clang  3.9.0
CGExprScalar.cpp
Go to the documentation of this file.
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 // Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45  Value *LHS;
46  Value *RHS;
47  QualType Ty; // Computation Type.
48  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49  bool FPContractable;
50  const Expr *E; // Entire expr, for error unsupported. May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54  // If a null pointer expression's type is the C++0x nullptr_t, then
55  // it's not necessarily a simple constant and it must be evaluated
56  // for its potential side effects.
57  return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61  : public StmtVisitor<ScalarExprEmitter, Value*> {
62  CodeGenFunction &CGF;
64  bool IgnoreResultAssign;
65  llvm::LLVMContext &VMContext;
66 public:
67 
68  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69  : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70  VMContext(cgf.getLLVMContext()) {
71  }
72 
73  //===--------------------------------------------------------------------===//
74  // Utilities
75  //===--------------------------------------------------------------------===//
76 
77  bool TestAndClearIgnoreResultAssign() {
78  bool I = IgnoreResultAssign;
79  IgnoreResultAssign = false;
80  return I;
81  }
82 
83  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86  return CGF.EmitCheckedLValue(E, TCK);
87  }
88 
89  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90  const BinOpInfo &Info);
91 
92  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93  return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94  }
95 
96  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97  const AlignValueAttr *AVAttr = nullptr;
98  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99  const ValueDecl *VD = DRE->getDecl();
100 
101  if (VD->getType()->isReferenceType()) {
102  if (const auto *TTy =
103  dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105  } else {
106  // Assumptions for function parameters are emitted at the start of the
107  // function, so there is no need to repeat that here.
108  if (isa<ParmVarDecl>(VD))
109  return;
110 
111  AVAttr = VD->getAttr<AlignValueAttr>();
112  }
113  }
114 
115  if (!AVAttr)
116  if (const auto *TTy =
117  dyn_cast<TypedefType>(E->getType()))
118  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120  if (!AVAttr)
121  return;
122 
123  Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124  llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125  CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126  }
127 
128  /// EmitLoadOfLValue - Given an expression with complex type that represents a
129  /// value l-value, this method emits the address of the l-value, then loads
130  /// and returns the result.
131  Value *EmitLoadOfLValue(const Expr *E) {
132  Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133  E->getExprLoc());
134 
135  EmitLValueAlignmentAssumption(E, V);
136  return V;
137  }
138 
139  /// EmitConversionToBool - Convert the specified expression value to a
140  /// boolean (i1) truth value. This is equivalent to "Val != 0".
141  Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143  /// Emit a check that a conversion to or from a floating-point type does not
144  /// overflow.
145  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146  Value *Src, QualType SrcType, QualType DstType,
147  llvm::Type *DstTy, SourceLocation Loc);
148 
149  /// Emit a conversion from the specified type to the specified destination
150  /// type, both of which are LLVM scalar types.
151  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152  SourceLocation Loc);
153 
154  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155  SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157  /// Emit a conversion from the specified complex type to the specified
158  /// destination type, where the destination type is an LLVM scalar type.
159  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160  QualType SrcTy, QualType DstTy,
161  SourceLocation Loc);
162 
163  /// EmitNullValue - Emit a value that corresponds to null for the given type.
164  Value *EmitNullValue(QualType Ty);
165 
166  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167  Value *EmitFloatToBoolConversion(Value *V) {
168  // Compare against 0.0 for fp scalars.
169  llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170  return Builder.CreateFCmpUNE(V, Zero, "tobool");
171  }
172 
173  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174  Value *EmitPointerToBoolConversion(Value *V) {
175  Value *Zero = llvm::ConstantPointerNull::get(
176  cast<llvm::PointerType>(V->getType()));
177  return Builder.CreateICmpNE(V, Zero, "tobool");
178  }
179 
180  Value *EmitIntToBoolConversion(Value *V) {
181  // Because of the type rules of C, we often end up computing a
182  // logical value, then zero extending it to int, then wanting it
183  // as a logical value again. Optimize this common case.
184  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185  if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186  Value *Result = ZI->getOperand(0);
187  // If there aren't any more uses, zap the instruction to save space.
188  // Note that there can be more uses, for example if this
189  // is the result of an assignment.
190  if (ZI->use_empty())
191  ZI->eraseFromParent();
192  return Result;
193  }
194  }
195 
196  return Builder.CreateIsNotNull(V, "tobool");
197  }
198 
199  //===--------------------------------------------------------------------===//
200  // Visitor Methods
201  //===--------------------------------------------------------------------===//
202 
203  Value *Visit(Expr *E) {
204  ApplyDebugLocation DL(CGF, E);
206  }
207 
208  Value *VisitStmt(Stmt *S) {
209  S->dump(CGF.getContext().getSourceManager());
210  llvm_unreachable("Stmt can't have complex result type!");
211  }
212  Value *VisitExpr(Expr *S);
213 
214  Value *VisitParenExpr(ParenExpr *PE) {
215  return Visit(PE->getSubExpr());
216  }
217  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218  return Visit(E->getReplacement());
219  }
220  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221  return Visit(GE->getResultExpr());
222  }
223 
224  // Leaves.
225  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226  return Builder.getInt(E->getValue());
227  }
228  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229  return llvm::ConstantFP::get(VMContext, E->getValue());
230  }
231  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233  }
234  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236  }
237  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239  }
240  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241  return EmitNullValue(E->getType());
242  }
243  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244  return EmitNullValue(E->getType());
245  }
246  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249  llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250  return Builder.CreateBitCast(V, ConvertType(E->getType()));
251  }
252 
253  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254  return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255  }
256 
257  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258  return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259  }
260 
261  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262  if (E->isGLValue())
263  return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265  // Otherwise, assume the mapping is the scalar directly.
266  return CGF.getOpaqueRValueMapping(E).getScalarVal();
267  }
268 
269  // l-values.
270  Value *VisitDeclRefExpr(DeclRefExpr *E) {
271  if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272  if (result.isReference())
273  return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274  E->getExprLoc());
275  return result.getValue();
276  }
277  return EmitLoadOfLValue(E);
278  }
279 
280  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281  return CGF.EmitObjCSelectorExpr(E);
282  }
283  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284  return CGF.EmitObjCProtocolExpr(E);
285  }
286  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287  return EmitLoadOfLValue(E);
288  }
289  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290  if (E->getMethodDecl() &&
292  return EmitLoadOfLValue(E);
293  return CGF.EmitObjCMessageExpr(E).getScalarVal();
294  }
295 
296  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297  LValue LV = CGF.EmitObjCIsaExpr(E);
298  Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299  return V;
300  }
301 
302  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305  Value *VisitMemberExpr(MemberExpr *E);
306  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308  return EmitLoadOfLValue(E);
309  }
310 
311  Value *VisitInitListExpr(InitListExpr *E);
312 
313  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314  return EmitNullValue(E->getType());
315  }
316  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317  CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318  return VisitCastExpr(E);
319  }
320  Value *VisitCastExpr(CastExpr *E);
321 
322  Value *VisitCallExpr(const CallExpr *E) {
323  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324  return EmitLoadOfLValue(E);
325 
326  Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328  EmitLValueAlignmentAssumption(E, V);
329  return V;
330  }
331 
332  Value *VisitStmtExpr(const StmtExpr *E);
333 
334  // Unary Operators.
335  Value *VisitUnaryPostDec(const UnaryOperator *E) {
336  LValue LV = EmitLValue(E->getSubExpr());
337  return EmitScalarPrePostIncDec(E, LV, false, false);
338  }
339  Value *VisitUnaryPostInc(const UnaryOperator *E) {
340  LValue LV = EmitLValue(E->getSubExpr());
341  return EmitScalarPrePostIncDec(E, LV, true, false);
342  }
343  Value *VisitUnaryPreDec(const UnaryOperator *E) {
344  LValue LV = EmitLValue(E->getSubExpr());
345  return EmitScalarPrePostIncDec(E, LV, false, true);
346  }
347  Value *VisitUnaryPreInc(const UnaryOperator *E) {
348  LValue LV = EmitLValue(E->getSubExpr());
349  return EmitScalarPrePostIncDec(E, LV, true, true);
350  }
351 
352  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353  llvm::Value *InVal,
354  bool IsInc);
355 
356  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357  bool isInc, bool isPre);
358 
359 
360  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361  if (isa<MemberPointerType>(E->getType())) // never sugared
362  return CGF.CGM.getMemberPointerConstant(E);
363 
364  return EmitLValue(E->getSubExpr()).getPointer();
365  }
366  Value *VisitUnaryDeref(const UnaryOperator *E) {
367  if (E->getType()->isVoidType())
368  return Visit(E->getSubExpr()); // the actual value should be unused
369  return EmitLoadOfLValue(E);
370  }
371  Value *VisitUnaryPlus(const UnaryOperator *E) {
372  // This differs from gcc, though, most likely due to a bug in gcc.
373  TestAndClearIgnoreResultAssign();
374  return Visit(E->getSubExpr());
375  }
376  Value *VisitUnaryMinus (const UnaryOperator *E);
377  Value *VisitUnaryNot (const UnaryOperator *E);
378  Value *VisitUnaryLNot (const UnaryOperator *E);
379  Value *VisitUnaryReal (const UnaryOperator *E);
380  Value *VisitUnaryImag (const UnaryOperator *E);
381  Value *VisitUnaryExtension(const UnaryOperator *E) {
382  return Visit(E->getSubExpr());
383  }
384 
385  // C++
386  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387  return EmitLoadOfLValue(E);
388  }
389 
390  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391  return Visit(DAE->getExpr());
392  }
393  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395  return Visit(DIE->getExpr());
396  }
397  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398  return CGF.LoadCXXThis();
399  }
400 
401  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402  CGF.enterFullExpression(E);
404  return Visit(E->getSubExpr());
405  }
406  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407  return CGF.EmitCXXNewExpr(E);
408  }
409  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410  CGF.EmitCXXDeleteExpr(E);
411  return nullptr;
412  }
413 
414  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416  }
417 
418  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419  return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420  }
421 
422  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423  return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424  }
425 
426  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427  // C++ [expr.pseudo]p1:
428  // The result shall only be used as the operand for the function call
429  // operator (), and the result of such a call has type void. The only
430  // effect is the evaluation of the postfix-expression before the dot or
431  // arrow.
432  CGF.EmitScalarExpr(E->getBase());
433  return nullptr;
434  }
435 
436  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437  return EmitNullValue(E->getType());
438  }
439 
440  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441  CGF.EmitCXXThrowExpr(E);
442  return nullptr;
443  }
444 
445  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446  return Builder.getInt1(E->getValue());
447  }
448 
449  // Binary Operators.
450  Value *EmitMul(const BinOpInfo &Ops) {
451  if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458  // Fall through.
460  return EmitOverflowCheckedBinOp(Ops);
461  }
462  }
463 
464  if (Ops.Ty->isUnsignedIntegerType() &&
465  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466  return EmitOverflowCheckedBinOp(Ops);
467 
468  if (Ops.LHS->getType()->isFPOrFPVectorTy())
469  return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471  }
472  /// Create a binary op that checks for overflow.
473  /// Currently only supports +, - and *.
474  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476  // Check for undefined division and modulus behaviors.
477  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478  llvm::Value *Zero,bool isDiv);
479  // Common helper for getting how wide LHS of shift is.
480  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481  Value *EmitDiv(const BinOpInfo &Ops);
482  Value *EmitRem(const BinOpInfo &Ops);
483  Value *EmitAdd(const BinOpInfo &Ops);
484  Value *EmitSub(const BinOpInfo &Ops);
485  Value *EmitShl(const BinOpInfo &Ops);
486  Value *EmitShr(const BinOpInfo &Ops);
487  Value *EmitAnd(const BinOpInfo &Ops) {
488  return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489  }
490  Value *EmitXor(const BinOpInfo &Ops) {
491  return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492  }
493  Value *EmitOr (const BinOpInfo &Ops) {
494  return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495  }
496 
497  BinOpInfo EmitBinOps(const BinaryOperator *E);
498  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499  Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500  Value *&Result);
501 
502  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503  Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505  // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507  Value *VisitBin ## OP(const BinaryOperator *E) { \
508  return Emit ## OP(EmitBinOps(E)); \
509  } \
510  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
511  return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
512  }
513  HANDLEBINOP(Mul)
514  HANDLEBINOP(Div)
515  HANDLEBINOP(Rem)
516  HANDLEBINOP(Add)
517  HANDLEBINOP(Sub)
518  HANDLEBINOP(Shl)
519  HANDLEBINOP(Shr)
521  HANDLEBINOP(Xor)
522  HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525  // Comparisons.
526  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527  llvm::CmpInst::Predicate SICmpOpc,
528  llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530  Value *VisitBin##CODE(const BinaryOperator *E) { \
531  return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532  llvm::FCmpInst::FP); }
533  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541  Value *VisitBinAssign (const BinaryOperator *E);
542 
543  Value *VisitBinLAnd (const BinaryOperator *E);
544  Value *VisitBinLOr (const BinaryOperator *E);
545  Value *VisitBinComma (const BinaryOperator *E);
546 
547  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550  // Other Operators.
551  Value *VisitBlockExpr(const BlockExpr *BE);
552  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553  Value *VisitChooseExpr(ChooseExpr *CE);
554  Value *VisitVAArgExpr(VAArgExpr *VE);
555  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556  return CGF.EmitObjCStringLiteral(E);
557  }
558  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559  return CGF.EmitObjCBoxedExpr(E);
560  }
561  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562  return CGF.EmitObjCArrayLiteral(E);
563  }
564  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565  return CGF.EmitObjCDictionaryLiteral(E);
566  }
567  Value *VisitAsTypeExpr(AsTypeExpr *CE);
568  Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 } // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 // Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value. This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581  if (SrcType->isRealFloatingType())
582  return EmitFloatToBoolConversion(Src);
583 
584  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588  "Unknown scalar type to convert");
589 
590  if (isa<llvm::IntegerType>(Src->getType()))
591  return EmitIntToBoolConversion(Src);
592 
593  assert(isa<llvm::PointerType>(Src->getType()));
594  return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(
598  Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599  QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600  CodeGenFunction::SanitizerScope SanScope(&CGF);
601  using llvm::APFloat;
602  using llvm::APSInt;
603 
604  llvm::Type *SrcTy = Src->getType();
605 
606  llvm::Value *Check = nullptr;
607  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608  // Integer to floating-point. This can fail for unsigned short -> __half
609  // or unsigned __int128 -> float.
