clang  3.9.0
ThreadSafetyCommon.cpp
Go to the documentation of this file.
1 //===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
24 #include "clang/Analysis/CFG.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include <algorithm>
32 #include <climits>
33 #include <vector>
34 
35 using namespace clang;
36 using namespace threadSafety;
37 
38 // From ThreadSafetyUtil.h
40  switch (CE->getStmtClass()) {
41  case Stmt::IntegerLiteralClass:
42  return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
43  case Stmt::StringLiteralClass: {
44  std::string ret("\"");
45  ret += cast<StringLiteral>(CE)->getString();
46  ret += "\"";
47  return ret;
48  }
49  case Stmt::CharacterLiteralClass:
50  case Stmt::CXXNullPtrLiteralExprClass:
51  case Stmt::GNUNullExprClass:
52  case Stmt::CXXBoolLiteralExprClass:
53  case Stmt::FloatingLiteralClass:
54  case Stmt::ImaginaryLiteralClass:
55  case Stmt::ObjCStringLiteralClass:
56  default:
57  return "#lit";
58  }
59 }
60 
61 // Return true if E is a variable that points to an incomplete Phi node.
62 static bool isIncompletePhi(const til::SExpr *E) {
63  if (const auto *Ph = dyn_cast<til::Phi>(E))
64  return Ph->status() == til::Phi::PH_Incomplete;
65  return false;
66 }
67 
69 
71  auto It = SMap.find(S);
72  if (It != SMap.end())
73  return It->second;
74  return nullptr;
75 }
76 
78  Walker.walk(*this);
79  return Scfg;
80 }
81 
82 static bool isCalleeArrow(const Expr *E) {
83  const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
84  return ME ? ME->isArrow() : false;
85 }
86 
87 /// \brief Translate a clang expression in an attribute to a til::SExpr.
88 /// Constructs the context from D, DeclExp, and SelfDecl.
89 ///
90 /// \param AttrExp The expression to translate.
91 /// \param D The declaration to which the attribute is attached.
92 /// \param DeclExp An expression involving the Decl to which the attribute
93 /// is attached. E.g. the call to a function.
95  const NamedDecl *D,
96  const Expr *DeclExp,
97  VarDecl *SelfDecl) {
98  // If we are processing a raw attribute expression, with no substitutions.
99  if (!DeclExp)
100  return translateAttrExpr(AttrExp, nullptr);
101 
102  CallingContext Ctx(nullptr, D);
103 
104  // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
105  // for formal parameters when we call buildMutexID later.
106  if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
107  Ctx.SelfArg = ME->getBase();
108  Ctx.SelfArrow = ME->isArrow();
109  } else if (const CXXMemberCallExpr *CE =
110  dyn_cast<CXXMemberCallExpr>(DeclExp)) {
111  Ctx.SelfArg = CE->getImplicitObjectArgument();
112  Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
113  Ctx.NumArgs = CE->getNumArgs();
114  Ctx.FunArgs = CE->getArgs();
115  } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
116  Ctx.NumArgs = CE->getNumArgs();
117  Ctx.FunArgs = CE->getArgs();
118  } else if (const CXXConstructExpr *CE =
119  dyn_cast<CXXConstructExpr>(DeclExp)) {
120  Ctx.SelfArg = nullptr; // Will be set below
121  Ctx.NumArgs = CE->getNumArgs();
122  Ctx.FunArgs = CE->getArgs();
123  } else if (D && isa<CXXDestructorDecl>(D)) {
124  // There's no such thing as a "destructor call" in the AST.
125  Ctx.SelfArg = DeclExp;
126  }
127 
128  // Hack to handle constructors, where self cannot be recovered from
129  // the expression.
130  if (SelfDecl && !Ctx.SelfArg) {
131  DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
132  SelfDecl->getLocation());
133  Ctx.SelfArg = &SelfDRE;
134 
135  // If the attribute has no arguments, then assume the argument is "this".
136  if (!AttrExp)
137  return translateAttrExpr(Ctx.SelfArg, nullptr);
138  else // For most attributes.
139  return translateAttrExpr(AttrExp, &Ctx);
140  }
141 
142  // If the attribute has no arguments, then assume the argument is "this".
143  if (!AttrExp)
144  return translateAttrExpr(Ctx.SelfArg, nullptr);
145  else // For most attributes.
146  return translateAttrExpr(AttrExp, &Ctx);
147 }
148 
149 /// \brief Translate a clang expression in an attribute to a til::SExpr.
150 // This assumes a CallingContext has already been created.
