Bug Summary

File:tools/clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 269, column 32
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp -faddrsig
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with code generation of C++ expressions
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "ConstantEmitter.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/CallSite.h"
23#include "llvm/IR/Intrinsics.h"
24
25using namespace clang;
26using namespace CodeGen;
27
28namespace {
29struct MemberCallInfo {
30 RequiredArgs ReqArgs;
31 // Number of prefix arguments for the call. Ignores the `this` pointer.
32 unsigned PrefixSize;
33};
34}
35
36static MemberCallInfo
37commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
38 llvm::Value *This, llvm::Value *ImplicitParam,
39 QualType ImplicitParamTy, const CallExpr *CE,
40 CallArgList &Args, CallArgList *RtlArgs) {
41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 42, __PRETTY_FUNCTION__))
42 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 42, __PRETTY_FUNCTION__))
;
43 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 44, __PRETTY_FUNCTION__))
44 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 44, __PRETTY_FUNCTION__))
;
45 ASTContext &C = CGF.getContext();
46
47 // Push the this ptr.
48 const CXXRecordDecl *RD =
49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
50 Args.add(RValue::get(This),
51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52
53 // If there is an implicit parameter (e.g. VTT), emit it.
54 if (ImplicitParam) {
55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56 }
57
58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60 unsigned PrefixSize = Args.size() - 1;
61
62 // And the rest of the call args.
63 if (RtlArgs) {
64 // Special case: if the caller emitted the arguments right-to-left already
65 // (prior to emitting the *this argument), we're done. This happens for
66 // assignment operators.
67 Args.addFrom(*RtlArgs);
68 } else if (CE) {
69 // Special case: skip first argument of CXXOperatorCall (it is "this").
70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72 CE->getDirectCallee());
73 } else {
74 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 76, __PRETTY_FUNCTION__))
75 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 76, __PRETTY_FUNCTION__))
76 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 76, __PRETTY_FUNCTION__))
;
77 }
78 return {required, PrefixSize};
79}
80
81RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
82 const CXXMethodDecl *MD, const CGCallee &Callee,
83 ReturnValueSlot ReturnValue,
84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85 const CallExpr *CE, CallArgList *RtlArgs) {
86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87 CallArgList Args;
88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93 CE ? CE->getExprLoc() : SourceLocation());
94}
95
96RValue CodeGenFunction::EmitCXXDestructorCall(
97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
99 StructorType Type) {
100 CallArgList Args;
101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102 ImplicitParamTy, CE, Args, nullptr);
103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104 Callee, ReturnValueSlot(), Args);
105}
106
107RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
108 const CXXPseudoDestructorExpr *E) {
109 QualType DestroyedType = E->getDestroyedType();
110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111 // Automatic Reference Counting:
112 // If the pseudo-expression names a retainable object with weak or
113 // strong lifetime, the object shall be released.
114 Expr *BaseExpr = E->getBase();
115 Address BaseValue = Address::invalid();
116 Qualifiers BaseQuals;
117
118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119 if (E->isArrow()) {
120 BaseValue = EmitPointerWithAlignment(BaseExpr);
121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122 BaseQuals = PTy->getPointeeType().getQualifiers();
123 } else {
124 LValue BaseLV = EmitLValue(BaseExpr);
125 BaseValue = BaseLV.getAddress();
126 QualType BaseTy = BaseExpr->getType();
127 BaseQuals = BaseTy.getQualifiers();
128 }
129
130 switch (DestroyedType.getObjCLifetime()) {
131 case Qualifiers::OCL_None:
132 case Qualifiers::OCL_ExplicitNone:
133 case Qualifiers::OCL_Autoreleasing:
134 break;
135
136 case Qualifiers::OCL_Strong:
137 EmitARCRelease(Builder.CreateLoad(BaseValue,
138 DestroyedType.isVolatileQualified()),
139 ARCPreciseLifetime);
140 break;
141
142 case Qualifiers::OCL_Weak:
143 EmitARCDestroyWeak(BaseValue);
144 break;
145 }
146 } else {
147 // C++ [expr.pseudo]p1:
148 // The result shall only be used as the operand for the function call
149 // operator (), and the result of such a call has type void. The only
150 // effect is the evaluation of the postfix-expression before the dot or
151 // arrow.
152 EmitIgnoredExpr(E->getBase());
153 }
154
155 return RValue::get(nullptr);
156}
157
158static CXXRecordDecl *getCXXRecord(const Expr *E) {
159 QualType T = E->getType();
160 if (const PointerType *PTy = T->getAs<PointerType>())
161 T = PTy->getPointeeType();
162 const RecordType *Ty = T->castAs<RecordType>();
163 return cast<CXXRecordDecl>(Ty->getDecl());
164}
165
166// Note: This function also emit constructor calls to support a MSVC
167// extensions allowing explicit constructor function call.
168RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169 ReturnValueSlot ReturnValue) {
170 const Expr *callee = CE->getCallee()->IgnoreParens();
171
172 if (isa<BinaryOperator>(callee))
173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174
175 const MemberExpr *ME = cast<MemberExpr>(callee);
176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177
178 if (MD->isStatic()) {
179 // The method is static, emit it as we would a regular call.
180 CGCallee callee =
181 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
182 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
183 ReturnValue);
184 }
185
186 bool HasQualifier = ME->hasQualifier();
187 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
188 bool IsArrow = ME->isArrow();
189 const Expr *Base = ME->getBase();
190
191 return EmitCXXMemberOrOperatorMemberCallExpr(
192 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
193}
194
195RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
196 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
197 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
198 const Expr *Base) {
199 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 199, __PRETTY_FUNCTION__))
;
1
'?' condition is true
200
201 // Compute the object pointer.
202 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
203
204 const CXXMethodDecl *DevirtualizedMethod = nullptr;
205 if (CanUseVirtualCall &&
206 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
207 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
208 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
209 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
211 const Expr *Inner = Base->ignoreParenBaseCasts();
212 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
213 MD->getReturnType().getCanonicalType())
214 // If the return types are not the same, this might be a case where more
215 // code needs to run to compensate for it. For example, the derived
216 // method might return a type that inherits form from the return
217 // type of MD and has a prefix.
218 // For now we just avoid devirtualizing these covariant cases.
219 DevirtualizedMethod = nullptr;
220 else if (getCXXRecord(Inner) == DevirtualizedClass)
221 // If the class of the Inner expression is where the dynamic method
222 // is defined, build the this pointer from it.
223 Base = Inner;
224 else if (getCXXRecord(Base) != DevirtualizedClass) {
225 // If the method is defined in a class that is not the best dynamic
226 // one or the one of the full expression, we would have to build
227 // a derived-to-base cast to compute the correct this pointer, but
228 // we don't have support for that yet, so do a virtual call.
229 DevirtualizedMethod = nullptr;
230 }
231 }
232
233 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
234 // operator before the LHS.
235 CallArgList RtlArgStorage;
236 CallArgList *RtlArgs = nullptr;
2
'RtlArgs' initialized to a null pointer value
237 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
3
Taking true branch
238 if (OCE->isAssignmentOp()) {
4
Taking false branch
239 RtlArgs = &RtlArgStorage;
240 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
241 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
242 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
243 }
244 }
245
246 LValue This;
247 if (IsArrow) {
5
Assuming 'IsArrow' is 0
6
Taking false branch
248 LValueBaseInfo BaseInfo;
249 TBAAAccessInfo TBAAInfo;
250 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
251 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
252 } else {
253 This = EmitLValue(Base);
254 }
255
256
257 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
7
Assuming the condition is true
258 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
8
Taking false branch
259 if (isa<CXXConstructorDecl>(MD) &&
260 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
261 return RValue::get(nullptr);
262
263 if (!MD->getParent()->mayInsertExtraPadding()) {
9
Assuming the condition is true
10
Taking true branch
264 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
11
Assuming the condition is true
265 // We don't like to generate the trivial copy/move assignment operator
266 // when it isn't necessary; just produce the proper effect here.
267 LValue RHS = isa<CXXOperatorCallExpr>(CE)
12
'?' condition is true
268 ? MakeNaturalAlignAddrLValue(
269 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
13
Called C++ object pointer is null
270 (*(CE->arg_begin() + 1))->getType())
271 : EmitLValue(*CE->arg_begin());
272 EmitAggregateAssign(This, RHS, CE->getType());
273 return RValue::get(This.getPointer());
274 }
275
276 if (isa<CXXConstructorDecl>(MD) &&
277 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
278 // Trivial move and copy ctor are the same.
279 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor")((CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"
) ? static_cast<void> (0) : __assert_fail ("CE->getNumArgs() == 1 && \"unexpected argcount for trivial ctor\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 279, __PRETTY_FUNCTION__))
;
280 const Expr *Arg = *CE->arg_begin();
281 LValue RHS = EmitLValue(Arg);
282 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
283 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
284 // constructing a new complete object of type Ctor.
