Bug Summary

File:include/llvm/ADT/SmallBitVector.h
Warning:line 120, column 3
Potential memory leak

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CoverageMapping.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/ProfileData/Coverage -I /build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/ProfileData/Coverage -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp

1//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for clang's and llvm's instrumentation based
10// code coverage.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ProfileData/Coverage/CoverageMapping.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallBitVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
23#include "llvm/ProfileData/InstrProfReader.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/Errc.h"
26#include "llvm/Support/Error.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ManagedStatic.h"
29#include "llvm/Support/MemoryBuffer.h"
30#include "llvm/Support/raw_ostream.h"
31#include <algorithm>
32#include <cassert>
33#include <cstdint>
34#include <iterator>
35#include <map>
36#include <memory>
37#include <string>
38#include <system_error>
39#include <utility>
40#include <vector>
41
42using namespace llvm;
43using namespace coverage;
44
45#define DEBUG_TYPE"coverage-mapping" "coverage-mapping"
46
47Counter CounterExpressionBuilder::get(const CounterExpression &E) {
48 auto It = ExpressionIndices.find(E);
49 if (It != ExpressionIndices.end())
50 return Counter::getExpression(It->second);
51 unsigned I = Expressions.size();
52 Expressions.push_back(E);
53 ExpressionIndices[E] = I;
54 return Counter::getExpression(I);
55}
56
57void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
58 SmallVectorImpl<Term> &Terms) {
59 switch (C.getKind()) {
60 case Counter::Zero:
61 break;
62 case Counter::CounterValueReference:
63 Terms.emplace_back(C.getCounterID(), Factor);
64 break;
65 case Counter::Expression:
66 const auto &E = Expressions[C.getExpressionID()];
67 extractTerms(E.LHS, Factor, Terms);
68 extractTerms(
69 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
70 break;
71 }
72}
73
74Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
75 // Gather constant terms.
76 SmallVector<Term, 32> Terms;
77 extractTerms(ExpressionTree, +1, Terms);
78
79 // If there are no terms, this is just a zero. The algorithm below assumes at
80 // least one term.
81 if (Terms.size() == 0)
82 return Counter::getZero();
83
84 // Group the terms by counter ID.
85 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
86 return LHS.CounterID < RHS.CounterID;
87 });
88
89 // Combine terms by counter ID to eliminate counters that sum to zero.
90 auto Prev = Terms.begin();
91 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
92 if (I->CounterID == Prev->CounterID) {
93 Prev->Factor += I->Factor;
94 continue;
95 }
96 ++Prev;
97 *Prev = *I;
98 }
99 Terms.erase(++Prev, Terms.end());
100
101 Counter C;
102 // Create additions. We do this before subtractions to avoid constructs like
103 // ((0 - X) + Y), as opposed to (Y - X).
104 for (auto T : Terms) {
105 if (T.Factor <= 0)
106 continue;
107 for (int I = 0; I < T.Factor; ++I)
108 if (C.isZero())
109 C = Counter::getCounter(T.CounterID);
110 else
111 C = get(CounterExpression(CounterExpression::Add, C,
112 Counter::getCounter(T.CounterID)));
113 }
114
115 // Create subtractions.