152  CallingContext *Ctx) {
153  if (!AttrExp)
154  return CapabilityExpr(nullptr, false);
155 
156  if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
157  if (SLit->getString() == StringRef("*"))
158  // The "*" expr is a universal lock, which essentially turns off
159  // checks until it is removed from the lockset.
160  return CapabilityExpr(new (Arena) til::Wildcard(), false);
161  else
162  // Ignore other string literals for now.
163  return CapabilityExpr(nullptr, false);
164  }
165 
166  bool Neg = false;
167  if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
168  if (OE->getOperator() == OO_Exclaim) {
169  Neg = true;
170  AttrExp = OE->getArg(0);
171  }
172  }
173  else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
174  if (UO->getOpcode() == UO_LNot) {
175  Neg = true;
176  AttrExp = UO->getSubExpr();
177  }
178  }
179 
180  til::SExpr *E = translate(AttrExp, Ctx);
181 
182  // Trap mutex expressions like nullptr, or 0.
183  // Any literal value is nonsense.
184  if (!E || isa<til::Literal>(E))
185  return CapabilityExpr(nullptr, false);
186 
187  // Hack to deal with smart pointers -- strip off top-level pointer casts.
188  if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
189  if (CE->castOpcode() == til::CAST_objToPtr)
190  return CapabilityExpr(CE->expr(), Neg);
191  }
192  return CapabilityExpr(E, Neg);
193 }
194 
195 // Translate a clang statement or expression to a TIL expression.
196 // Also performs substitution of variables; Ctx provides the context.
197 // Dispatches on the type of S.
199  if (!S)
200  return nullptr;
201 
202  // Check if S has already been translated and cached.
203  // This handles the lookup of SSA names for DeclRefExprs here.
204  if (til::SExpr *E = lookupStmt(S))
205  return E;
206 
207  switch (S->getStmtClass()) {
208  case Stmt::DeclRefExprClass:
209  return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
210  case Stmt::CXXThisExprClass:
211  return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
212  case Stmt::MemberExprClass:
213  return translateMemberExpr(cast<MemberExpr>(S), Ctx);
214  case Stmt::CallExprClass:
215  return translateCallExpr(cast<CallExpr>(S), Ctx);
216  case Stmt::CXXMemberCallExprClass:
217  return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
218  case Stmt::CXXOperatorCallExprClass:
219  return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
220  case Stmt::UnaryOperatorClass:
221  return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
222  case Stmt::BinaryOperatorClass:
223  case Stmt::CompoundAssignOperatorClass:
224  return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
225 
226  case Stmt::ArraySubscriptExprClass:
227  return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
228  case Stmt::ConditionalOperatorClass:
229  return translateAbstractConditionalOperator(
230  cast<ConditionalOperator>(S), Ctx);
231  case Stmt::BinaryConditionalOperatorClass:
232  return translateAbstractConditionalOperator(
233  cast<BinaryConditionalOperator>(S), Ctx);
234 
235  // We treat these as no-ops
236  case Stmt::ParenExprClass:
237  return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
238  case Stmt::ExprWithCleanupsClass:
239  return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
240  case Stmt::CXXBindTemporaryExprClass:
241  return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
242 
243  // Collect all literals
244  case Stmt::CharacterLiteralClass:
245  case Stmt::CXXNullPtrLiteralExprClass:
246  case Stmt::GNUNullExprClass:
247  case Stmt::CXXBoolLiteralExprClass:
248  case Stmt::FloatingLiteralClass:
249  case Stmt::ImaginaryLiteralClass:
250  case Stmt::IntegerLiteralClass:
251  case Stmt::StringLiteralClass:
252  case Stmt::ObjCStringLiteralClass:
253  return new (Arena) til::Literal(cast<Expr>(S));
254 
255  case Stmt::DeclStmtClass:
256  return translateDeclStmt(cast<DeclStmt>(S), Ctx);
257  default:
258  break;
259  }
260  if (const CastExpr *CE = dyn_cast<CastExpr>(S))
261  return translateCastExpr(CE, Ctx);
262 
263  return new (Arena) til::Undefined(S);
264 }
265 
266 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
267  CallingContext *Ctx) {
268  const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
269 
270  // Function parameters require substitution and/or renaming.
271  if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
272  const FunctionDecl *FD =
273  cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
274  unsigned I = PV->getFunctionScopeIndex();
275 
276  if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
277  // Substitute call arguments for references to function parameters
278  assert(I < Ctx->NumArgs);
279  return translate(Ctx->FunArgs[I], Ctx->Prev);
280  }
281  // Map the param back to the param of the original function declaration
282  // for consistent comparisons.
283  VD = FD->getParamDecl(I);
284  }
285 
286  // For non-local variables, treat it as a reference to a named object.
