= F # short
1621  // ::= G # unsigned short (or wchar_t if it's not a builtin)
1622  // ::= H # int
1623  // ::= I # unsigned int
1624  // ::= J # long
1625  // ::= K # unsigned long
1626  // L # <none>
1627  // ::= M # float
1628  // ::= N # double
1629  // ::= O # long double (__float80 is mangled differently)
1630  // ::= _J # long long, __int64
1631  // ::= _K # unsigned long long, __int64
1632  // ::= _L # __int128
1633  // ::= _M # unsigned __int128
1634  // ::= _N # bool
1635  // _O # <array in parameter>
1636  // ::= _T # __float80 (Intel)
1637  // ::= _W # wchar_t
1638  // ::= _Z # __float80 (Digital Mars)
1639  switch (T->getKind()) {
1640  case BuiltinType::Void:
1641  Out << 'X';
1642  break;
1643  case BuiltinType::SChar:
1644  Out << 'C';
1645  break;
1646  case BuiltinType::Char_U:
1647  case BuiltinType::Char_S:
1648  Out << 'D';
1649  break;
1650  case BuiltinType::UChar:
1651  Out << 'E';
1652  break;
1653  case BuiltinType::Short:
1654  Out << 'F';
1655  break;
1656  case BuiltinType::UShort:
1657  Out << 'G';
1658  break;
1659  case BuiltinType::Int:
1660  Out << 'H';
1661  break;
1662  case BuiltinType::UInt:
1663  Out << 'I';
1664  break;
1665  case BuiltinType::Long:
1666  Out << 'J';
1667  break;
1668  case BuiltinType::ULong:
1669  Out << 'K';
1670  break;
1671  case BuiltinType::Float:
1672  Out << 'M';
1673  break;
1674  case BuiltinType::Double:
1675  Out << 'N';
1676  break;
1677  // TODO: Determine size and mangle accordingly
1678  case BuiltinType::LongDouble:
1679  Out << 'O';
1680  break;
1681  case BuiltinType::LongLong:
1682  Out << "_J";
1683  break;
1684  case BuiltinType::ULongLong:
1685  Out << "_K";
1686  break;
1687  case BuiltinType::Int128:
1688  Out << "_L";
1689  break;
1690  case BuiltinType::UInt128:
1691  Out << "_M";
1692  break;
1693  case BuiltinType::Bool:
1694  Out << "_N";
1695  break;
1696  case BuiltinType::Char16:
1697  Out << "_S";
1698  break;
1699  case BuiltinType::Char32:
1700  Out << "_U";
1701  break;
1702  case BuiltinType::WChar_S:
1703  case BuiltinType::WChar_U:
1704  Out << "_W";
1705  break;
1706 
1707 #define BUILTIN_TYPE(Id, SingletonId)
1708 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1709  case BuiltinType::Id:
1710 #include "clang/AST/BuiltinTypes.def"
1711  case BuiltinType::Dependent:
1712  llvm_unreachable("placeholder types shouldn't get to name mangling");
1713 
1714  case BuiltinType::ObjCId:
1715  Out << "PA";
1716  mangleArtificalTagType(TTK_Struct, "objc_object");
1717  break;
1718  case BuiltinType::ObjCClass:
1719  Out << "PA";
1720  mangleArtificalTagType(TTK_Struct, "objc_class");
1721  break;
1722  case BuiltinType::ObjCSel:
1723  Out << "PA";
1724  mangleArtificalTagType(TTK_Struct, "objc_selector");
1725  break;
1726 
1727 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1728  case BuiltinType::Id: \
1729  Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
1730  break;
1731 #include "clang/Basic/OpenCLImageTypes.def"
1732  case BuiltinType::OCLSampler:
1733  Out << "PA";
1734  mangleArtificalTagType(TTK_Struct, "ocl_sampler");
1735  break;
1736  case BuiltinType::OCLEvent:
1737  Out << "PA";
1738  mangleArtificalTagType(TTK_Struct, "ocl_event");
1739  break;
1740  case BuiltinType::OCLClkEvent:
1741  Out << "PA";
1742  mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
1743  break;
1744  case BuiltinType::OCLQueue:
1745  Out << "PA";
1746  mangleArtificalTagType(TTK_Struct, "ocl_queue");
1747  break;
1748  case BuiltinType::OCLNDRange:
1749  Out << "PA";
1750  mangleArtificalTagType(TTK_Struct, "ocl_ndrange");
1751  break;
1752  case BuiltinType::OCLReserveID:
1753  Out << "PA";
1754  mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
1755  break;
1756 
1757  case BuiltinType::NullPtr:
1758  Out << "$$T";
1759  break;
1760 
1761  case BuiltinType::Float128:
1762  case BuiltinType::Half: {
1763  DiagnosticsEngine &Diags = Context.getDiags();
1764  unsigned DiagID = Diags.getCustomDiagID(
1765  DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
1766  Diags.Report(Range.getBegin(), DiagID)
1767  << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
1768  break;
1769  }
1770  }
1771 }
1772 
1773 // <type> ::= <function-type>
1774 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
1775  SourceRange) {
1776  // Structors only appear in decls, so at this point we know it's not a
1777  // structor type.
1778  // FIXME: This may not be lambda-friendly.
1779  if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1780  Out << "$$A8@@";
1781  mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1782  } else {
1783  Out << "$$A6";
1784  mangleFunctionType(T);
1785  }
1786 }
1787 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1789  Out << "$$A6";
1790  mangleFunctionType(T);
1791 }
1792 
1793 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1794  const FunctionDecl *D,
1795  bool ForceThisQuals) {
1796  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1797  // <return-type> <argument-list> <throw-spec>
1798  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
1799 
1800  SourceRange Range;
1801  if (D) Range = D->getSourceRange();
1802 
1803  bool IsInLambda = false;
1804  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
1805  CallingConv CC = T->getCallConv();
1806  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1807  if (MD->getParent()->isLambda())
1808  IsInLambda = true;
1809  if (MD->isInstance())
1810  HasThisQuals = true;
1811  if (isa<CXXDestructorDecl>(MD)) {
1812  IsStructor = true;
1813  } else if (isa<CXXConstructorDecl>(MD)) {
1814  IsStructor = true;
1815  IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
1817  getStructor(MD) == Structor;
1818  if (IsCtorClosure)
1819  CC = getASTContext().getDefaultCallingConvention(
1820  /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1821  }
1822  }
1823 
1824  // If this is a C++ instance method, mangle the CVR qualifiers for the
1825  // this pointer.
1826  if (HasThisQuals) {
1828  manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
1829  mangleRefQualifier(Proto->getRefQualifier());
1830  mangleQualifiers(Quals, /*IsMember=*/false);
1831  }
1832 
1833  mangleCallingConvention(CC);
1834 
1835  // <return-type> ::= <type>
1836  // ::= @ # structors (they have no declared return type)
1837  if (IsStructor) {
1838  if (isa<CXXDestructorDecl>(D) && D == Structor &&
1840  // The scalar deleting destructor takes an extra int argument.
1841  // However, the FunctionType generated has 0 arguments.
1842  // FIXME: This is a temporary hack.
1843  // Maybe should fix the FunctionType creation instead?
1844  Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1845  return;
1846  }
1847  if (IsCtorClosure) {
1848  // Default constructor closure and copy constructor closure both return
1849  // void.
1850  Out << 'X';
1851 
1853  // Default constructor closure always has no arguments.
1854  Out << 'X';
1855  } else if (StructorType == Ctor_CopyingClosure) {
1856  // Copy constructor closure always takes an unqualified reference.