610  assert(DstType->isFloatingType());
611  bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612 
613  APFloat LargestFloat =
614  APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615  APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616 
617  bool IsExact;
618  if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619  &IsExact) != APFloat::opOK)
620  // The range of representable values of this floating point type includes
621  // all values of this integer type. Don't need an overflow check.
622  return;
623 
624  llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625  if (SrcIsUnsigned)
626  Check = Builder.CreateICmpULE(Src, Max);
627  else {
628  llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629  llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630  llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631  Check = Builder.CreateAnd(GE, LE);
632  }
633  } else {
634  const llvm::fltSemantics &SrcSema =
635  CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636  if (isa<llvm::IntegerType>(DstTy)) {
637  // Floating-point to integer. This has undefined behavior if the source is
638  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639  // to an integer).
640  unsigned Width = CGF.getContext().getIntWidth(DstType);
641  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642 
643  APSInt Min = APSInt::getMinValue(Width, Unsigned);
644  APFloat MinSrc(SrcSema, APFloat::uninitialized);
645  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646  APFloat::opOverflow)
647  // Don't need an overflow check for lower bound. Just check for
648  // -Inf/NaN.
649  MinSrc = APFloat::getInf(SrcSema, true);
650  else
651  // Find the largest value which is too small to represent (before
652  // truncation toward zero).
653  MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654 
655  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658  APFloat::opOverflow)
659  // Don't need an overflow check for upper bound. Just check for
660  // +Inf/NaN.
661  MaxSrc = APFloat::getInf(SrcSema, false);
662  else
663  // Find the smallest value which is too large to represent (before
664  // truncation toward zero).
665  MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666 
667  // If we're converting from __half, convert the range to float to match
668  // the type of src.
669  if (OrigSrcType->isHalfType()) {
670  const llvm::fltSemantics &Sema =
671  CGF.getContext().getFloatTypeSemantics(SrcType);
672  bool IsInexact;
673  MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674  MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675  }
676 
677  llvm::Value *GE =
678  Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679  llvm::Value *LE =
680  Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681  Check = Builder.CreateAnd(GE, LE);
682  } else {
683  // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684  //
685  // Floating-point to floating-point. This has undefined behavior if the
686  // source is not in the range of representable values of the destination
687  // type. The C and C++ standards are spectacularly unclear here. We
688  // diagnose finite out-of-range conversions, but allow infinities and NaNs
689  // to convert to the corresponding value in the smaller type.
690  //
691  // C11 Annex F gives all such conversions defined behavior for IEC 60559
692  // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693  // does not.
694 
695  // Converting from a lower rank to a higher rank can never have
696  // undefined behavior, since higher-rank types must have a superset
697  // of values of lower-rank types.
698  if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699  return;
700 
701  assert(!OrigSrcType->isHalfType() &&
702  "should not check conversion from __half, it has the lowest rank");
703 
704  const llvm::fltSemantics &DstSema =
705  CGF.getContext().getFloatTypeSemantics(DstType);
706  APFloat MinBad = APFloat::getLargest(DstSema, false);
707  APFloat MaxBad = APFloat::getInf(DstSema, false);
708 
709  bool IsInexact;
710  MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711  MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712 
713  Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714  CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715  llvm::Value *GE =
716  Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717  llvm::Value *LE =
718  Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719  Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720  }
721  }
722 
723  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724  CGF.EmitCheckTypeDescriptor(OrigSrcType),
725  CGF.EmitCheckTypeDescriptor(DstType)};
726  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727  "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729 
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733  QualType DstType,
734  SourceLocation Loc) {
735  return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737 
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739  QualType DstType,
740  SourceLocation Loc,
741  bool TreatBooleanAsSigned) {
742  SrcType = CGF.getContext().getCanonicalType(SrcType);
743  DstType = CGF.getContext().getCanonicalType(DstType);
744  if (SrcType == DstType) return Src;
745 
746  if (DstType->isVoidType()) return nullptr;
747 
748  llvm::Value *OrigSrc = Src;
749  QualType OrigSrcType = SrcType;
750  llvm::Type *SrcTy = Src->getType();
751 
752  // Handle conversions to bool first, they are special: comparisons against 0.
753  if (DstType->isBooleanType())
754  return EmitConversionToBool(Src, SrcType);
755 
756  llvm::Type *DstTy = ConvertType(DstType);
757 
758  // Cast from half through float if half isn't a native type.
759  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760  // Cast to FP using the intrinsic if the half type itself isn't supported.
761  if (DstTy->isFloatingPointTy()) {
762  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763  return Builder.CreateCall(
764  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765  Src);
766  } else {
767  // Cast to other types through float, using either the intrinsic or FPExt,
768  // depending on whether the half type itself is supported
769  // (as opposed to operations on half, available with NativeHalfType).
770  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771  Src = Builder.CreateCall(
772  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773  CGF.CGM.FloatTy),
774  Src);
775  } else {
776  Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777  }
778  SrcType = CGF.getContext().FloatTy;
779  SrcTy = CGF.FloatTy;
780  }
781  }
782 
783  // Ignore conversions like int -> uint.
784  if (SrcTy == DstTy)
785  return Src;
786 
787  // Handle pointer conversions next: pointers can only be converted to/from
788  // other pointers and integers. Check for pointer types in terms of LLVM, as
789  // some native types (like Obj-C id) may map to a pointer type.
790  if (isa<llvm::PointerType>(DstTy)) {
791  // The source value may be an integer, or a pointer.
792  if (isa<llvm::PointerType>(SrcTy))
793  return Builder.CreateBitCast(Src, DstTy, "conv");
794 
795  assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796  // First, convert to the correct width so that we control the kind of
797  // extension.
798  llvm::Type *MiddleTy = CGF.IntPtrTy;
799  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800  llvm::Value* IntResult =
801  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802  // Then, cast to pointer.
803  return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804  }
805 
806  if (isa<llvm::PointerType>(SrcTy)) {
807  // Must be an ptr to int cast.
808  assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809  return Builder.CreatePtrToInt(Src, DstTy, "conv");
810  }
811 
812  // A scalar can be splatted to an extended vector of the same element type
813  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814  // Sema should add casts to make sure that the source expression's type is
815  // the same as the vector's element type (sans qualifiers)
816  assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817  SrcType.getTypePtr() &&
818  "Splatted expr doesn't match with vector element type?");
819 
820  // Splat the element across to all elements
821  unsigned NumElements = DstTy->getVectorNumElements();
822  return Builder.CreateVectorSplat(NumElements, Src, "splat");
823  }
824 
825  // Allow bitcast from vector to integer/fp of the same size.
826  if (isa<llvm::VectorType>(SrcTy) ||
827  isa<llvm::VectorType>(DstTy))
828  return Builder.CreateBitCast(Src, DstTy, "conv");
829 
830  // Finally, we have the arithmetic types: real int/float.
831  Value *Res = nullptr;
832  llvm::Type *ResTy = DstTy;
833 
834  // An overflowing conversion has undefined behavior if either the source type
835  // or the destination type is a floating-point type.
836  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837  (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838  EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839  Loc);
840 
841  // Cast to half through float if half isn't a native type.
842  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843  // Make sure we cast in a single step if from another FP type.
844  if (SrcTy->isFloatingPointTy()) {
845  // Use the intrinsic if the half type itself isn't supported
846  // (as opposed to operations on half, available with NativeHalfType).
847  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848  return Builder.CreateCall(
849  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850  // If the half type is supported, just use an fptrunc.
851  return Builder.CreateFPTrunc(Src, DstTy);
852  }
853  DstTy = CGF.FloatTy;
854  }
855 
856  if (isa<llvm::IntegerType>(SrcTy)) {
857  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858  if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859  InputSigned = true;
860  }
861  if (isa<llvm::IntegerType>(DstTy))
862  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863  else if (InputSigned)
864  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865  else
866  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867  } else if (isa<llvm::IntegerType>(DstTy)) {
868  assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869  if (DstType->isSignedIntegerOrEnumerationType())
870  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871  else
872  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873  } else {
874  assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875  "Unknown real conversion");
876  if (DstTy->getTypeID() < SrcTy->getTypeID())
877  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878  else
879  Res = Builder.CreateFPExt(Src, DstTy, "conv");
880  }
881 
882  if (DstTy != ResTy) {
883  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884  assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885  Res = Builder.CreateCall(
886  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887  Res);
888  } else {
889  Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890  }
891  }
892 
893  return Res;
894 }
895 
896 /// Emit a conversion from the specified complex type to the specified
897 /// destination type, where the destination type is an LLVM scalar type.
898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
900  SourceLocation Loc) {
901  // Get the source element type.
902  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903 
904  // Handle conversions to bool first, they are special: comparisons against 0.
905  if (DstTy->isBooleanType()) {
906  // Complex != 0 -> (Real != 0) | (Imag != 0)
907  Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908  Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909  return Builder.CreateOr(Src.first, Src.second, "tobool");
910  }
911 
912  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913  // the imaginary part of the complex value is discarded and the value of the
914  // real part is converted according to the conversion rules for the
915  // corresponding real type.
916  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917 }
918 
919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921 }
922 
923 /// \brief Emit a sanitization check for the given "binary" operation (which
924 /// might actually be a unary increment which has been lowered to a binary
925 /// operation). The check passes if all values in \p Checks (which are \c i1),
926 /// are \c true.
927 void ScalarExprEmitter::EmitBinOpCheck(
928  ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929  assert(CGF.IsSanitizerScope);
930  StringRef CheckName;
932  SmallVector<llvm::Value *, 2> DynamicData;
933 
934  BinaryOperatorKind Opcode = Info.Opcode;
937 
938  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940  if (UO && UO->getOpcode() == UO_Minus) {
941  CheckName = "negate_overflow";
942  StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943  DynamicData.push_back(Info.RHS);
944  } else {
945  if (BinaryOperator::isShiftOp(Opcode)) {
946  // Shift LHS negative or too large, or RHS out of bounds.
947  CheckName = "shift_out_of_bounds";
948  const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949  StaticData.push_back(
950  CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951  StaticData.push_back(
952  CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954  // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955  CheckName = "divrem_overflow";
956  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957  } else {
958  // Arithmetic overflow (+, -, *).
959  switch (Opcode) {
960  case BO_Add: CheckName = "add_overflow"; break;
961  case BO_Sub: CheckName = "sub_overflow"; break;
962  case BO_Mul: CheckName = "mul_overflow"; break;
963  default: llvm_unreachable("unexpected opcode for bin op check");
964  }
965  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966  }
967  DynamicData.push_back(Info.LHS);
968  DynamicData.push_back(Info.RHS);
969  }
970 
971  CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972 }
973 
974 //===----------------------------------------------------------------------===//
975 // Visitor Methods
976 //===----------------------------------------------------------------------===//
977 
978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979  CGF.ErrorUnsupported(E, "scalar expression");
980  if (E->getType()->isVoidType())
981  return nullptr;
982  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983 }
984 
985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986  // Vector Mask Case
987  if (E->getNumSubExprs() == 2) {
988  Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
989  Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
990  Value *Mask;
991 
992  llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
993  unsigned LHSElts = LTy->getNumElements();
994 
995  Mask = RHS;
996 
997  llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
998 
999  // Mask off the high bits of each shuffle index.
1000  Value *MaskBits =
1001  llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1002  Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1003 
1004  // newv = undef
1005  // mask = mask & maskbits
1006  // for each elt
1007  // n = extract mask i
1008  // x = extract val n
1009  // newv = insert newv, x, i
1010  llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1011  MTy->getNumElements());
1012  Value* NewV = llvm::UndefValue::get(RTy);
1013  for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1014  Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1015  Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1016 
1017  Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1018  NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1019  }
1020  return NewV;
1021  }
1022 
1023  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1024  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1025 
1027  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1028  llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1029  // Check for -1 and output it as undef in the IR.
1030  if (Idx.isSigned() && Idx.isAllOnesValue())
1031  indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1032  else
1033  indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1034  }
1035 
1036  Value *SV = llvm::ConstantVector::get(indices);
1037  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1038 }
1039 
1040 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1041  QualType SrcType = E->getSrcExpr()->getType(),
1042  DstType = E->getType();
1043 
1044  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1045 
1046  SrcType = CGF.getContext().getCanonicalType(SrcType);
1047  DstType = CGF.getContext().getCanonicalType(DstType);
1048  if (SrcType == DstType) return Src;
1049 
1050  assert(SrcType->isVectorType() &&
1051  "ConvertVector source type must be a vector");
1052  assert(DstType->isVectorType() &&
1053  "ConvertVector destination type must be a vector");
1054 
1055  llvm::Type *SrcTy = Src->getType();
1056  llvm::Type *DstTy = ConvertType(DstType);
1057 
1058  // Ignore conversions like int -> uint.
1059  if (SrcTy == DstTy)
1060  return Src;
1061 
1062  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1063  DstEltType = DstType->getAs<VectorType>()->getElementType();
1064 
1065  assert(SrcTy->isVectorTy() &&
1066  "ConvertVector source IR type must be a vector");
1067  assert(DstTy->isVectorTy() &&
1068  "ConvertVector destination IR type must be a vector");
1069 
1070  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1071  *DstEltTy = DstTy->getVectorElementType();
1072 
1073  if (DstEltType->isBooleanType()) {
1074  assert((SrcEltTy->isFloatingPointTy() ||
1075  isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1076 
1077  llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1078  if (SrcEltTy->isFloatingPointTy()) {
1079  return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1080  } else {
1081  return Builder.CreateICmpNE(Src, Zero, "tobool");
1082  }
1083  }
1084 
1085  // We have the arithmetic types: real int/float.