287  return new (Arena) til::LiteralPtr(VD);
288 }
289 
290 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
291  CallingContext *Ctx) {
292  // Substitute for 'this'
293  if (Ctx && Ctx->SelfArg)
294  return translate(Ctx->SelfArg, Ctx->Prev);
295  assert(SelfVar && "We have no variable for 'this'!");
296  return SelfVar;
297 }
298 
300  if (auto *V = dyn_cast<til::Variable>(E))
301  return V->clangDecl();
302  if (auto *Ph = dyn_cast<til::Phi>(E))
303  return Ph->clangDecl();
304  if (auto *P = dyn_cast<til::Project>(E))
305  return P->clangDecl();
306  if (auto *L = dyn_cast<til::LiteralPtr>(E))
307  return L->clangDecl();
308  return nullptr;
309 }
310 
311 static bool hasCppPointerType(const til::SExpr *E) {
312  auto *VD = getValueDeclFromSExpr(E);
313  if (VD && VD->getType()->isPointerType())
314  return true;
315  if (auto *C = dyn_cast<til::Cast>(E))
316  return C->castOpcode() == til::CAST_objToPtr;
317 
318  return false;
319 }
320 
321 // Grab the very first declaration of virtual method D
323  while (true) {
324  D = D->getCanonicalDecl();
326  E = D->end_overridden_methods();
327  if (I == E)
328  return D; // Method does not override anything
329  D = *I; // FIXME: this does not work with multiple inheritance.
330  }
331  return nullptr;
332 }
333 
334 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
335  CallingContext *Ctx) {
336  til::SExpr *BE = translate(ME->getBase(), Ctx);
337  til::SExpr *E = new (Arena) til::SApply(BE);
338 
339  const ValueDecl *D =
340  cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
341  if (auto *VD = dyn_cast<CXXMethodDecl>(D))
342  D = getFirstVirtualDecl(VD);
343 
344  til::Project *P = new (Arena) til::Project(E, D);
345  if (hasCppPointerType(BE))
346  P->setArrow(true);
347  return P;
348 }
349 
350 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
351  CallingContext *Ctx,
352  const Expr *SelfE) {
353  if (CapabilityExprMode) {
354  // Handle LOCK_RETURNED
355  const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
356  if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
357  CallingContext LRCallCtx(Ctx);
358  LRCallCtx.AttrDecl = CE->getDirectCallee();
359  LRCallCtx.SelfArg = SelfE;
360  LRCallCtx.NumArgs = CE->getNumArgs();
361  LRCallCtx.FunArgs = CE->getArgs();
362  return const_cast<til::SExpr*>(
363  translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
364  }
365  }
366 
367  til::SExpr *E = translate(CE->getCallee(), Ctx);
368  for (const auto *Arg : CE->arguments()) {
369  til::SExpr *A = translate(Arg, Ctx);
370  E = new (Arena) til::Apply(E, A);
371  }
372  return new (Arena) til::Call(E, CE);
373 }
374 
375 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
376  const CXXMemberCallExpr *ME, CallingContext *Ctx) {
377  if (CapabilityExprMode) {
378  // Ignore calls to get() on smart pointers.
379  if (ME->getMethodDecl()->getNameAsString() == "get" &&
380  ME->getNumArgs() == 0) {
381  auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
382  return new (Arena) til::Cast(til::CAST_objToPtr, E);
383  // return E;
384  }
385  }
386  return translateCallExpr(cast<CallExpr>(ME), Ctx,
388 }
389 
390 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
391  const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
392  if (CapabilityExprMode) {
393  // Ignore operator * and operator -> on smart pointers.
395  if (k == OO_Star || k == OO_Arrow) {
396  auto *E = translate(OCE->getArg(0), Ctx);
397  return new (Arena) til::Cast(til::CAST_objToPtr, E);
398  // return E;
399  }
400  }
401  return translateCallExpr(cast<CallExpr>(OCE), Ctx);
402 }
403 
404 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
405  CallingContext *Ctx) {
406  switch (UO->getOpcode()) {
407  case UO_PostInc:
408  case UO_PostDec:
409  case UO_PreInc:
410  case UO_PreDec:
411  return new (Arena) til::Undefined(UO);
412 
413  case UO_AddrOf: {
414  if (CapabilityExprMode) {
415  // interpret &Graph::mu_ as an existential.
416  if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
417  if (DRE->getDecl()->isCXXInstanceMember()) {
418  // This is a pointer-to-member expression, e.g. &MyClass::mu_.
419  // We interpret this syntax specially, as a wildcard.