285 EmitAggregateCopy(Dest, RHS, Arg->getType(),
286 AggValueSlot::DoesNotOverlap);
287 return RValue::get(This.getPointer());
288 }
289 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 289)
;
290 }
291 }
292
293 // Compute the function type we're calling.
294 const CXXMethodDecl *CalleeDecl =
295 DevirtualizedMethod ? DevirtualizedMethod : MD;
296 const CGFunctionInfo *FInfo = nullptr;
297 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
298 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
299 Dtor, StructorType::Complete);
300 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
301 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
302 Ctor, StructorType::Complete);
303 else
304 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
305
306 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
307
308 // C++11 [class.mfct.non-static]p2:
309 // If a non-static member function of a class X is called for an object that
310 // is not of type X, or of a type derived from X, the behavior is undefined.
311 SourceLocation CallLoc;
312 ASTContext &C = getContext();
313 if (CE)
314 CallLoc = CE->getExprLoc();
315
316 SanitizerSet SkippedChecks;
317 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
318 auto *IOA = CMCE->getImplicitObjectArgument();
319 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
320 if (IsImplicitObjectCXXThis)
321 SkippedChecks.set(SanitizerKind::Alignment, true);
322 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
323 SkippedChecks.set(SanitizerKind::Null, true);
324 }
325 EmitTypeCheck(
326 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
327 : CodeGenFunction::TCK_MemberCall,
328 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
329 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
330
331 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
332 // 'CalleeDecl' instead.
333
334 // C++ [class.virtual]p12:
335 // Explicit qualification with the scope operator (5.1) suppresses the
336 // virtual call mechanism.
337 //
338 // We also don't emit a virtual call if the base expression has a record type
339 // because then we know what the type is.
340 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
341
342 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
343 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 344, __PRETTY_FUNCTION__))
344 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 344, __PRETTY_FUNCTION__))
;
345 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 if (UseVirtualCall) {
347 CGM.getCXXABI().EmitVirtualDestructorCall(
348 *this, Dtor, Dtor_Complete, This.getAddress(),
349 cast<CXXMemberCallExpr>(CE));
350 } else {
351 CGCallee Callee;
352 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
353 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
354 else if (!DevirtualizedMethod)
355 Callee = CGCallee::forDirect(
356 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
357 GlobalDecl(Dtor, Dtor_Complete));
358 else {
359 const CXXDestructorDecl *DDtor =
360 cast<CXXDestructorDecl>(DevirtualizedMethod);
361 Callee = CGCallee::forDirect(
362 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
363 GlobalDecl(DDtor, Dtor_Complete));
364 }
365 EmitCXXMemberOrOperatorCall(
366 CalleeDecl, Callee, ReturnValue, This.getPointer(),
367 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
368 }
369 return RValue::get(nullptr);
370 }
371
372 CGCallee Callee;
373 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
374 Callee = CGCallee::forDirect(
375 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
376 GlobalDecl(Ctor, Ctor_Complete));
377 } else if (UseVirtualCall) {
378 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
379 } else {
380 if (SanOpts.has(SanitizerKind::CFINVCall) &&
381 MD->getParent()->isDynamicClass()) {
382 llvm::Value *VTable;
383 const CXXRecordDecl *RD;
384 std::tie(VTable, RD) =
385 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
386 MD->getParent());
387 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
388 }
389
390 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
391 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
392 else if (!DevirtualizedMethod)
393 Callee =
394 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
395 else {
396 Callee =
397 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
398 GlobalDecl(DevirtualizedMethod));
399 }
400 }
401
402 if (MD->isVirtual()) {
403 Address NewThisAddr =
404 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
405 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
406 This.setAddress(NewThisAddr);
407 }
408
409 return EmitCXXMemberOrOperatorCall(
410 CalleeDecl, Callee, ReturnValue, This.getPointer(),
411 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
412}
413
414RValue
415CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
416 ReturnValueSlot ReturnValue) {
417 const BinaryOperator *BO =
418 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
419 const Expr *BaseExpr = BO->getLHS();
420 const Expr *MemFnExpr = BO->getRHS();
421
422 const MemberPointerType *MPT =
423 MemFnExpr->getType()->castAs<MemberPointerType>();
424
425 const FunctionProtoType *FPT =
426 MPT->getPointeeType()->castAs<FunctionProtoType>();
427 const CXXRecordDecl *RD =
428 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
429
430 // Emit the 'this' pointer.
431 Address This = Address::invalid();
432 if (BO->getOpcode() == BO_PtrMemI)
433 This = EmitPointerWithAlignment(BaseExpr);
434 else
435 This = EmitLValue(BaseExpr).getAddress();
436
437 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
438 QualType(MPT->getClass(), 0));
439
440 // Get the member function pointer.
441 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
442
443 // Ask the ABI to load the callee. Note that This is modified.
444 llvm::Value *ThisPtrForCall = nullptr;
445 CGCallee Callee =
446 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
447 ThisPtrForCall, MemFnPtr, MPT);
448
449 CallArgList Args;
450
451 QualType ThisType =
452 getContext().getPointerType(getContext().getTagDeclType(RD));
453
454 // Push the this ptr.
455 Args.add(RValue::get(ThisPtrForCall), ThisType);
456
457 RequiredArgs required =
458 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
459
460 // And the rest of the call args
461 EmitCallArgs(Args, FPT, E->arguments());
462 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
463 /*PrefixSize=*/0),
464 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
465}
466
467RValue
468CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
469 const CXXMethodDecl *MD,
470 ReturnValueSlot ReturnValue) {
471 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 472, __PRETTY_FUNCTION__))
472 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 472, __PRETTY_FUNCTION__))
;
473 return EmitCXXMemberOrOperatorMemberCallExpr(
474 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
475 /*IsArrow=*/false, E->getArg(0));
476}
477
478RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
479 ReturnValueSlot ReturnValue) {
480 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
481}
482
483static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
484 Address DestPtr,
485 const CXXRecordDecl *Base) {
486 if (Base->isEmpty())
487 return;
488
489 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
490
491 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
492 CharUnits NVSize = Layout.getNonVirtualSize();
493
494 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
495 // present, they are initialized by the most derived class before calling the
496 // constructor.
497 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
498 Stores.emplace_back(CharUnits::Zero(), NVSize);
499
500 // Each store is split by the existence of a vbptr.
501 CharUnits VBPtrWidth = CGF.getPointerSize();
502 std::vector<CharUnits> VBPtrOffsets =
503 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
504 for (CharUnits VBPtrOffset : VBPtrOffsets) {
505 // Stop before we hit any virtual base pointers located in virtual bases.
506 if (VBPtrOffset >= NVSize)
507 break;
508 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
509 CharUnits LastStoreOffset = LastStore.first;
510 CharUnits LastStoreSize = LastStore.second;
511
512 CharUnits SplitBeforeOffset = LastStoreOffset;
513 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
514 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 514, __PRETTY_FUNCTION__))
;
515 if (!SplitBeforeSize.isZero())
516 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
517
518 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
519 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
520 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 520, __PRETTY_FUNCTION__))
;
521 if (!SplitAfterSize.isZero())
522 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
523 }
524
525 // If the type contains a pointer to data member we can't memset it to zero.
526 // Instead, create a null constant and copy it to the destination.
527 // TODO: there are other patterns besides zero that we can usefully memset,
528 // like -1, which happens to be the pattern used by member-pointers.
529 // TODO: isZeroInitializable can be over-conservative in the case where a
530 // virtual base contains a member pointer.
531 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
532 if (!NullConstantForBase->isNullValue()) {
533 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
534 CGF.CGM.getModule(), NullConstantForBase->getType(),
535 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
536 NullConstantForBase, Twine());
537
538 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
539 DestPtr.getAlignment());
540 NullVariable->setAlignment(Align.getQuantity());
541
542 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
543
544 // Get and call the appropriate llvm.memcpy overload.
545 for (std::pair<CharUnits, CharUnits> Store : Stores) {
546 CharUnits StoreOffset = Store.first;
547 CharUnits StoreSize = Store.second;
548 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
549 CGF.Builder.CreateMemCpy(
550 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
551 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
552 StoreSizeVal);
553 }
554
555 // Otherwise, just memset the whole thing to zero. This is legal
556 // because in LLVM, all default initializers (other than the ones we just
557 // handled above) are guaranteed to have a bit pattern of all zeros.
558 } else {
559 for (std::pair<CharUnits, CharUnits> Store : Stores) {
560 CharUnits StoreOffset = Store.first;
561 CharUnits StoreSize = Store.second;
562 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
563 CGF.Builder.CreateMemSet(
564 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
565 CGF.Builder.getInt8(0), StoreSizeVal);
566 }
567 }
568}
569
570void
571CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
572 AggValueSlot Dest) {
573 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 573, __PRETTY_FUNCTION__))
;
574 const CXXConstructorDecl *CD = E->getConstructor();
575
576 // If we require zero initialization before (or instead of) calling the
577 // constructor, as can be the case with a non-user-provided default
578 // constructor, emit the zero initialization now, unless destination is
579 // already zeroed.
