clang  3.9.0
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  assert(
70  isa<clang::sema::LambdaScopeInfo>(
71  FunctionScopes[FunctionScopes.size() - 1]) &&
72  "The function on the top of sema's function-info stack must be a lambda");
73 
74  // If VarToCapture is null, we are attempting to capture 'this'.
75  const bool IsCapturingThis = !VarToCapture;
76  const bool IsCapturingVariable = !IsCapturingThis;
77 
78  // Start with the current lambda at the top of the stack (highest index).
79  unsigned CurScopeIndex = FunctionScopes.size() - 1;
80  DeclContext *EnclosingDC =
81  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82 
83  do {
84  const clang::sema::LambdaScopeInfo *LSI =
85  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86  // IF we have climbed down to an intervening enclosing lambda that contains
87  // the variable declaration - it obviously can/must not capture the
88  // variable.
89  // Since its enclosing DC is dependent, all the lambdas between it and the
90  // innermost nested lambda are dependent (otherwise we wouldn't have
91  // arrived here) - so we don't yet have a lambda that can capture the
92  // variable.
93  if (IsCapturingVariable &&
94  VarToCapture->getDeclContext()->Equals(EnclosingDC))
95  return NoLambdaIsCaptureReady;
96 
97  // For an enclosing lambda to be capture ready for an entity, all
98  // intervening lambda's have to be able to capture that entity. If even
99  // one of the intervening lambda's is not capable of capturing the entity
100  // then no enclosing lambda can ever capture that entity.
101  // For e.g.
102  // const int x = 10;
103  // [=](auto a) { #1
104  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
105  // [=](auto c) { #3
106  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
107  // }; }; };
108  // If they do not have a default implicit capture, check to see
109  // if the entity has already been explicitly captured.
110  // If even a single dependent enclosing lambda lacks the capability
111  // to ever capture this variable, there is no further enclosing
112  // non-dependent lambda that can capture this variable.
114  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115  return NoLambdaIsCaptureReady;
116  if (IsCapturingThis && !LSI->isCXXThisCaptured())
117  return NoLambdaIsCaptureReady;
118  }
119  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120 
121  assert(CurScopeIndex);
122  --CurScopeIndex;
123  } while (!EnclosingDC->isTranslationUnit() &&
124  EnclosingDC->isDependentContext() &&
125  isLambdaCallOperator(EnclosingDC));
126 
127  assert(CurScopeIndex < (FunctionScopes.size() - 1));
128  // If the enclosingDC is not dependent, then the immediately nested lambda
129  // (one index above) is capture-ready.
130  if (!EnclosingDC->isDependentContext())
131  return CurScopeIndex + 1;
132  return NoLambdaIsCaptureReady;
133 }
134 
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 /// - climb down the stack (i.e. starting from the innermost and examining
147 /// each outer lambda step by step) checking if each enclosing
148 /// lambda can either implicitly or explicitly capture the variable.
149 /// Record the first such lambda that is enclosed in a non-dependent
150 /// context. If no such lambda currently exists return failure.
151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 /// capture the variable by checking all its enclosing lambdas:
153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
154 /// identified above in 'a' can also capture the variable (this is done
155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
156 /// 'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable. If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169 
172  VarDecl *VarToCapture, Sema &S) {
173 
174  const Optional<unsigned> NoLambdaIsCaptureCapable;
175 
176  const Optional<unsigned> OptionalStackIndex =
178  VarToCapture);
179  if (!OptionalStackIndex)
180  return NoLambdaIsCaptureCapable;
181 
182  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184  S.getCurGenericLambda()) &&
185  "The capture ready lambda for a potential capture can only be the "
186  "current lambda if it is a generic lambda");
187 
188  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190 
191  // If VarToCapture is null, we are attempting to capture 'this'
192  const bool IsCapturingThis = !VarToCapture;
193  const bool IsCapturingVariable = !IsCapturingThis;
194 
195  if (IsCapturingVariable) {
196  // Check if the capture-ready lambda can truly capture the variable, by
197  // checking whether all enclosing lambdas of the capture-ready lambda allow
198  // the capture - i.e. make sure it is capture-capable.
199  QualType CaptureType, DeclRefType;
200  const bool CanCaptureVariable =
201  !S.tryCaptureVariable(VarToCapture,
202  /*ExprVarIsUsedInLoc*/ SourceLocation(),
204  /*EllipsisLoc*/ SourceLocation(),
205  /*BuildAndDiagnose*/ false, CaptureType,
206  DeclRefType, &IndexOfCaptureReadyLambda);
207  if (!CanCaptureVariable)
208  return NoLambdaIsCaptureCapable;
209  } else {
210  // Check if the capture-ready lambda can truly capture 'this' by checking
211  // whether all enclosing lambdas of the capture-ready lambda can capture
212  // 'this'.
213  const bool CanCaptureThis =
215  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217  &IndexOfCaptureReadyLambda);
218  if (!CanCaptureThis)
219  return NoLambdaIsCaptureCapable;
220  }
221  return IndexOfCaptureReadyLambda;
222 }
223 
224 static inline TemplateParameterList *
226  if (LSI->GLTemplateParameterList)
227  return LSI->GLTemplateParameterList;
228 
229  if (!LSI->AutoTemplateParams.empty()) {
230  SourceRange IntroRange = LSI->IntroducerRange;
231  SourceLocation LAngleLoc = IntroRange.getBegin();
232  SourceLocation RAngleLoc = IntroRange.getEnd();
234  SemaRef.Context,
235  /*Template kw loc*/ SourceLocation(), LAngleLoc,
236  llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(),
237  LSI->AutoTemplateParams.size()),
238  RAngleLoc);
239  }
240  return LSI->GLTemplateParameterList;
241 }
242 
244  TypeSourceInfo *Info,
245  bool KnownDependent,
246  LambdaCaptureDefault CaptureDefault) {
247  DeclContext *DC = CurContext;
248  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
249  DC = DC->getParent();
250  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
251  *this);
252  // Start constructing the lambda class.
254  IntroducerRange.getBegin(),
255  KnownDependent,
256  IsGenericLambda,
257  CaptureDefault);
258  DC->addDecl(Class);
259 
260  return Class;
261 }
262 
263 /// \brief Determine whether the given context is or is enclosed in an inline
264 /// function.
265 static bool isInInlineFunction(const DeclContext *DC) {
266  while (!DC->isFileContext()) {
267  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
268  if (FD->isInlined())
269  return true;
270 
271  DC = DC->getLexicalParent();
272  }
273 
274  return false;
275 }
276 
279  Decl *&ManglingContextDecl) {
280  // Compute the context for allocating mangling numbers in the current
281  // expression, if the ABI requires them.
282  ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
283 
284  enum ContextKind {
285  Normal,
286  DefaultArgument,
287  DataMember,
288  StaticDataMember
289  } Kind = Normal;
290 
291  // Default arguments of member function parameters that appear in a class
292  // definition, as well as the initializers of data members, receive special
293  // treatment. Identify them.
294  if (ManglingContextDecl) {
295  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
296  if (const DeclContext *LexicalDC
297  = Param->getDeclContext()->getLexicalParent())
298  if (LexicalDC->isRecord())
299  Kind = DefaultArgument;
300  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
301  if (Var->getDeclContext()->isRecord())
302  Kind = StaticDataMember;
303  } else if (isa<FieldDecl>(ManglingContextDecl)) {
304  Kind = DataMember;
305  }
306  }
307 
308  // Itanium ABI [5.1.7]:
309  // In the following contexts [...] the one-definition rule requires closure
310  // types in different translation units to "correspond":
311  bool IsInNonspecializedTemplate =
312  !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
313  switch (Kind) {
314  case Normal:
315  // -- the bodies of non-exported nonspecialized template functions
316  // -- the bodies of inline functions
317  if ((IsInNonspecializedTemplate &&
318  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
319  isInInlineFunction(CurContext)) {
320  ManglingContextDecl = nullptr;
321  return &Context.getManglingNumberContext(DC);
322  }
323 
324  ManglingContextDecl = nullptr;
325  return nullptr;
326 
327  case StaticDataMember:
328  // -- the initializers of nonspecialized static members of template classes
329  if (!IsInNonspecializedTemplate) {
330  ManglingContextDecl = nullptr;
331  return nullptr;
332  }
333  // Fall through to get the current context.