1857  mangleArgumentType(getASTContext().getLValueReferenceType(
1858  Proto->getParamType(0)
1860  ->getPointeeType(),
1861  /*SpelledAsLValue=*/true),
1862  Range);
1863  Out << '@';
1864  } else {
1865  llvm_unreachable("unexpected constructor closure!");
1866  }
1867  Out << 'Z';
1868  return;
1869  }
1870  Out << '@';
1871  } else {
1872  QualType ResultType = T->getReturnType();
1873  if (const auto *AT =
1874  dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1875  Out << '?';
1876  mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1877  Out << '?';
1878  assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
1879  "shouldn't need to mangle __auto_type!");
1880  mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1881  Out << '@';
1882  } else if (IsInLambda) {
1883  Out << '@';
1884  } else {
1885  if (ResultType->isVoidType())
1886  ResultType = ResultType.getUnqualifiedType();
1887  mangleType(ResultType, Range, QMM_Result);
1888  }
1889  }
1890 
1891  // <argument-list> ::= X # void
1892  // ::= <type>+ @
1893  // ::= <type>* Z # varargs
1894  if (!Proto) {
1895  // Function types without prototypes can arise when mangling a function type
1896  // within an overloadable function in C. We mangle these as the absence of
1897  // any parameter types (not even an empty parameter list).
1898  Out << '@';
1899  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1900  Out << 'X';
1901  } else {
1902  // Happens for function pointer type arguments for example.
1903  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
1904  mangleArgumentType(Proto->getParamType(I), Range);
1905  // Mangle each pass_object_size parameter as if it's a paramater of enum
1906  // type passed directly after the parameter with the pass_object_size
1907  // attribute. The aforementioned enum's name is __pass_object_size, and we
1908  // pretend it resides in a top-level namespace called __clang.
1909  //
1910  // FIXME: Is there a defined extension notation for the MS ABI, or is it
1911  // necessary to just cross our fingers and hope this type+namespace
1912  // combination doesn't conflict with anything?
1913  if (D)
1914  if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
1915  manglePassObjectSizeArg(P);
1916  }
1917  // <builtin-type> ::= Z # ellipsis
1918  if (Proto->isVariadic())
1919  Out << 'Z';
1920  else
1921  Out << '@';
1922  }
1923 
1924  mangleThrowSpecification(Proto);
1925 }
1926 
1927 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1928  // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
1929  // # pointer. in 64-bit mode *all*
1930  // # 'this' pointers are 64-bit.
1931  // ::= <global-function>
1932  // <member-function> ::= A # private: near
1933  // ::= B # private: far
1934  // ::= C # private: static near
1935  // ::= D # private: static far
1936  // ::= E # private: virtual near
1937  // ::= F # private: virtual far
1938  // ::= I # protected: near
1939  // ::= J # protected: far
1940  // ::= K # protected: static near
1941  // ::= L # protected: static far
1942  // ::= M # protected: virtual near
1943  // ::= N # protected: virtual far
1944  // ::= Q # public: near
1945  // ::= R # public: far
1946  // ::= S # public: static near
1947  // ::= T # public: static far
1948  // ::= U # public: virtual near
1949  // ::= V # public: virtual far
1950  // <global-function> ::= Y # global near
1951  // ::= Z # global far
1952  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1953  switch (MD->getAccess()) {
1954  case AS_none:
1955  llvm_unreachable("Unsupported access specifier");
1956  case AS_private:
1957  if (MD->isStatic())
1958  Out << 'C';
1959  else if (MD->isVirtual())
1960  Out << 'E';
1961  else
1962  Out << 'A';
1963  break;
1964  case AS_protected:
1965  if (MD->isStatic())
1966  Out << 'K';
1967  else if (MD->isVirtual())
1968  Out << 'M';
1969  else
1970  Out << 'I';
1971  break;
1972  case AS_public:
1973  if (MD->isStatic())
1974  Out << 'S';
1975  else if (MD->isVirtual())
1976  Out << 'U';
1977  else
1978  Out << 'Q';
1979  }
1980  } else {
1981  Out << 'Y';
1982  }
1983 }
1984 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
1985  // <calling-convention> ::= A # __cdecl
1986  // ::= B # __export __cdecl
1987  // ::= C # __pascal
1988  // ::= D # __export __pascal
1989  // ::= E # __thiscall
1990  // ::= F # __export __thiscall
1991  // ::= G # __stdcall
1992  // ::= H # __export __stdcall
1993  // ::= I # __fastcall
1994  // ::= J # __export __fastcall
1995  // ::= Q # __vectorcall
1996  // The 'export' calling conventions are from a bygone era
1997  // (*cough*Win16*cough*) when functions were declared for export with
1998  // that keyword. (It didn't actually export them, it just made them so
1999  // that they could be in a DLL and somebody from another module could call
2000  // them.)
2001 
2002  switch (CC) {
2003  default:
2004  llvm_unreachable("Unsupported CC for mangling");
2005  case CC_X86_64Win64:
2006  case CC_X86_64SysV:
2007  case CC_C: Out << 'A'; break;
2008  case CC_X86Pascal: Out << 'C'; break;
2009  case CC_X86ThisCall: Out << 'E'; break;
2010  case CC_X86StdCall: Out << 'G'; break;
2011  case CC_X86FastCall: Out << 'I'; break;
2012  case CC_X86VectorCall: Out << 'Q'; break;
2013  }
2014 }
2015 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2016  mangleCallingConvention(T->getCallConv());
2017 }
2018 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2019  const FunctionProtoType *FT) {
2020  // <throw-spec> ::= Z # throw(...) (default)
2021  // ::= @ # throw() or __declspec/__attribute__((nothrow))
2022  // ::= <type>+
2023  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
2024  // all actually mangled as 'Z'. (They're ignored because their associated
2025  // functionality isn't implemented, and probably never will be.)
2026  Out << 'Z';
2027 }
2028 
2029 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2030  Qualifiers, SourceRange Range) {
2031  // Probably should be mangled as a template instantiation; need to see what
2032  // VC does first.
2033  DiagnosticsEngine &Diags = Context.getDiags();
2034  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2035  "cannot mangle this unresolved dependent type yet");
2036  Diags.Report(Range.getBegin(), DiagID)
2037  << Range;
2038 }
2039 
2040 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2041 // <union-type> ::= T <name>
2042 // <struct-type> ::= U <name>
2043 // <class-type> ::= V <name>
2044 // <enum-type> ::= W4 <name>
2045 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2046  switch (TTK) {
2047  case TTK_Union:
2048  Out << 'T';
2049  break;
2050  case TTK_Struct:
2051  case TTK_Interface:
2052  Out << 'U';
2053  break;
2054  case TTK_Class:
2055  Out << 'V';
2056  break;
2057  case TTK_Enum:
2058  Out << "W4";
2059  break;
2060  }
2061 }
2062 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2063  SourceRange) {
2064  mangleType(cast<TagType>(T)->getDecl());
2065 }
2066 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2067  SourceRange) {
2068  mangleType(cast<TagType>(T)->getDecl());
2069 }
2070 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2071  mangleTagTypeKind(TD->getTagKind());
2072  mangleName(TD);
2073 }
2074 void MicrosoftCXXNameMangler::mangleArtificalTagType(
2075  TagTypeKind TK, StringRef UnqualifiedName, ArrayRef<StringRef> NestedNames) {
2076  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2077  mangleTagTypeKind(TK);
2078 
2079  // Always start with the unqualified name.
2080  mangleSourceName(UnqualifiedName);
2081 
2082  for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2083  mangleSourceName(*I);
2084 
2085  // Terminate the whole name with an '@'.