580 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
581 switch (E->getConstructionKind()) {
582 case CXXConstructExpr::CK_Delegating:
583 case CXXConstructExpr::CK_Complete:
584 EmitNullInitialization(Dest.getAddress(), E->getType());
585 break;
586 case CXXConstructExpr::CK_VirtualBase:
587 case CXXConstructExpr::CK_NonVirtualBase:
588 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
589 CD->getParent());
590 break;
591 }
592 }
593
594 // If this is a call to a trivial default constructor, do nothing.
595 if (CD->isTrivial() && CD->isDefaultConstructor())
596 return;
597
598 // Elide the constructor if we're constructing from a temporary.
599 // The temporary check is required because Sema sets this on NRVO
600 // returns.
601 if (getLangOpts().ElideConstructors && E->isElidable()) {
602 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 603, __PRETTY_FUNCTION__))
603 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 603, __PRETTY_FUNCTION__))
;
604 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
605 EmitAggExpr(E->getArg(0), Dest);
606 return;
607 }
608 }
609
610 if (const ArrayType *arrayType
611 = getContext().getAsArrayType(E->getType())) {
612 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
613 Dest.isSanitizerChecked());
614 } else {
615 CXXCtorType Type = Ctor_Complete;
616 bool ForVirtualBase = false;
617 bool Delegating = false;
618
619 switch (E->getConstructionKind()) {
620 case CXXConstructExpr::CK_Delegating:
621 // We should be emitting a constructor; GlobalDecl will assert this
622 Type = CurGD.getCtorType();
623 Delegating = true;
624 break;
625
626 case CXXConstructExpr::CK_Complete:
627 Type = Ctor_Complete;
628 break;
629
630 case CXXConstructExpr::CK_VirtualBase:
631 ForVirtualBase = true;
632 LLVM_FALLTHROUGH[[clang::fallthrough]];
633
634 case CXXConstructExpr::CK_NonVirtualBase:
635 Type = Ctor_Base;
636 }
637
638 // Call the constructor.
639 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
640 Dest.getAddress(), E, Dest.mayOverlap(),
641 Dest.isSanitizerChecked());
642 }
643}
644
645void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
646 const Expr *Exp) {
647 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
648 Exp = E->getSubExpr();
649 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 650, __PRETTY_FUNCTION__))
650 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 650, __PRETTY_FUNCTION__))
;
651 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
652 const CXXConstructorDecl *CD = E->getConstructor();
653 RunCleanupsScope Scope(*this);
654
655 // If we require zero initialization before (or instead of) calling the
656 // constructor, as can be the case with a non-user-provided default
657 // constructor, emit the zero initialization now.
658 // FIXME. Do I still need this for a copy ctor synthesis?
659 if (E->requiresZeroInitialization())
660 EmitNullInitialization(Dest, E->getType());
661
662 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 663, __PRETTY_FUNCTION__))
663 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 663, __PRETTY_FUNCTION__))
;
664 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
665}
666
667static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
668 const CXXNewExpr *E) {
669 if (!E->isArray())
670 return CharUnits::Zero();
671
672 // No cookie is required if the operator new[] being used is the
673 // reserved placement operator new[].
674 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
675 return CharUnits::Zero();
676
677 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
678}
679
680static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
681 const CXXNewExpr *e,
682 unsigned minElements,
683 llvm::Value *&numElements,
684 llvm::Value *&sizeWithoutCookie) {
685 QualType type = e->getAllocatedType();
686
687 if (!e->isArray()) {
688 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
689 sizeWithoutCookie
690 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
691 return sizeWithoutCookie;
692 }
693
694 // The width of size_t.
695 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
696
697 // Figure out the cookie size.
698 llvm::APInt cookieSize(sizeWidth,
699 CalculateCookiePadding(CGF, e).getQuantity());
700
701 // Emit the array size expression.
702 // We multiply the size of all dimensions for NumElements.
703 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
704 numElements =
705 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
706 if (!numElements)
707 numElements = CGF.EmitScalarExpr(e->getArraySize());
708 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 708, __PRETTY_FUNCTION__))
;
709
710 // The number of elements can be have an arbitrary integer type;
711 // essentially, we need to multiply it by a constant factor, add a
712 // cookie size, and verify that the result is representable as a
713 // size_t. That's just a gloss, though, and it's wrong in one
714 // important way: if the count is negative, it's an error even if
715 // the cookie size would bring the total size >= 0.
716 bool isSigned
717 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
718 llvm::IntegerType *numElementsType
719 = cast<llvm::IntegerType>(numElements->getType());
720 unsigned numElementsWidth = numElementsType->getBitWidth();
721
722 // Compute the constant factor.
723 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
724 while (const ConstantArrayType *CAT
725 = CGF.getContext().getAsConstantArrayType(type)) {
726 type = CAT->getElementType();
727 arraySizeMultiplier *= CAT->getSize();
728 }
729
730 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
731 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
732 typeSizeMultiplier *= arraySizeMultiplier;
733
734 // This will be a size_t.
735 llvm::Value *size;
736
737 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
738 // Don't bloat the -O0 code.
739 if (llvm::ConstantInt *numElementsC =
740 dyn_cast<llvm::ConstantInt>(numElements)) {
741 const llvm::APInt &count = numElementsC->getValue();
742
743 bool hasAnyOverflow = false;
744
745 // If 'count' was a negative number, it's an overflow.
746 if (isSigned && count.isNegative())
747 hasAnyOverflow = true;
748
749 // We want to do all this arithmetic in size_t. If numElements is
750 // wider than that, check whether it's already too big, and if so,
751 // overflow.
752 else if (numElementsWidth > sizeWidth &&
753 numElementsWidth - sizeWidth > count.countLeadingZeros())
754 hasAnyOverflow = true;
755
756 // Okay, compute a count at the right width.
757 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
758
759 // If there is a brace-initializer, we cannot allocate fewer elements than
760 // there are initializers. If we do, that's treated like an overflow.
761 if (adjustedCount.ult(minElements))
762 hasAnyOverflow = true;
763
764 // Scale numElements by that. This might overflow, but we don't
765 // care because it only overflows if allocationSize does, too, and
766 // if that overflows then we shouldn't use this.
767 numElements = llvm::ConstantInt::get(CGF.SizeTy,
768 adjustedCount * arraySizeMultiplier);
769
770 // Compute the size before cookie, and track whether it overflowed.
771 bool overflow;
772 llvm::APInt allocationSize
773 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
774 hasAnyOverflow |= overflow;
775
776 // Add in the cookie, and check whether it's overflowed.
777 if (cookieSize != 0) {
778 // Save the current size without a cookie. This shouldn't be
779 // used if there was overflow.
780 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
781
782 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
783 hasAnyOverflow |= overflow;
784 }
785
786 // On overflow, produce a -1 so operator new will fail.
787 if (hasAnyOverflow) {
788 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
789 } else {
790 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
791 }
792
793 // Otherwise, we might need to use the overflow intrinsics.
794 } else {
795 // There are up to five conditions we need to test for:
796 // 1) if isSigned, we need to check whether numElements is negative;
797 // 2) if numElementsWidth > sizeWidth, we need to check whether
798 // numElements is larger than something representable in size_t;
799 // 3) if minElements > 0, we need to check whether numElements is smaller
800 // than that.
801 // 4) we need to compute
802 // sizeWithoutCookie := numElements * typeSizeMultiplier
803 // and check whether it overflows; and
804 // 5) if we need a cookie, we need to compute
805 // size := sizeWithoutCookie + cookieSize
806 // and check whether it overflows.
807
808 llvm::Value *hasOverflow = nullptr;
809
810 // If numElementsWidth > sizeWidth, then one way or another, we're
811 // going to have to do a comparison for (2), and this happens to
812 // take care of (1), too.
813 if (numElementsWidth > sizeWidth) {
814 llvm::APInt threshold(numElementsWidth, 1);
815 threshold <<= sizeWidth;
816
817 llvm::Value *thresholdV
818 = llvm::ConstantInt::get(numElementsType, threshold);
819
820 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
821 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
822
823 // Otherwise, if we're signed, we want to sext up to size_t.
824 } else if (isSigned) {
825 if (numElementsWidth < sizeWidth)
826 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
827
828 // If there's a non-1 type size multiplier, then we can do the
829 // signedness check at the same time as we do the multiply
830 // because a negative number times anything will cause an
831 // unsigned overflow. Otherwise, we have to do it here. But at least
832 // in this case, we can subsume the >= minElements check.
833 if (typeSizeMultiplier == 1)
834 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
835 llvm::ConstantInt::get(CGF.SizeTy, minElements));
836
837 // Otherwise, zext up to size_t if necessary.
838 } else if (numElementsWidth < sizeWidth) {
839 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
840 }
841
842 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 842, __PRETTY_FUNCTION__))
;
843
844 if (minElements) {
845 // Don't allow allocation of fewer elements than we have initializers.