1086  Value *Res = nullptr;
1087 
1088  if (isa<llvm::IntegerType>(SrcEltTy)) {
1089  bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1090  if (isa<llvm::IntegerType>(DstEltTy))
1091  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1092  else if (InputSigned)
1093  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1094  else
1095  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1096  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1097  assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1098  if (DstEltType->isSignedIntegerOrEnumerationType())
1099  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1100  else
1101  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1102  } else {
1103  assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1104  "Unknown real conversion");
1105  if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1106  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1107  else
1108  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1109  }
1110 
1111  return Res;
1112 }
1113 
1114 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1115  llvm::APSInt Value;
1116  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1117  if (E->isArrow())
1118  CGF.EmitScalarExpr(E->getBase());
1119  else
1120  EmitLValue(E->getBase());
1121  return Builder.getInt(Value);
1122  }
1123 
1124  return EmitLoadOfLValue(E);
1125 }
1126 
1127 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1128  TestAndClearIgnoreResultAssign();
1129 
1130  // Emit subscript expressions in rvalue context's. For most cases, this just
1131  // loads the lvalue formed by the subscript expr. However, we have to be
1132  // careful, because the base of a vector subscript is occasionally an rvalue,
1133  // so we can't get it as an lvalue.
1134  if (!E->getBase()->getType()->isVectorType())
1135  return EmitLoadOfLValue(E);
1136 
1137  // Handle the vector case. The base must be a vector, the index must be an
1138  // integer value.
1139  Value *Base = Visit(E->getBase());
1140  Value *Idx = Visit(E->getIdx());
1141  QualType IdxTy = E->getIdx()->getType();
1142 
1143  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1144  CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1145 
1146  return Builder.CreateExtractElement(Base, Idx, "vecext");
1147 }
1148 
1149 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1150  unsigned Off, llvm::Type *I32Ty) {
1151  int MV = SVI->getMaskValue(Idx);
1152  if (MV == -1)
1153  return llvm::UndefValue::get(I32Ty);
1154  return llvm::ConstantInt::get(I32Ty, Off+MV);
1155 }
1156 
1157 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1158  if (C->getBitWidth() != 32) {
1159  assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1160  C->getZExtValue()) &&
1161  "Index operand too large for shufflevector mask!");
1162  return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1163  }
1164  return C;
1165 }
1166 
1167 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1168  bool Ignore = TestAndClearIgnoreResultAssign();
1169  (void)Ignore;
1170  assert (Ignore == false && "init list ignored");
1171  unsigned NumInitElements = E->getNumInits();
1172 
1173  if (E->hadArrayRangeDesignator())
1174  CGF.ErrorUnsupported(E, "GNU array range designator extension");
1175 
1176  llvm::VectorType *VType =
1177  dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1178 
1179  if (!VType) {
1180  if (NumInitElements == 0) {
1181  // C++11 value-initialization for the scalar.
1182  return EmitNullValue(E->getType());
1183  }
1184  // We have a scalar in braces. Just use the first element.
1185  return Visit(E->getInit(0));
1186  }
1187 
1188  unsigned ResElts = VType->getNumElements();
1189 
1190  // Loop over initializers collecting the Value for each, and remembering
1191  // whether the source was swizzle (ExtVectorElementExpr). This will allow
1192  // us to fold the shuffle for the swizzle into the shuffle for the vector
1193  // initializer, since LLVM optimizers generally do not want to touch
1194  // shuffles.
1195  unsigned CurIdx = 0;
1196  bool VIsUndefShuffle = false;
1197  llvm::Value *V = llvm::UndefValue::get(VType);
1198  for (unsigned i = 0; i != NumInitElements; ++i) {
1199  Expr *IE = E->getInit(i);
1200  Value *Init = Visit(IE);
1202 
1203  llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1204 
1205  // Handle scalar elements. If the scalar initializer is actually one
1206  // element of a different vector of the same width, use shuffle instead of
1207  // extract+insert.
1208  if (!VVT) {
1209  if (isa<ExtVectorElementExpr>(IE)) {
1210  llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1211 
1212  if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1213  llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1214  Value *LHS = nullptr, *RHS = nullptr;
1215  if (CurIdx == 0) {
1216  // insert into undef -> shuffle (src, undef)
1217  // shufflemask must use an i32
1218  Args.push_back(getAsInt32(C, CGF.Int32Ty));
1219  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1220 
1221  LHS = EI->getVectorOperand();
1222  RHS = V;
1223  VIsUndefShuffle = true;
1224  } else if (VIsUndefShuffle) {
1225  // insert into undefshuffle && size match -> shuffle (v, src)
1226  llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1227  for (unsigned j = 0; j != CurIdx; ++j)
1228  Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1229  Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1230  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1231 
1232  LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1233  RHS = EI->getVectorOperand();
1234  VIsUndefShuffle = false;
1235  }
1236  if (!Args.empty()) {
1237  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1238  V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1239  ++CurIdx;
1240  continue;
1241  }
1242  }
1243  }
1244  V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1245  "vecinit");
1246  VIsUndefShuffle = false;
1247  ++CurIdx;
1248  continue;
1249  }
1250 
1251  unsigned InitElts = VVT->getNumElements();
1252 
1253  // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1254  // input is the same width as the vector being constructed, generate an
1255  // optimized shuffle of the swizzle input into the result.
1256  unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1257  if (isa<ExtVectorElementExpr>(IE)) {
1258  llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1259  Value *SVOp = SVI->getOperand(0);
1260  llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1261 
1262  if (OpTy->getNumElements() == ResElts) {
1263  for (unsigned j = 0; j != CurIdx; ++j) {
1264  // If the current vector initializer is a shuffle with undef, merge
1265  // this shuffle directly into it.
1266  if (VIsUndefShuffle) {
1267  Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1268  CGF.Int32Ty));
1269  } else {
1270  Args.push_back(Builder.getInt32(j));
1271  }
1272  }
1273  for (unsigned j = 0, je = InitElts; j != je; ++j)
1274  Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1275  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1276 
1277  if (VIsUndefShuffle)
1278  V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1279 
1280  Init = SVOp;
1281  }
1282  }
1283 
1284  // Extend init to result vector length, and then shuffle its contribution
1285  // to the vector initializer into V.
1286  if (Args.empty()) {
1287  for (unsigned j = 0; j != InitElts; ++j)
1288  Args.push_back(Builder.getInt32(j));
1289  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1290  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1291  Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1292  Mask, "vext");
1293 
1294  Args.clear();
1295  for (unsigned j = 0; j != CurIdx; ++j)
1296  Args.push_back(Builder.getInt32(j));
1297  for (unsigned j = 0; j != InitElts; ++j)
1298  Args.push_back(Builder.getInt32(j+Offset));
1299  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1300  }
1301 
1302  // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1303  // merging subsequent shuffles into this one.
1304  if (CurIdx == 0)
1305  std::swap(V, Init);
1306  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307  V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1308  VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1309  CurIdx += InitElts;
1310  }
1311 
1312  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1313  // Emit remaining default initializers.
1314  llvm::Type *EltTy = VType->getElementType();
1315 
1316  // Emit remaining default initializers
1317  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1318  Value *Idx = Builder.getInt32(CurIdx);
1319  llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1320  V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1321  }
1322  return V;
1323 }
1324 
1326  const Expr *E = CE->getSubExpr();
1327 
1328  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1329  return false;
1330 
1331  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1332  // We always assume that 'this' is never null.
1333  return false;
1334  }
1335 
1336  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1337  // And that glvalue casts are never null.
1338  if (ICE->getValueKind() != VK_RValue)
1339  return false;
1340  }
1341 
1342  return true;
1343 }
1344 
1345 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1346 // have to handle a more broad range of conversions than explicit casts, as they
1347 // handle things like function to ptr-to-function decay etc.
1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1349  Expr *E = CE->getSubExpr();
1350  QualType DestTy = CE->getType();
1351  CastKind Kind = CE->getCastKind();
1352 
1353  // These cases are generally not written to ignore the result of
1354  // evaluating their sub-expressions, so we clear this now.
1355  bool Ignored = TestAndClearIgnoreResultAssign();
1356 
1357  // Since almost all cast kinds apply to scalars, this switch doesn't have
1358  // a default case, so the compiler will warn on a missing case. The cases
1359  // are in the same order as in the CastKind enum.
1360  switch (Kind) {
1361  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362  case CK_BuiltinFnToFnPtr:
1363  llvm_unreachable("builtin functions are handled elsewhere");
1364 
1365  case CK_LValueBitCast:
1366  case CK_ObjCObjectLValueCast: {
1367  Address Addr = EmitLValue(E).getAddress();
1368  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1369  LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1370  return EmitLoadOfLValue(LV, CE->getExprLoc());
1371  }
1372 
1373  case CK_CPointerToObjCPointerCast:
1374  case CK_BlockPointerToObjCPointerCast:
1375  case CK_AnyPointerToBlockPointerCast:
1376  case CK_BitCast: {
1377  Value *Src = Visit(const_cast<Expr*>(E));
1378  llvm::Type *SrcTy = Src->getType();
1379  llvm::Type *DstTy = ConvertType(DestTy);
1380  if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1381  SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1382  llvm_unreachable("wrong cast for pointers in different address spaces"
1383  "(must be an address space cast)!");
1384  }
1385 
1386  if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1387  if (auto PT = DestTy->getAs<PointerType>())
1388  CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1389  /*MayBeNull=*/true,
1391  CE->getLocStart());
1392  }
1393 
1394  return Builder.CreateBitCast(Src, DstTy);
1395  }
1396  case CK_AddressSpaceConversion: {
1397  Value *Src = Visit(const_cast<Expr*>(E));
1398  // Since target may map different address spaces in AST to the same address
1399  // space, an address space conversion may end up as a bitcast.
1400  return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
1401  ConvertType(DestTy));
1402  }
1403  case CK_AtomicToNonAtomic:
1404  case CK_NonAtomicToAtomic:
1405  case CK_NoOp:
1406  case CK_UserDefinedConversion:
1407  return Visit(const_cast<Expr*>(E));
1408 
1409  case CK_BaseToDerived: {
1410  const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1411  assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1412 
1413  Address Base = CGF.EmitPointerWithAlignment(E);
1414  Address Derived =
1415  CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1416  CE->path_begin(), CE->path_end(),
1417  CGF.ShouldNullCheckClassCastValue(CE));
1418 
1419  // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1420  // performed and the object is not of the derived type.
1421  if (CGF.sanitizePerformTypeCheck())
1422  CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1423  Derived.getPointer(), DestTy->getPointeeType());
1424 
1425  if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1426  CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1427  Derived.getPointer(),
1428  /*MayBeNull=*/true,
1430  CE->getLocStart());
1431 
1432  return Derived.getPointer();
1433  }
1434  case CK_UncheckedDerivedToBase:
1435  case CK_DerivedToBase: {
1436  // The EmitPointerWithAlignment path does this fine; just discard
1437  // the alignment.
1438  return CGF.EmitPointerWithAlignment(CE).getPointer();
1439  }
1440 
1441  case CK_Dynamic: {
1442  Address V = CGF.EmitPointerWithAlignment(E);
1443  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1444  return CGF.EmitDynamicCast(V, DCE);
1445  }
1446 
1447  case CK_ArrayToPointerDecay:
1448  return CGF.EmitArrayToPointerDecay(E).getPointer();
1449  case CK_FunctionToPointerDecay:
1450  return EmitLValue(E).getPointer();
1451 
1452  case CK_NullToPointer:
1453  if (MustVisitNullValue(E))
1454  (void) Visit(E);
1455 
1456  return llvm::ConstantPointerNull::get(
1457  cast<llvm::PointerType>(ConvertType(DestTy)));
1458 
1459  case CK_NullToMemberPointer: {
1460  if (MustVisitNullValue(E))
1461  (void) Visit(E);
1462 
1463  const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1464  return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1465  }
1466 
1467  case CK_ReinterpretMemberPointer:
1468  case CK_BaseToDerivedMemberPointer:
1469  case CK_DerivedToBaseMemberPointer: {
1470  Value *Src = Visit(E);
1471 
1472  // Note that the AST doesn't distinguish between checked and
1473  // unchecked member pointer conversions, so we always have to
1474  // implement checked conversions here. This is inefficient when
1475  // actual control flow may be required in order to perform the
1476  // check, which it is for data member pointers (but not member
1477  // function pointers on Itanium and ARM).
1478  return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1479  }
1480 
1481  case CK_ARCProduceObject:
1482  return CGF.EmitARCRetainScalarExpr(E);
1483  case CK_ARCConsumeObject:
1484  return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1485  case CK_ARCReclaimReturnedObject:
1486  return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1487  case CK_ARCExtendBlockObject:
1488  return CGF.EmitARCExtendBlockObject(E);
1489 
1490  case CK_CopyAndAutoreleaseBlockObject:
1491  return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1492 
1493  case CK_FloatingRealToComplex:
1494  case CK_FloatingComplexCast:
1495  case CK_IntegralRealToComplex:
1496  case CK_IntegralComplexCast:
1497  case CK_IntegralComplexToFloatingComplex:
1498  case CK_FloatingComplexToIntegralComplex:
1499  case CK_ConstructorConversion:
1500  case CK_ToUnion:
1501  llvm_unreachable("scalar cast to non-scalar value");
1502 
1503  case CK_LValueToRValue:
1504  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1505  assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1506  return Visit(const_cast<Expr*>(E));
1507 
1508  case CK_IntegralToPointer: {
1509  Value *Src = Visit(const_cast<Expr*>(E));
1510 
1511  // First, convert to the correct width so that we control the kind of
1512  // extension.
