clang  3.9.0
RangeConstraintManager.cpp
Go to the documentation of this file.
1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines RangeConstraintManager, a class that tracks simple
11 // equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14 
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace clang;
25 using namespace ento;
26 
27 /// A Range represents the closed range [from, to]. The caller must
28 /// guarantee that from <= to. Note that Range is immutable, so as not
29 /// to subvert RangeSet's immutability.
30 namespace {
31 class Range : public std::pair<const llvm::APSInt*,
32  const llvm::APSInt*> {
33 public:
34  Range(const llvm::APSInt &from, const llvm::APSInt &to)
35  : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
36  assert(from <= to);
37  }
38  bool Includes(const llvm::APSInt &v) const {
39  return *first <= v && v <= *second;
40  }
41  const llvm::APSInt &From() const {
42  return *first;
43  }
44  const llvm::APSInt &To() const {
45  return *second;
46  }
47  const llvm::APSInt *getConcreteValue() const {
48  return &From() == &To() ? &From() : nullptr;
49  }
50 
51  void Profile(llvm::FoldingSetNodeID &ID) const {
52  ID.AddPointer(&From());
53  ID.AddPointer(&To());
54  }
55 };
56 
57 
58 class RangeTrait : public llvm::ImutContainerInfo<Range> {
59 public:
60  // When comparing if one Range is less than another, we should compare
61  // the actual APSInt values instead of their pointers. This keeps the order
62  // consistent (instead of comparing by pointer values) and can potentially
63  // be used to speed up some of the operations in RangeSet.
64  static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
65  return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
66  *lhs.second < *rhs.second);
67  }
68 };
69 
70 /// RangeSet contains a set of ranges. If the set is empty, then
71 /// there the value of a symbol is overly constrained and there are no
72 /// possible values for that symbol.
73 class RangeSet {
74  typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
75  PrimRangeSet ranges; // no need to make const, since it is an
76  // ImmutableSet - this allows default operator=
77  // to work.
78 public:
79  typedef PrimRangeSet::Factory Factory;
81 
82  RangeSet(PrimRangeSet RS) : ranges(RS) {}
83 
84  /// Create a new set with all ranges of this set and RS.
85  /// Possible intersections are not checked here.
86  RangeSet addRange(Factory &F, const RangeSet &RS) {
87  PrimRangeSet Ranges(RS.ranges);
88  for (const auto &range : ranges)
89  Ranges = F.add(Ranges, range);
90  return RangeSet(Ranges);
91  }
92 
93  iterator begin() const { return ranges.begin(); }
94  iterator end() const { return ranges.end(); }
95 
96  bool isEmpty() const { return ranges.isEmpty(); }
97 
98  /// Construct a new RangeSet representing '{ [from, to] }'.
99  RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
100  : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
101 
102  /// Profile - Generates a hash profile of this RangeSet for use
103  /// by FoldingSet.
104  void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
105 
106  /// getConcreteValue - If a symbol is contrained to equal a specific integer
107  /// constant then this method returns that value. Otherwise, it returns
108  /// NULL.
109  const llvm::APSInt* getConcreteValue() const {
110  return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
111  }
112 
113 private:
114  void IntersectInRange(BasicValueFactory &BV, Factory &F,
115  const llvm::APSInt &Lower,
116  const llvm::APSInt &Upper,
117  PrimRangeSet &newRanges,
119  PrimRangeSet::iterator &e) const {
120  // There are six cases for each range R in the set:
121  // 1. R is entirely before the intersection range.
122  // 2. R is entirely after the intersection range.
123  // 3. R contains the entire intersection range.
124  // 4. R starts before the intersection range and ends in the middle.
125  // 5. R starts in the middle of the intersection range and ends after it.
126  // 6. R is entirely contained in the intersection range.
127  // These correspond to each of the conditions below.
128  for (/* i = begin(), e = end() */; i != e; ++i) {
129  if (i->To() < Lower) {
130  continue;
131  }
132  if (i->From() > Upper) {
133  break;
134  }
135 
136  if (i->Includes(Lower)) {
137  if (i->Includes(Upper)) {
138  newRanges = F.add(newRanges, Range(BV.getValue(Lower),
139  BV.getValue(Upper)));
140  break;
141  } else
142  newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
143  } else {
144  if (i->Includes(Upper)) {
145  newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
146  break;
147  } else
148  newRanges = F.add(newRanges, *i);
149  }
150  }
151  }
152 
153  const llvm::APSInt &getMinValue() const {
154  assert(!isEmpty());
155  return ranges.begin()->From();
156  }
157 
158  bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
159  // This function has nine cases, the cartesian product of range-testing
160  // both the upper and lower bounds against the symbol's type.