420  auto *W = new (Arena) til::Wildcard();
421  return new (Arena) til::Project(W, DRE->getDecl());
422  }
423  }
424  }
425  // otherwise, & is a no-op
426  return translate(UO->getSubExpr(), Ctx);
427  }
428 
429  // We treat these as no-ops
430  case UO_Deref:
431  case UO_Plus:
432  return translate(UO->getSubExpr(), Ctx);
433 
434  case UO_Minus:
435  return new (Arena)
437  case UO_Not:
438  return new (Arena)
440  case UO_LNot:
441  return new (Arena)
443 
444  // Currently unsupported
445  case UO_Real:
446  case UO_Imag:
447  case UO_Extension:
448  case UO_Coawait:
449  return new (Arena) til::Undefined(UO);
450  }
451  return new (Arena) til::Undefined(UO);
452 }
453 
454 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
455  const BinaryOperator *BO,
456  CallingContext *Ctx, bool Reverse) {
457  til::SExpr *E0 = translate(BO->getLHS(), Ctx);
458  til::SExpr *E1 = translate(BO->getRHS(), Ctx);
459  if (Reverse)
460  return new (Arena) til::BinaryOp(Op, E1, E0);
461  else
462  return new (Arena) til::BinaryOp(Op, E0, E1);
463 }
464 
465 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
466  const BinaryOperator *BO,
467  CallingContext *Ctx,
468  bool Assign) {
469  const Expr *LHS = BO->getLHS();
470  const Expr *RHS = BO->getRHS();
471  til::SExpr *E0 = translate(LHS, Ctx);
472  til::SExpr *E1 = translate(RHS, Ctx);
473 
474  const ValueDecl *VD = nullptr;
475  til::SExpr *CV = nullptr;
476  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
477  VD = DRE->getDecl();
478  CV = lookupVarDecl(VD);
479  }
480 
481  if (!Assign) {
482  til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
483  E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
484  E1 = addStatement(E1, nullptr, VD);
485  }
486  if (VD && CV)
487  return updateVarDecl(VD, E1);
488  return new (Arena) til::Store(E0, E1);
489 }
490 
491 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
492  CallingContext *Ctx) {
493  switch (BO->getOpcode()) {
494  case BO_PtrMemD:
495  case BO_PtrMemI:
496  return new (Arena) til::Undefined(BO);
497 
498  case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
499  case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
500  case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
501  case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
502  case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
503  case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
504  case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
505  case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
506  case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
507  case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
508  case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
509  case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
510  case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
511  case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
512  case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
513  case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
514  case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
515  case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
516 
517  case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
518  case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
519  case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
520  case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
521  case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
522  case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
523  case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
524  case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
525  case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
526  case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
527  case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
528 
529  case BO_Comma:
530  // The clang CFG should have already processed both sides.
531  return translate(BO->getRHS(), Ctx);
532  }
533  return new (Arena) til::Undefined(BO);
534 }
535 
536 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
537  CallingContext *Ctx) {
538  clang::CastKind K = CE->getCastKind();
539  switch (K) {
540  case CK_LValueToRValue: {
541  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
542  til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
543  if (E0)
544  return E0;
545  }
546  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
547  return E0;
548  // FIXME!! -- get Load working properly
549  // return new (Arena) til::Load(E0);
550  }
551  case CK_NoOp:
552  case CK_DerivedToBase:
553  case CK_UncheckedDerivedToBase:
554  case CK_ArrayToPointerDecay:
555  case CK_FunctionToPointerDecay: {
556  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
557  return E0;
558  }
559  default: {
560  // FIXME: handle different kinds of casts.
561  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
562  if (CapabilityExprMode)
563  return E0;
564  return new (Arena) til::Cast(til::CAST_none, E0);
565  }
566  }
567 }
568 
569 til::SExpr *
570 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
571  CallingContext *Ctx) {
572  til::SExpr *E0 = translate(E->getBase(), Ctx);
573  til::SExpr *E1 = translate(E->getIdx(), Ctx);
574  return new (Arena) til::ArrayIndex(E0, E1);
575 }
576 
577 til::SExpr *
578 SExprBuilder::translateAbstractConditionalOperator(
580  auto *C = translate(CO->getCond(), Ctx);
581  auto *T = translate(CO->getTrueExpr(), Ctx);
582  auto *E = translate(CO->getFalseExpr(), Ctx);
583  return new (Arena) til::IfThenElse(C, T, E);
584 }
585 
586 til::SExpr *
587 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
588  DeclGroupRef DGrp = S->getDeclGroup();
589  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
590  if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
591  Expr *E = VD->getInit();
592  til::SExpr* SE = translate(E, Ctx);
593 
594  // Add local variables with trivial type to the variable map
595  QualType T = VD->getType();
596  if (T.isTrivialType(VD->getASTContext())) {
597  return addVarDecl(VD, SE);
598  }
599  else {
600  // TODO: add alloca
601  }
602  }
603  }
604  return nullptr;
605 }
606 
607 // If (E) is non-trivial, then add it to the current basic block, and
608 // update the statement map so that S refers to E. Returns a new variable
609 // that refers to E.