1513  llvm::Type *MiddleTy = CGF.IntPtrTy;
1514  bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1515  llvm::Value* IntResult =
1516  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1517 
1518  return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1519  }
1520  case CK_PointerToIntegral:
1521  assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1522  return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1523 
1524  case CK_ToVoid: {
1525  CGF.EmitIgnoredExpr(E);
1526  return nullptr;
1527  }
1528  case CK_VectorSplat: {
1529  llvm::Type *DstTy = ConvertType(DestTy);
1530  Value *Elt = Visit(const_cast<Expr*>(E));
1531  // Splat the element across to all elements
1532  unsigned NumElements = DstTy->getVectorNumElements();
1533  return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1534  }
1535 
1536  case CK_IntegralCast:
1537  case CK_IntegralToFloating:
1538  case CK_FloatingToIntegral:
1539  case CK_FloatingCast:
1540  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1541  CE->getExprLoc());
1542  case CK_BooleanToSignedIntegral:
1543  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1544  CE->getExprLoc(),
1545  /*TreatBooleanAsSigned=*/true);
1546  case CK_IntegralToBoolean:
1547  return EmitIntToBoolConversion(Visit(E));
1548  case CK_PointerToBoolean:
1549  return EmitPointerToBoolConversion(Visit(E));
1550  case CK_FloatingToBoolean:
1551  return EmitFloatToBoolConversion(Visit(E));
1552  case CK_MemberPointerToBoolean: {
1553  llvm::Value *MemPtr = Visit(E);
1554  const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1555  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1556  }
1557 
1558  case CK_FloatingComplexToReal:
1559  case CK_IntegralComplexToReal:
1560  return CGF.EmitComplexExpr(E, false, true).first;
1561 
1562  case CK_FloatingComplexToBoolean:
1563  case CK_IntegralComplexToBoolean: {
1564  CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1565 
1566  // TODO: kill this function off, inline appropriate case here
1567  return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1568  CE->getExprLoc());
1569  }
1570 
1571  case CK_ZeroToOCLEvent: {
1572  assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1573  return llvm::Constant::getNullValue(ConvertType(DestTy));
1574  }
1575 
1576  }
1577 
1578  llvm_unreachable("unknown scalar cast");
1579 }
1580 
1581 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1583  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1584  !E->getType()->isVoidType());
1585  if (!RetAlloca.isValid())
1586  return nullptr;
1587  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1588  E->getExprLoc());
1589 }
1590 
1591 //===----------------------------------------------------------------------===//
1592 // Unary Operators
1593 //===----------------------------------------------------------------------===//
1594 
1595 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1596  llvm::Value *InVal, bool IsInc) {
1597  BinOpInfo BinOp;
1598  BinOp.LHS = InVal;
1599  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1600  BinOp.Ty = E->getType();
1601  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1602  BinOp.FPContractable = false;
1603  BinOp.E = E;
1604  return BinOp;
1605 }
1606 
1607 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1608  const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1609  llvm::Value *Amount =
1610  llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1611  StringRef Name = IsInc ? "inc" : "dec";
1612  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1614  return Builder.CreateAdd(InVal, Amount, Name);
1616  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1617  return Builder.CreateNSWAdd(InVal, Amount, Name);
1618  // Fall through.
1620  return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1621  }
1622  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1623 }
1624 
1625 llvm::Value *
1626 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1627  bool isInc, bool isPre) {
1628 
1629  QualType type = E->getSubExpr()->getType();
1630  llvm::PHINode *atomicPHI = nullptr;
1631  llvm::Value *value;
1632  llvm::Value *input;
1633 
1634  int amount = (isInc ? 1 : -1);
1635 
1636  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1637  type = atomicTy->getValueType();
1638  if (isInc && type->isBooleanType()) {
1639  llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1640  if (isPre) {
1641  Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1642  ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1643  return Builder.getTrue();
1644  }
1645  // For atomic bool increment, we just store true and return it for
1646  // preincrement, do an atomic swap with true for postincrement
1647  return Builder.CreateAtomicRMW(
1648  llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1649  llvm::AtomicOrdering::SequentiallyConsistent);
1650  }
1651  // Special case for atomic increment / decrement on integers, emit
1652  // atomicrmw instructions. We skip this if we want to be doing overflow
1653  // checking, and fall into the slow path with the atomic cmpxchg loop.
1654  if (!type->isBooleanType() && type->isIntegerType() &&
1655  !(type->isUnsignedIntegerType() &&
1656  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1657  CGF.getLangOpts().getSignedOverflowBehavior() !=
1659  llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1660  llvm::AtomicRMWInst::Sub;
1661  llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1662  llvm::Instruction::Sub;
1663  llvm::Value *amt = CGF.EmitToMemory(
1664  llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1665  llvm::Value *old = Builder.CreateAtomicRMW(aop,
1666  LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1667  return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1668  }
1669  value = EmitLoadOfLValue(LV, E->getExprLoc());
1670  input = value;
1671  // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1672  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1673  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1674  value = CGF.EmitToMemory(value, type);
1675  Builder.CreateBr(opBB);
1676  Builder.SetInsertPoint(opBB);
1677  atomicPHI = Builder.CreatePHI(value->getType(), 2);
1678  atomicPHI->addIncoming(value, startBB);
1679  value = atomicPHI;
1680  } else {
1681  value = EmitLoadOfLValue(LV, E->getExprLoc());
1682  input = value;
1683  }
1684 
1685  // Special case of integer increment that we have to check first: bool++.
1686  // Due to promotion rules, we get:
1687  // bool++ -> bool = bool + 1
1688  // -> bool = (int)bool + 1
1689  // -> bool = ((int)bool + 1 != 0)
1690  // An interesting aspect of this is that increment is always true.
1691  // Decrement does not have this property.
1692  if (isInc && type->isBooleanType()) {
1693  value = Builder.getTrue();
1694 
1695  // Most common case by far: integer increment.
1696  } else if (type->isIntegerType()) {
1697  // Note that signed integer inc/dec with width less than int can't
1698  // overflow because of promotion rules; we're just eliding a few steps here.
1699  bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1700  CGF.IntTy->getIntegerBitWidth();
1701  if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1702  value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1703  } else if (CanOverflow && type->isUnsignedIntegerType() &&
1704  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1705  value =
1706  EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1707  } else {
1708  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1709  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1710  }
1711 
1712  // Next most common: pointer increment.
1713  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1714  QualType type = ptr->getPointeeType();
1715 
1716  // VLA types don't have constant size.
1717  if (const VariableArrayType *vla
1718  = CGF.getContext().getAsVariableArrayType(type)) {
1719  llvm::Value *numElts = CGF.getVLASize(vla).first;
1720  if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1721  if (CGF.getLangOpts().isSignedOverflowDefined())
1722  value = Builder.CreateGEP(value, numElts, "vla.inc");
1723  else
1724  value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1725 
1726  // Arithmetic on function pointers (!) is just +-1.
1727  } else if (type->isFunctionType()) {
1728  llvm::Value *amt = Builder.getInt32(amount);
1729 
1730  value = CGF.EmitCastToVoidPtr(value);
1731  if (CGF.getLangOpts().isSignedOverflowDefined())
1732  value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1733  else
1734  value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1735  value = Builder.CreateBitCast(value, input->getType());
1736 
1737  // For everything else, we can just do a simple increment.
1738  } else {
1739  llvm::Value *amt = Builder.getInt32(amount);
1740  if (CGF.getLangOpts().isSignedOverflowDefined())
1741  value = Builder.CreateGEP(value, amt, "incdec.ptr");
1742  else
1743  value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1744  }
1745 
1746  // Vector increment/decrement.
1747  } else if (type->isVectorType()) {
1748  if (type->hasIntegerRepresentation()) {
1749  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1750 
1751  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1752  } else {
1753  value = Builder.CreateFAdd(
1754  value,
1755  llvm::ConstantFP::get(value->getType(), amount),
1756  isInc ? "inc" : "dec");
1757  }
1758 
1759  // Floating point.
1760  } else if (type->isRealFloatingType()) {
1761  // Add the inc/dec to the real part.
1762  llvm::Value *amt;
1763 
1764  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1765  // Another special case: half FP increment should be done via float
1766  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1767  value = Builder.CreateCall(
1768  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1769  CGF.CGM.FloatTy),
1770  input, "incdec.conv");
1771  } else {
1772  value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1773  }
1774  }
1775 
1776  if (value->getType()->isFloatTy())
1777  amt = llvm::ConstantFP::get(VMContext,
1778  llvm::APFloat(static_cast<float>(amount)));
1779  else if (value->getType()->isDoubleTy())
1780  amt = llvm::ConstantFP::get(VMContext,
1781  llvm::APFloat(static_cast<double>(amount)));
1782  else {
1783  // Remaining types are Half, LongDouble or __float128. Convert from float.
1784  llvm::APFloat F(static_cast<float>(amount));
1785  bool ignored;
1786  const llvm::fltSemantics *FS;
1787  // Don't use getFloatTypeSemantics because Half isn't
1788  // necessarily represented using the "half" LLVM type.
1789  if (value->getType()->isFP128Ty())
1790  FS = &CGF.getTarget().getFloat128Format();
1791  else if (value->getType()->isHalfTy())
1792  FS = &CGF.getTarget().getHalfFormat();
1793  else
1794  FS = &CGF.getTarget().getLongDoubleFormat();
1795  F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1796  amt = llvm::ConstantFP::get(VMContext, F);
1797  }
1798  value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1799 
1800  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1801  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1802  value = Builder.CreateCall(
1803  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1804  CGF.CGM.FloatTy),
1805  value, "incdec.conv");
1806  } else {
1807  value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1808  }
1809  }
1810 
1811  // Objective-C pointer types.
1812  } else {
1813  const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1814  value = CGF.EmitCastToVoidPtr(value);
1815 
1816  CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1817  if (!isInc) size = -size;
1818  llvm::Value *sizeValue =
1819  llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1820 
1821  if (CGF.getLangOpts().isSignedOverflowDefined())
1822  value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1823  else
1824  value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1825  value = Builder.CreateBitCast(value, input->getType());
1826  }
1827 
1828  if (atomicPHI) {
1829  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1830  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1831  auto Pair = CGF.EmitAtomicCompareExchange(
1832  LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1833  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1834  llvm::Value *success = Pair.second;
1835  atomicPHI->addIncoming(old, opBB);
1836  Builder.CreateCondBr(success, contBB, opBB);
1837  Builder.SetInsertPoint(contBB);
1838  return isPre ? value : input;
1839  }
1840 
1841  // Store the updated result through the lvalue.
1842  if (LV.isBitField())
1843  CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1844  else
1845  CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1846 
1847  // If this is a postinc, return the value read from memory, otherwise use the
1848  // updated value.
1849  return isPre ? value : input;
1850 }
1851 
1852 
1853 
1854 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1855  TestAndClearIgnoreResultAssign();
1856  // Emit unary minus with EmitSub so we handle overflow cases etc.
1857  BinOpInfo BinOp;
1858  BinOp.RHS = Visit(E->getSubExpr());
1859 
1860  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1861  BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1862  else
1863  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1864  BinOp.Ty = E->getType();
1865  BinOp.Opcode = BO_Sub;
1866  BinOp.FPContractable = false;
1867  BinOp.E = E;
1868  return EmitSub(BinOp);
1869 }
1870 
1871 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1872  TestAndClearIgnoreResultAssign();
1873  Value *Op = Visit(E->getSubExpr());
1874  return Builder.CreateNot(Op, "neg");
1875 }
1876 
1877 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1878  // Perform vector logical not on comparison with zero vector.
1879  if (E->getType()->isExtVectorType()) {
1880  Value *Oper = Visit(E->getSubExpr());
1881  Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1882  Value *Result;
1883  if (Oper->getType()->isFPOrFPVectorTy())
1884  Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1885  else
1886  Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1887  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1888  }
1889 
1890  // Compare operand to zero.
1891  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1892 
1893  // Invert value.
1894  // TODO: Could dynamically modify easy computations here. For example, if
1895  // the operand is an icmp ne, turn into icmp eq.
1896  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1897 
1898  // ZExt result to the expr type.
1899  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1900 }
1901 
1902 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1903  // Try folding the offsetof to a constant.
1904  llvm::APSInt Value;
1905  if (E->EvaluateAsInt(Value, CGF.getContext()))
1906  return Builder.getInt(Value);
1907 
1908  // Loop over the components of the offsetof to compute the value.
1909  unsigned n = E->getNumComponents();
1910  llvm::Type* ResultType = ConvertType(E->getType());
1911  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1912  QualType CurrentType = E->getTypeSourceInfo()->getType();
1913  for (unsigned i = 0; i != n; ++i) {
1914  OffsetOfNode ON = E->getComponent(i);
1915  llvm::Value *Offset = nullptr;
1916  switch (ON.getKind()) {
1917  case OffsetOfNode::Array: {
1918  // Compute the index
1919  Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1920  llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1921  bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1922  Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1923 
1924  // Save the element type
1925  CurrentType =
1926  CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1927 
1928  // Compute the element size
1929  llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1930  CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1931 
1932  // Multiply out to compute the result
1933  Offset = Builder.CreateMul(Idx, ElemSize);
1934  break;
1935  }
1936 
1937  case OffsetOfNode::Field: {
1938  FieldDecl *MemberDecl = ON.getField();
1939  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1940  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1941 
1942  // Compute the index of the field in its parent.
1943  unsigned i = 0;
1944  // FIXME: It would be nice if we didn't have to loop here!
1945  for (RecordDecl::field_iterator Field = RD->field_begin(),
1946  FieldEnd = RD->field_end();
1947  Field != FieldEnd; ++Field, ++i) {
1948  if (*Field == MemberDecl)
1949  break;
1950  }
1951  assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1952 
1953  // Compute the offset to the field
1954  int64_t OffsetInt = RL.getFieldOffset(i) /
1955  CGF.getContext().getCharWidth();
1956  Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1957 
1958  // Save the element type.
1959  CurrentType = MemberDecl->getType();
1960  break;
1961  }
1962 
1964  llvm_unreachable("dependent __builtin_offsetof");
1965 
1966  case OffsetOfNode::Base: {
1967  if (ON.getBase()->isVirtual()) {
1968  CGF.ErrorUnsupported(E, "virtual base in offsetof");
1969  continue;
1970  }
1971 
1972  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1973  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1974 
1975  // Save the element type.
1976  CurrentType = ON.getBase()->getType();
1977 
1978  // Compute the offset to the base.