116 for (auto T : Terms) {
117 if (T.Factor >= 0)
118 continue;
119 for (int I = 0; I < -T.Factor; ++I)
120 C = get(CounterExpression(CounterExpression::Subtract, C,
121 Counter::getCounter(T.CounterID)));
122 }
123 return C;
124}
125
126Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
127 return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
128}
129
130Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
131 return simplify(
132 get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
133}
134
135void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
136 switch (C.getKind()) {
137 case Counter::Zero:
138 OS << '0';
139 return;
140 case Counter::CounterValueReference:
141 OS << '#' << C.getCounterID();
142 break;
143 case Counter::Expression: {
144 if (C.getExpressionID() >= Expressions.size())
145 return;
146 const auto &E = Expressions[C.getExpressionID()];
147 OS << '(';
148 dump(E.LHS, OS);
149 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
150 dump(E.RHS, OS);
151 OS << ')';
152 break;
153 }
154 }
155 if (CounterValues.empty())
156 return;
157 Expected<int64_t> Value = evaluate(C);
158 if (auto E = Value.takeError()) {
159 consumeError(std::move(E));
160 return;
161 }
162 OS << '[' << *Value << ']';
163}
164
165Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
166 switch (C.getKind()) {
167 case Counter::Zero:
168 return 0;
169 case Counter::CounterValueReference:
170 if (C.getCounterID() >= CounterValues.size())
171 return errorCodeToError(errc::argument_out_of_domain);
172 return CounterValues[C.getCounterID()];
173 case Counter::Expression: {
174 if (C.getExpressionID() >= Expressions.size())
175 return errorCodeToError(errc::argument_out_of_domain);
176 const auto &E = Expressions[C.getExpressionID()];
177 Expected<int64_t> LHS = evaluate(E.LHS);
178 if (!LHS)
179 return LHS;
180 Expected<int64_t> RHS = evaluate(E.RHS);
181 if (!RHS)
182 return RHS;
183 return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
184 }
185 }
186 llvm_unreachable("Unhandled CounterKind")::llvm::llvm_unreachable_internal("Unhandled CounterKind", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 186)
;
187}
188
189void FunctionRecordIterator::skipOtherFiles() {
190 while (Current != Records.end() && !Filename.empty() &&
191 Filename != Current->Filenames[0])
192 ++Current;
193 if (Current == Records.end())
194 *this = FunctionRecordIterator();
195}
196
197Error CoverageMapping::loadFunctionRecord(
198 const CoverageMappingRecord &Record,
199 IndexedInstrProfReader &ProfileReader) {
200 StringRef OrigFuncName = Record.FunctionName;
201 if (OrigFuncName.empty())
202 return make_error<CoverageMapError>(coveragemap_error::malformed);
203
204 if (Record.Filenames.empty())
205 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
206 else
207 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
208
209 CounterMappingContext Ctx(Record.Expressions);
210
211 std::vector<uint64_t> Counts;
212 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
213 Record.FunctionHash, Counts)) {
214 instrprof_error IPE = InstrProfError::take(std::move(E));
215 if (IPE == instrprof_error::hash_mismatch) {
216 FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
217 return Error::success();
218 } else if (IPE != instrprof_error::unknown_function)
219 return make_error<InstrProfError>(IPE);
220 Counts.assign(Record.MappingRegions.size(), 0);
221 }
222 Ctx.setCounts(Counts);
223
224 assert(!Record.MappingRegions.empty() && "Function has no regions")((!Record.MappingRegions.empty() && "Function has no regions"
) ? static_cast<void> (0) : __assert_fail ("!Record.MappingRegions.empty() && \"Function has no regions\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 224, __PRETTY_FUNCTION__))
;
225
226 // This coverage record is a zero region for a function that's unused in
227 // some TU, but used in a different TU. Ignore it. The coverage maps from the
228 // the other TU will either be loaded (providing full region counts) or they
229 // won't (in which case we don't unintuitively report functions as uncovered
230 // when they have non-zero counts in the profile).
231 if (Record.MappingRegions.size() == 1 &&
232 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
233 return Error::success();
234
235 FunctionRecord Function(OrigFuncName, Record.Filenames);
236 for (const auto &Region : Record.MappingRegions) {
237 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
238 if (auto E = ExecutionCount.takeError()) {
239 consumeError(std::move(E));
240 return Error::success();
241 }
242 Function.pushRegion(Region, *ExecutionCount);
243 }
244
245 // Don't create records for (filenames, function) pairs we've already seen.