334 
335  case DataMember:
336  // -- the in-class initializers of class members
337  case DefaultArgument:
338  // -- default arguments appearing in class definitions
339  return &ExprEvalContexts.back().getMangleNumberingContext(Context);
340  }
341 
342  llvm_unreachable("unexpected context");
343 }
344 
347  ASTContext &Ctx) {
348  assert(ManglingContextDecl && "Need to have a context declaration");
349  if (!MangleNumbering)
350  MangleNumbering = Ctx.createMangleNumberingContext();
351  return *MangleNumbering;
352 }
353 
355  SourceRange IntroducerRange,
356  TypeSourceInfo *MethodTypeInfo,
357  SourceLocation EndLoc,
358  ArrayRef<ParmVarDecl *> Params) {
359  QualType MethodType = MethodTypeInfo->getType();
360  TemplateParameterList *TemplateParams =
361  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
362  // If a lambda appears in a dependent context or is a generic lambda (has
363  // template parameters) and has an 'auto' return type, deduce it to a
364  // dependent type.
365  if (Class->isDependentContext() || TemplateParams) {
366  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
367  QualType Result = FPT->getReturnType();
368  if (Result->isUndeducedType()) {
369  Result = SubstAutoType(Result, Context.DependentTy);
370  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
371  FPT->getExtProtoInfo());
372  }
373  }
374 
375  // C++11 [expr.prim.lambda]p5:
376  // The closure type for a lambda-expression has a public inline function
377  // call operator (13.5.4) whose parameters and return type are described by
378  // the lambda-expression's parameter-declaration-clause and
379  // trailing-return-type respectively.
380  DeclarationName MethodName
382  DeclarationNameLoc MethodNameLoc;
383  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
384  = IntroducerRange.getBegin().getRawEncoding();
385  MethodNameLoc.CXXOperatorName.EndOpNameLoc
386  = IntroducerRange.getEnd().getRawEncoding();
387  CXXMethodDecl *Method
388  = CXXMethodDecl::Create(Context, Class, EndLoc,
389  DeclarationNameInfo(MethodName,
390  IntroducerRange.getBegin(),
391  MethodNameLoc),
392  MethodType, MethodTypeInfo,
393  SC_None,
394  /*isInline=*/true,
395  /*isConstExpr=*/false,
396  EndLoc);
397  Method->setAccess(AS_public);
398 
399  // Temporarily set the lexical declaration context to the current
400  // context, so that the Scope stack matches the lexical nesting.
401  Method->setLexicalDeclContext(CurContext);
402  // Create a function template if we have a template parameter list
403  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
405  Method->getLocation(), MethodName,
406  TemplateParams,
407  Method) : nullptr;
408  if (TemplateMethod) {
409  TemplateMethod->setLexicalDeclContext(CurContext);
410  TemplateMethod->setAccess(AS_public);
411  Method->setDescribedFunctionTemplate(TemplateMethod);
412  }
413 
414  // Add parameters.
415  if (!Params.empty()) {
416  Method->setParams(Params);
417  CheckParmsForFunctionDef(Params,
418  /*CheckParameterNames=*/false);
419 
420  for (auto P : Method->parameters())
421  P->setOwningFunction(Method);
422  }
423 
424  Decl *ManglingContextDecl;
425  if (MangleNumberingContext *MCtx =
426  getCurrentMangleNumberContext(Class->getDeclContext(),
427  ManglingContextDecl)) {
428  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
429  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
430  }
431 
432  return Method;
433 }
434 
436  CXXMethodDecl *CallOperator,
437  SourceRange IntroducerRange,
438  LambdaCaptureDefault CaptureDefault,
439  SourceLocation CaptureDefaultLoc,
440  bool ExplicitParams,
441  bool ExplicitResultType,
442  bool Mutable) {
443  LSI->CallOperator = CallOperator;
444  CXXRecordDecl *LambdaClass = CallOperator->getParent();
445  LSI->Lambda = LambdaClass;
446  if (CaptureDefault == LCD_ByCopy)
448  else if (CaptureDefault == LCD_ByRef)
450  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
451  LSI->IntroducerRange = IntroducerRange;
452  LSI->ExplicitParams = ExplicitParams;
453  LSI->Mutable = Mutable;
454 
455  if (ExplicitResultType) {
456  LSI->ReturnType = CallOperator->getReturnType();
457 
458  if (!LSI->ReturnType->isDependentType() &&
459  !LSI->ReturnType->isVoidType()) {
460  if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
461  diag::err_lambda_incomplete_result)) {
462  // Do nothing.
463  }
464  }
465  } else {
466  LSI->HasImplicitReturnType = true;
467  }
468 }
469 
472 }
473 
474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
475  // Introduce our parameters into the function scope
476  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
477  p < NumParams; ++p) {
478  ParmVarDecl *Param = CallOperator->getParamDecl(p);
479 
480  // If this has an identifier, add it to the scope stack.
481  if (CurScope && Param->getIdentifier()) {
482  CheckShadow(CurScope, Param);
483 
484  PushOnScopeChains(Param, CurScope);
485  }
486  }
487 }
488 
489 /// If this expression is an enumerator-like expression of some type
490 /// T, return the type T; otherwise, return null.
491 ///
492 /// Pointer comparisons on the result here should always work because
493 /// it's derived from either the parent of an EnumConstantDecl
494 /// (i.e. the definition) or the declaration returned by
495 /// EnumType::getDecl() (i.e. the definition).
497  // An expression is an enumerator-like expression of type T if,
498  // ignoring parens and parens-like expressions:
499  E = E->IgnoreParens();
500 
501  // - it is an enumerator whose enum type is T or
502  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503  if (EnumConstantDecl *D
504  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505  return cast<EnumDecl>(D->getDeclContext());
506  }
507  return nullptr;
508  }
509 
510  // - it is a comma expression whose RHS is an enumerator-like
511  // expression of type T or
512  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513  if (BO->getOpcode() == BO_Comma)
514  return findEnumForBlockReturn(BO->getRHS());
515  return nullptr;
516  }
517 
518  // - it is a statement-expression whose value expression is an
519  // enumerator-like expression of type T or
520  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522  return findEnumForBlockReturn(last);
523  return nullptr;
524  }
525 
526  // - it is a ternary conditional operator (not the GNU ?:
527  // extension) whose second and third operands are
528  // enumerator-like expressions of type T or
529  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532  return ED;
533  return nullptr;
534  }
535 
536  // (implicitly:)
537  // - it is an implicit integral conversion applied to an
538  // enumerator-like expression of type T or
539  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540  // We can sometimes see integral conversions in valid
541  // enumerator-like expressions.
542  if (ICE->getCastKind() == CK_IntegralCast)
543  return findEnumForBlockReturn(ICE->getSubExpr());
544 
545  // Otherwise, just rely on the type.
546  }
547 
548  // - it is an expression of that formal enum type.
549  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550  return ET->getDecl();
551  }
552 
553  // Otherwise, nope.
554  return nullptr;
555 }
556 
557 /// Attempt to find a type T for which the returned expression of the
558 /// given statement is an enumerator-like expression of that type.
560  if (Expr *retValue = ret->getRetValue())
561  return findEnumForBlockReturn(retValue);
562  return nullptr;
563 }
564 
565 /// Attempt to find a common type T for which all of the returned
566 /// expressions in a block are enumerator-like expressions of that
567 /// type.
569  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
570 
571  // Try to find one for the first return.
573  if (!ED) return nullptr;
574 
575  // Check that the rest of the returns have the same enum.
576  for (++i; i != e; ++i) {
577  if (findEnumForBlockReturn(*i) != ED)
578  return nullptr;
579  }
580 
581  // Never infer an anonymous enum type.
582  if (!ED->hasNameForLinkage()) return nullptr;
583 
584  return ED;
585 }
586 
587 /// Adjust the given return statements so that they formally return
588 /// the given type. It should require, at most, an IntegralCast.
590  QualType returnType) {
592  i = returns.begin(), e = returns.end(); i != e; ++i) {
593  ReturnStmt *ret = *i;
594  Expr *retValue = ret->getRetValue();
595  if (S.Context.hasSameType(retValue->getType(), returnType))
596  continue;
597 
598  // Right now we only support integral fixup casts.