610 // If E is trivial returns E.
611 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
612  const ValueDecl *VD) {
613  if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
614  return E;
615  if (VD)
616  E = new (Arena) til::Variable(E, VD);
617  CurrentInstructions.push_back(E);
618  if (S)
619  insertStmt(S, E);
620  return E;
621 }
622 
623 // Returns the current value of VD, if known, and nullptr otherwise.
624 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
625  auto It = LVarIdxMap.find(VD);
626  if (It != LVarIdxMap.end()) {
627  assert(CurrentLVarMap[It->second].first == VD);
628  return CurrentLVarMap[It->second].second;
629  }
630  return nullptr;
631 }
632 
633 // if E is a til::Variable, update its clangDecl.
634 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
635  if (!E)
636  return;
637  if (til::Variable *V = dyn_cast<til::Variable>(E)) {
638  if (!V->clangDecl())
639  V->setClangDecl(VD);
640  }
641 }
642 
643 // Adds a new variable declaration.
644 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
645  maybeUpdateVD(E, VD);
646  LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
647  CurrentLVarMap.makeWritable();
648  CurrentLVarMap.push_back(std::make_pair(VD, E));
649  return E;
650 }
651 
652 // Updates a current variable declaration. (E.g. by assignment)
653 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
654  maybeUpdateVD(E, VD);
655  auto It = LVarIdxMap.find(VD);
656  if (It == LVarIdxMap.end()) {
657  til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
658  til::SExpr *St = new (Arena) til::Store(Ptr, E);
659  return St;
660  }
661  CurrentLVarMap.makeWritable();
662  CurrentLVarMap.elem(It->second).second = E;
663  return E;
664 }
665 
666 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
667 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
668 // If E == null, this is a backedge and will be set later.
669 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
670  unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
671  assert(ArgIndex > 0 && ArgIndex < NPreds);
672 
673  til::SExpr *CurrE = CurrentLVarMap[i].second;
674  if (CurrE->block() == CurrentBB) {
675  // We already have a Phi node in the current block,
676  // so just add the new variable to the Phi node.
677  til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
678  assert(Ph && "Expecting Phi node.");
679  if (E)
680  Ph->values()[ArgIndex] = E;
681  return;
682  }
683 
684  // Make a new phi node: phi(..., E)
685  // All phi args up to the current index are set to the current value.
686  til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
687  Ph->values().setValues(NPreds, nullptr);
688  for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
689  Ph->values()[PIdx] = CurrE;
690  if (E)
691  Ph->values()[ArgIndex] = E;
692  Ph->setClangDecl(CurrentLVarMap[i].first);
693  // If E is from a back-edge, or either E or CurrE are incomplete, then
694  // mark this node as incomplete; we may need to remove it later.
695  if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
697  }
698 
699  // Add Phi node to current block, and update CurrentLVarMap[i]
700  CurrentArguments.push_back(Ph);
701  if (Ph->status() == til::Phi::PH_Incomplete)
702  IncompleteArgs.push_back(Ph);
703 
704  CurrentLVarMap.makeWritable();
705  CurrentLVarMap.elem(i).second = Ph;
706 }
707 
708 // Merge values from Map into the current variable map.
709 // This will construct Phi nodes in the current basic block as necessary.
710 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
711  assert(CurrentBlockInfo && "Not processing a block!");
712 
713  if (!CurrentLVarMap.valid()) {
714  // Steal Map, using copy-on-write.
715  CurrentLVarMap = std::move(Map);
716  return;
717  }
718  if (CurrentLVarMap.sameAs(Map))
719  return; // Easy merge: maps from different predecessors are unchanged.
720 
721  unsigned NPreds = CurrentBB->numPredecessors();
722  unsigned ESz = CurrentLVarMap.size();
723  unsigned MSz = Map.size();
724  unsigned Sz = std::min(ESz, MSz);
725 
726  for (unsigned i=0; i<Sz; ++i) {
727  if (CurrentLVarMap[i].first != Map[i].first) {
728  // We've reached the end of variables in common.
729  CurrentLVarMap.makeWritable();
730  CurrentLVarMap.downsize(i);
731  break;
732  }
733  if (CurrentLVarMap[i].second != Map[i].second)
734  makePhiNodeVar(i, NPreds, Map[i].second);
735  }
736  if (ESz > MSz) {
737  CurrentLVarMap.makeWritable();
738  CurrentLVarMap.downsize(Map.size());
739  }
740 }
741 
742 // Merge a back edge into the current variable map.