846 if (!hasOverflow) {
847 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
848 llvm::ConstantInt::get(CGF.SizeTy, minElements));
849 } else if (numElementsWidth > sizeWidth) {
850 // The other existing overflow subsumes this check.
851 // We do an unsigned comparison, since any signed value < -1 is
852 // taken care of either above or below.
853 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
854 CGF.Builder.CreateICmpULT(numElements,
855 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
856 }
857 }
858
859 size = numElements;
860
861 // Multiply by the type size if necessary. This multiplier
862 // includes all the factors for nested arrays.
863 //
864 // This step also causes numElements to be scaled up by the
865 // nested-array factor if necessary. Overflow on this computation
866 // can be ignored because the result shouldn't be used if
867 // allocation fails.
868 if (typeSizeMultiplier != 1) {
869 llvm::Value *umul_with_overflow
870 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
871
872 llvm::Value *tsmV =
873 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
874 llvm::Value *result =
875 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
876
877 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
878 if (hasOverflow)
879 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
880 else
881 hasOverflow = overflowed;
882
883 size = CGF.Builder.CreateExtractValue(result, 0);
884
885 // Also scale up numElements by the array size multiplier.
886 if (arraySizeMultiplier != 1) {
887 // If the base element type size is 1, then we can re-use the
888 // multiply we just did.
889 if (typeSize.isOne()) {
890 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 890, __PRETTY_FUNCTION__))
;
891 numElements = size;
892
893 // Otherwise we need a separate multiply.
894 } else {
895 llvm::Value *asmV =
896 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
897 numElements = CGF.Builder.CreateMul(numElements, asmV);
898 }
899 }
900 } else {
901 // numElements doesn't need to be scaled.
902 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 902, __PRETTY_FUNCTION__))
;
903 }
904
905 // Add in the cookie size if necessary.
906 if (cookieSize != 0) {
907 sizeWithoutCookie = size;
908
909 llvm::Value *uadd_with_overflow
910 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
911
912 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
913 llvm::Value *result =
914 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
915
916 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
917 if (hasOverflow)
918 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
919 else
920 hasOverflow = overflowed;
921
922 size = CGF.Builder.CreateExtractValue(result, 0);
923 }
924
925 // If we had any possibility of dynamic overflow, make a select to
926 // overwrite 'size' with an all-ones value, which should cause
927 // operator new to throw.
928 if (hasOverflow)
929 size = CGF.Builder.CreateSelect(hasOverflow,
930 llvm::Constant::getAllOnesValue(CGF.SizeTy),
931 size);
932 }
933
934 if (cookieSize == 0)
935 sizeWithoutCookie = size;
936 else
937 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 937, __PRETTY_FUNCTION__))
;
938
939 return size;
940}
941
942static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
943 QualType AllocType, Address NewPtr,
944 AggValueSlot::Overlap_t MayOverlap) {
945 // FIXME: Refactor with EmitExprAsInit.
946 switch (CGF.getEvaluationKind(AllocType)) {
947 case TEK_Scalar:
948 CGF.EmitScalarInit(Init, nullptr,
949 CGF.MakeAddrLValue(NewPtr, AllocType), false);
950 return;
951 case TEK_Complex:
952 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
953 /*isInit*/ true);
954 return;
955 case TEK_Aggregate: {
956 AggValueSlot Slot
957 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
958 AggValueSlot::IsDestructed,
959 AggValueSlot::DoesNotNeedGCBarriers,
960 AggValueSlot::IsNotAliased,
961 MayOverlap, AggValueSlot::IsNotZeroed,
962 AggValueSlot::IsSanitizerChecked);
963 CGF.EmitAggExpr(Init, Slot);
964 return;
965 }
966 }
967 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 967)
;
968}
969
970void CodeGenFunction::EmitNewArrayInitializer(
971 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
972 Address BeginPtr, llvm::Value *NumElements,
973 llvm::Value *AllocSizeWithoutCookie) {
974 // If we have a type with trivial initialization and no initializer,
975 // there's nothing to do.
976 if (!E->hasInitializer())
977 return;
978
979 Address CurPtr = BeginPtr;
980
981 unsigned InitListElements = 0;
982
983 const Expr *Init = E->getInitializer();
984 Address EndOfInit = Address::invalid();
985 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
986 EHScopeStack::stable_iterator Cleanup;
987 llvm::Instruction *CleanupDominator = nullptr;
988
989 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
990 CharUnits ElementAlign =
991 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
992
993 // Attempt to perform zero-initialization using memset.
994 auto TryMemsetInitialization = [&]() -> bool {
995 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
996 // we can initialize with a memset to -1.
997 if (!CGM.getTypes().isZeroInitializable(ElementType))
998 return false;
999
1000 // Optimization: since zero initialization will just set the memory
1001 // to all zeroes, generate a single memset to do it in one shot.
1002
1003 // Subtract out the size of any elements we've already initialized.
1004 auto *RemainingSize = AllocSizeWithoutCookie;
1005 if (InitListElements) {
1006 // We know this can't overflow; we check this when doing the allocation.
1007 auto *InitializedSize = llvm::ConstantInt::get(
1008 RemainingSize->getType(),
1009 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1010 InitListElements);
1011 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1012 }
1013
1014 // Create the memset.
1015 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1016 return true;
1017 };
1018
1019 // If the initializer is an initializer list, first do the explicit elements.
1020 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1021 // Initializing from a (braced) string literal is a special case; the init
1022 // list element does not initialize a (single) array element.
1023 if (ILE->isStringLiteralInit()) {
1024 // Initialize the initial portion of length equal to that of the string
1025 // literal. The allocation must be for at least this much; we emitted a
1026 // check for that earlier.
1027 AggValueSlot Slot =
1028 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1029 AggValueSlot::IsDestructed,
1030 AggValueSlot::DoesNotNeedGCBarriers,
1031 AggValueSlot::IsNotAliased,
1032 AggValueSlot::DoesNotOverlap,
1033 AggValueSlot::IsNotZeroed,
1034 AggValueSlot::IsSanitizerChecked);
1035 EmitAggExpr(ILE->getInit(0), Slot);
1036
1037 // Move past these elements.
1038 InitListElements =
1039 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1040 ->getSize().getZExtValue();
1041 CurPtr =
1042 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1043 Builder.getSize(InitListElements),
1044 "string.init.end"),
1045 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1046 ElementSize));
1047
1048 // Zero out the rest, if any remain.
1049 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1050 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1051 bool OK = TryMemsetInitialization();
1052 (void)OK;
1053 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1053, __PRETTY_FUNCTION__))
;
1054 }
1055 return;
1056 }
1057
1058 InitListElements = ILE->getNumInits();
1059
1060 // If this is a multi-dimensional array new, we will initialize multiple
1061 // elements with each init list element.
1062 QualType AllocType = E->getAllocatedType();
1063 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1064 AllocType->getAsArrayTypeUnsafe())) {
1065 ElementTy = ConvertTypeForMem(AllocType);
1066 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1067 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1068 }
1069
1070 // Enter a partial-destruction Cleanup if necessary.
1071 if (needsEHCleanup(DtorKind)) {
1072 // In principle we could tell the Cleanup where we are more
1073 // directly, but the control flow can get so varied here that it
1074 // would actually be quite complex. Therefore we go through an
1075 // alloca.
1076 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1077 "array.init.end");
1078 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1079 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1080 ElementType, ElementAlign,
1081 getDestroyer(DtorKind));
1082 Cleanup = EHStack.stable_begin();
1083 }
1084
1085 CharUnits StartAlign = CurPtr.getAlignment();
1086 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1087 // Tell the cleanup that it needs to destroy up to this
1088 // element. TODO: some of these stores can be trivially
1089 // observed to be unnecessary.
1090 if (EndOfInit.isValid()) {
1091 auto FinishedPtr =
1092 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1093 Builder.CreateStore(FinishedPtr, EndOfInit);
1094 }
1095 // FIXME: If the last initializer is an incomplete initializer list for
1096 // an array, and we have an array filler, we can fold together the two
1097 // initialization loops.
1098 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1099 ILE->getInit(i)->getType(), CurPtr,
1100 AggValueSlot::DoesNotOverlap);
1101 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1102 Builder.getSize(1),
1103 "array.exp.next"),
1104 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1105 }
1106
1107 // The remaining elements are filled with the array filler expression.
1108 Init = ILE->getArrayFiller();
1109
1110 // Extract the initializer for the individual array elements by pulling
1111 // out the array filler from all the nested initializer lists. This avoids
1112 // generating a nested loop for the initialization.
1113 while (Init && Init->getType()->isConstantArrayType()) {
1114 auto *SubILE = dyn_cast<InitListExpr>(Init);
1115 if (!SubILE)
1116 break;
1117 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1117, __PRETTY_FUNCTION__))
;
1118 Init = SubILE->getArrayFiller();
1119 }
1120
1121 // Switch back to initializing one base element at a time.
1122 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1123 }
1124
1125 // If all elements have already been initialized, skip any further
1126 // initialization.