1979  const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1980  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1981  CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1982  Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1983  break;
1984  }
1985  }
1986  Result = Builder.CreateAdd(Result, Offset);
1987  }
1988  return Result;
1989 }
1990 
1991 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1992 /// argument of the sizeof expression as an integer.
1993 Value *
1994 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1995  const UnaryExprOrTypeTraitExpr *E) {
1996  QualType TypeToSize = E->getTypeOfArgument();
1997  if (E->getKind() == UETT_SizeOf) {
1998  if (const VariableArrayType *VAT =
1999  CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2000  if (E->isArgumentType()) {
2001  // sizeof(type) - make sure to emit the VLA size.
2002  CGF.EmitVariablyModifiedType(TypeToSize);
2003  } else {
2004  // C99 6.5.3.4p2: If the argument is an expression of type
2005  // VLA, it is evaluated.
2006  CGF.EmitIgnoredExpr(E->getArgumentExpr());
2007  }
2008 
2009  QualType eltType;
2010  llvm::Value *numElts;
2011  std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2012 
2013  llvm::Value *size = numElts;
2014 
2015  // Scale the number of non-VLA elements by the non-VLA element size.
2016  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2017  if (!eltSize.isOne())
2018  size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2019 
2020  return size;
2021  }
2022  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2023  auto Alignment =
2024  CGF.getContext()
2025  .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2027  .getQuantity();
2028  return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2029  }
2030 
2031  // If this isn't sizeof(vla), the result must be constant; use the constant
2032  // folding logic so we don't have to duplicate it here.
2033  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2034 }
2035 
2036 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2037  Expr *Op = E->getSubExpr();
2038  if (Op->getType()->isAnyComplexType()) {
2039  // If it's an l-value, load through the appropriate subobject l-value.
2040  // Note that we have to ask E because Op might be an l-value that
2041  // this won't work for, e.g. an Obj-C property.
2042  if (E->isGLValue())
2043  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2044  E->getExprLoc()).getScalarVal();
2045 
2046  // Otherwise, calculate and project.
2047  return CGF.EmitComplexExpr(Op, false, true).first;
2048  }
2049 
2050  return Visit(Op);
2051 }
2052 
2053 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2054  Expr *Op = E->getSubExpr();
2055  if (Op->getType()->isAnyComplexType()) {
2056  // If it's an l-value, load through the appropriate subobject l-value.
2057  // Note that we have to ask E because Op might be an l-value that
2058  // this won't work for, e.g. an Obj-C property.
2059  if (Op->isGLValue())
2060  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2061  E->getExprLoc()).getScalarVal();
2062 
2063  // Otherwise, calculate and project.
2064  return CGF.EmitComplexExpr(Op, true, false).second;
2065  }
2066 
2067  // __imag on a scalar returns zero. Emit the subexpr to ensure side
2068  // effects are evaluated, but not the actual value.
2069  if (Op->isGLValue())
2070  CGF.EmitLValue(Op);
2071  else
2072  CGF.EmitScalarExpr(Op, true);
2073  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2074 }
2075 
2076 //===----------------------------------------------------------------------===//
2077 // Binary Operators
2078 //===----------------------------------------------------------------------===//
2079 
2080 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2081  TestAndClearIgnoreResultAssign();
2082  BinOpInfo Result;
2083  Result.LHS = Visit(E->getLHS());
2084  Result.RHS = Visit(E->getRHS());
2085  Result.Ty = E->getType();
2086  Result.Opcode = E->getOpcode();
2087  Result.FPContractable = E->isFPContractable();
2088  Result.E = E;
2089  return Result;
2090 }
2091 
2092 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2093  const CompoundAssignOperator *E,
2094  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2095  Value *&Result) {
2096  QualType LHSTy = E->getLHS()->getType();
2097  BinOpInfo OpInfo;
2098 
2100  return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2101 
2102  // Emit the RHS first. __block variables need to have the rhs evaluated
2103  // first, plus this should improve codegen a little.
2104  OpInfo.RHS = Visit(E->getRHS());
2105  OpInfo.Ty = E->getComputationResultType();
2106  OpInfo.Opcode = E->getOpcode();
2107  OpInfo.FPContractable = E->isFPContractable();
2108  OpInfo.E = E;
2109  // Load/convert the LHS.
2110  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2111 
2112  llvm::PHINode *atomicPHI = nullptr;
2113  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2114  QualType type = atomicTy->getValueType();
2115  if (!type->isBooleanType() && type->isIntegerType() &&
2116  !(type->isUnsignedIntegerType() &&
2117  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2118  CGF.getLangOpts().getSignedOverflowBehavior() !=
2120  llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2121  switch (OpInfo.Opcode) {
2122  // We don't have atomicrmw operands for *, %, /, <<, >>
2123  case BO_MulAssign: case BO_DivAssign:
2124  case BO_RemAssign:
2125  case BO_ShlAssign:
2126  case BO_ShrAssign:
2127  break;
2128  case BO_AddAssign:
2129  aop = llvm::AtomicRMWInst::Add;
2130  break;
2131  case BO_SubAssign:
2132  aop = llvm::AtomicRMWInst::Sub;
2133  break;
2134  case BO_AndAssign:
2136  break;
2137  case BO_XorAssign:
2138  aop = llvm::AtomicRMWInst::Xor;
2139  break;
2140  case BO_OrAssign:
2141  aop = llvm::AtomicRMWInst::Or;
2142  break;
2143  default:
2144  llvm_unreachable("Invalid compound assignment type");
2145  }
2146  if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2147  llvm::Value *amt = CGF.EmitToMemory(
2148  EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2149  E->getExprLoc()),
2150  LHSTy);
2151  Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2152  llvm::AtomicOrdering::SequentiallyConsistent);
2153  return LHSLV;
2154  }
2155  }
2156  // FIXME: For floating point types, we should be saving and restoring the
2157  // floating point environment in the loop.
2158  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2159  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2160  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2161  OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2162  Builder.CreateBr(opBB);
2163  Builder.SetInsertPoint(opBB);
2164  atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2165  atomicPHI->addIncoming(OpInfo.LHS, startBB);
2166  OpInfo.LHS = atomicPHI;
2167  }
2168  else
2169  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2170 
2171  SourceLocation Loc = E->getExprLoc();
2172  OpInfo.LHS =
2173  EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2174 
2175  // Expand the binary operator.
2176  Result = (this->*Func)(OpInfo);
2177 
2178  // Convert the result back to the LHS type.
2179  Result =
2180  EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2181 
2182  if (atomicPHI) {
2183  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2184  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2185  auto Pair = CGF.EmitAtomicCompareExchange(
2186  LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2187  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2188  llvm::Value *success = Pair.second;
2189  atomicPHI->addIncoming(old, opBB);
2190  Builder.CreateCondBr(success, contBB, opBB);
2191  Builder.SetInsertPoint(contBB);
2192  return LHSLV;
2193  }
2194 
2195  // Store the result value into the LHS lvalue. Bit-fields are handled
2196  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2197  // 'An assignment expression has the value of the left operand after the
2198  // assignment...'.
2199  if (LHSLV.isBitField())
2200  CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2201  else
2202  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2203 
2204  return LHSLV;
2205 }
2206 
2207 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2208  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2209  bool Ignore = TestAndClearIgnoreResultAssign();
2210  Value *RHS;
2211  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2212 
2213  // If the result is clearly ignored, return now.
2214  if (Ignore)
2215  return nullptr;
2216 
2217  // The result of an assignment in C is the assigned r-value.
2218  if (!CGF.getLangOpts().CPlusPlus)
2219  return RHS;
2220 
2221  // If the lvalue is non-volatile, return the computed value of the assignment.
2222  if (!LHS.isVolatileQualified())
2223  return RHS;
2224 
2225  // Otherwise, reload the value.
2226  return EmitLoadOfLValue(LHS, E->getExprLoc());
2227 }
2228 
2229 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2230  const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2232 
2233  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2234  Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2235  SanitizerKind::IntegerDivideByZero));
2236  }
2237 
2238  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2239  Ops.Ty->hasSignedIntegerRepresentation()) {
2240  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2241 
2242  llvm::Value *IntMin =
2243  Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2244  llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2245 
2246  llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2247  llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2248  llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2249  Checks.push_back(
2250  std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2251  }
2252 
2253  if (Checks.size() > 0)
2254  EmitBinOpCheck(Checks, Ops);
2255 }
2256 
2257 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2258  {
2259  CodeGenFunction::SanitizerScope SanScope(&CGF);
2260  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2261  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2262  Ops.Ty->isIntegerType()) {
2263  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2264  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2265  } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2266  Ops.Ty->isRealFloatingType()) {
2267  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2268  llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2269  EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2270  Ops);
2271  }
2272  }
2273 
2274  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2275  llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2276  if (CGF.getLangOpts().OpenCL) {
2277  // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2278  llvm::Type *ValTy = Val->getType();
2279  if (ValTy->isFloatTy() ||
2280  (isa<llvm::VectorType>(ValTy) &&
2281  cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2282  CGF.SetFPAccuracy(Val, 2.5);
2283  }
2284  return Val;
2285  }
2286  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2287  return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2288  else
2289  return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2290 }
2291 
2292 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2293  // Rem in C can't be a floating point type: C99 6.5.5p2.
2294  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2295  CodeGenFunction::SanitizerScope SanScope(&CGF);
2296  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2297 
2298  if (Ops.Ty->isIntegerType())
2299  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2300  }
2301 
2302  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2303  return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2304  else
2305  return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2306 }
2307 
2308 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2309  unsigned IID;
2310  unsigned OpID = 0;
2311 
2312  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2313  switch (Ops.Opcode) {
2314  case BO_Add:
2315  case BO_AddAssign:
2316  OpID = 1;
2317  IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2318  llvm::Intrinsic::uadd_with_overflow;
2319  break;
2320  case BO_Sub:
2321  case BO_SubAssign:
2322  OpID = 2;
2323  IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2324  llvm::Intrinsic::usub_with_overflow;
2325  break;
2326  case BO_Mul:
2327  case BO_MulAssign:
2328  OpID = 3;
2329  IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2330  llvm::Intrinsic::umul_with_overflow;
2331  break;
2332  default:
2333  llvm_unreachable("Unsupported operation for overflow detection");
2334  }
2335  OpID <<= 1;
2336  if (isSigned)
2337  OpID |= 1;
2338 
2339  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2340 
2341  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2342 
2343  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2344  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2345  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2346 
2347  // Handle overflow with llvm.trap if no custom handler has been specified.
2348  const std::string *handlerName =
2349  &CGF.getLangOpts().OverflowHandler;
2350  if (handlerName->empty()) {
2351  // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2352  // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2353  if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2354  CodeGenFunction::SanitizerScope SanScope(&CGF);
2355  llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2356  SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2357  : SanitizerKind::UnsignedIntegerOverflow;
2358  EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2359  } else
2360  CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2361  return result;
2362  }
2363 
2364  // Branch in case of overflow.
2365  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2366  llvm::Function::iterator insertPt = initialBB->getIterator();
2367  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2368  &*std::next(insertPt));
2369  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2370 
2371  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2372 
2373  // If an overflow handler is set, then we want to call it and then use its
2374  // result, if it returns.
2375  Builder.SetInsertPoint(overflowBB);
2376 
2377  // Get the overflow handler.
2378  llvm::Type *Int8Ty = CGF.Int8Ty;
2379  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2380  llvm::FunctionType *handlerTy =
2381  llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2382  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2383 
2384  // Sign extend the args to 64-bit, so that we can use the same handler for
2385  // all types of overflow.
2386  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2387  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2388 
2389  // Call the handler with the two arguments, the operation, and the size of
2390  // the result.
2391  llvm::Value *handlerArgs[] = {
2392  lhs,
2393  rhs,
2394  Builder.getInt8(OpID),
2395  Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2396  };
2397  llvm::Value *handlerResult =
2398  CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2399 
2400  // Truncate the result back to the desired size.
2401  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2402  Builder.CreateBr(continueBB);
2403 
2404  Builder.SetInsertPoint(continueBB);
2405  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2406  phi->addIncoming(result, initialBB);
2407  phi->addIncoming(handlerResult, overflowBB);
2408 
2409  return phi;
2410 }
2411 
2412 /// Emit pointer + index arithmetic.
2414  const BinOpInfo &op,
2415  bool isSubtraction) {
2416  // Must have binary (not unary) expr here. Unary pointer
2417  // increment/decrement doesn't use this path.
2418  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2419 
2420  Value *pointer = op.LHS;
2421  Expr *pointerOperand = expr->getLHS();
2422  Value *index = op.RHS;
2423  Expr *indexOperand = expr->getRHS();
2424 
2425  // In a subtraction, the LHS is always the pointer.
2426  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2427  std::swap(pointer, index);
2428  std::swap(pointerOperand, indexOperand);
2429  }
2430 
2431  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2432  if (width != CGF.PointerWidthInBits) {
2433  // Zero-extend or sign-extend the pointer value according to
2434  // whether the index is signed or not.
2435  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2436  index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2437  "idx.ext");
2438  }
2439 
2440  // If this is subtraction, negate the index.
2441  if (isSubtraction)
2442  index = CGF.Builder.CreateNeg(index, "idx.neg");
2443 
2444  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2445  CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2446  /*Accessed*/ false);
2447 
2448  const PointerType *pointerType
2449  = pointerOperand->getType()->getAs<PointerType>();
2450  if (!pointerType) {
2451  QualType objectType = pointerOperand->getType()
2453  ->getPointeeType();
2454  llvm::Value *objectSize
2455  = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2456 
2457  index = CGF.Builder.CreateMul(index, objectSize);
2458 
2459  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2460  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2461  return CGF.Builder.CreateBitCast(result, pointer->getType());
2462  }
2463 
2464  QualType elementType = pointerType->getPointeeType();
2465  if (const VariableArrayType *vla
2466  = CGF.getContext().getAsVariableArrayType(elementType)) {
2467  // The element count here is the total number of non-VLA elements.
2468  llvm::Value *numElements = CGF.getVLASize(vla).first;
2469 
2470  // Effectively, the multiply by the VLA size is part of the GEP.