246 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
247 Record.Filenames.end());
248 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
249 return Error::success();
250
251 Functions.push_back(std::move(Function));
252 return Error::success();
253}
254
255Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
256 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
257 IndexedInstrProfReader &ProfileReader) {
258 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
259
260 for (const auto &CoverageReader : CoverageReaders) {
261 for (auto RecordOrErr : *CoverageReader) {
262 if (Error E = RecordOrErr.takeError())
263 return std::move(E);
264 const auto &Record = *RecordOrErr;
265 if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
266 return std::move(E);
267 }
268 }
269
270 return std::move(Coverage);
271}
272
273Expected<std::unique_ptr<CoverageMapping>>
274CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
275 StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
276 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
277 if (Error E = ProfileReaderOrErr.takeError())
278 return std::move(E);
279 auto ProfileReader = std::move(ProfileReaderOrErr.get());
280
281 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
282 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
283 for (const auto &File : llvm::enumerate(ObjectFilenames)) {
284 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
285 if (std::error_code EC = CovMappingBufOrErr.getError())
286 return errorCodeToError(EC);
287 StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
288 auto CoverageReaderOrErr =
289 BinaryCoverageReader::create(CovMappingBufOrErr.get(), Arch);
290 if (Error E = CoverageReaderOrErr.takeError())
291 return std::move(E);
292 Readers.push_back(std::move(CoverageReaderOrErr.get()));
293 Buffers.push_back(std::move(CovMappingBufOrErr.get()));
294 }
295 return load(Readers, *ProfileReader);
296}
297
298namespace {
299
300/// Distributes functions into instantiation sets.
301///
302/// An instantiation set is a collection of functions that have the same source
303/// code, ie, template functions specializations.
304class FunctionInstantiationSetCollector {
305 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
306 MapT InstantiatedFunctions;
307
308public:
309 void insert(const FunctionRecord &Function, unsigned FileID) {
310 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
311 while (I != E && I->FileID != FileID)
312 ++I;
313 assert(I != E && "function does not cover the given file")((I != E && "function does not cover the given file")
? static_cast<void> (0) : __assert_fail ("I != E && \"function does not cover the given file\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 313, __PRETTY_FUNCTION__))
;
314 auto &Functions = InstantiatedFunctions[I->startLoc()];
315 Functions.push_back(&Function);
316 }
317
318 MapT::iterator begin() { return InstantiatedFunctions.begin(); }
319 MapT::iterator end() { return InstantiatedFunctions.end(); }
320};
321
322class SegmentBuilder {
323 std::vector<CoverageSegment> &Segments;
324 SmallVector<const CountedRegion *, 8> ActiveRegions;
325
326 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
327
328 /// Emit a segment with the count from \p Region starting at \p StartLoc.
329 //
330 /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
331 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
332 void startSegment(const CountedRegion &Region, LineColPair StartLoc,
333 bool IsRegionEntry, bool EmitSkippedRegion = false) {
334 bool HasCount = !EmitSkippedRegion &&
335 (Region.Kind != CounterMappingRegion::SkippedRegion);
336
337 // If the new segment wouldn't affect coverage rendering, skip it.
338 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
339 const auto &Last = Segments.back();
340 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
341 !Last.IsRegionEntry)
342 return;
343 }
344
345 if (HasCount)
346 Segments.emplace_back(StartLoc.first, StartLoc.second,
347 Region.ExecutionCount, IsRegionEntry,
348 Region.Kind == CounterMappingRegion::GapRegion);
349 else
350 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
351
352 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
353 const auto &Last = Segments.back();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
354 dbgs() << "Segment at " << Last.Line << ":" << Last.Coldo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
355 << " (count = " << Last.Count << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
356 << (Last.IsRegionEntry ? ", RegionEntry" : "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
357 << (!Last.HasCount ? ", Skipped" : "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
358 << (Last.IsGapRegion ? ", Gap" : "") << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
359 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { const auto &Last = Segments.back
(); dbgs() << "Segment at " << Last.Line <<
":" << Last.Col << " (count = " << Last.Count
<< ")" << (Last.IsRegionEntry ? ", RegionEntry" :
"") << (!Last.HasCount ? ", Skipped" : "") << (Last
.IsGapRegion ? ", Gap" : "") << "\n"; }; } } while (false
)
;
360 }
361
362 /// Emit segments for active regions which end before \p Loc.