599  assert(returnType->isIntegralOrUnscopedEnumerationType());
600  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
601 
602  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
603 
604  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
605  E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
606  E, /*base path*/ nullptr, VK_RValue);
607  if (cleanups) {
608  cleanups->setSubExpr(E);
609  } else {
610  ret->setRetValue(E);
611  }
612  }
613 }
614 
616  assert(CSI.HasImplicitReturnType);
617  // If it was ever a placeholder, it had to been deduced to DependentTy.
618  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
619  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
620  "lambda expressions use auto deduction in C++14 onwards");
621 
622  // C++ core issue 975:
623  // If a lambda-expression does not include a trailing-return-type,
624  // it is as if the trailing-return-type denotes the following type:
625  // - if there are no return statements in the compound-statement,
626  // or all return statements return either an expression of type
627  // void or no expression or braced-init-list, the type void;
628  // - otherwise, if all return statements return an expression
629  // and the types of the returned expressions after
630  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
631  // array-to-pointer conversion (4.2 [conv.array]), and
632  // function-to-pointer conversion (4.3 [conv.func]) are the
633  // same, that common type;
634  // - otherwise, the program is ill-formed.
635  //
636  // C++ core issue 1048 additionally removes top-level cv-qualifiers
637  // from the types of returned expressions to match the C++14 auto
638  // deduction rules.
639  //
640  // In addition, in blocks in non-C++ modes, if all of the return
641  // statements are enumerator-like expressions of some type T, where
642  // T has a name for linkage, then we infer the return type of the
643  // block to be that type.
644 
645  // First case: no return statements, implicit void return type.
646  ASTContext &Ctx = getASTContext();
647  if (CSI.Returns.empty()) {
648  // It's possible there were simply no /valid/ return statements.
649  // In this case, the first one we found may have at least given us a type.
650  if (CSI.ReturnType.isNull())
651  CSI.ReturnType = Ctx.VoidTy;
652  return;
653  }
654 
655  // Second case: at least one return statement has dependent type.
656  // Delay type checking until instantiation.
657  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
658  if (CSI.ReturnType->isDependentType())
659  return;
660 
661  // Try to apply the enum-fuzz rule.
662  if (!getLangOpts().CPlusPlus) {
663  assert(isa<BlockScopeInfo>(CSI));
665  if (ED) {
668  return;
669  }
670  }
671 
672  // Third case: only one return statement. Don't bother doing extra work!
674  E = CSI.Returns.end();
675  if (I+1 == E)
676  return;
677 
678  // General case: many return statements.
679  // Check that they all have compatible return types.
680 
681  // We require the return types to strictly match here.
682  // Note that we've already done the required promotions as part of
683  // processing the return statement.
684  for (; I != E; ++I) {
685  const ReturnStmt *RS = *I;
686  const Expr *RetE = RS->getRetValue();
687 
688  QualType ReturnType =
689  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
690  if (Context.getCanonicalFunctionResultType(ReturnType) ==
692  continue;
693 
694  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
695  // TODO: It's possible that the *first* return is the divergent one.
696  Diag(RS->getLocStart(),
697  diag::err_typecheck_missing_return_type_incompatible)
698  << ReturnType << CSI.ReturnType
699  << isa<LambdaScopeInfo>(CSI);
700  // Continue iterating so that we keep emitting diagnostics.
701  }
702 }
703 
705  bool ByRef,
706  IdentifierInfo *Id,
707  bool IsDirectInit,
708  Expr *&Init) {
709  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
710  // deduce against.
711  QualType DeductType = Context.getAutoDeductType();
712  TypeLocBuilder TLB;
713  TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
714  if (ByRef) {
715  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
716  assert(!DeductType.isNull() && "can't build reference to auto");
717  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
718  }
719  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
720 
721  // Deduce the type of the init capture.
722  QualType DeducedType = deduceVarTypeFromInitializer(
723  /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
724  SourceRange(Loc, Loc), IsDirectInit, Init);
725  if (DeducedType.isNull())
726  return QualType();
727 
728  // Are we a non-list direct initialization?
729  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
730 
731  // Perform initialization analysis and ensure any implicit conversions
732  // (such as lvalue-to-rvalue) are enforced.
733  InitializedEntity Entity =
734  InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
736  IsDirectInit
737  ? (CXXDirectInit ? InitializationKind::CreateDirect(
738  Loc, Init->getLocStart(), Init->getLocEnd())
740  : InitializationKind::CreateCopy(Loc, Init->getLocStart());
741 
742  MultiExprArg Args = Init;
743  if (CXXDirectInit)
744  Args =
745  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
746  QualType DclT;
747  InitializationSequence InitSeq(*this, Entity, Kind, Args);
748  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
749 
750  if (Result.isInvalid())
751  return QualType();
752  Init = Result.getAs<Expr>();
753 
754  // The init-capture initialization is a full-expression that must be
755  // processed as one before we enter the declcontext of the lambda's
756  // call-operator.
757  Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
758  /*IsConstexpr*/ false,
759  /*IsLambdaInitCaptureInitalizer*/ true);
760  if (Result.isInvalid())
761  return QualType();
762 
763  Init = Result.getAs<Expr>();
764  return DeducedType;
765 }
766 
768  QualType InitCaptureType,
769  IdentifierInfo *Id,
770  unsigned InitStyle, Expr *Init) {
771  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
772  Loc);
773  // Create a dummy variable representing the init-capture. This is not actually
774  // used as a variable, and only exists as a way to name and refer to the
775  // init-capture.
776  // FIXME: Pass in separate source locations for '&' and identifier.
777  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
778  Loc, Id, InitCaptureType, TSI, SC_Auto);
779  NewVD->setInitCapture(true);
780  NewVD->setReferenced(true);
781  // FIXME: Pass in a VarDecl::InitializationStyle.
782  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
783  NewVD->markUsed(Context);
784  NewVD->setInit(Init);
785  return NewVD;
786 }
787 
789  FieldDecl *Field = FieldDecl::Create(
790  Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
791  nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
792  ICIS_NoInit);
793  Field->setImplicit(true);
794  Field->setAccess(AS_private);
795  LSI->Lambda->addDecl(Field);
796 
797  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
798  /*isNested*/false, Var->getLocation(), SourceLocation(),
799  Var->getType(), Var->getInit());
800  return Field;
801 }
802 
804  Declarator &ParamInfo,
805  Scope *CurScope) {
806  // Determine if we're within a context where we know that the lambda will
807  // be dependent, because there are template parameters in scope.
808  bool KnownDependent = false;
809  LambdaScopeInfo *const LSI = getCurLambda();
810  assert(LSI && "LambdaScopeInfo should be on stack!");
811 
812  // The lambda-expression's closure type might be dependent even if its
813  // semantic context isn't, if it appears within a default argument of a
814  // function template.
815  if (CurScope->getTemplateParamParent())
816  KnownDependent = true;
817 
818  // Determine the signature of the call operator.
819  TypeSourceInfo *MethodTyInfo;
820  bool ExplicitParams = true;
821  bool ExplicitResultType = true;
822  bool ContainsUnexpandedParameterPack = false;
823  SourceLocation EndLoc;
825  if (ParamInfo.getNumTypeObjects() == 0) {
826  // C++11 [expr.prim.lambda]p4:
827  // If a lambda-expression does not include a lambda-declarator, it is as
828  // if the lambda-declarator were ().
830  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
831  EPI.HasTrailingReturn = true;
832  EPI.TypeQuals |= DeclSpec::TQ_const;
833  // C++1y [expr.prim.lambda]:
834  // The lambda return type is 'auto', which is replaced by the
835  // trailing-return type if provided and/or deduced from 'return'
836  // statements
837  // We don't do this before C++1y, because we don't support deduced return
838  // types there.
839  QualType DefaultTypeForNoTrailingReturn =
840  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
842  QualType MethodTy =
843  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
844  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
845  ExplicitParams = false;
846  ExplicitResultType = false;
847  EndLoc = Intro.Range.getEnd();
848  } else {
849  assert(ParamInfo.isFunctionDeclarator() &&
850  "lambda-declarator is a function");
852 
853  // C++11 [expr.prim.lambda]p5:
854  // This function call operator is declared const (9.3.1) if and only if
855  // the lambda-expression's parameter-declaration-clause is not followed
856  // by mutable. It is neither virtual nor declared volatile. [...]