2086  Out << '@';
2087 }
2088 
2089 // <type> ::= <array-type>
2090 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2091 // [Y <dimension-count> <dimension>+]
2092 // <element-type> # as global, E is never required
2093 // It's supposed to be the other way around, but for some strange reason, it
2094 // isn't. Today this behavior is retained for the sole purpose of backwards
2095 // compatibility.
2096 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2097  // This isn't a recursive mangling, so now we have to do it all in this
2098  // one call.
2099  manglePointerCVQualifiers(T->getElementType().getQualifiers());
2100  mangleType(T->getElementType(), SourceRange());
2101 }
2102 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2103  SourceRange) {
2104  llvm_unreachable("Should have been special cased");
2105 }
2106 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2107  SourceRange) {
2108  llvm_unreachable("Should have been special cased");
2109 }
2110 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2112  llvm_unreachable("Should have been special cased");
2113 }
2114 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2116  llvm_unreachable("Should have been special cased");
2117 }
2118 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2119  QualType ElementTy(T, 0);
2120  SmallVector<llvm::APInt, 3> Dimensions;
2121  for (;;) {
2122  if (ElementTy->isConstantArrayType()) {
2123  const ConstantArrayType *CAT =
2124  getASTContext().getAsConstantArrayType(ElementTy);
2125  Dimensions.push_back(CAT->getSize());
2126  ElementTy = CAT->getElementType();
2127  } else if (ElementTy->isIncompleteArrayType()) {
2128  const IncompleteArrayType *IAT =
2129  getASTContext().getAsIncompleteArrayType(ElementTy);
2130  Dimensions.push_back(llvm::APInt(32, 0));
2131  ElementTy = IAT->getElementType();
2132  } else if (ElementTy->isVariableArrayType()) {
2133  const VariableArrayType *VAT =
2134  getASTContext().getAsVariableArrayType(ElementTy);
2135  Dimensions.push_back(llvm::APInt(32, 0));
2136  ElementTy = VAT->getElementType();
2137  } else if (ElementTy->isDependentSizedArrayType()) {
2138  // The dependent expression has to be folded into a constant (TODO).
2139  const DependentSizedArrayType *DSAT =
2140  getASTContext().getAsDependentSizedArrayType(ElementTy);
2141  DiagnosticsEngine &Diags = Context.getDiags();
2142  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2143  "cannot mangle this dependent-length array yet");
2144  Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2145  << DSAT->getBracketsRange();
2146  return;
2147  } else {
2148  break;
2149  }
2150  }
2151  Out << 'Y';
2152  // <dimension-count> ::= <number> # number of extra dimensions
2153  mangleNumber(Dimensions.size());
2154  for (const llvm::APInt &Dimension : Dimensions)
2155  mangleNumber(Dimension.getLimitedValue());
2156  mangleType(ElementTy, SourceRange(), QMM_Escape);
2157 }
2158 
2159 // <type> ::= <pointer-to-member-type>
2160 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2161 // <class name> <type>
2162 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
2163  SourceRange Range) {
2164  QualType PointeeType = T->getPointeeType();
2165  manglePointerCVQualifiers(Quals);
2166  manglePointerExtQualifiers(Quals, PointeeType);
2167  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2168  Out << '8';
2169  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2170  mangleFunctionType(FPT, nullptr, true);
2171  } else {
2172  mangleQualifiers(PointeeType.getQualifiers(), true);
2173  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2174  mangleType(PointeeType, Range, QMM_Drop);
2175  }
2176 }
2177 
2178 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2179  Qualifiers, SourceRange Range) {
2180  DiagnosticsEngine &Diags = Context.getDiags();
2181  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2182  "cannot mangle this template type parameter type yet");
2183  Diags.Report(Range.getBegin(), DiagID)
2184  << Range;
2185 }
2186 
2187 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2188  Qualifiers, SourceRange Range) {
2189  DiagnosticsEngine &Diags = Context.getDiags();
2190  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2191  "cannot mangle this substituted parameter pack yet");
2192  Diags.Report(Range.getBegin(), DiagID)
2193  << Range;
2194 }
2195 
2196 // <type> ::= <pointer-type>
2197 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2198 // # the E is required for 64-bit non-static pointers
2199 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2200  SourceRange Range) {
2201  QualType PointeeType = T->getPointeeType();
2202  manglePointerCVQualifiers(Quals);
2203  manglePointerExtQualifiers(Quals, PointeeType);
2204  mangleType(PointeeType, Range);
2205 }
2206 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2207  Qualifiers Quals, SourceRange Range) {
2208  QualType PointeeType = T->getPointeeType();
2209  manglePointerCVQualifiers(Quals);
2210  manglePointerExtQualifiers(Quals, PointeeType);
2211  // Object pointers never have qualifiers.
2212  Out << 'A';
2213  mangleType(PointeeType, Range);
2214 }
2215 
2216 // <type> ::= <reference-type>
2217 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2218 // # the E is required for 64-bit non-static lvalue references
2219 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2220  Qualifiers Quals, SourceRange Range) {
2221  QualType PointeeType = T->getPointeeType();
2222  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2223  Out << 'A';
2224  manglePointerExtQualifiers(Quals, PointeeType);
2225  mangleType(PointeeType, Range);
2226 }
2227 
2228 // <type> ::= <r-value-reference-type>
2229 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2230 // # the E is required for 64-bit non-static rvalue references
2231 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2232  Qualifiers Quals, SourceRange Range) {
2233  QualType PointeeType = T->getPointeeType();
2234  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2235  Out << "$$Q";
2236  manglePointerExtQualifiers(Quals, PointeeType);
2237  mangleType(PointeeType, Range);
2238 }
2239 
2240 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2241  SourceRange Range) {
2242  QualType ElementType = T->getElementType();
2243 
2244  llvm::SmallString<64> TemplateMangling;
2245  llvm::raw_svector_ostream Stream(TemplateMangling);
2246  MicrosoftCXXNameMangler Extra(Context, Stream);
2247  Stream << "?$";
2248  Extra.mangleSourceName("_Complex");
2249  Extra.mangleType(ElementType, Range, QMM_Escape);
2250 
2251  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2252 }
2253 
2254 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2255  SourceRange Range) {
2256  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2257  assert(ET && "vectors with non-builtin elements are unsupported");
2258  uint64_t Width = getASTContext().getTypeSize(T);
2259  // Pattern match exactly the typedefs in our intrinsic headers. Anything that
2260  // doesn't match the Intel types uses a custom mangling below.
2261  size_t OutSizeBefore = Out.tell();
2262  llvm::Triple::ArchType AT =
2263  getASTContext().getTargetInfo().getTriple().getArch();
2264  if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2265  if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2266  mangleArtificalTagType(TTK_Union, "__m64");
2267  } else if (Width >= 128) {
2268  if (ET->getKind() == BuiltinType::Float)
2269  mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
2270  else if (ET->getKind() == BuiltinType::LongLong)
2271  mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2272  else if (ET->getKind() == BuiltinType::Double)
2273  mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2274  }
2275  }
2276 
2277  bool IsBuiltin = Out.tell() != OutSizeBefore;
2278  if (!IsBuiltin) {
2279  // The MS ABI doesn't have a special mangling for vector types, so we define
2280  // our own mangling to handle uses of __vector_size__ on user-specified
2281  // types, and for extensions like __v4sf.