1127 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1128 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1129 // If there was a Cleanup, deactivate it.
1130 if (CleanupDominator)
1131 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1132 return;
1133 }
1134
1135 assert(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1135, __PRETTY_FUNCTION__))
;
1136
1137 // If this is a constructor call, try to optimize it out, and failing that
1138 // emit a single loop to initialize all remaining elements.
1139 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1140 CXXConstructorDecl *Ctor = CCE->getConstructor();
1141 if (Ctor->isTrivial()) {
1142 // If new expression did not specify value-initialization, then there
1143 // is no initialization.
1144 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1145 return;
1146
1147 if (TryMemsetInitialization())
1148 return;
1149 }
1150
1151 // Store the new Cleanup position for irregular Cleanups.
1152 //
1153 // FIXME: Share this cleanup with the constructor call emission rather than
1154 // having it create a cleanup of its own.
1155 if (EndOfInit.isValid())
1156 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1157
1158 // Emit a constructor call loop to initialize the remaining elements.
1159 if (InitListElements)
1160 NumElements = Builder.CreateSub(
1161 NumElements,
1162 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1163 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1164 /*NewPointerIsChecked*/true,
1165 CCE->requiresZeroInitialization());
1166 return;
1167 }
1168
1169 // If this is value-initialization, we can usually use memset.
1170 ImplicitValueInitExpr IVIE(ElementType);
1171 if (isa<ImplicitValueInitExpr>(Init)) {
1172 if (TryMemsetInitialization())
1173 return;
1174
1175 // Switch to an ImplicitValueInitExpr for the element type. This handles
1176 // only one case: multidimensional array new of pointers to members. In
1177 // all other cases, we already have an initializer for the array element.
1178 Init = &IVIE;
1179 }
1180
1181 // At this point we should have found an initializer for the individual
1182 // elements of the array.
1183 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1184, __PRETTY_FUNCTION__))
1184 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1184, __PRETTY_FUNCTION__))
;
1185
1186 // If we have an empty initializer list, we can usually use memset.
1187 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1188 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1189 return;
1190
1191 // If we have a struct whose every field is value-initialized, we can
1192 // usually use memset.
1193 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1194 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1195 if (RType->getDecl()->isStruct()) {
1196 unsigned NumElements = 0;
1197 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1198 NumElements = CXXRD->getNumBases();
1199 for (auto *Field : RType->getDecl()->fields())
1200 if (!Field->isUnnamedBitfield())
1201 ++NumElements;
1202 // FIXME: Recurse into nested InitListExprs.
1203 if (ILE->getNumInits() == NumElements)
1204 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1205 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1206 --NumElements;
1207 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1208 return;
1209 }
1210 }
1211 }
1212
1213 // Create the loop blocks.
1214 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1215 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1216 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1217
1218 // Find the end of the array, hoisted out of the loop.
1219 llvm::Value *EndPtr =
1220 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1221
1222 // If the number of elements isn't constant, we have to now check if there is
1223 // anything left to initialize.
1224 if (!ConstNum) {
1225 llvm::Value *IsEmpty =
1226 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1227 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1228 }
1229
1230 // Enter the loop.
1231 EmitBlock(LoopBB);
1232
1233 // Set up the current-element phi.
1234 llvm::PHINode *CurPtrPhi =
1235 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1236 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1237
1238 CurPtr = Address(CurPtrPhi, ElementAlign);
1239
1240 // Store the new Cleanup position for irregular Cleanups.
1241 if (EndOfInit.isValid())
1242 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1243
1244 // Enter a partial-destruction Cleanup if necessary.
1245 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1246 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1247 ElementType, ElementAlign,
1248 getDestroyer(DtorKind));
1249 Cleanup = EHStack.stable_begin();
1250 CleanupDominator = Builder.CreateUnreachable();
1251 }
1252
1253 // Emit the initializer into this element.
1254 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1255 AggValueSlot::DoesNotOverlap);
1256
1257 // Leave the Cleanup if we entered one.
1258 if (CleanupDominator) {
1259 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1260 CleanupDominator->eraseFromParent();
1261 }
1262
1263 // Advance to the next element by adjusting the pointer type as necessary.
1264 llvm::Value *NextPtr =
1265 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1266 "array.next");
1267
1268 // Check whether we've gotten to the end of the array and, if so,
1269 // exit the loop.
1270 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1271 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1272 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1273
1274 EmitBlock(ContBB);
1275}
1276
1277static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1278 QualType ElementType, llvm::Type *ElementTy,
1279 Address NewPtr, llvm::Value *NumElements,
1280 llvm::Value *AllocSizeWithoutCookie) {
1281 ApplyDebugLocation DL(CGF, E);
1282 if (E->isArray())
1283 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1284 AllocSizeWithoutCookie);
1285 else if (const Expr *Init = E->getInitializer())
1286 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1287 AggValueSlot::DoesNotOverlap);
1288}
1289
1290/// Emit a call to an operator new or operator delete function, as implicitly
1291/// created by new-expressions and delete-expressions.
1292static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1293 const FunctionDecl *CalleeDecl,
1294 const FunctionProtoType *CalleeType,
1295 const CallArgList &Args) {
1296 llvm::Instruction *CallOrInvoke;
1297 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1298 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1299 RValue RV =
1300 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1301 Args, CalleeType, /*chainCall=*/false),
1302 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1303
1304 /// C++1y [expr.new]p10:
1305 /// [In a new-expression,] an implementation is allowed to omit a call
1306 /// to a replaceable global allocation function.
1307 ///
1308 /// We model such elidable calls with the 'builtin' attribute.
1309 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1310 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1311 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1312 // FIXME: Add addAttribute to CallSite.
1313 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1314 CI->addAttribute(llvm::AttributeList::FunctionIndex,
1315 llvm::Attribute::Builtin);
1316 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1317 II->addAttribute(llvm::AttributeList::FunctionIndex,
1318 llvm::Attribute::Builtin);
1319 else
1320 llvm_unreachable("unexpected kind of call instruction")::llvm::llvm_unreachable_internal("unexpected kind of call instruction"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1320)
;
1321 }
1322
1323 return RV;
1324}
1325
1326RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1327 const CallExpr *TheCall,
1328 bool IsDelete) {
1329 CallArgList Args;
1330 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1331 // Find the allocation or deallocation function that we're calling.
1332 ASTContext &Ctx = getContext();
1333 DeclarationName Name = Ctx.DeclarationNames
1334 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1335
1336 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1337 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1338 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1339 return EmitNewDeleteCall(*this, FD, Type, Args);
1340 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1340)
;
1341}
1342
1343namespace {
1344/// The parameters to pass to a usual operator delete.
1345struct UsualDeleteParams {
1346 bool DestroyingDelete = false;
1347 bool Size = false;
1348 bool Alignment = false;
1349};
1350}
1351
1352static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1353 UsualDeleteParams Params;
1354
1355 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1356 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1357
1358 // The first argument is always a void*.
1359 ++AI;
1360
1361 // The next parameter may be a std::destroying_delete_t.
1362 if (FD->isDestroyingOperatorDelete()) {
1363 Params.DestroyingDelete = true;
1364 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1364, __PRETTY_FUNCTION__))
;
1365 ++AI;
1366 }
1367
1368 // Figure out what other parameters we should be implicitly passing.
1369 if (AI != AE && (*AI)->isIntegerType()) {
1370 Params.Size = true;
1371 ++AI;
1372 }
1373
1374 if (AI != AE && (*AI)->isAlignValT()) {
1375 Params.Alignment = true;
1376 ++AI;
1377 }
1378
1379 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1379, __PRETTY_FUNCTION__))
;
1380 return Params;
1381}
1382
1383namespace {
1384 /// A cleanup to call the given 'operator delete' function upon abnormal
1385 /// exit from a new expression. Templated on a traits type that deals with
1386 /// ensuring that the arguments dominate the cleanup if necessary.
1387 template<typename Traits>
1388 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1389 /// Type used to hold llvm::Value*s.
1390 typedef typename Traits::ValueTy ValueTy;
1391 /// Type used to hold RValues.
1392 typedef typename Traits::RValueTy RValueTy;
1393 struct PlacementArg {
1394 RValueTy ArgValue;
1395 QualType ArgType;
1396 };
1397
1398 unsigned NumPlacementArgs : 31;
1399 unsigned PassAlignmentToPlacementDelete : 1;
1400 const FunctionDecl *OperatorDelete;
1401 ValueTy Ptr;
1402 ValueTy AllocSize;
1403 CharUnits AllocAlign;
1404
1405 PlacementArg *getPlacementArgs() {
1406 return reinterpret_cast<PlacementArg *>(this + 1);
1407 }
1408
1409 public:
1410 static size_t getExtraSize(size_t NumPlacementArgs) {
1411 return NumPlacementArgs * sizeof(PlacementArg);
1412 }
1413
1414 CallDeleteDuringNew(size_t NumPlacementArgs,
1415 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1416 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1417 CharUnits AllocAlign)
1418 : NumPlacementArgs(NumPlacementArgs),
1419 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1420 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1421 AllocAlign(AllocAlign) {}
1422
1423 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1424 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1424, __PRETTY_FUNCTION__))
;
1425 getPlacementArgs()[I] = {Arg, Type};
1426 }
1427
1428 void Emit(CodeGenFunction &CGF, Flags flags) override {
1429 const FunctionProtoType *FPT =
1430 OperatorDelete->getType()->getAs<FunctionProtoType>();
1431 CallArgList DeleteArgs;
1432
1433 // The first argument is always a void* (or C* for a destroying operator
1434 // delete for class type C).