161  // Each case requires a different pinning operation.
162  // The function returns false if the described range is entirely outside
163  // the range of values for the associated symbol.
164  APSIntType Type(getMinValue());
165  APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
166  APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
167 
168  switch (LowerTest) {
170  switch (UpperTest) {
172  // The entire range is outside the symbol's set of possible values.
173  // If this is a conventionally-ordered range, the state is infeasible.
174  if (Lower <= Upper)
175  return false;
176 
177  // However, if the range wraps around, it spans all possible values.
178  Lower = Type.getMinValue();
179  Upper = Type.getMaxValue();
180  break;
182  // The range starts below what's possible but ends within it. Pin.
183  Lower = Type.getMinValue();
184  Type.apply(Upper);
185  break;
187  // The range spans all possible values for the symbol. Pin.
188  Lower = Type.getMinValue();
189  Upper = Type.getMaxValue();
190  break;
191  }
192  break;
194  switch (UpperTest) {
196  // The range wraps around, but all lower values are not possible.
197  Type.apply(Lower);
198  Upper = Type.getMaxValue();
199  break;
201  // The range may or may not wrap around, but both limits are valid.
202  Type.apply(Lower);
203  Type.apply(Upper);
204  break;
206  // The range starts within what's possible but ends above it. Pin.
207  Type.apply(Lower);
208  Upper = Type.getMaxValue();
209  break;
210  }
211  break;
213  switch (UpperTest) {
215  // The range wraps but is outside the symbol's set of possible values.
216  return false;
218  // The range starts above what's possible but ends within it (wrap).
219  Lower = Type.getMinValue();
220  Type.apply(Upper);
221  break;
223  // The entire range is outside the symbol's set of possible values.
224  // If this is a conventionally-ordered range, the state is infeasible.
225  if (Lower <= Upper)
226  return false;
227 
228  // However, if the range wraps around, it spans all possible values.
229  Lower = Type.getMinValue();
230  Upper = Type.getMaxValue();
231  break;
232  }
233  break;
234  }
235 
236  return true;
237  }
238 
239 public:
240  // Returns a set containing the values in the receiving set, intersected with
241  // the closed range [Lower, Upper]. Unlike the Range type, this range uses
242  // modular arithmetic, corresponding to the common treatment of C integer
243  // overflow. Thus, if the Lower bound is greater than the Upper bound, the
244  // range is taken to wrap around. This is equivalent to taking the
245  // intersection with the two ranges [Min, Upper] and [Lower, Max],
246  // or, alternatively, /removing/ all integers between Upper and Lower.
247  RangeSet Intersect(BasicValueFactory &BV, Factory &F,
248  llvm::APSInt Lower, llvm::APSInt Upper) const {
249  if (!pin(Lower, Upper))
250  return F.getEmptySet();
251 
252  PrimRangeSet newRanges = F.getEmptySet();
253 
254  PrimRangeSet::iterator i = begin(), e = end();
255  if (Lower <= Upper)
256  IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
257  else {
258  // The order of the next two statements is important!
259  // IntersectInRange() does not reset the iteration state for i and e.
260  // Therefore, the lower range most be handled first.