2282 
2283  llvm::SmallString<64> TemplateMangling;
2284  llvm::raw_svector_ostream Stream(TemplateMangling);
2285  MicrosoftCXXNameMangler Extra(Context, Stream);
2286  Stream << "?$";
2287  Extra.mangleSourceName("__vector");
2288  Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2289  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2290  /*IsBoolean=*/false);
2291 
2292  mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
2293  }
2294 }
2295 
2296 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2297  Qualifiers Quals, SourceRange Range) {
2298  mangleType(static_cast<const VectorType *>(T), Quals, Range);
2299 }
2300 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2301  Qualifiers, SourceRange Range) {
2302  DiagnosticsEngine &Diags = Context.getDiags();
2303  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2304  "cannot mangle this dependent-sized extended vector type yet");
2305  Diags.Report(Range.getBegin(), DiagID)
2306  << Range;
2307 }
2308 
2309 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2310  SourceRange) {
2311  // ObjC interfaces have structs underlying them.
2312  mangleTagTypeKind(TTK_Struct);
2313  mangleName(T->getDecl());
2314 }
2315 
2316 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
2317  SourceRange Range) {
2318  // We don't allow overloading by different protocol qualification,
2319  // so mangling them isn't necessary.
2320  mangleType(T->getBaseType(), Range);
2321 }
2322 
2323 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2324  Qualifiers Quals, SourceRange Range) {
2325  QualType PointeeType = T->getPointeeType();
2326  manglePointerCVQualifiers(Quals);
2327  manglePointerExtQualifiers(Quals, PointeeType);
2328 
2329  Out << "_E";
2330 
2331  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2332 }
2333 
2334 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2336  llvm_unreachable("Cannot mangle injected class name type.");
2337 }
2338 
2339 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2340  Qualifiers, SourceRange Range) {
2341  DiagnosticsEngine &Diags = Context.getDiags();
2342  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2343  "cannot mangle this template specialization type yet");
2344  Diags.Report(Range.getBegin(), DiagID)
2345  << Range;
2346 }
2347 
2348 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2349  SourceRange Range) {
2350  DiagnosticsEngine &Diags = Context.getDiags();
2351  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2352  "cannot mangle this dependent name type yet");
2353  Diags.Report(Range.getBegin(), DiagID)
2354  << Range;
2355 }
2356 
2357 void MicrosoftCXXNameMangler::mangleType(
2359  SourceRange Range) {
2360  DiagnosticsEngine &Diags = Context.getDiags();
2361  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2362  "cannot mangle this dependent template specialization type yet");
2363  Diags.Report(Range.getBegin(), DiagID)
2364  << Range;
2365 }
2366 
2367 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2368  SourceRange Range) {
2369  DiagnosticsEngine &Diags = Context.getDiags();
2370  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2371  "cannot mangle this pack expansion yet");
2372  Diags.Report(Range.getBegin(), DiagID)
2373  << Range;
2374 }
2375 
2376 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2377  SourceRange Range) {
2378  DiagnosticsEngine &Diags = Context.getDiags();
2379  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2380  "cannot mangle this typeof(type) yet");
2381  Diags.Report(Range.getBegin(), DiagID)
2382  << Range;
2383 }
2384 
2385 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2386  SourceRange Range) {
2387  DiagnosticsEngine &Diags = Context.getDiags();
2388  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2389  "cannot mangle this typeof(expression) yet");
2390  Diags.Report(Range.getBegin(), DiagID)
2391  << Range;
2392 }
2393 
2394 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2395  SourceRange Range) {
2396  DiagnosticsEngine &Diags = Context.getDiags();
2397  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2398  "cannot mangle this decltype() yet");
2399  Diags.Report(Range.getBegin(), DiagID)
2400  << Range;
2401 }
2402 
2403 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2404  Qualifiers, SourceRange Range) {
2405  DiagnosticsEngine &Diags = Context.getDiags();
2406  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2407  "cannot mangle this unary transform type yet");
2408  Diags.Report(Range.getBegin(), DiagID)
2409  << Range;
2410 }
2411 
2412 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2413  SourceRange Range) {
2414  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2415 
2416  DiagnosticsEngine &Diags = Context.getDiags();
2417  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2418  "cannot mangle this 'auto' type yet");
2419  Diags.Report(Range.getBegin(), DiagID)
2420  << Range;
2421 }
2422 
2423 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2424  SourceRange Range) {
2425  QualType ValueType = T->getValueType();
2426 
2427  llvm::SmallString<64> TemplateMangling;
2428  llvm::raw_svector_ostream Stream(TemplateMangling);
2429  MicrosoftCXXNameMangler Extra(Context, Stream);
2430  Stream << "?$";
2431  Extra.mangleSourceName("_Atomic");
2432  Extra.mangleType(ValueType, Range, QMM_Escape);
2433 
2434  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2435 }
2436 
2437 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2438  SourceRange Range) {
2439  DiagnosticsEngine &Diags = Context.getDiags();
2440  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2441  "cannot mangle this OpenCL pipe type yet");
2442  Diags.Report(Range.getBegin(), DiagID)
2443  << Range;
2444 }
2445 
2446 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2447  raw_ostream &Out) {
2448  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2449  "Invalid mangleName() call, argument is not a variable or function!");
2450  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2451  "Invalid mangleName() call on 'structor decl!");
2452 
2453  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2454  getASTContext().getSourceManager(),
2455  "Mangling declaration");
2456 
2457  msvc_hashing_ostream MHO(Out);
2458  MicrosoftCXXNameMangler Mangler(*this, MHO);
2459  return Mangler.mangle(D);
2460 }
2461 
2462 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2463 // <virtual-adjustment>
2464 // <no-adjustment> ::= A # private near
2465 // ::= B # private far
2466 // ::= I # protected near
2467 // ::= J # protected far
2468 // ::= Q # public near
2469 // ::= R # public far
2470 // <static-adjustment> ::= G <static-offset> # private near
2471 // ::= H <static-offset> # private far
2472 // ::= O <static-offset> # protected near
2473 // ::= P <static-offset> # protected far
2474 // ::= W <static-offset> # public near
2475 // ::= X <static-offset> # public far
2476 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2477 // ::= $1 <virtual-shift> <static-offset> # private far
2478 // ::= $2 <virtual-shift> <static-offset> # protected near
2479 // ::= $3 <virtual-shift> <static-offset> # protected far
2480 // ::= $4 <virtual-shift> <static-offset> # public near
2481 // ::= $5 <virtual-shift> <static-offset> # public far
2482 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2483 // <vtordisp-shift> ::= <offset-to-vtordisp>
2484 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2485 // <offset-to-vtordisp>
2487  const ThisAdjustment &Adjustment,
2488  MicrosoftCXXNameMangler &Mangler,
2489  raw_ostream &Out) {
2490  if (!Adjustment.Virtual.isEmpty()) {
2491  Out << '$';
2492  char AccessSpec;
2493  switch (MD->getAccess()) {
2494  case AS_none:
2495  llvm_unreachable("Unsupported access specifier");
2496  case AS_private:
2497  AccessSpec = '0';
2498  break;
2499  case AS_protected:
2500  AccessSpec = '2';
2501  break;
2502  case AS_public:
2503  AccessSpec = '4';
2504  }
2505  if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2506  Out << 'R' << AccessSpec;
2507  Mangler.mangleNumber(
2508  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2509  Mangler.mangleNumber(
2510  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2511  Mangler.mangleNumber(
2512  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2513  Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2514  } else {
2515  Out << AccessSpec;
2516  Mangler.mangleNumber(
2517  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2518  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2519  }
2520  } else if (Adjustment.NonVirtual != 0) {
2521  switch (MD->getAccess()) {
2522  case AS_none:
2523  llvm_unreachable("Unsupported access specifier");
2524  case AS_private:
2525  Out << 'G';
2526  break;
2527  case AS_protected:
2528  Out << 'O';
2529  break;
2530  case AS_public:
2531  Out << 'W';
2532  }
2533  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2534  } else {
2535  switch (MD->getAccess()) {
2536  case AS_none:
2537  llvm_unreachable("Unsupported access specifier");
2538  case AS_private:
2539  Out << 'A';
2540  break;
2541  case AS_protected:
2542  Out << 'I';
2543  break;
2544  case AS_public:
2545  Out << 'Q';
2546  }
2547  }
2548 }
2549 
2550 void
2551 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2552  raw_ostream &Out) {
2553  MicrosoftVTableContext *VTContext =
2554  cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2556  VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2557 
2558  msvc_hashing_ostream MHO(Out);
2559  MicrosoftCXXNameMangler Mangler(*this, MHO);
2560  Mangler.getStream() << "\01?";
2561  Mangler.mangleVirtualMemPtrThunk(MD, ML);
2562 }
2563 
2564 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2565  const ThunkInfo &Thunk,
2566  raw_ostream &Out) {
2567  msvc_hashing_ostream MHO(Out);
2568  MicrosoftCXXNameMangler Mangler(*this, MHO);
2569  Mangler.getStream() << "\01?";
2570  Mangler.mangleName(MD);
2571  mangleThunkThisAdjustment(MD, Thunk.This, Mangler, MHO);
2572  if (!Thunk.Return.isEmpty())
2573  assert(Thunk.Method != nullptr &&
2574  "Thunk info should hold the overridee decl");
2575 
2576  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2577  Mangler.mangleFunctionType(
2578  DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2579 }
2580 
2581 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2582  const CXXDestructorDecl *DD, CXXDtorType Type,
2583  const ThisAdjustment &Adjustment, raw_ostream &Out) {
2584  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2585  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2586  // mangling manually until we support both deleting dtor types.