1435 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1436
1437 // Figure out what other parameters we should be implicitly passing.
1438 UsualDeleteParams Params;
1439 if (NumPlacementArgs) {
1440 // A placement deallocation function is implicitly passed an alignment
1441 // if the placement allocation function was, but is never passed a size.
1442 Params.Alignment = PassAlignmentToPlacementDelete;
1443 } else {
1444 // For a non-placement new-expression, 'operator delete' can take a
1445 // size and/or an alignment if it has the right parameters.
1446 Params = getUsualDeleteParams(OperatorDelete);
1447 }
1448
1449 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1450, __PRETTY_FUNCTION__))
1450 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1450, __PRETTY_FUNCTION__))
;
1451
1452 // The second argument can be a std::size_t (for non-placement delete).
1453 if (Params.Size)
1454 DeleteArgs.add(Traits::get(CGF, AllocSize),
1455 CGF.getContext().getSizeType());
1456
1457 // The next (second or third) argument can be a std::align_val_t, which
1458 // is an enum whose underlying type is std::size_t.
1459 // FIXME: Use the right type as the parameter type. Note that in a call
1460 // to operator delete(size_t, ...), we may not have it available.
1461 if (Params.Alignment)
1462 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1463 CGF.SizeTy, AllocAlign.getQuantity())),
1464 CGF.getContext().getSizeType());
1465
1466 // Pass the rest of the arguments, which must match exactly.
1467 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1468 auto Arg = getPlacementArgs()[I];
1469 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1470 }
1471
1472 // Call 'operator delete'.
1473 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1474 }
1475 };
1476}
1477
1478/// Enter a cleanup to call 'operator delete' if the initializer in a
1479/// new-expression throws.
1480static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1481 const CXXNewExpr *E,
1482 Address NewPtr,
1483 llvm::Value *AllocSize,
1484 CharUnits AllocAlign,
1485 const CallArgList &NewArgs) {
1486 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1487
1488 // If we're not inside a conditional branch, then the cleanup will
1489 // dominate and we can do the easier (and more efficient) thing.
1490 if (!CGF.isInConditionalBranch()) {
1491 struct DirectCleanupTraits {
1492 typedef llvm::Value *ValueTy;
1493 typedef RValue RValueTy;
1494 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1495 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1496 };
1497
1498 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1499
1500 DirectCleanup *Cleanup = CGF.EHStack
1501 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1502 E->getNumPlacementArgs(),
1503 E->getOperatorDelete(),
1504 NewPtr.getPointer(),
1505 AllocSize,
1506 E->passAlignment(),
1507 AllocAlign);
1508 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1509 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1510 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1511 }
1512
1513 return;
1514 }
1515
1516 // Otherwise, we need to save all this stuff.
1517 DominatingValue<RValue>::saved_type SavedNewPtr =
1518 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1519 DominatingValue<RValue>::saved_type SavedAllocSize =
1520 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1521
1522 struct ConditionalCleanupTraits {
1523 typedef DominatingValue<RValue>::saved_type ValueTy;
1524 typedef DominatingValue<RValue>::saved_type RValueTy;
1525 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1526 return V.restore(CGF);
1527 }
1528 };
1529 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1530
1531 ConditionalCleanup *Cleanup = CGF.EHStack
1532 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1533 E->getNumPlacementArgs(),
1534 E->getOperatorDelete(),
1535 SavedNewPtr,
1536 SavedAllocSize,
1537 E->passAlignment(),
1538 AllocAlign);
1539 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1540 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1541 Cleanup->setPlacementArg(
1542 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1543 }
1544
1545 CGF.initFullExprCleanup();
1546}
1547
1548llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1549 // The element type being allocated.
1550 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1551
1552 // 1. Build a call to the allocation function.
1553 FunctionDecl *allocator = E->getOperatorNew();
1554
1555 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1556 unsigned minElements = 0;
1557 if (E->isArray() && E->hasInitializer()) {
1558 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1559 if (ILE && ILE->isStringLiteralInit())
1560 minElements =
1561 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1562 ->getSize().getZExtValue();
1563 else if (ILE)
1564 minElements = ILE->getNumInits();
1565 }
1566
1567 llvm::Value *numElements = nullptr;
1568 llvm::Value *allocSizeWithoutCookie = nullptr;
1569 llvm::Value *allocSize =
1570 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1571 allocSizeWithoutCookie);
1572 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1573
1574 // Emit the allocation call. If the allocator is a global placement
1575 // operator, just "inline" it directly.
1576 Address allocation = Address::invalid();
1577 CallArgList allocatorArgs;
1578 if (allocator->isReservedGlobalPlacementOperator()) {
1579 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1579, __PRETTY_FUNCTION__))
;
1580 const Expr *arg = *E->placement_arguments().begin();
1581
1582 LValueBaseInfo BaseInfo;
1583 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1584
1585 // The pointer expression will, in many cases, be an opaque void*.
1586 // In these cases, discard the computed alignment and use the
1587 // formal alignment of the allocated type.
1588 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1589 allocation = Address(allocation.getPointer(), allocAlign);
1590
1591 // Set up allocatorArgs for the call to operator delete if it's not
1592 // the reserved global operator.
1593 if (E->getOperatorDelete() &&
1594 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1595 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1596 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1597 }
1598
1599 } else {
1600 const FunctionProtoType *allocatorType =
1601 allocator->getType()->castAs<FunctionProtoType>();
1602 unsigned ParamsToSkip = 0;
1603
1604 // The allocation size is the first argument.
1605 QualType sizeType = getContext().getSizeType();
1606 allocatorArgs.add(RValue::get(allocSize), sizeType);
1607 ++ParamsToSkip;
1608
1609 if (allocSize != allocSizeWithoutCookie) {
1610 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1611 allocAlign = std::max(allocAlign, cookieAlign);
1612 }
1613
1614 // The allocation alignment may be passed as the second argument.
1615 if (E->passAlignment()) {
1616 QualType AlignValT = sizeType;
1617 if (allocatorType->getNumParams() > 1) {
1618 AlignValT = allocatorType->getParamType(1);
1619 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1622, __PRETTY_FUNCTION__))
1620 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1622, __PRETTY_FUNCTION__))
1621 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1622, __PRETTY_FUNCTION__))
1622 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1622, __PRETTY_FUNCTION__))
;
1623 ++ParamsToSkip;
1624 } else {
1625 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1626 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1626, __PRETTY_FUNCTION__))
;
1627 }
1628 allocatorArgs.add(
1629 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1630 AlignValT);
1631 }
1632
1633 // FIXME: Why do we not pass a CalleeDecl here?
1634 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1635 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1636
1637 RValue RV =
1638 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1639
1640 // If this was a call to a global replaceable allocation function that does
1641 // not take an alignment argument, the allocator is known to produce
1642 // storage that's suitably aligned for any object that fits, up to a known
1643 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1644 CharUnits allocationAlign = allocAlign;
1645 if (!E->passAlignment() &&
1646 allocator->isReplaceableGlobalAllocationFunction()) {
1647 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1648 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1649 allocationAlign = std::max(
1650 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1651 }
1652
1653 allocation = Address(RV.getScalarVal(), allocationAlign);
1654 }
1655
1656 // Emit a null check on the allocation result if the allocation
1657 // function is allowed to return null (because it has a non-throwing
1658 // exception spec or is the reserved placement new) and we have an
1659 // interesting initializer.
1660 bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1661 (!allocType.isPODType(getContext()) || E->hasInitializer());
1662
1663 llvm::BasicBlock *nullCheckBB = nullptr;
1664 llvm::BasicBlock *contBB = nullptr;
1665
1666 // The null-check means that the initializer is conditionally
1667 // evaluated.
1668 ConditionalEvaluation conditional(*this);
1669
1670 if (nullCheck) {
1671 conditional.begin(*this);
1672
1673 nullCheckBB = Builder.GetInsertBlock();
1674 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1675 contBB = createBasicBlock("new.cont");
1676
1677 llvm::Value *isNull =
1678 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1679 Builder.CreateCondBr(isNull, contBB, notNullBB);
1680 EmitBlock(notNullBB);
1681 }
1682
1683 // If there's an operator delete, enter a cleanup to call it if an
1684 // exception is thrown.