857  if (!FTI.hasMutableQualifier())
859 
860  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
861  assert(MethodTyInfo && "no type from lambda-declarator");
862  EndLoc = ParamInfo.getSourceRange().getEnd();
863 
864  ExplicitResultType = FTI.hasTrailingReturnType();
865 
866  if (FTIHasNonVoidParameters(FTI)) {
867  Params.reserve(FTI.NumParams);
868  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
869  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
870  }
871 
872  // Check for unexpanded parameter packs in the method type.
873  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
874  ContainsUnexpandedParameterPack = true;
875  }
876 
877  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
878  KnownDependent, Intro.Default);
879 
880  CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
881  MethodTyInfo, EndLoc, Params);
882  if (ExplicitParams)
883  CheckCXXDefaultArguments(Method);
884 
885  // Attributes on the lambda apply to the method.
886  ProcessDeclAttributes(CurScope, Method, ParamInfo);
887 
888  // Introduce the function call operator as the current declaration context.
889  PushDeclContext(CurScope, Method);
890 
891  // Build the lambda scope.
892  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
893  ExplicitParams, ExplicitResultType, !Method->isConst());
894 
895  // C++11 [expr.prim.lambda]p9:
896  // A lambda-expression whose smallest enclosing scope is a block scope is a
897  // local lambda expression; any other lambda expression shall not have a
898  // capture-default or simple-capture in its lambda-introducer.
899  //
900  // For simple-captures, this is covered by the check below that any named
901  // entity is a variable that can be captured.
902  //
903  // For DR1632, we also allow a capture-default in any context where we can
904  // odr-use 'this' (in particular, in a default initializer for a non-static
905  // data member).
906  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
907  (getCurrentThisType().isNull() ||
908  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
909  /*BuildAndDiagnose*/false)))
910  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
911 
912  // Distinct capture names, for diagnostics.
913  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
914 
915  // Handle explicit captures.
916  SourceLocation PrevCaptureLoc
917  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
918  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
919  PrevCaptureLoc = C->Loc, ++C) {
920  if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
921  if (C->Kind == LCK_StarThis)
922  Diag(C->Loc, !getLangOpts().CPlusPlus1z
923  ? diag::ext_star_this_lambda_capture_cxx1z
924  : diag::warn_cxx14_compat_star_this_lambda_capture);
925 
926  // C++11 [expr.prim.lambda]p8:
927  // An identifier or this shall not appear more than once in a
928  // lambda-capture.
929  if (LSI->isCXXThisCaptured()) {
930  Diag(C->Loc, diag::err_capture_more_than_once)
931  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
933  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
934  continue;
935  }
936 
937  // C++1z [expr.prim.lambda]p8:
938  // If a lambda-capture includes a capture-default that is =, each
939  // simple-capture of that lambda-capture shall be of the form "&
940  // identifier" or "* this". [ Note: The form [&,this] is redundant but
941  // accepted for compatibility with ISO C++14. --end note ]
942  if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) {
943  Diag(C->Loc, diag::err_this_capture_with_copy_default)
945  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
946  continue;
947  }
948 
949  // C++11 [expr.prim.lambda]p12:
950  // If this is captured by a local lambda expression, its nearest
951  // enclosing function shall be a non-static member function.
952  QualType ThisCaptureType = getCurrentThisType();
953  if (ThisCaptureType.isNull()) {
954  Diag(C->Loc, diag::err_this_capture) << true;
955  continue;
956  }
957 
958  CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
959  /*FunctionScopeIndexToStopAtPtr*/ nullptr,
960  C->Kind == LCK_StarThis);
961  continue;
962  }
963 
964  assert(C->Id && "missing identifier for capture");
965 
966  if (C->Init.isInvalid())
967  continue;
968 
969  VarDecl *Var = nullptr;
970  if (C->Init.isUsable()) {
971  Diag(C->Loc, getLangOpts().CPlusPlus14
972  ? diag::warn_cxx11_compat_init_capture
973  : diag::ext_init_capture);
974 
975  if (C->Init.get()->containsUnexpandedParameterPack())
976  ContainsUnexpandedParameterPack = true;
977  // If the initializer expression is usable, but the InitCaptureType
978  // is not, then an error has occurred - so ignore the capture for now.
979  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
980  // FIXME: we should create the init capture variable and mark it invalid
981  // in this case.
982  if (C->InitCaptureType.get().isNull())
983  continue;
984 
985  unsigned InitStyle;
986  switch (C->InitKind) {
988  llvm_unreachable("not an init-capture?");
990  InitStyle = VarDecl::CInit;
991  break;
993  InitStyle = VarDecl::CallInit;
994  break;
996  InitStyle = VarDecl::ListInit;
997  break;
998  }
999  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1000  C->Id, InitStyle, C->Init.get());
1001  // C++1y [expr.prim.lambda]p11:
1002  // An init-capture behaves as if it declares and explicitly
1003  // captures a variable [...] whose declarative region is the
1004  // lambda-expression's compound-statement
1005  if (Var)
1006  PushOnScopeChains(Var, CurScope, false);
1007  } else {
1008  assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1009  "init capture has valid but null init?");
1010 
1011  // C++11 [expr.prim.lambda]p8:
1012  // If a lambda-capture includes a capture-default that is &, the
1013  // identifiers in the lambda-capture shall not be preceded by &.
1014  // If a lambda-capture includes a capture-default that is =, [...]
1015  // each identifier it contains shall be preceded by &.
1016  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1017  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1019  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1020  continue;
1021  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1022  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1024  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1025  continue;
1026  }
1027 
1028  // C++11 [expr.prim.lambda]p10:
1029  // The identifiers in a capture-list are looked up using the usual
1030  // rules for unqualified name lookup (3.4.1)
1031  DeclarationNameInfo Name(C->Id, C->Loc);
1032  LookupResult R(*this, Name, LookupOrdinaryName);
1033  LookupName(R, CurScope);
1034  if (R.isAmbiguous())
1035  continue;
1036  if (R.empty()) {
1037  // FIXME: Disable corrections that would add qualification?
1038  CXXScopeSpec ScopeSpec;
1039  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1040  llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1041  continue;
1042  }
1043 
1044  Var = R.getAsSingle<VarDecl>();
1045  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1046  continue;
1047  }
1048 
1049  // C++11 [expr.prim.lambda]p8:
1050  // An identifier or this shall not appear more than once in a
1051  // lambda-capture.
1052  if (!CaptureNames.insert(C->Id).second) {
1053  if (Var && LSI->isCaptured(Var)) {
1054  Diag(C->Loc, diag::err_capture_more_than_once)
1055  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1057  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1058  } else
1059  // Previous capture captured something different (one or both was
1060  // an init-cpature): no fixit.
1061  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1062  continue;
1063  }
1064 
1065  // C++11 [expr.prim.lambda]p10:
1066  // [...] each such lookup shall find a variable with automatic storage
1067  // duration declared in the reaching scope of the local lambda expression.
1068  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1069  if (!Var) {
1070  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1071  continue;
1072  }
1073 
1074  // Ignore invalid decls; they'll just confuse the code later.
1075  if (Var->isInvalidDecl())
1076  continue;
1077 
1078  if (!Var->hasLocalStorage()) {
1079  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1080  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1081  continue;
1082  }
1083 
1084  // C++11 [expr.prim.lambda]p23:
1085  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1086  SourceLocation EllipsisLoc;
1087  if (C->EllipsisLoc.isValid()) {
1088  if (Var->isParameterPack()) {
1089  EllipsisLoc = C->EllipsisLoc;
1090  } else {
1091  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1092  << SourceRange(C->Loc);
1093 
1094  // Just ignore the ellipsis.
1095  }
1096  } else if (Var->isParameterPack()) {
1097  ContainsUnexpandedParameterPack = true;
1098  }
1099 
1100  if (C->Init.isUsable()) {
1101  buildInitCaptureField(LSI, Var);
1102  } else {
1103  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1104  TryCapture_ExplicitByVal;
1105  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1106  }
1107  }
1108  finishLambdaExplicitCaptures(LSI);
1109 
1110  LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1111 
1112  // Add lambda parameters into scope.
1113  addLambdaParameters(Method, CurScope);
1114 
1115  // Enter a new evaluation context to insulate the lambda from any
1116  // cleanups from the enclosing full-expression.