261  IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
262  IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
263  }
264 
265  return newRanges;
266  }
267 
268  void print(raw_ostream &os) const {
269  bool isFirst = true;
270  os << "{ ";
271  for (iterator i = begin(), e = end(); i != e; ++i) {
272  if (isFirst)
273  isFirst = false;
274  else
275  os << ", ";
276 
277  os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
278  << ']';
279  }
280  os << " }";
281  }
282 
283  bool operator==(const RangeSet &other) const {
284  return ranges == other.ranges;
285  }
286 };
287 } // end anonymous namespace
288 
291  RangeSet))
292 
293 namespace {
294 class RangeConstraintManager : public SimpleConstraintManager{
295  RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
296 public:
297  RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
298  : SimpleConstraintManager(subengine, SVB) {}
299 
300  ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
301  const llvm::APSInt& Int,
302  const llvm::APSInt& Adjustment) override;
303 
304  ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
305  const llvm::APSInt& Int,
306  const llvm::APSInt& Adjustment) override;
307 
308  ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
309  const llvm::APSInt& Int,
310  const llvm::APSInt& Adjustment) override;
311 
312  ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
313  const llvm::APSInt& Int,
314  const llvm::APSInt& Adjustment) override;
315 
316  ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
317  const llvm::APSInt& Int,
318  const llvm::APSInt& Adjustment) override;
319 
320  ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
321  const llvm::APSInt& Int,
322  const llvm::APSInt& Adjustment) override;
323 
324  ProgramStateRef assumeSymbolWithinInclusiveRange(
325  ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
326  const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
327 
328  ProgramStateRef assumeSymbolOutOfInclusiveRange(
329  ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
330  const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
331 
332  const llvm::APSInt* getSymVal(ProgramStateRef St,
333  SymbolRef sym) const override;
334  ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
335 
336  ProgramStateRef removeDeadBindings(ProgramStateRef St,
337  SymbolReaper& SymReaper) override;
338 
339  void print(ProgramStateRef St, raw_ostream &Out,
340  const char* nl, const char *sep) override;
341 
342 private:
343  RangeSet::Factory F;
344  RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
345  const llvm::APSInt &Int,
346  const llvm::APSInt &Adjustment);
347  RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
348  const llvm::APSInt &Int,
349  const llvm::APSInt &Adjustment);
350  RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
351  const llvm::APSInt &Int,
352  const llvm::APSInt &Adjustment);
353  RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int,
354  const llvm::APSInt &Adjustment);
355  RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
356  const llvm::APSInt &Int,
357  const llvm::APSInt &Adjustment);
358 };
359 
360 } // end anonymous namespace
361 
362 std::unique_ptr<ConstraintManager>
364  return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
365 }
366 
367 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
368  SymbolRef sym) const {
369  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
370  return T ? T->getConcreteValue() : nullptr;
371 }
372 
373 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
374  SymbolRef Sym) {
375  const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
376 
377  // If we don't have any information about this symbol, it's underconstrained.
378  if (!Ranges)
379  return ConditionTruthVal();
380 
381  // If we have a concrete value, see if it's zero.
382  if (const llvm::APSInt *Value = Ranges->getConcreteValue())
383  return *Value == 0;
384 
385  BasicValueFactory &BV = getBasicVals();
386  APSIntType IntType = BV.getAPSIntType(Sym->getType());
387  llvm::APSInt Zero = IntType.getZeroValue();
388 
389  // Check if zero is in the set of possible values.
390  if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
391  return false;
392 
393  // Zero is a possible value, but it is not the /only/ possible value.
394  return ConditionTruthVal();
395 }
396 
397 /// Scan all symbols referenced by the constraints. If the symbol is not alive
398 /// as marked in LSymbols, mark it as dead in DSymbols.
400 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
401  SymbolReaper& SymReaper) {
402 
403  ConstraintRangeTy CR = state->get<ConstraintRange>();
404  ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
405 
406  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
407  SymbolRef sym = I.getKey();
408  if (SymReaper.maybeDead(sym))
409  CR = CRFactory.remove(CR, sym);
410  }
411 
412  return state->set<ConstraintRange>(CR);
413 }
414 
415 RangeSet
416 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
417  if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
418  return *V;
419 
420  // Lazily generate a new RangeSet representing all possible values for the
421  // given symbol type.
422  BasicValueFactory &BV = getBasicVals();
423  QualType T = sym->getType();
424 
425  RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
426 
427  // Special case: references are known to be non-zero.
428  if (T->isReferenceType()) {
429  APSIntType IntType = BV.getAPSIntType(T);
430  Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
431  --IntType.getZeroValue());
432  }
433 
434  return Result;
435 }
436 
437 //===------------------------------------------------------------------------===
438 // assumeSymX methods: public interface for RangeConstraintManager.
439 //===------------------------------------------------------------------------===/
440 
441 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
442 // and (x, y) for open ranges. These ranges are modular, corresponding with
443 // a common treatment of C integer overflow. This means that these methods
444 // do not have to worry about overflow; RangeSet::Intersect can handle such a
445 // "wraparound" range.
446 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
447 // UINT_MAX, 0, 1, and 2.
448 
450 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
451  const llvm::APSInt &Int,
452  const llvm::APSInt &Adjustment) {
453  // Before we do any real work, see if the value can even show up.