1685 EHScopeStack::stable_iterator operatorDeleteCleanup;
1686 llvm::Instruction *cleanupDominator = nullptr;
1687 if (E->getOperatorDelete() &&
1688 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1689 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1690 allocatorArgs);
1691 operatorDeleteCleanup = EHStack.stable_begin();
1692 cleanupDominator = Builder.CreateUnreachable();
1693 }
1694
1695 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1696, __PRETTY_FUNCTION__))
1696 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1696, __PRETTY_FUNCTION__))
;
1697 if (allocSize != allocSizeWithoutCookie) {
1698 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1698, __PRETTY_FUNCTION__))
;
1699 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1700 numElements,
1701 E, allocType);
1702 }
1703
1704 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1705 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1706
1707 // Passing pointer through launder.invariant.group to avoid propagation of
1708 // vptrs information which may be included in previous type.
1709 // To not break LTO with different optimizations levels, we do it regardless
1710 // of optimization level.
1711 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1712 allocator->isReservedGlobalPlacementOperator())
1713 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1714 result.getAlignment());
1715
1716 // Emit sanitizer checks for pointer value now, so that in the case of an
1717 // array it was checked only once and not at each constructor call.
1718 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1719 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1720 result.getPointer(), allocType);
1721
1722 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1723 allocSizeWithoutCookie);
1724 if (E->isArray()) {
1725 // NewPtr is a pointer to the base element type. If we're
1726 // allocating an array of arrays, we'll need to cast back to the
1727 // array pointer type.
1728 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1729 if (result.getType() != resultType)
1730 result = Builder.CreateBitCast(result, resultType);
1731 }
1732
1733 // Deactivate the 'operator delete' cleanup if we finished
1734 // initialization.
1735 if (operatorDeleteCleanup.isValid()) {
1736 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1737 cleanupDominator->eraseFromParent();
1738 }
1739
1740 llvm::Value *resultPtr = result.getPointer();
1741 if (nullCheck) {
1742 conditional.end(*this);
1743
1744 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1745 EmitBlock(contBB);
1746
1747 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1748 PHI->addIncoming(resultPtr, notNullBB);
1749 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1750 nullCheckBB);
1751
1752 resultPtr = PHI;
1753 }
1754
1755 return resultPtr;
1756}
1757
1758void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1759 llvm::Value *Ptr, QualType DeleteTy,
1760 llvm::Value *NumElements,
1761 CharUnits CookieSize) {
1762 assert((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1763, __PRETTY_FUNCTION__))
1763 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1763, __PRETTY_FUNCTION__))
;
1764
1765 const FunctionProtoType *DeleteFTy =
1766 DeleteFD->getType()->getAs<FunctionProtoType>();
1767
1768 CallArgList DeleteArgs;
1769
1770 auto Params = getUsualDeleteParams(DeleteFD);
1771 auto ParamTypeIt = DeleteFTy->param_type_begin();
1772
1773 // Pass the pointer itself.
1774 QualType ArgTy = *ParamTypeIt++;
1775 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1776 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1777
1778 // Pass the std::destroying_delete tag if present.
1779 if (Params.DestroyingDelete) {
1780 QualType DDTag = *ParamTypeIt++;
1781 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1782 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1783 DeleteArgs.add(RValue::get(V), DDTag);
1784 }
1785
1786 // Pass the size if the delete function has a size_t parameter.
1787 if (Params.Size) {
1788 QualType SizeType = *ParamTypeIt++;
1789 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1790 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1791 DeleteTypeSize.getQuantity());
1792
1793 // For array new, multiply by the number of elements.
1794 if (NumElements)
1795 Size = Builder.CreateMul(Size, NumElements);
1796
1797 // If there is a cookie, add the cookie size.
1798 if (!CookieSize.isZero())
1799 Size = Builder.CreateAdd(
1800 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1801
1802 DeleteArgs.add(RValue::get(Size), SizeType);
1803 }
1804
1805 // Pass the alignment if the delete function has an align_val_t parameter.
1806 if (Params.Alignment) {
1807 QualType AlignValType = *ParamTypeIt++;
1808 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1809 getContext().getTypeAlignIfKnown(DeleteTy));
1810 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1811 DeleteTypeAlign.getQuantity());
1812 DeleteArgs.add(RValue::get(Align), AlignValType);
1813 }
1814
1815 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1816, __PRETTY_FUNCTION__))
1816 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1816, __PRETTY_FUNCTION__))
;
1817
1818 // Emit the call to delete.
1819 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1820}
1821
1822namespace {
1823 /// Calls the given 'operator delete' on a single object.
1824 struct CallObjectDelete final : EHScopeStack::Cleanup {
1825 llvm::Value *Ptr;
1826 const FunctionDecl *OperatorDelete;
1827 QualType ElementType;
1828
1829 CallObjectDelete(llvm::Value *Ptr,
1830 const FunctionDecl *OperatorDelete,
1831 QualType ElementType)
1832 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1833
1834 void Emit(CodeGenFunction &CGF, Flags flags) override {
1835 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1836 }
1837 };
1838}
1839
1840void
1841CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1842 llvm::Value *CompletePtr,
1843 QualType ElementType) {
1844 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1845 OperatorDelete, ElementType);
1846}
1847
1848/// Emit the code for deleting a single object with a destroying operator
1849/// delete. If the element type has a non-virtual destructor, Ptr has already
1850/// been converted to the type of the parameter of 'operator delete'. Otherwise
1851/// Ptr points to an object of the static type.
1852static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1853 const CXXDeleteExpr *DE, Address Ptr,
1854 QualType ElementType) {
1855 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1856 if (Dtor && Dtor->isVirtual())
1857 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1858 Dtor);
1859 else
1860 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1861}
1862
1863/// Emit the code for deleting a single object.
1864static void EmitObjectDelete(CodeGenFunction &CGF,
1865 const CXXDeleteExpr *DE,
1866 Address Ptr,
1867 QualType ElementType) {
1868 // C++11 [expr.delete]p3:
1869 // If the static type of the object to be deleted is different from its
1870 // dynamic type, the static type shall be a base class of the dynamic type
1871 // of the object to be deleted and the static type shall have a virtual
1872 // destructor or the behavior is undefined.
1873 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1874 DE->getExprLoc(), Ptr.getPointer(),
1875 ElementType);
1876
1877 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1878 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1878, __PRETTY_FUNCTION__))
;
1879
1880 // Find the destructor for the type, if applicable. If the
1881 // destructor is virtual, we'll just emit the vcall and return.
1882 const CXXDestructorDecl *Dtor = nullptr;
1883 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1884 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1885 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1886 Dtor = RD->getDestructor();
1887
1888 if (Dtor->isVirtual()) {
1889 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1890 Dtor);
1891 return;
1892 }
1893 }
1894 }
1895
1896 // Make sure that we call delete even if the dtor throws.
1897 // This doesn't have to a conditional cleanup because we're going
1898 // to pop it off in a second.
1899 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1900 Ptr.getPointer(),
1901 OperatorDelete, ElementType);
1902
1903 if (Dtor)
1904 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1905 /*ForVirtualBase=*/false,
1906 /*Delegating=*/false,
1907 Ptr);
1908 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1909 switch (Lifetime) {
1910 case Qualifiers::OCL_None:
1911 case Qualifiers::OCL_ExplicitNone:
1912 case Qualifiers::OCL_Autoreleasing:
1913 break;
1914
1915 case Qualifiers::OCL_Strong:
1916 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1917 break;
1918
1919 case Qualifiers::OCL_Weak:
1920 CGF.EmitARCDestroyWeak(Ptr);
1921 break;
1922 }
1923 }
1924
1925 CGF.PopCleanupBlock();
1926}
1927
1928namespace {
1929 /// Calls the given 'operator delete' on an array of objects.
1930 struct CallArrayDelete final : EHScopeStack::Cleanup {
1931 llvm::Value *Ptr;
1932 const FunctionDecl *OperatorDelete;
1933 llvm::Value *NumElements;
1934 QualType ElementType;
1935 CharUnits CookieSize;
1936
1937 CallArrayDelete(llvm::Value *Ptr,
1938 const FunctionDecl *OperatorDelete,
1939 llvm::Value *NumElements,
1940 QualType ElementType,
1941 CharUnits CookieSize)
1942 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1943 ElementType(ElementType), CookieSize(CookieSize) {}
1944
1945 void Emit(CodeGenFunction &CGF, Flags flags) override {
1946 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1947 CookieSize);
1948 }
1949 };
1950}
1951
1952/// Emit the code for deleting an array of objects.
1953static void EmitArrayDelete(CodeGenFunction &CGF,
1954 const CXXDeleteExpr *E,
1955 Address deletedPtr,
1956 QualType elementType) {
1957 llvm::Value *numElements = nullptr;
1958 llvm::Value *allocatedPtr = nullptr;
1959 CharUnits cookieSize;
1960 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1961 numElements, allocatedPtr, cookieSize);
1962
1963 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1963, __PRETTY_FUNCTION__))
;
1964
1965 // Make sure that we call delete even if one of the dtors throws.