2587  assert(Type == Dtor_Deleting);
2588  msvc_hashing_ostream MHO(Out);
2589  MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
2590  Mangler.getStream() << "\01??_E";
2591  Mangler.mangleName(DD->getParent());
2592  mangleThunkThisAdjustment(DD, Adjustment, Mangler, MHO);
2593  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2594 }
2595 
2596 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2597  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2598  raw_ostream &Out) {
2599  // <mangled-name> ::= ?_7 <class-name> <storage-class>
2600  // <cvr-qualifiers> [<name>] @
2601  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2602  // is always '6' for vftables.
2603  msvc_hashing_ostream MHO(Out);
2604  MicrosoftCXXNameMangler Mangler(*this, MHO);
2605  if (Derived->hasAttr<DLLImportAttr>())
2606  Mangler.getStream() << "\01??_S";
2607  else
2608  Mangler.getStream() << "\01??_7";
2609  Mangler.mangleName(Derived);
2610  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2611  for (const CXXRecordDecl *RD : BasePath)
2612  Mangler.mangleName(RD);
2613  Mangler.getStream() << '@';
2614 }
2615 
2616 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2617  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2618  raw_ostream &Out) {
2619  // <mangled-name> ::= ?_8 <class-name> <storage-class>
2620  // <cvr-qualifiers> [<name>] @
2621  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2622  // is always '7' for vbtables.
2623  msvc_hashing_ostream MHO(Out);
2624  MicrosoftCXXNameMangler Mangler(*this, MHO);
2625  Mangler.getStream() << "\01??_8";
2626  Mangler.mangleName(Derived);
2627  Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2628  for (const CXXRecordDecl *RD : BasePath)
2629  Mangler.mangleName(RD);
2630  Mangler.getStream() << '@';
2631 }
2632 
2633 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2634  msvc_hashing_ostream MHO(Out);
2635  MicrosoftCXXNameMangler Mangler(*this, MHO);
2636  Mangler.getStream() << "\01??_R0";
2637  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2638  Mangler.getStream() << "@8";
2639 }
2640 
2641 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2642  raw_ostream &Out) {
2643  MicrosoftCXXNameMangler Mangler(*this, Out);
2644  Mangler.getStream() << '.';
2645  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2646 }
2647 
2648 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
2649  const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
2650  msvc_hashing_ostream MHO(Out);
2651  MicrosoftCXXNameMangler Mangler(*this, MHO);
2652  Mangler.getStream() << "\01??_K";
2653  Mangler.mangleName(SrcRD);
2654  Mangler.getStream() << "$C";
2655  Mangler.mangleName(DstRD);
2656 }
2657 
2658 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
2659  bool IsVolatile,
2660  bool IsUnaligned,
2661  uint32_t NumEntries,
2662  raw_ostream &Out) {
2663  msvc_hashing_ostream MHO(Out);
2664  MicrosoftCXXNameMangler Mangler(*this, MHO);
2665  Mangler.getStream() << "_TI";
2666  if (IsConst)
2667  Mangler.getStream() << 'C';
2668  if (IsVolatile)
2669  Mangler.getStream() << 'V';
2670  if (IsUnaligned)
2671  Mangler.getStream() << 'U';
2672  Mangler.getStream() << NumEntries;
2673  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2674 }
2675 
2676 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
2677  QualType T, uint32_t NumEntries, raw_ostream &Out) {
2678  msvc_hashing_ostream MHO(Out);
2679  MicrosoftCXXNameMangler Mangler(*this, MHO);
2680  Mangler.getStream() << "_CTA";
2681  Mangler.getStream() << NumEntries;
2682  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2683 }
2684 
2685 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
2686  QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
2687  uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
2688  raw_ostream &Out) {
2689  MicrosoftCXXNameMangler Mangler(*this, Out);
2690  Mangler.getStream() << "_CT";
2691 
2692  llvm::SmallString<64> RTTIMangling;
2693  {
2694  llvm::raw_svector_ostream Stream(RTTIMangling);
2695  msvc_hashing_ostream MHO(Stream);
2696  mangleCXXRTTI(T, MHO);
2697  }
2698  Mangler.getStream() << RTTIMangling.substr(1);
2699 
2700  // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
2701  // in fact, superfluous but I'm not sure the change was made consciously.
2702  llvm::SmallString<64> CopyCtorMangling;
2703  if (!getASTContext().getLangOpts().isCompatibleWithMSVC(
2705  CD) {
2706  llvm::raw_svector_ostream Stream(CopyCtorMangling);
2707  msvc_hashing_ostream MHO(Stream);
2708  mangleCXXCtor(CD, CT, MHO);
2709  }
2710  Mangler.getStream() << CopyCtorMangling.substr(1);
2711 
2712  Mangler.getStream() << Size;
2713  if (VBPtrOffset == -1) {
2714  if (NVOffset) {
2715  Mangler.getStream() << NVOffset;
2716  }
2717  } else {
2718  Mangler.getStream() << NVOffset;
2719  Mangler.getStream() << VBPtrOffset;
2720  Mangler.getStream() << VBIndex;
2721  }
2722 }
2723 
2724 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2725  const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2726  uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2727  msvc_hashing_ostream MHO(Out);
2728  MicrosoftCXXNameMangler Mangler(*this, MHO);
2729  Mangler.getStream() << "\01??_R1";
2730  Mangler.mangleNumber(NVOffset);
2731  Mangler.mangleNumber(VBPtrOffset);
2732  Mangler.mangleNumber(VBTableOffset);
2733  Mangler.mangleNumber(Flags);
2734  Mangler.mangleName(Derived);
2735  Mangler.getStream() << "8";
2736 }
2737 
2738 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2739  const CXXRecordDecl *Derived, raw_ostream &Out) {
2740  msvc_hashing_ostream MHO(Out);
2741  MicrosoftCXXNameMangler Mangler(*this, MHO);
2742  Mangler.getStream() << "\01??_R2";
2743  Mangler.mangleName(Derived);
2744  Mangler.getStream() << "8";
2745 }
2746 
2747 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2748  const CXXRecordDecl *Derived, raw_ostream &Out) {
2749  msvc_hashing_ostream MHO(Out);
2750  MicrosoftCXXNameMangler Mangler(*this, MHO);
2751  Mangler.getStream() << "\01??_R3";
2752  Mangler.mangleName(Derived);
2753  Mangler.getStream() << "8";
2754 }
2755 
2756 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2757  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2758  raw_ostream &Out) {
2759  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2760  // <cvr-qualifiers> [<name>] @
2761  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2762  // is always '6' for vftables.