454  APSIntType AdjustmentType(Adjustment);
455  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
456  return St;
457 
458  llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
459  llvm::APSInt Upper = Lower;
460  --Lower;
461  ++Upper;
462 
463  // [Int-Adjustment+1, Int-Adjustment-1]
464  // Notice that the lower bound is greater than the upper bound.
465  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
466  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
467 }
468 
470 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
471  const llvm::APSInt &Int,
472  const llvm::APSInt &Adjustment) {
473  // Before we do any real work, see if the value can even show up.
474  APSIntType AdjustmentType(Adjustment);
475  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
476  return nullptr;
477 
478  // [Int-Adjustment, Int-Adjustment]
479  llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
480  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
481  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
482 }
483 
484 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
485  SymbolRef Sym,
486  const llvm::APSInt &Int,
487  const llvm::APSInt &Adjustment) {
488  // Before we do any real work, see if the value can even show up.
489  APSIntType AdjustmentType(Adjustment);
490  switch (AdjustmentType.testInRange(Int, true)) {
492  return F.getEmptySet();
494  break;
496  return GetRange(St, Sym);
497  }
498 
499  // Special case for Int == Min. This is always false.
500  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
501  llvm::APSInt Min = AdjustmentType.getMinValue();
502  if (ComparisonVal == Min)
503  return F.getEmptySet();
504 
505  llvm::APSInt Lower = Min - Adjustment;
506  llvm::APSInt Upper = ComparisonVal - Adjustment;
507  --Upper;
508 
509  return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
510 }
511 
513 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
514  const llvm::APSInt &Int,
515  const llvm::APSInt &Adjustment) {
516  RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
517  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
518 }
519 
520 RangeSet
521 RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym,
522  const llvm::APSInt &Int,
523  const llvm::APSInt &Adjustment) {
524  // Before we do any real work, see if the value can even show up.
525  APSIntType AdjustmentType(Adjustment);
526  switch (AdjustmentType.testInRange(Int, true)) {
528  return GetRange(St, Sym);
530  break;
532  return F.getEmptySet();
533  }
534 
535  // Special case for Int == Max. This is always false.
536  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
537  llvm::APSInt Max = AdjustmentType.getMaxValue();
538  if (ComparisonVal == Max)
539  return F.getEmptySet();
540 
541  llvm::APSInt Lower = ComparisonVal - Adjustment;
542  llvm::APSInt Upper = Max - Adjustment;
543  ++Lower;
544 
545  return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
546 }
547 
549 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
550  const llvm::APSInt &Int,
551  const llvm::APSInt &Adjustment) {
552  RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
553  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
554 }
555 
556 RangeSet
557 RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym,
558  const llvm::APSInt &Int,
559  const llvm::APSInt &Adjustment) {
560  // Before we do any real work, see if the value can even show up.
561  APSIntType AdjustmentType(Adjustment);
562  switch (AdjustmentType.testInRange(Int, true)) {
564  return GetRange(St, Sym);
566  break;
568  return F.getEmptySet();
569  }
570 
571  // Special case for Int == Min. This is always feasible.
572  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
573  llvm::APSInt Min = AdjustmentType.getMinValue();
574  if (ComparisonVal == Min)
575  return GetRange(St, Sym);
576 
577  llvm::APSInt Max = AdjustmentType.getMaxValue();
578  llvm::APSInt Lower = ComparisonVal - Adjustment;
579  llvm::APSInt Upper = Max - Adjustment;
580 
581  return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
582 }
583 
585 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
586  const llvm::APSInt &Int,
587  const llvm::APSInt &Adjustment) {
588  RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
589  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
590 }
591 
592 RangeSet
593 RangeConstraintManager::getSymLERange(const RangeSet &RS,
594  const llvm::APSInt &Int,
595  const llvm::APSInt &Adjustment) {
596  // Before we do any real work, see if the value can even show up.
597  APSIntType AdjustmentType(Adjustment);
598  switch (AdjustmentType.testInRange(Int, true)) {
600  return F.getEmptySet();
602  break;
604  return RS;
605  }
606 
607  // Special case for Int == Max. This is always feasible.
608  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
609  llvm::APSInt Max = AdjustmentType.getMaxValue();
610  if (ComparisonVal == Max)
611  return RS;
612 
613  llvm::APSInt Min = AdjustmentType.getMinValue();
614  llvm::APSInt Lower = Min - Adjustment;
615  llvm::APSInt Upper = ComparisonVal - Adjustment;
616 
617  return RS.Intersect(getBasicVals(), F, Lower, Upper);
618 }
619 
620 RangeSet
621 RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym,
622  const llvm::APSInt &Int,
623  const llvm::APSInt &Adjustment) {
624  // Before we do any real work, see if the value can even show up.