743 // This will create phi nodes for all variables in the variable map.
744 void SExprBuilder::mergeEntryMapBackEdge() {
745  // We don't have definitions for variables on the backedge, because we
746  // haven't gotten that far in the CFG. Thus, when encountering a back edge,
747  // we conservatively create Phi nodes for all variables. Unnecessary Phi
748  // nodes will be marked as incomplete, and stripped out at the end.
749  //
750  // An Phi node is unnecessary if it only refers to itself and one other
751  // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
752 
753  assert(CurrentBlockInfo && "Not processing a block!");
754 
755  if (CurrentBlockInfo->HasBackEdges)
756  return;
757  CurrentBlockInfo->HasBackEdges = true;
758 
759  CurrentLVarMap.makeWritable();
760  unsigned Sz = CurrentLVarMap.size();
761  unsigned NPreds = CurrentBB->numPredecessors();
762 
763  for (unsigned i=0; i < Sz; ++i) {
764  makePhiNodeVar(i, NPreds, nullptr);
765  }
766 }
767 
768 // Update the phi nodes that were initially created for a back edge
769 // once the variable definitions have been computed.
770 // I.e., merge the current variable map into the phi nodes for Blk.
771 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
772  til::BasicBlock *BB = lookupBlock(Blk);
773  unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
774  assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
775 
776  for (til::SExpr *PE : BB->arguments()) {
777  til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
778  assert(Ph && "Expecting Phi Node.");
779  assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
780 
781  til::SExpr *E = lookupVarDecl(Ph->clangDecl());
782  assert(E && "Couldn't find local variable for Phi node.");
783  Ph->values()[ArgIndex] = E;
784  }
785 }
786 
787 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
788  const CFGBlock *First) {
789  // Perform initial setup operations.
790  unsigned NBlocks = Cfg->getNumBlockIDs();
791  Scfg = new (Arena) til::SCFG(Arena, NBlocks);
792 
793  // allocate all basic blocks immediately, to handle forward references.
794  BBInfo.resize(NBlocks);
795  BlockMap.resize(NBlocks, nullptr);
796  // create map from clang blockID to til::BasicBlocks
797  for (auto *B : *Cfg) {
798  auto *BB = new (Arena) til::BasicBlock(Arena);
799  BB->reserveInstructions(B->size());
800  BlockMap[B->getBlockID()] = BB;
801  }
802 
803  CurrentBB = lookupBlock(&Cfg->getEntry());
804  auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
805  : cast<FunctionDecl>(D)->parameters();
806  for (auto *Pm : Parms) {
807  QualType T = Pm->getType();
808  if (!T.isTrivialType(Pm->getASTContext()))
809  continue;
810 
811  // Add parameters to local variable map.
812  // FIXME: right now we emulate params with loads; that should be fixed.
813  til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
814  til::SExpr *Ld = new (Arena) til::Load(Lp);
815  til::SExpr *V = addStatement(Ld, nullptr, Pm);
816  addVarDecl(Pm, V);
817  }
818 }
819 
820 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
821  // Intialize TIL basic block and add it to the CFG.
822  CurrentBB = lookupBlock(B);
823  CurrentBB->reservePredecessors(B->pred_size());
824  Scfg->add(CurrentBB);
825 
826  CurrentBlockInfo = &BBInfo[B->getBlockID()];
827 
828  // CurrentLVarMap is moved to ExitMap on block exit.
829  // FIXME: the entry block will hold function parameters.
830  // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
831 }
832 
833 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
834  // Compute CurrentLVarMap on entry from ExitMaps of predecessors
835 
836  CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
837  BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
838  assert(PredInfo->UnprocessedSuccessors > 0);
839 
840  if (--PredInfo->UnprocessedSuccessors == 0)
841  mergeEntryMap(std::move(PredInfo->ExitMap));
842  else
843  mergeEntryMap(PredInfo->ExitMap.clone());
844 
845  ++CurrentBlockInfo->ProcessedPredecessors;
846 }
847 
848 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
849  mergeEntryMapBackEdge();
850 }
851 
852 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
853  // The merge*() methods have created arguments.
854  // Push those arguments onto the basic block.