2471  // GEP indexes are signed, and scaling an index isn't permitted to
2472  // signed-overflow, so we use the same semantics for our explicit
2473  // multiply. We suppress this if overflow is not undefined behavior.
2474  if (CGF.getLangOpts().isSignedOverflowDefined()) {
2475  index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2476  pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2477  } else {
2478  index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2479  pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2480  }
2481  return pointer;
2482  }
2483 
2484  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2485  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2486  // future proof.
2487  if (elementType->isVoidType() || elementType->isFunctionType()) {
2488  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2489  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2490  return CGF.Builder.CreateBitCast(result, pointer->getType());
2491  }
2492 
2494  return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2495 
2496  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2497 }
2498 
2499 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2500 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2501 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2502 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2503 // efficient operations.
2504 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2505  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2506  bool negMul, bool negAdd) {
2507  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2508 
2509  Value *MulOp0 = MulOp->getOperand(0);
2510  Value *MulOp1 = MulOp->getOperand(1);
2511  if (negMul) {
2512  MulOp0 =
2513  Builder.CreateFSub(
2514  llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2515  "neg");
2516  } else if (negAdd) {
2517  Addend =
2518  Builder.CreateFSub(
2519  llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2520  "neg");
2521  }
2522 
2523  Value *FMulAdd = Builder.CreateCall(
2524  CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2525  {MulOp0, MulOp1, Addend});
2526  MulOp->eraseFromParent();
2527 
2528  return FMulAdd;
2529 }
2530 
2531 // Check whether it would be legal to emit an fmuladd intrinsic call to
2532 // represent op and if so, build the fmuladd.
2533 //
2534 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2535 // Does NOT check the type of the operation - it's assumed that this function
2536 // will be called from contexts where it's known that the type is contractable.
2537 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2538  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2539  bool isSub=false) {
2540 
2541  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2542  op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2543  "Only fadd/fsub can be the root of an fmuladd.");
2544 
2545  // Check whether this op is marked as fusable.
2546  if (!op.FPContractable)
2547  return nullptr;
2548 
2549  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2550  // either disabled, or handled entirely by the LLVM backend).
2551  if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2552  return nullptr;
2553 
2554  // We have a potentially fusable op. Look for a mul on one of the operands.
2555  // Also, make sure that the mul result isn't used directly. In that case,
2556  // there's no point creating a muladd operation.
2557  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2558  if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2559  LHSBinOp->use_empty())
2560  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2561  }
2562  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2563  if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2564  RHSBinOp->use_empty())
2565  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2566  }
2567 
2568  return nullptr;
2569 }
2570 
2571 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2572  if (op.LHS->getType()->isPointerTy() ||
2573  op.RHS->getType()->isPointerTy())
2574  return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2575 
2576  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2577  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2579  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2581  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2582  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2583  // Fall through.
2585  return EmitOverflowCheckedBinOp(op);
2586  }
2587  }
2588 
2589  if (op.Ty->isUnsignedIntegerType() &&
2590  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2591  return EmitOverflowCheckedBinOp(op);
2592 
2593  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2594  // Try to form an fmuladd.
2595  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2596  return FMulAdd;
2597 
2598  return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2599  }
2600 
2601  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2602 }
2603 
2604 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2605  // The LHS is always a pointer if either side is.
2606  if (!op.LHS->getType()->isPointerTy()) {
2607  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2608  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2610  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2612  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2613  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2614  // Fall through.
2616  return EmitOverflowCheckedBinOp(op);
2617  }
2618  }
2619 
2620  if (op.Ty->isUnsignedIntegerType() &&
2621  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2622  return EmitOverflowCheckedBinOp(op);
2623 
2624  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2625  // Try to form an fmuladd.
2626  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2627  return FMulAdd;
2628  return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2629  }
2630 
2631  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2632  }
2633 
2634  // If the RHS is not a pointer, then we have normal pointer
2635  // arithmetic.
2636  if (!op.RHS->getType()->isPointerTy())
2637  return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2638 
2639  // Otherwise, this is a pointer subtraction.
2640 
2641  // Do the raw subtraction part.
2642  llvm::Value *LHS
2643  = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2644  llvm::Value *RHS
2645  = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2646  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2647 
2648  // Okay, figure out the element size.
2649  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2650  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2651 
2652  llvm::Value *divisor = nullptr;
2653 
2654  // For a variable-length array, this is going to be non-constant.
2655  if (const VariableArrayType *vla
2656  = CGF.getContext().getAsVariableArrayType(elementType)) {
2657  llvm::Value *numElements;
2658  std::tie(numElements, elementType) = CGF.getVLASize(vla);
2659 
2660  divisor = numElements;
2661 
2662  // Scale the number of non-VLA elements by the non-VLA element size.
2663  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2664  if (!eltSize.isOne())
2665  divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2666 
2667  // For everything elese, we can just compute it, safe in the
2668  // assumption that Sema won't let anything through that we can't
2669  // safely compute the size of.
2670  } else {
2671  CharUnits elementSize;
2672  // Handle GCC extension for pointer arithmetic on void* and
2673  // function pointer types.
2674  if (elementType->isVoidType() || elementType->isFunctionType())
2675  elementSize = CharUnits::One();
2676  else
2677  elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2678 
2679  // Don't even emit the divide for element size of 1.
2680  if (elementSize.isOne())
2681  return diffInChars;
2682 
2683  divisor = CGF.CGM.getSize(elementSize);
2684  }
2685 
2686  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2687  // pointer difference in C is only defined in the case where both operands
2688  // are pointing to elements of an array.
2689  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2690 }
2691 
2692 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2693  llvm::IntegerType *Ty;
2694  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2695  Ty = cast<llvm::IntegerType>(VT->getElementType());
2696  else
2697  Ty = cast<llvm::IntegerType>(LHS->getType());
2698  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2699 }
2700 
2701 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2702  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2703  // RHS to the same size as the LHS.
2704  Value *RHS = Ops.RHS;
2705  if (Ops.LHS->getType() != RHS->getType())
2706  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2707 
2708  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2709  Ops.Ty->hasSignedIntegerRepresentation() &&
2710  !CGF.getLangOpts().isSignedOverflowDefined();
2711  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2712  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2713  if (CGF.getLangOpts().OpenCL)
2714  RHS =
2715  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2716  else if ((SanitizeBase || SanitizeExponent) &&
2717  isa<llvm::IntegerType>(Ops.LHS->getType())) {
2718  CodeGenFunction::SanitizerScope SanScope(&CGF);
2720  llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2721  llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2722 
2723  if (SanitizeExponent) {
2724  Checks.push_back(
2725  std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2726  }
2727 
2728  if (SanitizeBase) {
2729  // Check whether we are shifting any non-zero bits off the top of the
2730  // integer. We only emit this check if exponent is valid - otherwise
2731  // instructions below will have undefined behavior themselves.
2732  llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2733  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2734  llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2735  Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2736  CGF.EmitBlock(CheckShiftBase);
2737  llvm::Value *BitsShiftedOff =
2738  Builder.CreateLShr(Ops.LHS,
2739  Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2740  /*NUW*/true, /*NSW*/true),
2741  "shl.check");
2742  if (CGF.getLangOpts().CPlusPlus) {
2743  // In C99, we are not permitted to shift a 1 bit into the sign bit.
2744  // Under C++11's rules, shifting a 1 bit into the sign bit is
2745  // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2746  // define signed left shifts, so we use the C99 and C++11 rules there).
2747  llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2748  BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2749  }
2750  llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2751  llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2752  CGF.EmitBlock(Cont);
2753  llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2754  BaseCheck->addIncoming(Builder.getTrue(), Orig);
2755  BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2756  Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2757  }
2758 
2759  assert(!Checks.empty());
2760  EmitBinOpCheck(Checks, Ops);
2761  }
2762 
2763  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2764 }
2765 
2766 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2767  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2768  // RHS to the same size as the LHS.
2769  Value *RHS = Ops.RHS;
2770  if (Ops.LHS->getType() != RHS->getType())
2771  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2772 
2773  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2774  if (CGF.getLangOpts().OpenCL)
2775  RHS =
2776  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2777  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2778  isa<llvm::IntegerType>(Ops.LHS->getType())) {
2779  CodeGenFunction::SanitizerScope SanScope(&CGF);
2780  llvm::Value *Valid =
2781  Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2782  EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2783  }
2784 
2785  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2786  return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2787  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2788 }
2789 
2791 // return corresponding comparison intrinsic for given vector type
2793  BuiltinType::Kind ElemKind) {
2794  switch (ElemKind) {
2795  default: llvm_unreachable("unexpected element type");
2796  case BuiltinType::Char_U:
2797  case BuiltinType::UChar:
2798  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2799  llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2800  case BuiltinType::Char_S:
2801  case BuiltinType::SChar:
2802  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2803  llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2804  case BuiltinType::UShort:
2805  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2806  llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2807  case BuiltinType::Short:
2808  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2809  llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2810  case BuiltinType::UInt:
2811  case BuiltinType::ULong:
2812  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2813  llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2814  case BuiltinType::Int:
2815  case BuiltinType::Long:
2816  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2817  llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2818  case BuiltinType::Float:
2819  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2820  llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2821  }
2822 }
2823 
2824 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2825  llvm::CmpInst::Predicate UICmpOpc,
2826  llvm::CmpInst::Predicate SICmpOpc,
2827  llvm::CmpInst::Predicate FCmpOpc) {
2828  TestAndClearIgnoreResultAssign();
2829  Value *Result;
2830  QualType LHSTy = E->getLHS()->getType();
2831  QualType RHSTy = E->getRHS()->getType();
2832  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2833  assert(E->getOpcode() == BO_EQ ||
2834  E->getOpcode() == BO_NE);
2835  Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2836  Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2837  Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2838  CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2839  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2840  Value *LHS = Visit(E->getLHS());
2841  Value *RHS = Visit(E->getRHS());
2842 
2843  // If AltiVec, the comparison results in a numeric type, so we use
2844  // intrinsics comparing vectors and giving 0 or 1 as a result
2845  if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2846  // constants for mapping CR6 register bits to predicate result
2847  enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2848 
2849  llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2850 
2851  // in several cases vector arguments order will be reversed
2852  Value *FirstVecArg = LHS,
2853  *SecondVecArg = RHS;
2854 
2855  QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2856  const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2857  BuiltinType::Kind ElementKind = BTy->getKind();
2858 
2859  switch(E->getOpcode()) {
2860  default: llvm_unreachable("is not a comparison operation");
2861  case BO_EQ:
2862  CR6 = CR6_LT;
2863  ID = GetIntrinsic(VCMPEQ, ElementKind);
2864  break;
2865  case BO_NE:
2866  CR6 = CR6_EQ;
2867  ID = GetIntrinsic(VCMPEQ, ElementKind);
2868  break;
2869  case BO_LT:
2870  CR6 = CR6_LT;
2871  ID = GetIntrinsic(VCMPGT, ElementKind);
2872  std::swap(FirstVecArg, SecondVecArg);
2873  break;
2874  case BO_GT:
2875  CR6 = CR6_LT;
2876  ID = GetIntrinsic(VCMPGT, ElementKind);
2877  break;
2878  case BO_LE:
2879  if (ElementKind == BuiltinType::Float) {
2880  CR6 = CR6_LT;
2881  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2882  std::swap(FirstVecArg, SecondVecArg);
2883  }
2884  else {
2885  CR6 = CR6_EQ;
2886  ID = GetIntrinsic(VCMPGT, ElementKind);
2887  }
2888  break;
2889  case BO_GE:
2890  if (ElementKind == BuiltinType::Float) {
2891  CR6 = CR6_LT;
2892  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2893  }
2894  else {
2895  CR6 = CR6_EQ;
2896  ID = GetIntrinsic(VCMPGT, ElementKind);
2897  std::swap(FirstVecArg, SecondVecArg);
2898  }
2899  break;
2900  }
2901 
2902  Value *CR6Param = Builder.getInt32(CR6);
2903  llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2904  Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2905  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2906  E->getExprLoc());
2907  }
2908 
2909  if (LHS->getType()->isFPOrFPVectorTy()) {
2910  Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2911  } else if (LHSTy->hasSignedIntegerRepresentation()) {
2912  Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2913  } else {
2914  // Unsigned integers and pointers.
2915  Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2916  }
2917 
2918  // If this is a vector comparison, sign extend the result to the appropriate
2919  // vector integer type and return it (don't convert to bool).
2920  if (LHSTy->isVectorType())
2921  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2922 
2923  } else {
2924  // Complex Comparison: can only be an equality comparison.
2926  QualType CETy;
2927  if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2928  LHS = CGF.EmitComplexExpr(E->getLHS());
2929  CETy = CTy->getElementType();
2930  } else {
2931  LHS.first = Visit(E->getLHS());
2932  LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2933  CETy = LHSTy;
2934  }
2935  if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2936  RHS = CGF.EmitComplexExpr(E->getRHS());
2937  assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2938  CTy->getElementType()) &&
2939  "The element types must always match.");
2940  (void)CTy;
2941  } else {
2942  RHS.first = Visit(E->getRHS());
2943  RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2944  assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2945  "The element types must always match.");
2946  }
2947 
2948  Value *ResultR, *ResultI;
2949  if (CETy->isRealFloatingType()) {
2950  ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2951  ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2952  } else {
2953  // Complex comparisons can only be equality comparisons. As such, signed
2954  // and unsigned opcodes are the same.
2955  ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2956  ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2957  }
2958 
2959  if (E->getOpcode() == BO_EQ) {
2960  Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2961  } else {
2962  assert(E->getOpcode() == BO_NE &&
2963  "Complex comparison other than == or != ?");
2964  Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2965  }
2966  }
2967 
2968  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2969  E->getExprLoc());
2970 }
2971 
2972 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2973  bool Ignore = TestAndClearIgnoreResultAssign();
2974 
2975  Value *RHS;
2976  LValue LHS;
2977 
2978  switch (E->getLHS()->getType().getObjCLifetime()) {
2980  std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2981  break;
2982 
2984  std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2985  break;
2986 
2988  std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
2989  break;
2990 
2991  case Qualifiers::OCL_Weak:
2992  RHS = Visit(E->getRHS());
2993  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2994  RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2995  break;
2996 
2997  case Qualifiers::OCL_None:
2998  // __block variables need to have the rhs evaluated first, plus
2999  // this should improve codegen just a little.