1117  PushExpressionEvaluationContext(PotentiallyEvaluated);
1118 }
1119 
1121  bool IsInstantiation) {
1122  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1123 
1124  // Leave the expression-evaluation context.
1125  DiscardCleanupsInEvaluationContext();
1126  PopExpressionEvaluationContext();
1127 
1128  // Leave the context of the lambda.
1129  if (!IsInstantiation)
1130  PopDeclContext();
1131 
1132  // Finalize the lambda.
1133  CXXRecordDecl *Class = LSI->Lambda;
1134  Class->setInvalidDecl();
1135  SmallVector<Decl*, 4> Fields(Class->fields());
1136  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1137  SourceLocation(), nullptr);
1138  CheckCompletedCXXClass(Class);
1139 
1140  PopFunctionScopeInfo();
1141 }
1142 
1143 /// \brief Add a lambda's conversion to function pointer, as described in
1144 /// C++11 [expr.prim.lambda]p6.
1146  SourceRange IntroducerRange,
1147  CXXRecordDecl *Class,
1148  CXXMethodDecl *CallOperator) {
1149  // This conversion is explicitly disabled if the lambda's function has
1150  // pass_object_size attributes on any of its parameters.
1151  if (llvm::any_of(CallOperator->parameters(),
1152  std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>)))
1153  return;
1154 
1155  // Add the conversion to function pointer.
1156  const FunctionProtoType *CallOpProto =
1157  CallOperator->getType()->getAs<FunctionProtoType>();
1158  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1159  CallOpProto->getExtProtoInfo();
1160  QualType PtrToFunctionTy;
1161  QualType InvokerFunctionTy;
1162  {
1163  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1165  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1166  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1167  InvokerExtInfo.TypeQuals = 0;
1168  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1169  "Lambda's call operator should not have a reference qualifier");
1170  InvokerFunctionTy =
1171  S.Context.getFunctionType(CallOpProto->getReturnType(),
1172  CallOpProto->getParamTypes(), InvokerExtInfo);
1173  PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1174  }
1175 
1176  // Create the type of the conversion function.
1177  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1179  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1180  // The conversion function is always const.
1181  ConvExtInfo.TypeQuals = Qualifiers::Const;
1182  QualType ConvTy =
1183  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1184 
1185  SourceLocation Loc = IntroducerRange.getBegin();
1186  DeclarationName ConversionName
1188  S.Context.getCanonicalType(PtrToFunctionTy));
1189  DeclarationNameLoc ConvNameLoc;
1190  // Construct a TypeSourceInfo for the conversion function, and wire
1191  // all the parameters appropriately for the FunctionProtoTypeLoc
1192  // so that everything works during transformation/instantiation of
1193  // generic lambdas.
1194  // The main reason for wiring up the parameters of the conversion
1195  // function with that of the call operator is so that constructs
1196  // like the following work:
1197  // auto L = [](auto b) { <-- 1
1198  // return [](auto a) -> decltype(a) { <-- 2
1199  // return a;
1200  // };
1201  // };
1202  // int (*fp)(int) = L(5);
1203  // Because the trailing return type can contain DeclRefExprs that refer
1204  // to the original call operator's variables, we hijack the call
1205  // operators ParmVarDecls below.
1206  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1207  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1208  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1209 
1210  // The conversion function is a conversion to a pointer-to-function.
1211  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1212  FunctionProtoTypeLoc ConvTL =
1213  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1214  // Get the result of the conversion function which is a pointer-to-function.
1215  PointerTypeLoc PtrToFunctionTL =
1216  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1217  // Do the same for the TypeSourceInfo that is used to name the conversion
1218  // operator.
1219  PointerTypeLoc ConvNamePtrToFunctionTL =
1220  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1221 
1222  // Get the underlying function types that the conversion function will
1223  // be converting to (should match the type of the call operator).
1224  FunctionProtoTypeLoc CallOpConvTL =
1225  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1226  FunctionProtoTypeLoc CallOpConvNameTL =
1227  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1228 
1229  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1230  // These parameter's are essentially used to transform the name and
1231  // the type of the conversion operator. By using the same parameters
1232  // as the call operator's we don't have to fix any back references that
1233  // the trailing return type of the call operator's uses (such as
1234  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1235  // - we can simply use the return type of the call operator, and
1236  // everything should work.
1237  SmallVector<ParmVarDecl *, 4> InvokerParams;
1238  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1239  ParmVarDecl *From = CallOperator->getParamDecl(I);
1240 
1241  InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1242  // Temporarily add to the TU. This is set to the invoker below.
1244  From->getLocStart(),
1245  From->getLocation(),
1246  From->getIdentifier(),
1247  From->getType(),
1248  From->getTypeSourceInfo(),
1249  From->getStorageClass(),
1250  /*DefaultArg=*/nullptr));
1251  CallOpConvTL.setParam(I, From);
1252  CallOpConvNameTL.setParam(I, From);
1253  }
1254 
1255  CXXConversionDecl *Conversion
1256  = CXXConversionDecl::Create(S.Context, Class, Loc,
1257  DeclarationNameInfo(ConversionName,
1258  Loc, ConvNameLoc),
1259  ConvTy,
1260  ConvTSI,
1261  /*isInline=*/true, /*isExplicit=*/false,
1262  /*isConstexpr=*/false,
1263  CallOperator->getBody()->getLocEnd());
1264  Conversion->setAccess(AS_public);
1265  Conversion->setImplicit(true);
1266 
1267  if (Class->isGenericLambda()) {
1268  // Create a template version of the conversion operator, using the template
1269  // parameter list of the function call operator.
1270  FunctionTemplateDecl *TemplateCallOperator =
1271  CallOperator->getDescribedFunctionTemplate();
1272  FunctionTemplateDecl *ConversionTemplate =
1274  Loc, ConversionName,
1275  TemplateCallOperator->getTemplateParameters(),
1276  Conversion);
1277  ConversionTemplate->setAccess(AS_public);
1278  ConversionTemplate->setImplicit(true);
1279  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1280  Class->addDecl(ConversionTemplate);
1281  } else
1282  Class->addDecl(Conversion);
1283  // Add a non-static member function that will be the result of
1284  // the conversion with a certain unique ID.
1285  DeclarationName InvokerName = &S.Context.Idents.get(
1287  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1288  // we should get a prebuilt TrivialTypeSourceInfo from Context
1289  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1290  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1291  // loop below and then use its Params to set Invoke->setParams(...) below.
1292  // This would avoid the 'const' qualifier of the calloperator from
1293  // contaminating the type of the invoker, which is currently adjusted
1294  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1295  // trailing return type of the invoker would require a visitor to rebuild
1296  // the trailing return type and adjusting all back DeclRefExpr's to refer
1297  // to the new static invoker parameters - not the call operator's.
1298  CXXMethodDecl *Invoke
1299  = CXXMethodDecl::Create(S.Context, Class, Loc,
1300  DeclarationNameInfo(InvokerName, Loc),
1301  InvokerFunctionTy,
1302  CallOperator->getTypeSourceInfo(),
1303  SC_Static, /*IsInline=*/true,
1304  /*IsConstexpr=*/false,
1305  CallOperator->getBody()->getLocEnd());
1306  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1307  InvokerParams[I]->setOwningFunction(Invoke);
1308  Invoke->setParams(InvokerParams);
1309  Invoke->setAccess(AS_private);
1310  Invoke->setImplicit(true);
1311  if (Class->isGenericLambda()) {
1312  FunctionTemplateDecl *TemplateCallOperator =
1313  CallOperator->getDescribedFunctionTemplate();
1314  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1315  S.Context, Class, Loc, InvokerName,
1316  TemplateCallOperator->getTemplateParameters(),
1317  Invoke);
1318  StaticInvokerTemplate->setAccess(AS_private);
1319  StaticInvokerTemplate->setImplicit(true);
1320  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1321  Class->addDecl(StaticInvokerTemplate);
1322  } else
1323  Class->addDecl(Invoke);
1324 }
1325 
1326 /// \brief Add a lambda's conversion to block pointer.