1966 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1967 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1968 allocatedPtr, operatorDelete,
1969 numElements, elementType,
1970 cookieSize);
1971
1972 // Destroy the elements.
1973 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1974 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1974, __PRETTY_FUNCTION__))
;
1975
1976 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1977 CharUnits elementAlign =
1978 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1979
1980 llvm::Value *arrayBegin = deletedPtr.getPointer();
1981 llvm::Value *arrayEnd =
1982 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1983
1984 // Note that it is legal to allocate a zero-length array, and we
1985 // can never fold the check away because the length should always
1986 // come from a cookie.
1987 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1988 CGF.getDestroyer(dtorKind),
1989 /*checkZeroLength*/ true,
1990 CGF.needsEHCleanup(dtorKind));
1991 }
1992
1993 // Pop the cleanup block.
1994 CGF.PopCleanupBlock();
1995}
1996
1997void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1998 const Expr *Arg = E->getArgument();
1999 Address Ptr = EmitPointerWithAlignment(Arg);
2000
2001 // Null check the pointer.
2002 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2003 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2004
2005 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2006
2007 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2008 EmitBlock(DeleteNotNull);
2009
2010 QualType DeleteTy = E->getDestroyedType();
2011
2012 // A destroying operator delete overrides the entire operation of the
2013 // delete expression.
2014 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2015 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2016 EmitBlock(DeleteEnd);
2017 return;
2018 }
2019
2020 // We might be deleting a pointer to array. If so, GEP down to the
2021 // first non-array element.
2022 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2023 if (DeleteTy->isConstantArrayType()) {
2024 llvm::Value *Zero = Builder.getInt32(0);
2025 SmallVector<llvm::Value*,8> GEP;
2026
2027 GEP.push_back(Zero); // point at the outermost array
2028
2029 // For each layer of array type we're pointing at:
2030 while (const ConstantArrayType *Arr
2031 = getContext().getAsConstantArrayType(DeleteTy)) {
2032 // 1. Unpeel the array type.
2033 DeleteTy = Arr->getElementType();
2034
2035 // 2. GEP to the first element of the array.
2036 GEP.push_back(Zero);
2037 }
2038
2039 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2040 Ptr.getAlignment());
2041 }
2042
2043 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2043, __PRETTY_FUNCTION__))
;
2044
2045 if (E->isArrayForm()) {
2046 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2047 } else {
2048 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2049 }
2050
2051 EmitBlock(DeleteEnd);
2052}
2053
2054static bool isGLValueFromPointerDeref(const Expr *E) {
2055 E = E->IgnoreParens();
2056
2057 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2058 if (!CE->getSubExpr()->isGLValue())
2059 return false;
2060 return isGLValueFromPointerDeref(CE->getSubExpr());
2061 }
2062
2063 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2064 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2065
2066 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2067 if (BO->getOpcode() == BO_Comma)
2068 return isGLValueFromPointerDeref(BO->getRHS());
2069
2070 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2071 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2072 isGLValueFromPointerDeref(ACO->getFalseExpr());
2073
2074 // C++11 [expr.sub]p1:
2075 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2076 if (isa<ArraySubscriptExpr>(E))
2077 return true;
2078
2079 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2080 if (UO->getOpcode() == UO_Deref)
2081 return true;
2082
2083 return false;
2084}
2085
2086static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2087 llvm::Type *StdTypeInfoPtrTy) {
2088 // Get the vtable pointer.
2089 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2090
2091 QualType SrcRecordTy = E->getType();
2092
2093 // C++ [class.cdtor]p4:
2094 // If the operand of typeid refers to the object under construction or
2095 // destruction and the static type of the operand is neither the constructor
2096 // or destructor’s class nor one of its bases, the behavior is undefined.
2097 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2098 ThisPtr.getPointer(), SrcRecordTy);
2099
2100 // C++ [expr.typeid]p2:
2101 // If the glvalue expression is obtained by applying the unary * operator to
2102 // a pointer and the pointer is a null pointer value, the typeid expression
2103 // throws the std::bad_typeid exception.
2104 //
2105 // However, this paragraph's intent is not clear. We choose a very generous
2106 // interpretation which implores us to consider comma operators, conditional
2107 // operators, parentheses and other such constructs.
2108 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2109 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2110 llvm::BasicBlock *BadTypeidBlock =
2111 CGF.createBasicBlock("typeid.bad_typeid");
2112 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2113
2114 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2115 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2116
2117 CGF.EmitBlock(BadTypeidBlock);
2118 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2119 CGF.EmitBlock(EndBlock);
2120 }
2121
2122 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2123 StdTypeInfoPtrTy);
2124}
2125
2126llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2127 llvm::Type *StdTypeInfoPtrTy =
2128 ConvertType(E->getType())->getPointerTo();
2129
2130 if (E->isTypeOperand()) {
2131 llvm::Constant *TypeInfo =
2132 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2133 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2134 }
2135
2136 // C++ [expr.typeid]p2:
2137 // When typeid is applied to a glvalue expression whose type is a
2138 // polymorphic class type, the result refers to a std::type_info object
2139 // representing the type of the most derived object (that is, the dynamic
2140 // type) to which the glvalue refers.
2141 if (E->isPotentiallyEvaluated())
2142 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2143 StdTypeInfoPtrTy);
2144
2145 QualType OperandTy = E->getExprOperand()->getType();
2146 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2147 StdTypeInfoPtrTy);
2148}
2149
2150static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2151 QualType DestTy) {
2152 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2153 if (DestTy->isPointerType())
2154 return llvm::Constant::getNullValue(DestLTy);
2155
2156 /// C++ [expr.dynamic.cast]p9:
2157 /// A failed cast to reference type throws std::bad_cast
2158 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2159 return nullptr;
2160
2161 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2162 return llvm::UndefValue::get(DestLTy);
2163}
2164
2165llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2166 const CXXDynamicCastExpr *DCE) {
2167 CGM.EmitExplicitCastExprType(DCE, this);
2168 QualType DestTy = DCE->getTypeAsWritten();
2169
2170 QualType SrcTy = DCE->getSubExpr()->getType();
2171
2172 // C++ [expr.dynamic.cast]p7:
2173 // If T is "pointer to cv void," then the result is a pointer to the most
2174 // derived object pointed to by v.
2175 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2176
2177 bool isDynamicCastToVoid;
2178 QualType SrcRecordTy;
2179 QualType DestRecordTy;
2180 if (DestPTy) {
2181 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2182 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2183 DestRecordTy = DestPTy->getPointeeType();
2184 } else {
2185 isDynamicCastToVoid = false;
2186 SrcRecordTy = SrcTy;
2187 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2188 }
2189
2190 // C++ [class.cdtor]p5:
2191 // If the operand of the dynamic_cast refers to the object under
2192 // construction or destruction and the static type of the operand is not a
2193 // pointer to or object of the constructor or destructor’s own class or one
2194 // of its bases, the dynamic_cast results in undefined behavior.
2195 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2196 SrcRecordTy);
2197
2198 if (DCE->isAlwaysNull())
2199 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2200 return T;
2201
2202 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2202, __PRETTY_FUNCTION__))
;
2203
2204 // C++ [expr.dynamic.cast]p4:
2205 // If the value of v is a null pointer value in the pointer case, the result
2206 // is the null pointer value of type T.
2207 bool ShouldNullCheckSrcValue =
2208 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2209 SrcRecordTy);
2210
2211 llvm::BasicBlock *CastNull = nullptr;
2212 llvm::BasicBlock *CastNotNull = nullptr;
2213 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2214
2215 if (ShouldNullCheckSrcValue) {
2216 CastNull = createBasicBlock("dynamic_cast.null");
2217 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2218
2219 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2220 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2221 EmitBlock(CastNotNull);
2222 }
2223
2224 llvm::Value *Value;
2225 if (isDynamicCastToVoid) {
2226 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2227 DestTy);
2228 } else {
2229 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2230, __PRETTY_FUNCTION__))
2230 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2230, __PRETTY_FUNCTION__))
;
2231 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2232 DestTy, DestRecordTy, CastEnd);
2233 CastNotNull = Builder.GetInsertBlock();
2234 }
2235
2236 if (ShouldNullCheckSrcValue) {
2237 EmitBranch(CastEnd);
2238
2239 EmitBlock(CastNull);
2240 EmitBranch(CastEnd);
2241 }
2242
2243 EmitBlock(CastEnd);
2244
2245 if (ShouldNullCheckSrcValue) {
2246 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2247 PHI->addIncoming(Value, CastNotNull);
2248 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2249
2250 Value = PHI;
2251 }
2252
2253 return Value;
2254}
2255
2256void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2257 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2258
2259 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2260 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2261 e = E->capture_init_end();
2262 i != e; ++i, ++CurField) {
2263 // Emit initialization
2264 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2265 if (CurField->hasCapturedVLAType()) {
2266 auto VAT = CurField->getCapturedVLAType();
2267 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2268 } else {
2269 EmitInitializerForField(*CurField, LV, *i);
2270 }
2271 }
2272}