3000  RHS = Visit(E->getRHS());
3001  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3002 
3003  // Store the value into the LHS. Bit-fields are handled specially
3004  // because the result is altered by the store, i.e., [C99 6.5.16p1]
3005  // 'An assignment expression has the value of the left operand after
3006  // the assignment...'.
3007  if (LHS.isBitField())
3008  CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3009  else
3010  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3011  }
3012 
3013  // If the result is clearly ignored, return now.
3014  if (Ignore)
3015  return nullptr;
3016 
3017  // The result of an assignment in C is the assigned r-value.
3018  if (!CGF.getLangOpts().CPlusPlus)
3019  return RHS;
3020 
3021  // If the lvalue is non-volatile, return the computed value of the assignment.
3022  if (!LHS.isVolatileQualified())
3023  return RHS;
3024 
3025  // Otherwise, reload the value.
3026  return EmitLoadOfLValue(LHS, E->getExprLoc());
3027 }
3028 
3029 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3030  // Perform vector logical and on comparisons with zero vectors.
3031  if (E->getType()->isVectorType()) {
3032  CGF.incrementProfileCounter(E);
3033 
3034  Value *LHS = Visit(E->getLHS());
3035  Value *RHS = Visit(E->getRHS());
3036  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3037  if (LHS->getType()->isFPOrFPVectorTy()) {
3038  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3039  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3040  } else {
3041  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3042  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3043  }
3044  Value *And = Builder.CreateAnd(LHS, RHS);
3045  return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3046  }
3047 
3048  llvm::Type *ResTy = ConvertType(E->getType());
3049 
3050  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3051  // If we have 1 && X, just emit X without inserting the control flow.
3052  bool LHSCondVal;
3053  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3054  if (LHSCondVal) { // If we have 1 && X, just emit X.
3055  CGF.incrementProfileCounter(E);
3056 
3057  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3058  // ZExt result to int or bool.
3059  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3060  }
3061 
3062  // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3063  if (!CGF.ContainsLabel(E->getRHS()))
3064  return llvm::Constant::getNullValue(ResTy);
3065  }
3066 
3067  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3068  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3069 
3071 
3072  // Branch on the LHS first. If it is false, go to the failure (cont) block.
3073  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3074  CGF.getProfileCount(E->getRHS()));
3075 
3076  // Any edges into the ContBlock are now from an (indeterminate number of)
3077  // edges from this first condition. All of these values will be false. Start
3078  // setting up the PHI node in the Cont Block for this.
3079  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3080  "", ContBlock);
3081  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3082  PI != PE; ++PI)
3083  PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3084 
3085  eval.begin(CGF);
3086  CGF.EmitBlock(RHSBlock);
3087  CGF.incrementProfileCounter(E);
3088  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3089  eval.end(CGF);
3090 
3091  // Reaquire the RHS block, as there may be subblocks inserted.
3092  RHSBlock = Builder.GetInsertBlock();
3093 
3094  // Emit an unconditional branch from this block to ContBlock.
3095  {
3096  // There is no need to emit line number for unconditional branch.
3097  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3098  CGF.EmitBlock(ContBlock);
3099  }
3100  // Insert an entry into the phi node for the edge with the value of RHSCond.
3101  PN->addIncoming(RHSCond, RHSBlock);
3102 
3103  // ZExt result to int.
3104  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3105 }
3106 
3107 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3108  // Perform vector logical or on comparisons with zero vectors.
3109  if (E->getType()->isVectorType()) {
3110  CGF.incrementProfileCounter(E);
3111 
3112  Value *LHS = Visit(E->getLHS());
3113  Value *RHS = Visit(E->getRHS());
3114  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3115  if (LHS->getType()->isFPOrFPVectorTy()) {
3116  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3117  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3118  } else {
3119  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3120  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3121  }
3122  Value *Or = Builder.CreateOr(LHS, RHS);
3123  return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3124  }
3125 
3126  llvm::Type *ResTy = ConvertType(E->getType());
3127 
3128  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3129  // If we have 0 || X, just emit X without inserting the control flow.
3130  bool LHSCondVal;
3131  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3132  if (!LHSCondVal) { // If we have 0 || X, just emit X.
3133  CGF.incrementProfileCounter(E);
3134 
3135  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3136  // ZExt result to int or bool.
3137  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3138  }
3139 
3140  // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3141  if (!CGF.ContainsLabel(E->getRHS()))
3142  return llvm::ConstantInt::get(ResTy, 1);
3143  }
3144 
3145  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3146  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3147 
3149 
3150  // Branch on the LHS first. If it is true, go to the success (cont) block.
3151  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3152  CGF.getCurrentProfileCount() -
3153  CGF.getProfileCount(E->getRHS()));
3154 
3155  // Any edges into the ContBlock are now from an (indeterminate number of)
3156  // edges from this first condition. All of these values will be true. Start
3157  // setting up the PHI node in the Cont Block for this.
3158  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3159  "", ContBlock);
3160  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3161  PI != PE; ++PI)
3162  PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3163 
3164  eval.begin(CGF);
3165 
3166  // Emit the RHS condition as a bool value.
3167  CGF.EmitBlock(RHSBlock);
3168  CGF.incrementProfileCounter(E);
3169  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3170 
3171  eval.end(CGF);
3172 
3173  // Reaquire the RHS block, as there may be subblocks inserted.
3174  RHSBlock = Builder.GetInsertBlock();
3175 
3176  // Emit an unconditional branch from this block to ContBlock. Insert an entry
3177  // into the phi node for the edge with the value of RHSCond.
3178  CGF.EmitBlock(ContBlock);
3179  PN->addIncoming(RHSCond, RHSBlock);
3180 
3181  // ZExt result to int.
3182  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3183 }
3184 
3185 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3186  CGF.EmitIgnoredExpr(E->getLHS());
3187  CGF.EnsureInsertPoint();
3188  return Visit(E->getRHS());
3189 }
3190 
3191 //===----------------------------------------------------------------------===//
3192 // Other Operators
3193 //===----------------------------------------------------------------------===//
3194 
3195 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3196 /// expression is cheap enough and side-effect-free enough to evaluate
3197 /// unconditionally instead of conditionally. This is used to convert control
3198 /// flow into selects in some cases.
3200  CodeGenFunction &CGF) {
3201  // Anything that is an integer or floating point constant is fine.
3202  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3203 
3204  // Even non-volatile automatic variables can't be evaluated unconditionally.
3205  // Referencing a thread_local may cause non-trivial initialization work to
3206  // occur. If we're inside a lambda and one of the variables is from the scope
3207  // outside the lambda, that function may have returned already. Reading its
3208  // locals is a bad idea. Also, these reads may introduce races there didn't
3209  // exist in the source-level program.
3210 }
3211 
3212 
3213 Value *ScalarExprEmitter::
3214 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3215  TestAndClearIgnoreResultAssign();
3216 
3217  // Bind the common expression if necessary.
3218  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3219 
3220  Expr *condExpr = E->getCond();
3221  Expr *lhsExpr = E->getTrueExpr();
3222  Expr *rhsExpr = E->getFalseExpr();
3223 
3224  // If the condition constant folds and can be elided, try to avoid emitting
3225  // the condition and the dead arm.
3226  bool CondExprBool;
3227  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3228  Expr *live = lhsExpr, *dead = rhsExpr;
3229  if (!CondExprBool) std::swap(live, dead);
3230 
3231  // If the dead side doesn't have labels we need, just emit the Live part.
3232  if (!CGF.ContainsLabel(dead)) {
3233  if (CondExprBool)
3234  CGF.incrementProfileCounter(E);
3235  Value *Result = Visit(live);
3236 
3237  // If the live part is a throw expression, it acts like it has a void
3238  // type, so evaluating it returns a null Value*. However, a conditional
3239  // with non-void type must return a non-null Value*.
3240  if (!Result && !E->getType()->isVoidType())
3241  Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3242 
3243  return Result;
3244  }
3245  }
3246 
3247  // OpenCL: If the condition is a vector, we can treat this condition like
3248  // the select function.
3249  if (CGF.getLangOpts().OpenCL
3250  && condExpr->getType()->isVectorType()) {
3251  CGF.incrementProfileCounter(E);
3252 
3253  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3254  llvm::Value *LHS = Visit(lhsExpr);
3255  llvm::Value *RHS = Visit(rhsExpr);
3256 
3257  llvm::Type *condType = ConvertType(condExpr->getType());
3258  llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3259 
3260  unsigned numElem = vecTy->getNumElements();
3261  llvm::Type *elemType = vecTy->getElementType();
3262 
3263  llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3264  llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3265  llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3266  llvm::VectorType::get(elemType,
3267  numElem),
3268  "sext");
3269  llvm::Value *tmp2 = Builder.CreateNot(tmp);
3270 
3271  // Cast float to int to perform ANDs if necessary.
3272  llvm::Value *RHSTmp = RHS;
3273  llvm::Value *LHSTmp = LHS;
3274  bool wasCast = false;
3275  llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3276  if (rhsVTy->getElementType()->isFloatingPointTy()) {
3277  RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3278  LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3279  wasCast = true;
3280  }
3281 
3282  llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3283  llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3284  llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3285  if (wasCast)
3286  tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3287 
3288  return tmp5;
3289  }
3290 
3291  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3292  // select instead of as control flow. We can only do this if it is cheap and
3293  // safe to evaluate the LHS and RHS unconditionally.
3294  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3296  CGF.incrementProfileCounter(E);
3297 
3298  llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3299  llvm::Value *LHS = Visit(lhsExpr);
3300  llvm::Value *RHS = Visit(rhsExpr);
3301  if (!LHS) {
3302  // If the conditional has void type, make sure we return a null Value*.
3303  assert(!RHS && "LHS and RHS types must match");
3304  return nullptr;
3305  }
3306  return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3307  }
3308 
3309  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3310  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3311  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3312 
3314  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3315  CGF.getProfileCount(lhsExpr));
3316 
3317  CGF.EmitBlock(LHSBlock);
3318  CGF.incrementProfileCounter(E);
3319  eval.begin(CGF);
3320  Value *LHS = Visit(lhsExpr);
3321  eval.end(CGF);
3322 
3323  LHSBlock = Builder.GetInsertBlock();
3324  Builder.CreateBr(ContBlock);
3325 
3326  CGF.EmitBlock(RHSBlock);
3327  eval.begin(CGF);
3328  Value *RHS = Visit(rhsExpr);
3329  eval.end(CGF);
3330 
3331  RHSBlock = Builder.GetInsertBlock();
3332  CGF.EmitBlock(ContBlock);
3333 
3334  // If the LHS or RHS is a throw expression, it will be legitimately null.
3335  if (!LHS)
3336  return RHS;
3337  if (!RHS)
3338  return LHS;
3339 
3340  // Create a PHI node for the real part.
3341  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3342  PN->addIncoming(LHS, LHSBlock);
3343  PN->addIncoming(RHS, RHSBlock);
3344  return PN;
3345 }
3346 
3347 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3348  return Visit(E->getChosenSubExpr());
3349 }
3350 
3351 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3352  QualType Ty = VE->getType();
3353 
3354  if (Ty->isVariablyModifiedType())
3355  CGF.EmitVariablyModifiedType(Ty);
3356 
3357  Address ArgValue = Address::invalid();
3358  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3359 
3360  llvm::Type *ArgTy = ConvertType(VE->getType());
3361 
3362  // If EmitVAArg fails, emit an error.
3363  if (!ArgPtr.isValid()) {
3364  CGF.ErrorUnsupported(VE, "va_arg expression");
3365  return llvm::UndefValue::get(ArgTy);
3366  }
3367 
3368  // FIXME Volatility.
3369  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3370 
3371  // If EmitVAArg promoted the type, we must truncate it.
3372  if (ArgTy != Val->getType()) {
3373  if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3374  Val = Builder.CreateIntToPtr(Val, ArgTy);
3375  else
3376  Val = Builder.CreateTrunc(Val, ArgTy);
3377  }
3378 
3379  return Val;
3380 }
3381 
3382 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3383  return CGF.EmitBlockLiteral(block);
3384 }
3385 
3386 // Convert a vec3 to vec4, or vice versa.
3388  Value *Src, unsigned NumElementsDst) {
3389  llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3391  Args.push_back(Builder.getInt32(0));
3392  Args.push_back(Builder.getInt32(1));
3393  Args.push_back(Builder.getInt32(2));
3394  if (NumElementsDst == 4)
3395  Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3396  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3397  return Builder.CreateShuffleVector(Src, UnV, Mask);
3398 }
3399 
3400 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3401  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3402  llvm::Type *DstTy = ConvertType(E->getType());
3403 
3404  llvm::Type *SrcTy = Src->getType();
3405  unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3406  cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3407  unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3408  cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3409 
3410  // Going from vec3 to non-vec3 is a special case and requires a shuffle
3411  // vector to get a vec4, then a bitcast if the target type is different.
3412  if (NumElementsSrc == 3 && NumElementsDst != 3) {
3413  Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3414  Src = Builder.CreateBitCast(Src, DstTy);
3415  Src->setName("astype");
3416  return Src;
3417  }
3418 
3419  // Going from non-vec3 to vec3 is a special case and requires a bitcast
3420  // to vec4 if the original type is not vec4, then a shuffle vector to
3421  // get a vec3.
3422  if (NumElementsSrc != 3 && NumElementsDst == 3) {
3423  auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3424  Src = Builder.CreateBitCast(Src, Vec4Ty);
3425  Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3426  Src->setName("astype");
3427  return Src;
3428  }
3429 
3430  return Builder.CreateBitCast(Src, DstTy, "astype");
3431 }
3432 
3433 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3434  return CGF.EmitAtomicExpr(E).getScalarVal();
3435 }
3436 
3437 //===----------------------------------------------------------------------===//
3438 // Entry Point into this File
3439 //===----------------------------------------------------------------------===//
3440 
3441 /// Emit the computation of the specified expression of scalar type, ignoring
3442 /// the result.