2763  llvm::SmallString<64> VFTableMangling;
2764  llvm::raw_svector_ostream Stream(VFTableMangling);
2765  mangleCXXVFTable(Derived, BasePath, Stream);
2766 
2767  if (VFTableMangling.startswith("\01??@")) {
2768  assert(VFTableMangling.endswith("@"));
2769  Out << VFTableMangling << "??_R4@";
2770  return;
2771  }
2772 
2773  assert(VFTableMangling.startswith("\01??_7") ||
2774  VFTableMangling.startswith("\01??_S"));
2775 
2776  Out << "\01??_R4" << StringRef(VFTableMangling).drop_front(5);
2777 }
2778 
2779 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
2780  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2781  msvc_hashing_ostream MHO(Out);
2782  MicrosoftCXXNameMangler Mangler(*this, MHO);
2783  // The function body is in the same comdat as the function with the handler,
2784  // so the numbering here doesn't have to be the same across TUs.
2785  //
2786  // <mangled-name> ::= ?filt$ <filter-number> @0
2787  Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
2788  Mangler.mangleName(EnclosingDecl);
2789 }
2790 
2791 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
2792  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2793  msvc_hashing_ostream MHO(Out);
2794  MicrosoftCXXNameMangler Mangler(*this, MHO);
2795  // The function body is in the same comdat as the function with the handler,
2796  // so the numbering here doesn't have to be the same across TUs.
2797  //
2798  // <mangled-name> ::= ?fin$ <filter-number> @0
2799  Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
2800  Mangler.mangleName(EnclosingDecl);
2801 }
2802 
2803 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2804  // This is just a made up unique string for the purposes of tbaa. undname
2805  // does *not* know how to demangle it.
2806  MicrosoftCXXNameMangler Mangler(*this, Out);
2807  Mangler.getStream() << '?';
2808  Mangler.mangleType(T, SourceRange());
2809 }
2810 
2811 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2812  CXXCtorType Type,
2813  raw_ostream &Out) {
2814  msvc_hashing_ostream MHO(Out);
2815  MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
2816  mangler.mangle(D);
2817 }
2818 
2819 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2820  CXXDtorType Type,
2821  raw_ostream &Out) {
2822  msvc_hashing_ostream MHO(Out);
2823  MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
2824  mangler.mangle(D);
2825 }
2826 
2827 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
2828  const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
2829  msvc_hashing_ostream MHO(Out);
2830  MicrosoftCXXNameMangler Mangler(*this, MHO);
2831 
2832  Mangler.getStream() << "\01?$RT" << ManglingNumber << '@';
2833  Mangler.mangle(VD, "");
2834 }
2835 
2836 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
2837  const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
2838  msvc_hashing_ostream MHO(Out);
2839  MicrosoftCXXNameMangler Mangler(*this, MHO);
2840 
2841  Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
2842  Mangler.mangleNestedName(VD);
2843  Mangler.getStream() << "@4HA";
2844 }
2845 
2846 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2847  raw_ostream &Out) {
2848  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2849  // ::= ?__J <postfix> @5 <scope-depth>
2850  // ::= ?$S <guard-num> @ <postfix> @4IA
2851 
2852  // The first mangling is what MSVC uses to guard static locals in inline
2853  // functions. It uses a different mangling in external functions to support
2854  // guarding more than 32 variables. MSVC rejects inline functions with more
2855  // than 32 static locals. We don't fully implement the second mangling
2856  // because those guards are not externally visible, and instead use LLVM's
2857  // default renaming when creating a new guard variable.
2858  msvc_hashing_ostream MHO(Out);
2859  MicrosoftCXXNameMangler Mangler(*this, MHO);
2860 
2861  bool Visible = VD->isExternallyVisible();
2862  if (Visible) {
2863  Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
2864  } else {
2865  Mangler.getStream() << "\01?$S1@";
2866  }
2867  unsigned ScopeDepth = 0;
2868  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2869  // If we do not have a discriminator and are emitting a guard variable for
2870  // use at global scope, then mangling the nested name will not be enough to
2871  // remove ambiguities.
2872  Mangler.mangle(VD, "");
2873  else
2874  Mangler.mangleNestedName(VD);
2875  Mangler.getStream() << (Visible ? "@5" : "@4IA");
2876  if (ScopeDepth)
2877  Mangler.mangleNumber(ScopeDepth);
2878 }
2879 
2880 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2881  char CharCode,
2882  raw_ostream &Out) {
2883  msvc_hashing_ostream MHO(Out);
2884  MicrosoftCXXNameMangler Mangler(*this, MHO);
2885  Mangler.getStream() << "\01??__" << CharCode;
2886  Mangler.mangleName(D);
2887  if (D->isStaticDataMember()) {
2888  Mangler.mangleVariableEncoding(D);
2889  Mangler.getStream() << '@';
2890  }
2891  // This is the function class mangling. These stubs are global, non-variadic,
2892  // cdecl functions that return void and take no args.
2893  Mangler.getStream() << "YAXXZ";
2894 }
2895 
2896 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2897  raw_ostream &Out) {
2898  // <initializer-name> ::= ?__E <name> YAXXZ
2899  mangleInitFiniStub(D, 'E', Out);
2900 }
2901 
2902 void
2903 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2904  raw_ostream &Out) {
2905  // <destructor-name> ::= ?__F <name> YAXXZ
2906  mangleInitFiniStub(D, 'F', Out);
2907 }
2908 
2909 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2910  raw_ostream &Out) {
2911  // <char-type> ::= 0 # char
2912  // ::= 1 # wchar_t
2913  // ::= ??? # char16_t/char32_t will need a mangling too...
2914  //
2915  // <literal-length> ::= <non-negative integer> # the length of the literal
2916  //
2917  // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
2918  // # null-terminator
2919  //
2920  // <encoded-string> ::= <simple character> # uninteresting character
2921  // ::= '?$' <hex digit> <hex digit> # these two nibbles
2922  // # encode the byte for the
2923  // # character
2924  // ::= '?' [a-z] # \xe1 - \xfa
2925  // ::= '?' [A-Z] # \xc1 - \xda
2926  // ::= '?' [0-9] # [,/\:. \n\t'-]
2927  //
2928  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2929  // <encoded-string> '@'
2930  MicrosoftCXXNameMangler Mangler(*this, Out);
2931  Mangler.getStream() << "\01??_C@_";
2932 
2933  // <char-type>: The "kind" of string literal is encoded into the mangled name.
2934  if (SL->isWide())
2935  Mangler.getStream() << '1';
2936  else
2937  Mangler.getStream() << '0';
2938 
2939  // <literal-length>: The next part of the mangled name consists of the length
2940  // of the string.