1328  SourceRange IntroducerRange,
1329  CXXRecordDecl *Class,
1330  CXXMethodDecl *CallOperator) {
1331  const FunctionProtoType *Proto =
1332  CallOperator->getType()->getAs<FunctionProtoType>();
1333 
1334  // The function type inside the block pointer type is the same as the call
1335  // operator with some tweaks. The calling convention is the default free
1336  // function convention, and the type qualifications are lost.
1338  BlockEPI.ExtInfo =
1339  BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1340  Proto->isVariadic(), /*IsCXXMethod=*/false));
1341  BlockEPI.TypeQuals = 0;
1342  QualType FunctionTy = S.Context.getFunctionType(
1343  Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1344  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1345 
1346  FunctionProtoType::ExtProtoInfo ConversionEPI(
1348  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1349  ConversionEPI.TypeQuals = Qualifiers::Const;
1350  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1351 
1352  SourceLocation Loc = IntroducerRange.getBegin();
1355  S.Context.getCanonicalType(BlockPtrTy));
1356  DeclarationNameLoc NameLoc;
1357  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1358  CXXConversionDecl *Conversion
1359  = CXXConversionDecl::Create(S.Context, Class, Loc,
1360  DeclarationNameInfo(Name, Loc, NameLoc),
1361  ConvTy,
1362  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1363  /*isInline=*/true, /*isExplicit=*/false,
1364  /*isConstexpr=*/false,
1365  CallOperator->getBody()->getLocEnd());
1366  Conversion->setAccess(AS_public);
1367  Conversion->setImplicit(true);
1368  Class->addDecl(Conversion);
1369 }
1370 
1372  Sema &S, LambdaScopeInfo::Capture &Capture,
1373  FieldDecl *Field,
1374  SmallVectorImpl<VarDecl *> &ArrayIndexVars,
1375  SmallVectorImpl<unsigned> &ArrayIndexStarts) {
1376  assert(Capture.isVariableCapture() && "not a variable capture");
1377 
1378  auto *Var = Capture.getVariable();
1379  SourceLocation Loc = Capture.getLocation();
1380 
1381  // C++11 [expr.prim.lambda]p21:
1382  // When the lambda-expression is evaluated, the entities that
1383  // are captured by copy are used to direct-initialize each
1384  // corresponding non-static data member of the resulting closure
1385  // object. (For array members, the array elements are
1386  // direct-initialized in increasing subscript order.) These
1387  // initializations are performed in the (unspecified) order in
1388  // which the non-static data members are declared.
1389 
1390  // C++ [expr.prim.lambda]p12:
1391  // An entity captured by a lambda-expression is odr-used (3.2) in
1392  // the scope containing the lambda-expression.
1393  ExprResult RefResult = S.BuildDeclarationNameExpr(
1394  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1395  if (RefResult.isInvalid())
1396  return ExprError();
1397  Expr *Ref = RefResult.get();
1398 
1399  QualType FieldType = Field->getType();
1400 
1401  // When the variable has array type, create index variables for each
1402  // dimension of the array. We use these index variables to subscript
1403  // the source array, and other clients (e.g., CodeGen) will perform
1404  // the necessary iteration with these index variables.
1405  //
1406  // FIXME: This is dumb. Add a proper AST representation for array
1407  // copy-construction and use it here.
1408  SmallVector<VarDecl *, 4> IndexVariables;
1409  QualType BaseType = FieldType;
1410  QualType SizeType = S.Context.getSizeType();
1411  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1412  while (const ConstantArrayType *Array
1413  = S.Context.getAsConstantArrayType(BaseType)) {
1414  // Create the iteration variable for this array index.
1415  IdentifierInfo *IterationVarName = nullptr;
1416  {
1417  SmallString<8> Str;
1418  llvm::raw_svector_ostream OS(Str);
1419  OS << "__i" << IndexVariables.size();
1420  IterationVarName = &S.Context.Idents.get(OS.str());
1421  }
1422  VarDecl *IterationVar = VarDecl::Create(
1423  S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
1424  S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
1425  IterationVar->setImplicit();
1426  IndexVariables.push_back(IterationVar);
1427  ArrayIndexVars.push_back(IterationVar);
1428 
1429  // Create a reference to the iteration variable.
1430  ExprResult IterationVarRef =
1431  S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
1432  assert(!IterationVarRef.isInvalid() &&
1433  "Reference to invented variable cannot fail!");
1434  IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
1435  assert(!IterationVarRef.isInvalid() &&
1436  "Conversion of invented variable cannot fail!");
1437 
1438  // Subscript the array with this iteration variable.
1439  ExprResult Subscript =
1440  S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
1441  if (Subscript.isInvalid())
1442  return ExprError();
1443 
1444  Ref = Subscript.get();
1445  BaseType = Array->getElementType();
1446  }
1447 
1448  // Construct the entity that we will be initializing. For an array, this
1449  // will be first element in the array, which may require several levels
1450  // of array-subscript entities.
1452  Entities.reserve(1 + IndexVariables.size());
1453  Entities.push_back(InitializedEntity::InitializeLambdaCapture(
1454  Var->getIdentifier(), FieldType, Loc));
1455  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1456  Entities.push_back(
1457  InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
1458 
1459  InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1460  InitializationSequence Init(S, Entities.back(), InitKind, Ref);
1461  return Init.Perform(S, Entities.back(), InitKind, Ref);
1462 }
1463 
1465  Scope *CurScope) {
1466  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1467  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1468  return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
1469 }
1470 
1471 static LambdaCaptureDefault
1473  switch (ICS) {
1475  return LCD_None;
1477  return LCD_ByCopy;
1480  return LCD_ByRef;
1482  llvm_unreachable("block capture in lambda");
1483  }
1484  llvm_unreachable("Unknown implicit capture style");
1485 }
1486 
1488  LambdaScopeInfo *LSI) {
1489  // Collect information from the lambda scope.
1491  SmallVector<Expr *, 4> CaptureInits;
1492  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1493  LambdaCaptureDefault CaptureDefault =
1495  CXXRecordDecl *Class;
1496  CXXMethodDecl *CallOperator;
1497  SourceRange IntroducerRange;
1498  bool ExplicitParams;
1499  bool ExplicitResultType;
1500  CleanupInfo LambdaCleanup;
1501  bool ContainsUnexpandedParameterPack;
1502  SmallVector<VarDecl *, 4> ArrayIndexVars;
1503  SmallVector<unsigned, 4> ArrayIndexStarts;
1504  {
1505  CallOperator = LSI->CallOperator;
1506  Class = LSI->Lambda;
1507  IntroducerRange = LSI->IntroducerRange;
1508  ExplicitParams = LSI->ExplicitParams;
1509  ExplicitResultType = !LSI->HasImplicitReturnType;
1510  LambdaCleanup = LSI->Cleanup;
1511  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1512 
1513  CallOperator->setLexicalDeclContext(Class);
1514  Decl *TemplateOrNonTemplateCallOperatorDecl =
1515  CallOperator->getDescribedFunctionTemplate()
1516  ? CallOperator->getDescribedFunctionTemplate()
1517  : cast<Decl>(CallOperator);
1518 
1519  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1520  Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1521 
1522  PopExpressionEvaluationContext();
1523 
1524  // Translate captures.
1525  auto CurField = Class->field_begin();
1526  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
1527  LambdaScopeInfo::Capture From = LSI->Captures[I];
1528  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1529  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1530 
1531  // Handle 'this' capture.
1532  if (From.isThisCapture()) {
1533  Captures.push_back(
1534  LambdaCapture(From.getLocation(), IsImplicit,
1535  From.isCopyCapture() ? LCK_StarThis : LCK_This));
1536  CaptureInits.push_back(From.getInitExpr());
1537  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1538  continue;
1539  }
1540  if (From.isVLATypeCapture()) {
1541  Captures.push_back(
1542  LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1543  CaptureInits.push_back(nullptr);
1544  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1545  continue;
1546  }
1547 
1548  VarDecl *Var = From.getVariable();
1549  LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1550  Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1551  Var, From.getEllipsisLoc()));
1552  Expr *Init = From.getInitExpr();
1553  if (!Init) {
1554  auto InitResult = performLambdaVarCaptureInitialization(
1555  *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
1556  if (InitResult.isInvalid())
1557  return ExprError();
1558  Init = InitResult.get();
1559  } else {
1560  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1561  }
1562  CaptureInits.push_back(Init);
1563  }
1564 
1565  // C++11 [expr.prim.lambda]p6:
1566  // The closure type for a lambda-expression with no lambda-capture
1567  // has a public non-virtual non-explicit const conversion function
1568  // to pointer to function having the same parameter and return
1569  // types as the closure type's function call operator.