855  CurrentBB->arguments().reserve(
856  static_cast<unsigned>(CurrentArguments.size()), Arena);
857  for (auto *A : CurrentArguments)
858  CurrentBB->addArgument(A);
859 }
860 
861 void SExprBuilder::handleStatement(const Stmt *S) {
862  til::SExpr *E = translate(S, nullptr);
863  addStatement(E, S);
864 }
865 
866 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
867  const CXXDestructorDecl *DD) {
868  til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
869  til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
870  til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
871  til::SExpr *E = new (Arena) til::Call(Ap);
872  addStatement(E, nullptr);
873 }
874 
875 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
876  CurrentBB->instructions().reserve(
877  static_cast<unsigned>(CurrentInstructions.size()), Arena);
878  for (auto *V : CurrentInstructions)
879  CurrentBB->addInstruction(V);
880 
881  // Create an appropriate terminator
882  unsigned N = B->succ_size();
883  auto It = B->succ_begin();
884  if (N == 1) {
885  til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
886  // TODO: set index
887  unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
888  auto *Tm = new (Arena) til::Goto(BB, Idx);
889  CurrentBB->setTerminator(Tm);
890  }
891  else if (N == 2) {
892  til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
893  til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
894  ++It;
895  til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
896  // FIXME: make sure these arent' critical edges.
897  auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
898  CurrentBB->setTerminator(Tm);
899  }
900 }
901 
902 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
903  ++CurrentBlockInfo->UnprocessedSuccessors;
904 }
905 
906 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
907  mergePhiNodesBackEdge(Succ);
908  ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
909 }
910 
911 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
912  CurrentArguments.clear();
913  CurrentInstructions.clear();
914  CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
915  CurrentBB = nullptr;
916  CurrentBlockInfo = nullptr;
917 }
918 
919 void SExprBuilder::exitCFG(const CFGBlock *Last) {
920  for (auto *Ph : IncompleteArgs) {
921  if (Ph->status() == til::Phi::PH_Incomplete)
923  }
924 
925  CurrentArguments.clear();
926  CurrentInstructions.clear();
927  IncompleteArgs.clear();
928 }
929 
930 /*
931 void printSCFG(CFGWalker &Walker) {
932  llvm::BumpPtrAllocator Bpa;
933  til::MemRegionRef Arena(&Bpa);
934  SExprBuilder SxBuilder(Arena);
935  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
936  TILPrinter::print(Scfg, llvm::errs());
937 }
938 */
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:52
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2411
CastKind getCastKind() const
Definition: Expr.h:2680
Simple arithmetic unary operations, e.g.
static const Decl * getCanonicalDecl(const Decl *D)
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1561
Apply a self-argument to a self-applicable function.
Expr ** getArgs()
Retrieve the call arguments.
Definition: Expr.h:2208
til::SExpr * lookupStmt(const Stmt *S)
const DeclGroupRef getDeclGroup() const
Definition: Stmt.h:464
A (possibly-)qualified type.
Definition: Type.h:598
A conditional branch to two other blocks.
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2217
succ_iterator succ_begin()
Definition: CFG.h:541
static bool hasCppPointerType(const til::SExpr *E)
Defines the SourceManager interface.
iterator end()
Definition: DeclGroup.h:108
const ValArray & values() const
StringRef P
til::SExpr * translate(const Stmt *S, CallingContext *Ctx)
static const ValueDecl * getValueDeclFromSExpr(const til::SExpr *E)
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1162
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:768
const Expr * getCallee() const
Definition: Expr.h:2188
static bool isCalleeArrow(const Expr *E)
unsigned succ_size() const
Definition: CFG.h:551
unsigned addPredecessor(BasicBlock *Pred)
static const CXXMethodDecl * getFirstVirtualDecl(const CXXMethodDecl *D)
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1377
Defines the clang::Expr interface and subclasses for C++ expressions.
If p is a reference to an array, then p[i] is a reference to the i'th element of the array...
til::SCFG * buildCFG(CFGWalker &Walker)
method_iterator end_overridden_methods() const
Definition: DeclCXX.cpp:1655
Project a named slot from a C++ struct or class.
Expr * getImplicitObjectArgument() const
Retrieves the implicit object argument for the member call.
Definition: ExprCXX.cpp:459
CXXMethodDecl * getCanonicalDecl() override
Definition: DeclCXX.h:1804
Expr * getSubExpr()
Definition: Expr.h:2684
Expr * getLHS() const
Definition: Expr.h:2943
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD)
Expr * getTrueExpr() const
Definition: Expr.h:3326
unsigned pred_size() const
Definition: CFG.h:554
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2897
iterator begin()
Definition: DeclGroup.h:102
std::string getNameAsString() const
getNameAsString - Get a human-readable name for the declaration, even if it is one of the special kin...
Definition: Decl.h:252
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2326
A basic block is part of an SCFG.