2941  // The StringLiteral does not consider the NUL terminator byte(s) but the
2942  // mangling does.
2943  // N.B. The length is in terms of bytes, not characters.
2944  Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2945 
2946  auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2947  unsigned CharByteWidth = SL->getCharByteWidth();
2948  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2949  unsigned OffsetInCodeUnit = Index % CharByteWidth;
2950  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2951  };
2952 
2953  auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2954  unsigned CharByteWidth = SL->getCharByteWidth();
2955  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2956  unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2957  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2958  };
2959 
2960  // CRC all the bytes of the StringLiteral.
2961  llvm::JamCRC JC;
2962  for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2963  JC.update(GetLittleEndianByte(I));
2964 
2965  // The NUL terminator byte(s) were not present earlier,
2966  // we need to manually process those bytes into the CRC.
2967  for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2968  ++NullTerminator)
2969  JC.update('\x00');
2970 
2971  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2972  // scheme.
2973  Mangler.mangleNumber(JC.getCRC());
2974 
2975  // <encoded-string>: The mangled name also contains the first 32 _characters_
2976  // (including null-terminator bytes) of the StringLiteral.
2977  // Each character is encoded by splitting them into bytes and then encoding
2978  // the constituent bytes.
2979  auto MangleByte = [&Mangler](char Byte) {
2980  // There are five different manglings for characters:
2981  // - [a-zA-Z0-9_$]: A one-to-one mapping.
2982  // - ?[a-z]: The range from \xe1 to \xfa.
2983  // - ?[A-Z]: The range from \xc1 to \xda.
2984  // - ?[0-9]: The set of [,/\:. \n\t'-].
2985  // - ?$XX: A fallback which maps nibbles.
2986  if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2987  Mangler.getStream() << Byte;
2988  } else if (isLetter(Byte & 0x7f)) {
2989  Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2990  } else {
2991  const char SpecialChars[] = {',', '/', '\\', ':', '.',
2992  ' ', '\n', '\t', '\'', '-'};
2993  const char *Pos =
2994  std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2995  if (Pos != std::end(SpecialChars)) {
2996  Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2997  } else {
2998  Mangler.getStream() << "?$";
2999  Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3000  Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3001  }
3002  }
3003  };
3004 
3005  // Enforce our 32 character max.
3006  unsigned NumCharsToMangle = std::min(32U, SL->getLength());
3007  for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
3008  ++I)
3009  if (SL->isWide())
3010  MangleByte(GetBigEndianByte(I));
3011  else
3012  MangleByte(GetLittleEndianByte(I));
3013 
3014  // Encode the NUL terminator if there is room.
3015  if (NumCharsToMangle < 32)
3016  for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
3017  ++NullTerminator)
3018  MangleByte(0);
3019 
3020  Mangler.getStream() << '@';
3021 }
3022 
3025  return new MicrosoftMangleContextImpl(Context, Diags);
3026 }
Kind getKind() const
Definition: Type.h:2060
unsigned getNumElements() const
Definition: Type.h:2781
Defines the clang::ASTContext interface.
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5278
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:4948
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1561
bool isVariadic() const
Definition: Type.h:3366
static Qualifiers fromCVRUMask(unsigned CVRU)
Definition: Type.h:218
void removeUnaligned()
Definition: Type.h:283
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2179
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:3473
A (possibly-)qualified type.
Definition: Type.h:598
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:282
bool isMemberPointerType() const
Definition: Type.h:5506
__auto_type (GNU extension)
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:232
static MicrosoftMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags)
MSInheritanceAttr::Spelling getMSInheritanceModel() const
Returns the inheritance model used for this record.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:2879
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
IdentifierInfo * getCXXLiteralIdentifier() const
getCXXLiteralIdentifier - If this name is the name of a literal operator, retrieve the identifier ass...
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:4496
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
The template argument is an expression, and we've not resolved it to one of the other forms yet...
Definition: TemplateBase.h:69
static LLVM_READONLY bool isLetter(unsigned char c)
Return true if this character is an ASCII letter: [a-zA-Z].
Definition: CharInfo.h:112
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1595
Defines the C++ template declaration subclasses.
StringRef P
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4084
QualType getPointeeType() const
Definition: Type.h:2420
IdentifierInfo * getAsIdentifierInfo() const
getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in this declaration name, or NULL if this declaration name isn't a simple identifier.
The base class of the type hierarchy.
Definition: Type.h:1281
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1598
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:111
std::unique_ptr< llvm::MemoryBuffer > Buffer
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1124
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, ArrayRef< TemplateArgument > Args, QualType Canon)
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2456
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:51
NamespaceDecl - Represent a C++ namespace.
Definition: Decl.h:471
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:101
bool isBooleanType() const
Definition: Type.h:5743
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:305
bool isBlockPointerType() const
Definition: Type.h:5488
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2187
Default closure variant of a ctor.
Definition: ABI.h:30
const llvm::APInt & getSize() const
Definition: Type.h:2527
void * getAsOpaquePtr() const
Definition: Type.h:646
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:768
TLSKind getTLSKind() const
Definition: Decl.cpp:1818
The "union" keyword.
Definition: Type.h:4348
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:46
CallingConv getCallConv() const
Definition: Type.h:3017
A this pointer adjustment.
Definition: ABI.h:108
The "__interface" keyword.
Definition: Type.h:4346
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:113
const CXXMethodDecl * Method
Holds a pointer to the overridden method this thunk is for, if needed by the ABI to distinguish diffe...
Definition: ABI.h:191
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:49
iterator begin() const
Definition: Type.h:4235
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1377
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isVoidType() const
Definition: Type.h:5680
The collection of all-type qualifiers we support.
Definition: Type.h:117
PipeType - OpenCL20.
Definition: Type.h:5190
unsigned getNumParams() const
Definition: Type.h:3271
int32_t VBOffsetOffset
The offset (in bytes) of the vbase offset in the vbtable.
Definition: ABI.h:132
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2623
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4549
Represents a class type in Objective C.
Definition: Type.h:4727
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3189
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:92
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:57
bool isReferenceType() const
Definition: Type.h:5491
bool isAnyPointerType() const
Definition: Type.h:5485
bool isTranslationUnit() const
Definition: DeclBase.h:1283
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:231
TagKind getTagKind() const
Definition: Decl.h:2930
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4038
unsigned size() const
Definition: DeclTemplate.h:92
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1536
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2383
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1654
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1240
const LangOptions & getLangOpts() const
Definition: ASTContext.h:604
unsigned getLength() const
Definition: Expr.h:1547
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:4782
QualType getReturnType() const
Definition: Type.h:3009
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:1838
Deleting dtor.
Definition: ABI.h:35
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:135
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:3525
Enums/classes describing ABI related information about constructors, destructors and thunks...
TypeClass getTypeClass() const
Definition: Type.h:1533
bool hasConst() const
Definition: Type.h:236
bool isStaticLocal() const
isStaticLocal - Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:980
iterator end() const
detail::InMemoryDirectory::const_iterator I
QualType getType() const
Definition: Decl.h:599
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:2718
Represents a K&R-style 'int foo()' function, which has no information available about its arguments...
Definition: Type.h:3039
bool isStatic() const
Definition: DeclCXX.cpp:1475
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:5173
bool isNamespace() const
Definition: DeclBase.h:1291
CXXRecordDecl * getMostRecentDecl()
Definition: DeclCXX.h:669
QualType getParamType(unsigned i) const
Definition: Type.h:3272
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3073
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2446
Represents a ValueDecl that came out of a declarator.