1570  if (Captures.empty() && CaptureDefault == LCD_None)
1571  addFunctionPointerConversion(*this, IntroducerRange, Class,
1572  CallOperator);
1573 
1574  // Objective-C++:
1575  // The closure type for a lambda-expression has a public non-virtual
1576  // non-explicit const conversion function to a block pointer having the
1577  // same parameter and return types as the closure type's function call
1578  // operator.
1579  // FIXME: Fix generic lambda to block conversions.
1580  if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1581  !Class->isGenericLambda())
1582  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1583 
1584  // Finalize the lambda class.
1585  SmallVector<Decl*, 4> Fields(Class->fields());
1586  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1587  SourceLocation(), nullptr);
1588  CheckCompletedCXXClass(Class);
1589  }
1590 
1591  Cleanup.mergeFrom(LambdaCleanup);
1592 
1593  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1594  CaptureDefault, CaptureDefaultLoc,
1595  Captures,
1596  ExplicitParams, ExplicitResultType,
1597  CaptureInits, ArrayIndexVars,
1598  ArrayIndexStarts, EndLoc,
1599  ContainsUnexpandedParameterPack);
1600 
1601  if (!CurContext->isDependentContext()) {
1602  switch (ExprEvalContexts.back().Context) {
1603  // C++11 [expr.prim.lambda]p2:
1604  // A lambda-expression shall not appear in an unevaluated operand
1605  // (Clause 5).
1606  case Unevaluated:
1607  case UnevaluatedAbstract:
1608  // C++1y [expr.const]p2:
1609  // A conditional-expression e is a core constant expression unless the
1610  // evaluation of e, following the rules of the abstract machine, would
1611  // evaluate [...] a lambda-expression.
1612  //
1613  // This is technically incorrect, there are some constant evaluated contexts
1614  // where this should be allowed. We should probably fix this when DR1607 is
1615  // ratified, it lays out the exact set of conditions where we shouldn't
1616  // allow a lambda-expression.
1617  case ConstantEvaluated:
1618  // We don't actually diagnose this case immediately, because we
1619  // could be within a context where we might find out later that
1620  // the expression is potentially evaluated (e.g., for typeid).
1621  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1622  break;
1623 
1624  case DiscardedStatement:
1625  case PotentiallyEvaluated:
1626  case PotentiallyEvaluatedIfUsed:
1627  break;
1628  }
1629  }
1630 
1631  return MaybeBindToTemporary(Lambda);
1632 }
1633 
1635  SourceLocation ConvLocation,
1636  CXXConversionDecl *Conv,
1637  Expr *Src) {
1638  // Make sure that the lambda call operator is marked used.
1639  CXXRecordDecl *Lambda = Conv->getParent();
1640  CXXMethodDecl *CallOperator
1641  = cast<CXXMethodDecl>(
1642  Lambda->lookup(
1643  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1644  CallOperator->setReferenced();
1645  CallOperator->markUsed(Context);
1646 
1647  ExprResult Init = PerformCopyInitialization(
1648  InitializedEntity::InitializeBlock(ConvLocation,
1649  Src->getType(),
1650  /*NRVO=*/false),
1651  CurrentLocation, Src);
1652  if (!Init.isInvalid())
1653  Init = ActOnFinishFullExpr(Init.get());
1654 
1655  if (Init.isInvalid())
1656  return ExprError();
1657 
1658  // Create the new block to be returned.
1659  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1660 
1661  // Set the type information.
1662  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1663  Block->setIsVariadic(CallOperator->isVariadic());
1664  Block->setBlockMissingReturnType(false);
1665 
1666  // Add parameters.
1667  SmallVector<ParmVarDecl *, 4> BlockParams;
1668  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1669  ParmVarDecl *From = CallOperator->getParamDecl(I);
1670  BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1671  From->getLocStart(),
1672  From->getLocation(),
1673  From->getIdentifier(),
1674  From->getType(),
1675  From->getTypeSourceInfo(),
1676  From->getStorageClass(),
1677  /*DefaultArg=*/nullptr));
1678  }
1679  Block->setParams(BlockParams);
1680 
1681  Block->setIsConversionFromLambda(true);
1682 
1683  // Add capture. The capture uses a fake variable, which doesn't correspond
1684  // to any actual memory location. However, the initializer copy-initializes
1685  // the lambda object.
1686  TypeSourceInfo *CapVarTSI =
1688  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1689  ConvLocation, nullptr,
1690  Src->getType(), CapVarTSI,
1691  SC_None);
1692  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1693  /*Nested=*/false, /*Copy=*/Init.get());
1694  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1695 
1696  // Add a fake function body to the block. IR generation is responsible
1697  // for filling in the actual body, which cannot be expressed as an AST.
1698  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1699 
1700  // Create the block literal expression.
1701  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1702  ExprCleanupObjects.push_back(Block);
1703  Cleanup.setExprNeedsCleanups(true);
1704 
1705  return BuildBlock;
1706 }
SourceLocation getEnd() const
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:64
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1561
bool isVariadic() const
Definition: Type.h:3366
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:675
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2097
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
A class which contains all the information about a particular captured value.
Definition: Decl.h:3460
A (possibly-)qualified type.
Definition: Type.h:598
bool isInvalid() const
Definition: Ownership.h:160
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:689
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:2986
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2501
TemplateParameterList * GLTemplateParameterList
If this is a generic lambda, and the template parameter list has been created (from the AutoTemplateP...
Definition: ScopeInfo.h:711
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:232
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, IdentifierInfo *Id, unsigned InitStyle, Expr *Init)
Create a dummy variable within the declcontext of the lambda's call operator, for name lookup purpose...
Definition: SemaLambda.cpp:767
DeclClass * getAsSingle() const
Definition: Sema/Lookup.h:491
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt * > returns)
Attempt to find a common type T for which all of the returned expressions in a block are enumerator-l...
Definition: SemaLambda.cpp:568
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
EnumConstantDecl - An instance of this object exists for each enum constant that is defined...
Definition: Decl.h:2481
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:536
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
getCXXConversionFunctionName - Returns the name of a C++ conversion function for the given Type...
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:23
StringRef P
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
PtrTy get() const
Definition: Ownership.h:164
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc)
Definition: SemaExpr.cpp:4357
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:922
const Expr * getInit() const
Definition: Decl.h:1139
A container of type source information.
Definition: Decl.h:62
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:1396
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1184
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:26
This file provides some common utility functions for processing Lambda related AST Constructs...
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:768
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:2004
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1624
Extra information about a function prototype.
Definition: Type.h:3167
field_iterator field_begin() const
Definition: Decl.cpp:3767
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.cpp:3877
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:49
MangleNumberingContext & getMangleNumberingContext(ASTContext &Ctx)
Retrieve the mangling numbering context, used to consistently number constructs like lambdas for mang...
Definition: SemaLambda.cpp:346
static InitializationKind CreateDirectList(SourceLocation InitLoc)
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:13552
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2936
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1553
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1377
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:243
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isCXXThisCaptured() const
Determine whether the C++ 'this' is captured.
Definition: ScopeInfo.h:560
bool isVoidType() const
Definition: Type.h:5680
tok::TokenKind ContextKind
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:37
Scope * getTemplateParamParent()
Definition: Scope.h:253
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3182
bool isConst() const
Definition: DeclCXX.h:1777
One of these records is kept for each identifier that is lexed.
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4549
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:1216
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:92
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3276
bool isReferenceType() const
Definition: Type.h:5491
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getReturnType() const
Definition: Decl.h:2034
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:34
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2293
void setBlockMissingReturnType(bool val)
Definition: Decl.h:3588
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned The qualifier bitmask values are the same as...
Definition: DeclSpec.h:1224
bool isTranslationUnit() const
Definition: DeclBase.h:1283
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:1982
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:110
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:695
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1199
IdentifierTable & Idents
Definition: ASTContext.h:459
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:947
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:105
static InitializedEntity InitializeBlock(SourceLocation BlockVarLoc, QualType Type, bool NRVO)
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1639
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:496
Represents the results of name lookup.