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2632
unsigned findPredecessorIndex(const BasicBlock *BB) const
Return the index of BB, or Predecessors.size if BB is not a predecessor.
bool isTrivialType(const ASTContext &Context) const
Return true if this is a trivial type per (C++0x [basic.types]p9)
Definition: Type.cpp:2035
detail::InMemoryDirectory::const_iterator I
QualType getType() const
Definition: Decl.h:599
Placeholder for expressions that cannot be represented in the TIL.
Represents the this expression in C++.
Definition: ExprCXX.h:873
void addInstruction(SExpr *V)
Add a new instruction.
An SCFG is a control-flow graph.
CXXMethodDecl * getMethodDecl() const
Retrieves the declaration of the called method.
Definition: ExprCXX.cpp:471
CastKind
CastKind - The kind of operation required for a conversion.
CFGBlock - Represents a single basic block in a source-level CFG.
Definition: CFG.h:353
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition: Decl.cpp:1616
void addArgument(Phi *V)
Add a new argument.
const CXXMethodDecl *const * method_iterator
Definition: DeclCXX.h:1828
Apply an argument to a function.
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:590
Expr - This represents one expression.
Definition: Expr.h:105
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:4579
CFG - Represents a source-level, intra-procedural CFG that represents the control-flow of a Stmt...
Definition: CFG.h:721
const InstrArray & arguments() const
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2414
Defines an enumeration for C++ overloaded operators.
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2011
char __ovld __cnfn min(char x, char y)
Returns y if y < x, otherwise it returns x.
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Jump to another basic block.
Expr * getSubExpr() const
Definition: Expr.h:1695
unsigned getBlockID() const
Definition: CFG.h:638
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1668
class LLVM_ALIGNAS(8) TemplateSpecializationType unsigned NumArgs
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4154
ValueDecl * getDecl()
Definition: Expr.h:1017
BasicBlock * block() const
Returns the block, if this is an instruction in a basic block, otherwise returns null.
TIL_BinaryOpcode
Opcode for binary arithmetic operations.
void reservePredecessors(unsigned NumPreds)
method_iterator begin_overridden_methods() const
Definition: DeclCXX.cpp:1650
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:121
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:443
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1736
arg_range arguments()
Definition: Expr.h:2242
bool sameAs(const CopyOnWriteVector &V) const
size_t numPredecessors() const
Returns the number of predecessors.
std::string getSourceLiteralString(const clang::Expr *CE)
SExprBuilder::CallingContext CallingContext
Placeholder for a wildcard that matches any other expression.
Encapsulates the lexical context of a function call.
Opcode getOpcode() const
Definition: Expr.h:1692
bool isArrow() const
Definition: Expr.h:2510
Load a value from memory.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1209
void setClangDecl(const clang::ValueDecl *Cvd)
Set the clang variable associated with this Phi node.
An if-then-else expression.
detail::InMemoryDirectory::const_iterator E
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2205
unsigned Map[Count]
The type of a lookup table which maps from language-specific address spaces to target-specific ones...
Definition: AddressSpaces.h:45
til::BasicBlock * lookupBlock(const CFGBlock *B)
const clang::ValueDecl * clangDecl() const
Return the clang declaration of the variable for this Phi node, if any.
Phi Node, for code in SSA form.
Expr * getFalseExpr() const
Definition: Expr.h:3332
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2063
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3128
Simple arithmetic binary operations, e.g.
void setValues(unsigned Sz, const T &C)
CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, const Expr *DeclExp, VarDecl *SelfD=nullptr)
Translate a clang expression in an attribute to a til::SExpr.
Expr * getBase() const
Definition: Expr.h:2405
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2315
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:77
void reserve(size_t Ncp, MemRegionRef A)
Defines the clang::SourceLocation class and associated facilities.
Opcode getOpcode() const
Definition: Expr.h:2940
void simplifyIncompleteArg(til::Phi *Ph)
Store a value to memory.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2148
Expr * getRHS() const
Definition: Expr.h:2945
static bool isIncompletePhi(const til::SExpr *E)
decl_type * getMostRecentDecl()
Returns the most recent (re)declaration of this declaration.
Definition: Redeclarable.h:166
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:932
Base class for AST nodes in the typed intermediate language.
A Literal pointer to an object allocated in memory.
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:109
Call a function (after all arguments have been applied).
NamedDecl - This represents a decl with a name.
Definition: Decl.h:213
llvm::DenseMap< const Stmt *, CFGBlock * > SMap
Definition: CFGStmtMap.cpp:22
unsigned getNumBlockIDs() const
getNumBlockIDs - Returns the total number of BlockIDs allocated (which start at 0).
Definition: CFG.h:931
bool isPointerType() const
Definition: Type.h:5482