Definition: Decl.h:646
ASTContext * Context
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
Definition: DeclTemplate.h:225
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:415
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
bool hasUnaligned() const
Definition: Type.h:279
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:34
bool hasVolatile() const
Definition: Type.h:243
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:2659
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
BlockDecl - This represents a block literal declaration, which is like an unnamed FunctionDecl...
Definition: Decl.h:3456
QualType getPointeeType() const
Definition: Type.h:2300
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:590
Expr - This represents one expression.
Definition: Expr.h:105
StringRef getName() const
Return the actual identifier string.
bool isInstance() const
Definition: DeclCXX.h:1763
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:54
bool isVirtual() const
Definition: DeclCXX.h:1780
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2414
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2011
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:216
Represents the type decltype(expr) (C++11).
Definition: Type.h:3590
char __ovld __cnfn min(char x, char y)
Returns y if y < x, otherwise it returns x.
QualType getDesugaredType(const ASTContext &Context) const
Return the specified type with any "sugar" removed from the type.
Definition: Type.h:892
Base object dtor.
Definition: ABI.h:37
A unary type transform, which is a type constructed from another.
Definition: Type.h:3631
bool isFunctionOrMethod() const
Definition: DeclBase.h:1263
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1214
bool isExternallyVisible() const
Definition: Decl.h:348
CharUnits getVBPtrOffset() const
getVBPtrOffset - Get the offset for virtual base table pointer.
Definition: RecordLayout.h:292
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1668
StringRef getUuidStr() const
Definition: ExprCXX.h:841
Represents a GCC generic vector type.
Definition: Type.h:2756
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2366
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:258
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:339
QualType getElementType() const
Definition: Type.h:2780
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The result type of a method or function.
The COMDAT used for dtors.
Definition: ABI.h:38
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:231
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:2961
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:29
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:553
decl_type * getFirstDecl()
Return the first declaration of this declaration or itself if this is the only declaration.
Definition: Redeclarable.h:156
SourceRange getBracketsRange() const
Definition: Type.h:2684
The "struct" keyword.
Definition: Type.h:4344
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3733
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5259
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
Definition: TemplateBase.h:262
const TemplateArgument * iterator
Definition: Type.h:4233
QualType getElementType() const
Definition: Type.h:2131
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3382
Represents typeof(type), a GCC extension.
Definition: Type.h:3566
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:4936
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
TagDecl - Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:2727
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:55
QualType withConst() const
Definition: Type.h:764
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1736
TypedefNameDecl * getTypedefNameForUnnamedTagDecl(const TagDecl *TD)
No ref-qualifier was provided.
Definition: Type.h:1238
This file defines OpenMP nodes for declarative directives.
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
unsigned getCharByteWidth() const
Definition: Expr.h:1548
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1236
SourceLocation getBegin() const
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5849
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:609
Complete object dtor.
Definition: ABI.h:36
SourceRange getSourceRange() const override LLVM_READONLY
Definition: Decl.cpp:1840
struct clang::ThisAdjustment::VirtualAdjustment::@113 Microsoft
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1242
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:245
Represents a pointer type decayed from an array or function type.
Definition: Type.h:2263
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:193
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:4294
QualType getPointeeType() const
Definition: Type.h:2193
Represents a pack expansion of types.
Definition: Type.h:4641
static void mangleThunkThisAdjustment(const CXXMethodDecl *MD, const ThisAdjustment &Adjustment, MicrosoftCXXNameMangler &Mangler, raw_ostream &Out)
Expr * getSizeExpr() const
Definition: Type.h:2679
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2609
QualType getType() const
Definition: Expr.h:126
Represents a template argument.
Definition: TemplateBase.h:40
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:238
TagTypeKind
The kind of a tag type.
Definition: Type.h:4342
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3169
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:181
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1135
unsigned getByteLength() const
Definition: Expr.h:1546
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:330
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:63
DeclarationName - The name of a declaration.
detail::InMemoryDirectory::const_iterator E
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2401
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1027
union clang::ThisAdjustment::VirtualAdjustment Virtual
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5006
Represents a pointer to an Objective C object.
Definition: Type.h:4991
Pointer to a block type.
Definition: Type.h:2286
Not an overloaded operator.
Definition: OperatorKinds.h:23
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3707
Complex values, per C99 6.2.5p11.
Definition: Type.h:2119
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5818
unsigned getTypeQuals() const
Definition: Type.h:3378
QualType getCanonicalType() const
Definition: Type.h:5298
bool isWide() const
Definition: Expr.h:1558
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:294
bool isFunctionType() const
Definition: Type.h:5479
ExtVectorType - Extended vector type.
Definition: Type.h:2816
DeclaratorDecl * getDeclaratorForUnnamedTagDecl(const TagDecl *TD)
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1534
ReturnAdjustment Return
The return adjustment.
Definition: ABI.h:184
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1528
The template argument is a type.
Definition: TemplateBase.h:48
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:33
The template argument is actually a parameter pack.
Definition: TemplateBase.h:72
The "class" keyword.
Definition: Type.h:4350
bool isStaticDataMember() const
Determines whether this is a static data member.
Definition: Decl.h:1058
QualType getPointeeType() const
Definition: Type.h:2340
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
Definition: LangOptions.h:147
A template argument list.
Definition: DeclTemplate.h:173
static LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:59
const Type * getClass() const
Definition: Type.h:2434
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:256
ArrayRef< TemplateArgument > getPackAsArray() const
Return the array of arguments in this template argument pack.
Definition: TemplateBase.h:341
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:358
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5339
Represents a C++ struct/union/class.
Definition: DeclCXX.h:263
The template argument is a template name that was provided for a template template parameter...
Definition: TemplateBase.h:60
Represents a C array with an unspecified size.
Definition: Type.h:2562
int32_t VtordispOffset
The offset of the vtordisp (in bytes), relative to the ECX.
Definition: ABI.h:125
The "enum" keyword.
Definition: Type.h:4352
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target)
This class is used for builtin types like 'int'.
Definition: Type.h:2039
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:353
bool isArrayType() const
Definition: Type.h:5521
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:250
Copying closure variant of a ctor.
Definition: ABI.h:29
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1466
Defines the clang::TargetInfo interface.
SourceRange getSourceRange() const override LLVM_READONLY
Definition: Decl.cpp:3346
uint64_t Index
Method's index in the vftable.
bool hasRestrict() const
Definition: Type.h:250
QualType getElementType() const
Definition: Type.h:2490
A trivial tuple used to represent a source range.
NamedDecl - This represents a decl with a name.
Definition: Decl.h:213
StringRef getName(const PrintingPolicy &Policy) const
Definition: Type.cpp:2519
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2607
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:784
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:665
bool nullFieldOffsetIsZero() const
In the Microsoft C++ ABI, use zero for the field offset of a null data member pointer if we can guara...
Definition: DeclCXX.h:1691
int32_t VBPtrOffset
The offset of the vbptr of the derived class (in bytes), relative to the ECX after vtordisp adjustmen...
Definition: ABI.h:129
TemplateSpecializationType(TemplateName T, ArrayRef< TemplateArgument > Args, QualType Canon, QualType Aliased)
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2512
bool isEmpty() const
Definition: ABI.h:87
const MethodVFTableLocation & getMethodVFTableLocation(GlobalDecl GD)
PrettyStackTraceDecl - If a crash occurs, indicate that it happened when doing something to a specifi...
Definition: DeclBase.h:1051
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5286
bool isPointerType() const
Definition: Type.h:5482
QualType getDeducedType() const
Get the type deduced for this auto type, or null if it's either not been deduced or was deduced to a ...
Definition: Type.h:4111