Definition: Sema/Lookup.h:30
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2004
< Capturing the *this object by copy
Definition: Lambda.h:37
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
void addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:474
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
QualType getReturnType() const
Definition: Type.h:3009
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:1838
field_range fields() const
Definition: Decl.h:3382
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr, bool ByCopy=false)
Make sure the value of 'this' is actually available in the current context, if it is a potentially ev...
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2897
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl)
Set the mangling number and context declaration for a lambda class.
Definition: DeclCXX.h:1675
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:747
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2448
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:71
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence...
Definition: SemaInit.cpp:6208
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1503
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1800
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:28
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3068
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:23
detail::InMemoryDirectory::const_iterator I
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl=false)
Definition: SemaExpr.cpp:2800
static ExprResult performLambdaVarCaptureInitialization(Sema &S, LambdaScopeInfo::Capture &Capture, FieldDecl *Field, SmallVectorImpl< VarDecl * > &ArrayIndexVars, SmallVectorImpl< unsigned > &ArrayIndexStarts)
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
SmallVector< TemplateTypeParmDecl *, 4 > AutoTemplateParams
Store the list of the auto parameters for a generic lambda.
Definition: ScopeInfo.h:706
QualType getType() const
Definition: Decl.h:599
TypeSpecTypeLoc pushTypeSpec(QualType T)
Pushes space for a typespec TypeLoc.
CleanupInfo Cleanup
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:692
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:408
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3170
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:263
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2066
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:551
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:686
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:153
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3073
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1652
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:462
bool isGenericLambda() const
Determine whether this class describes a generic lambda function object (i.e.
Definition: DeclCXX.cpp:1046
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:470
ASTContext * Context
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2345
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:735
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:683
unsigned getNumExprs() const
Definition: Expr.h:4350
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1230
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:672
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
BlockDecl - This represents a block literal declaration, which is like an unnamed FunctionDecl...
Definition: Decl.h:3456
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed...
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:5749
Expr - This represents one expression.
Definition: Expr.h:105
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, IdentifierInfo *Id, bool DirectInit, Expr *&Init)
Definition: SemaLambda.cpp:704
This file defines the classes used to store parsed information about declaration-specifiers and decla...
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4567
void setInit(Expr *I)
Definition: Decl.cpp:2081
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:886
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2011
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3280
void setRetValue(Expr *E)
Definition: Stmt.h:1383
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:225
MangleNumberingContext * createMangleNumberingContext() const
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:435
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl * > Params)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:354
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:578
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1774
Direct list-initialization (C++11)
Definition: Decl.h:780
bool isFunctionOrMethod() const
Definition: DeclBase.h:1263
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:265
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1214
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1366
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.h:2019
struct CXXOpName CXXOperatorName
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2461
The result type of a method or function.
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:2957
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:671
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:231
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
bool isAmbiguous() const
Definition: Sema/Lookup.h:285
FieldDecl * buildInitCaptureField(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Build the implicit field for an init-capture.
Definition: SemaLambda.cpp:788
void setIsVariadic(bool value)
Definition: Decl.h:3533
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl * > Params, SourceLocation RAngleLoc)
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
Stmt * getBody(const FunctionDecl *&Definition) const
getBody - Retrieve the body (definition) of the function.
Definition: Decl.cpp:2491
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:215
SourceLocation DefaultLoc
Definition: DeclSpec.h:2343
Kind
void setIsConversionFromLambda(bool val)
Definition: Decl.h:3591
Encodes a location in the source.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
unsigned getNumParams() const
getNumParams - Return the number of parameters this function must have based on its FunctionType...
Definition: Decl.cpp:2742
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3733
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:669
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:170
static InitializedEntity InitializeElement(ASTContext &Context, unsigned Index, const InitializedEntity &Parent)
Create the initialization entity for an array element.
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1736
ExprResult DefaultLvalueConversion(Expr *E)
Definition: SemaExpr.cpp:630
No ref-qualifier was provided.
Definition: Type.h:1238
C-style initialization with assignment.
Definition: Decl.h:778
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:1989
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2114
CanQualType VoidTy
Definition: ASTContext.h:893
Describes the kind of initialization being performed, along with location information for tokens rela...
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:528
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2734
SourceLocation getBegin() const
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5849
MangleNumberingContext * getCurrentMangleNumberContext(const DeclContext *DC, Decl *&ManglingContextDecl)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:278
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1309
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1407
bool isFileContext() const
Definition: DeclBase.h:1279
SourceLocation CaptureDefaultLoc
Source location of the '&' or '=' specifying the default capture type, if any.
Definition: ScopeInfo.h:679
Expr ** getExprs()
Definition: Expr.h:4362
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3380
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:262
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:70
static EnumDecl * findEnumForBlockReturn(Expr *E)
If this expression is an enumerator-like expression of some type T, return the type T; otherwise...
Definition: SemaLambda.cpp:496
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1760
QualType getType() const
Definition: Expr.h:126
This file provides some common utility functions for processing Lambdas.
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2328
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
void setBody(CompoundStmt *B)
Definition: Decl.h:3537
LambdaCaptureDefault Default
Definition: DeclSpec.h:2344
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1135
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda's return type based on the return statements present in the body...
Definition: SemaLambda.cpp:615
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:104
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to block pointer.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
DeclarationName - The name of a declaration.
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:693
EnumDecl - Represents an enum.
Definition: Decl.h:3013
detail::InMemoryDirectory::const_iterator E
const Expr * getRetValue() const
Definition: Stmt.cpp:899
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:569
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:1966
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
void setInitCapture(bool IC)
Definition: Decl.h:1288
Capturing variable-length array type.
Definition: Lambda.h:39
bool empty() const
Return true if no decls were found.
Definition: Sema/Lookup.h:323
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:803
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5818
CanQualType DependentTy
Definition: ASTContext.h:909
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1540
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1296
Capturing the *this object by reference.
Definition: Lambda.h:35
Capture & getCXXThisCapture()
Retrieve the capture of C++ 'this', if it has been captured.
Definition: ScopeInfo.h:563
void setSignatureAsWritten(TypeSourceInfo *Sig)
Definition: Decl.h:3539
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:4050
Call-style initialization (C++98)
Definition: Decl.h:779
ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS=nullptr)
Definition: SemaExpr.cpp:1724
Describes the sequence of initializations required to initialize a given object or reference with a s...
Represents a C++ struct/union/class.
Definition: DeclCXX.h:263
CallingConv getDefaultCallingConvention(bool isVariadic, bool IsCXXMethod) const
Retrieves the default calling convention for the current target.
Capturing by reference.
Definition: Lambda.h:38
TryCaptureKind
Definition: Sema.h:3687
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:311
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:353
Defines the clang::TargetInfo interface.
Represents a complete lambda introducer.
Definition: DeclSpec.h:2324
bool HasImplicitReturnType
Whether the target type of return statements in this context is deduced (e.g.
Definition: ScopeInfo.h:532
ExprResult ExprError()
Definition: Ownership.h:268
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3072
bool isRecord() const
Definition: DeclBase.h:1287
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:932
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:495
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy)
Definition: ScopeInfo.h:538
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:109
void setCaptures(ASTContext &Context, ArrayRef< Capture > Captures, bool CapturesCXXThis)
Definition: Decl.cpp:3888
A trivial tuple used to represent a source range.
ASTContext & Context
Definition: Sema.h:299
NamedDecl - This represents a decl with a name.
Definition: Decl.h:213
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:665
Describes an entity that is being initialized.
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:3443
Wrapper for source info for pointers.
Definition: TypeLoc.h:1134
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, ArrayRef< LambdaCapture > Captures, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr * > CaptureInits, ArrayRef< VarDecl * > ArrayIndexVars, ArrayRef< unsigned > ArrayIndexStarts, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:907
No in-class initializer.
Definition: Specifiers.h:225
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2512
Declaration of a template function.
Definition: DeclTemplate.h:838
bool hasLocalStorage() const
hasLocalStorage - Returns true if a variable with function scope is a non-static local variable...
Definition: Decl.h:963
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2295
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt * > returns, QualType returnType)
Adjust the given return statements so that they formally return the given type.
Definition: SemaLambda.cpp:589
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
getCXXOperatorName - Get the name of the overloadable C++ operator corresponding to Op...