3443 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3444  assert(E && hasScalarEvaluationKind(E->getType()) &&
3445  "Invalid scalar expression to emit");
3446 
3447  return ScalarExprEmitter(*this, IgnoreResultAssign)
3448  .Visit(const_cast<Expr *>(E));
3449 }
3450 
3451 /// Emit a conversion from the specified type to the specified destination type,
3452 /// both of which are LLVM scalar types.
3454  QualType DstTy,
3455  SourceLocation Loc) {
3456  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3457  "Invalid scalar expression to emit");
3458  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3459 }
3460 
3461 /// Emit a conversion from the specified complex type to the specified
3462 /// destination type, where the destination type is an LLVM scalar type.
3464  QualType SrcTy,
3465  QualType DstTy,
3466  SourceLocation Loc) {
3467  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3468  "Invalid complex -> scalar conversion");
3469  return ScalarExprEmitter(*this)
3470  .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3471 }
3472 
3473 
3476  bool isInc, bool isPre) {
3477  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3478 }
3479 
3481  // object->isa or (*object).isa
3482  // Generate code as for: *(Class*)object
3483 
3484  Expr *BaseExpr = E->getBase();
3485  Address Addr = Address::invalid();
3486  if (BaseExpr->isRValue()) {
3487  Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3488  } else {
3489  Addr = EmitLValue(BaseExpr).getAddress();
3490  }
3491 
3492  // Cast the address to Class*.
3493  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3494  return MakeAddrLValue(Addr, E->getType());
3495 }
3496 
3497 
3499  const CompoundAssignOperator *E) {
3500  ScalarExprEmitter Scalar(*this);
3501  Value *Result = nullptr;
3502  switch (E->getOpcode()) {
3503 #define COMPOUND_OP(Op) \
3504  case BO_##Op##Assign: \
3505  return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3506  Result)
3507  COMPOUND_OP(Mul);
3508  COMPOUND_OP(Div);
3509  COMPOUND_OP(Rem);
3510  COMPOUND_OP(Add);
3511  COMPOUND_OP(Sub);
3512  COMPOUND_OP(Shl);
3513  COMPOUND_OP(Shr);
3514  COMPOUND_OP(And);
3515  COMPOUND_OP(Xor);
3516  COMPOUND_OP(Or);
3517 #undef COMPOUND_OP
3518 
3519  case BO_PtrMemD:
3520  case BO_PtrMemI:
3521  case BO_Mul:
3522  case BO_Div:
3523  case BO_Rem:
3524  case BO_Add:
3525  case BO_Sub:
3526  case BO_Shl:
3527  case BO_Shr:
3528  case BO_LT:
3529  case BO_GT:
3530  case BO_LE:
3531  case BO_GE:
3532  case BO_EQ:
3533  case BO_NE:
3534  case BO_And:
3535  case BO_Xor:
3536  case BO_Or:
3537  case BO_LAnd:
3538  case BO_LOr:
3539  case BO_Assign:
3540  case BO_Comma:
3541  llvm_unreachable("Not valid compound assignment operators");
3542  }
3543 
3544  llvm_unreachable("Unhandled compound assignment operator");
3545 }
Kind getKind() const
Definition: Type.h:2060
Defines the clang::ASTContext interface.
unsigned getNumInits() const
Definition: Expr.h:3776
CastKind getCastKind() const
Definition: Expr.h:2680
The null pointer literal (C++11 [lex.nullptr])
Definition: ExprCXX.h:505
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
Definition: ASTMatchers.h:1367
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc)
bool isNullPtrType() const
Definition: Type.h:5693
bool isSignedOverflowDefined() const
Definition: LangOptions.h:138
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2179
A (possibly-)qualified type.
Definition: Type.h:598
bool isVirtual() const
Determines whether the base class is a virtual base class (or not).
Definition: DeclCXX.h:208
llvm::Value * getPointer() const
Definition: CGValue.h:327
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:173
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3033
bool getValue() const
Definition: ExprCXX.h:483
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:254
Expr * getExpr(unsigned Index)
getExpr - Return the Expr at the specified index.
Definition: Expr.h:3462
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2272
CompoundStmt * getSubStmt()
Definition: Expr.h:3396
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
static llvm::Constant * getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty)
bool isArgumentType() const
Definition: Expr.h:2010
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:1916
unsigned getPackLength() const
Retrieve the length of the parameter pack.
Definition: ExprCXX.h:3730
Address getAddress() const
Definition: CGValue.h:331
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1619
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:1828
const Expr * getResultExpr() const
The generic selection's result expression.
Definition: Expr.h:4481
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5031
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent...
Definition: ExprCXX.h:2356
bool isBooleanType() const
Definition: Type.h:5743
const LangOptions & getLangOpts() const
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:3962
static Value * buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool negMul, bool negAdd)
#define COMPOUND_OP(Op)
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:1937
bool hadArrayRangeDesignator() const
Definition: Expr.h:3893
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type.
Definition: ExprObjC.h:1383
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2562
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
bool isCanonical() const
Definition: Type.h:5303
field_iterator field_begin() const
Definition: Decl.cpp:3767
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2005
unsigned getValue() const
Definition: Expr.h:1338
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:913
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2936
bool isVoidType() const
Definition: Type.h:5680
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed)
Emit a check that Base points into an array object, which we can access at index Index.
Definition: CGExpr.cpp:743
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3253
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:3422
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4549
bool isVolatileQualified() const
Definition: CGValue.h:252
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:1789
bool getValue() const
Definition: ExprCXX.h:3554
bool isReferenceType() const
Definition: Type.h:5491
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2293
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that that type refers to...
Definition: Type.cpp:1513
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3624
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:3473
Expr * getSubExpr()
Definition: Expr.h:2684
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:144
bool isFPContractable() const
Definition: Expr.h:3064
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:105
Expr * getLHS() const
Definition: Expr.h:2943
Describes an C or C++ initializer list.
Definition: Expr.h:3746
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:3588
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
Expr * getTrueExpr() const
Definition: Expr.h:3326
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:168
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
uint32_t Offset
Definition: CacheTokens.cpp:44
path_iterator path_begin()
Definition: Expr.h:2700
unsigned char PointerWidthInBits
The width of a pointer into the generic address space.
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2897
RecordDecl * getDecl() const
Definition: Type.h:3716
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1746
static Value * tryEmitFMulAdd(const BinOpInfo &op, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool isSub=false)
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:29
static llvm::Constant * getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off, llvm::Type *I32Ty)
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:177
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2632
Helper class for OffsetOfExpr.
Definition: Expr.h:1770
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
bool isExtVectorType() const
Definition: Type.h:5551
bool isValid() const
Definition: Address.h:36
detail::InMemoryDirectory::const_iterator I
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:967
QualType getType() const
Definition: Decl.h:599
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast)
Checking the operand of a load. Must be suitably sized and aligned.
This object can be modified without requiring retains or releases.
Definition: Type.h:138
Represents the this expression in C++.
Definition: ExprCXX.h:873
field_iterator field_end() const
Definition: Decl.h:3385
#define HANDLEBINOP(OP)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource AlignSource=AlignmentSource::Type)
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:263
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
llvm::APInt getValue() const
Definition: Expr.h:1248
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2129
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1009
CastKind
CastKind - The kind of operation required for a conversion.
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:1974
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1062
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3655
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:415
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1799
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:34
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1251
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1722
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1764
llvm::Value * getPointer() const
Definition: Address.h:38
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:590
Expr - This represents one expression.
Definition: Expr.h:105
Allow any unmodeled side effect.
Definition: Expr.h:589
static Address invalid()
Definition: Address.h:35
bool isAnyComplexType() const
Definition: Type.h:5545
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type, where the destination type is an LLVM scalar type.
bool getValue() const
Definition: ExprCXX.h:2311
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprObjC.h:1431
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4567
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:257
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:219
bool isFloatingType() const
Definition: Type.cpp:1783
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:397
Represents an expression that computes the length of a parameter pack.
Definition: ExprCXX.h:3653
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:4609
An RAII object to record that we're evaluating a statement expression.
Expr * getSubExpr() const
Definition: Expr.h:1695
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:3511
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:860
unsigned getNumComponents() const
Definition: Expr.h:1933
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:1844
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1668
Represents a GCC generic vector type.
Definition: Type.h:2756
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys=None)
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3767
QualType getElementType() const
Definition: Type.h:2780
bool isGLValue() const
Definition: Expr.h:250
QualType getComputationLHSType() const
Definition: Expr.h:3115
The result type of a method or function.
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1762
QualType getComputationResultType() const
Definition: Expr.h:3118
unsigned getNumSubExprs() const
getNumSubExprs - Return the size of the SubExprs array.
Definition: Expr.h:3456
The l-value was considered opaque, so the alignment was determined from a type.
Expr * getBase() const
Definition: ExprObjC.h:1408
There is no lifetime qualification on this type.
Definition: Type.h:134
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:290
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:848
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:160
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:3487
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:145
Kind
A field in a dependent type, known only by its name.
Definition: Expr.h:1779
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4679
bool getValue() const
Definition: ExprObjC.h:71
ASTContext & getContext() const
Encodes a location in the source.
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition: Type.cpp:1599
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5259
const TemplateArgument * iterator
Definition: Type.h:4233
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1757
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1804
const std::string ID
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr * > VL, ArrayRef< Expr * > PL, ArrayRef< Expr * > IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:539
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:4632
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:178
bool isCompoundAssignmentOp() const
Definition: Expr.h:3030
SanitizerSet SanOpts
Sanitizers enabled for this function.
bool getValue() const
Definition: ExprCXX.h:2466
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
Definition: Expr.h:4804
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:441
const CodeGenOptions & getCodeGenOpts() const
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2734
bool isRValue() const
Definition: Expr.h:248
QualType getReturnType() const
Definition: DeclObjC.h:330
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5849
bool isVectorType() const
Definition: Type.h:5548
An expression trait intrinsic.
Definition: ExprCXX.h:2428
uint64_t getValue() const
Definition: ExprCXX.h:2405
Assigning into this object requires a lifetime extension.
Definition: Type.h:151
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3380
bool isBitField() const
Definition: CGValue.h:248
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:94
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:70
Opcode getOpcode() const
Definition: Expr.h:1692
const OffsetOfNode & getComponent(unsigned Idx) const
Definition: Expr.h:1923
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:193
QualType getPointeeType() const
Definition: Type.h:2193
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3092
Represents a C11 generic selection.
Definition: Expr.h:4413
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1272
bool isArrow() const
Definition: Expr.h:2510
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:3339
QualType getType() const
Definition: Expr.h:126
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:885
uint64_t SanitizerMask
Definition: Sanitizers.h:24
const Expr * getExpr() const
Definition: ExprCXX.h:998
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2008
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchers.h:1983
bool isShiftOp() const
Definition: Expr.h:2978
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, BuiltinType::Kind ElemKind)
static Value * emitPointerArithmetic(CodeGenFunction &CGF, const BinOpInfo &op, bool isSubtraction)
Emit pointer + index arithmetic.
Checking the destination of a store. Must be suitably sized and aligned.
detail::InMemoryDirectory::const_iterator E
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2401
bool isHalfType() const
Definition: Type.h:5686
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:2800
static Value * ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, Value *Src, unsigned NumElementsDst)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1473
llvm::APFloat getValue() const
Definition: Expr.h:1368
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2117
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:5432
#define VISITCOMP(CODE, UI, SI, FP)
Represents a pointer to an Objective C object.
Definition: Type.h:4991
path_iterator path_end()
Definition: Expr.h:2701
Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
Definition: ExprCXX.h:3526
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3707
Complex values, per C99 6.2.5p11.
Definition: Type.h:2119
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5818
Checking the operand of a static_cast to a derived pointer type.
Expr * getFalseExpr() const
Definition: Expr.h:3332
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2063
QualType getTypeOfArgument() const
Gets the argument type, or the type of the argument expression, whichever is appropriate.
Definition: Expr.h:2037
QualType getCanonicalType() const
Definition: Type.h:5298
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3128
An implicit indirection through a C++ base class, when the field found is in a base class...
Definition: Expr.h:1782
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:50
bool isFunctionType() const
Definition: Type.h:5479
ExtVectorType - Extended vector type.
Definition: Type.h:2816
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:2936
LabelDecl * getLabel() const
Definition: Expr.h:3361
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:479
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1037
Expr * getBase() const
Definition: Expr.h:2405
Reading or writing from this object requires a barrier call.
Definition: Type.h:148
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2315
const Expr * getSubExpr() const
Definition: Expr.h:1635
Represents a C++ struct/union/class.
Definition: DeclCXX.h:263
BoundNodesTreeBuilder *const Builder
Opcode getOpcode() const
Definition: Expr.h:2940
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3547
llvm::Type * ConvertType(QualType T)
An index into an array.
Definition: Expr.h:1775
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:970
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:1834
bool isEventT() const
Definition: Type.h:5607
This class is used for builtin types like 'int'.
Definition: Type.h:2039
#define fabs(__x)
Definition: tgmath.h:556
std::pair< llvm::Value *, QualType > getVLASize(const VariableArrayType *vla)
getVLASize - Returns an LLVM value that corresponds to the size, in non-variably-sized elements...
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2148
Expr * getRHS() const
Definition: Expr.h:2945
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E)
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:60
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:932
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
IntrinsicType
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:587
const Expr * getInit(unsigned Init) const
Definition: Expr.h:3785
LValue - This represents an lvalue references.
Definition: CGValue.h:152
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:471
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:1874
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2607
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g., it is an signed integer type or a vector.
Definition: Type.cpp:1736
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, CodeGenFunction &CGF)
isCheapEnoughToEvaluateUnconditionally - Return true if the specified expression is cheap enough and ...
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4315
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:5702
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:1824
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2295