625  APSIntType AdjustmentType(Adjustment);
626  switch (AdjustmentType.testInRange(Int, true)) {
628  return F.getEmptySet();
630  break;
632  return GetRange(St, Sym);
633  }
634 
635  // Special case for Int == Max. This is always feasible.
636  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
637  llvm::APSInt Max = AdjustmentType.getMaxValue();
638  if (ComparisonVal == Max)
639  return GetRange(St, Sym);
640 
641  llvm::APSInt Min = AdjustmentType.getMinValue();
642  llvm::APSInt Lower = Min - Adjustment;
643  llvm::APSInt Upper = ComparisonVal - Adjustment;
644 
645  return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
646 }
647 
649 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
650  const llvm::APSInt &Int,
651  const llvm::APSInt &Adjustment) {
652  RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
653  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
654 }
655 
657 RangeConstraintManager::assumeSymbolWithinInclusiveRange(
658  ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
659  const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
660  RangeSet New = getSymGERange(State, Sym, From, Adjustment);
661  if (New.isEmpty())
662  return nullptr;
663  New = getSymLERange(New, To, Adjustment);
664  return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
665 }
666 
668 RangeConstraintManager::assumeSymbolOutOfInclusiveRange(
669  ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
670  const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
671  RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
672  RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
673  RangeSet New(RangeLT.addRange(F, RangeGT));
674  return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
675 }
676 
677 //===------------------------------------------------------------------------===
678 // Pretty-printing.
679 //===------------------------------------------------------------------------===/
680 
681 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
682  const char* nl, const char *sep) {
683 
684  ConstraintRangeTy Ranges = St->get<ConstraintRange>();
685 
686  if (Ranges.isEmpty()) {
687  Out << nl << sep << "Ranges are empty." << nl;
688  return;
689  }
690 
691  Out << nl << sep << "Ranges of symbol values:";
692  for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
693  Out << nl << ' ' << I.getKey() << " : ";
694  I.getData().print(Out);
695  }
696  Out << nl;
697 }
A (possibly-)qualified type.
Definition: Type.h:598
Value is less than the minimum representable value.
Definition: APSIntType.h:78
bool operator==(CanQual< T > x, CanQual< U > y)
bool maybeDead(SymbolRef sym)
If a symbol is known to be live, marks the symbol as live.
std::unique_ptr< ConstraintManager > CreateRangeConstraintManager(ProgramStateManager &statemgr, SubEngine *subengine)
The base class of the type hierarchy.
Definition: Type.h:1281
iterator begin() const
Definition: Type.h:4235
Symbolic value.
Definition: SymExpr.h:29
LineState State
bool isReferenceType() const
Definition: Type.h:5491
i32 captured_struct **param SharedsTy A type which contains references the shared variables *param Shareds Context with the list of shared variables from the p *TaskFunction *param Data Additional data for task generation like final * state
Value is representable using this type.
Definition: APSIntType.h:79
A record of the "type" of an APSInt, used for conversions.
Definition: APSIntType.h:20
iterator end() const
detail::InMemoryDirectory::const_iterator I
llvm::APSInt getZeroValue() const LLVM_READONLY
Returns an all-zero value for this type.
Definition: APSIntType.h:56
virtual QualType getType() const =0
REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange, CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef, RangeSet)) namespace
The result type of a method or function.
do v
Definition: arm_acle.h:78
const TemplateArgument * iterator
Definition: Type.h:4233
const std::string ID
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx)
Definition: Type.h:4262
#define CLANG_ENTO_PROGRAMSTATE_MAP(Key, Value)
Helper for registering a map trait.
A class responsible for cleaning up unused symbols.
Value is greater than the maximum representable value.
Definition: APSIntType.h:80
RangeTestResultKind
Used to classify whether a value is representable using this type.
Definition: APSIntType.h:77
Represents a template argument.
Definition: TemplateBase.h:40
detail::InMemoryDirectory::const_iterator E
const llvm::APSInt & getMinValue(const llvm::APSInt &v)
const llvm::APSInt & getMaxValue(const llvm::APSInt &v)
APSIntType getAPSIntType(QualType T) const
Returns the type of the APSInt used to store values of the given QualType.