363 ///
364 /// \p Loc: The start location of the next region. If None, all active
365 /// regions are completed.
366 /// \p FirstCompletedRegion: Index of the first completed region.
367 void completeRegionsUntil(Optional<LineColPair> Loc,
368 unsigned FirstCompletedRegion) {
369 // Sort the completed regions by end location. This makes it simple to
370 // emit closing segments in sorted order.
371 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
372 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
373 [](const CountedRegion *L, const CountedRegion *R) {
374 return L->endLoc() < R->endLoc();
375 });
376
377 // Emit segments for all completed regions.
378 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
379 ++I) {
380 const auto *CompletedRegion = ActiveRegions[I];
381 assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&(((!Loc || CompletedRegion->endLoc() <= *Loc) &&
"Completed region ends after start of new region") ? static_cast
<void> (0) : __assert_fail ("(!Loc || CompletedRegion->endLoc() <= *Loc) && \"Completed region ends after start of new region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 382, __PRETTY_FUNCTION__))
382 "Completed region ends after start of new region")(((!Loc || CompletedRegion->endLoc() <= *Loc) &&
"Completed region ends after start of new region") ? static_cast
<void> (0) : __assert_fail ("(!Loc || CompletedRegion->endLoc() <= *Loc) && \"Completed region ends after start of new region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 382, __PRETTY_FUNCTION__))
;
383
384 const auto *PrevCompletedRegion = ActiveRegions[I - 1];
385 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
386
387 // Don't emit any more segments if they start where the new region begins.
388 if (Loc && CompletedSegmentLoc == *Loc)
389 break;
390
391 // Don't emit a segment if the next completed region ends at the same
392 // location as this one.
393 if (CompletedSegmentLoc == CompletedRegion->endLoc())
394 continue;
395
396 // Use the count from the last completed region which ends at this loc.
397 for (unsigned J = I + 1; J < E; ++J)
398 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
399 CompletedRegion = ActiveRegions[J];
400
401 startSegment(*CompletedRegion, CompletedSegmentLoc, false);
402 }
403
404 auto Last = ActiveRegions.back();
405 if (FirstCompletedRegion && Last->endLoc() != *Loc) {
406 // If there's a gap after the end of the last completed region and the
407 // start of the new region, use the last active region to fill the gap.
408 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
409 false);
410 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
411 // Emit a skipped segment if there are no more active regions. This
412 // ensures that gaps between functions are marked correctly.
413 startSegment(*Last, Last->endLoc(), false, true);
414 }
415
416 // Pop the completed regions.
417 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
418 }
419
420 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
421 for (const auto &CR : enumerate(Regions)) {
422 auto CurStartLoc = CR.value().startLoc();
423
424 // Active regions which end before the current region need to be popped.
425 auto CompletedRegions =
426 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
427 [&](const CountedRegion *Region) {
428 return !(Region->endLoc() <= CurStartLoc);
429 });
430 if (CompletedRegions != ActiveRegions.end()) {
431 unsigned FirstCompletedRegion =
432 std::distance(ActiveRegions.begin(), CompletedRegions);
433 completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
434 }
435
436 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
437
438 // Try to emit a segment for the current region.
439 if (CurStartLoc == CR.value().endLoc()) {
440 // Avoid making zero-length regions active. If it's the last region,
441 // emit a skipped segment. Otherwise use its predecessor's count.
442 const bool Skipped = (CR.index() + 1) == Regions.size();
443 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
444 CurStartLoc, !GapRegion, Skipped);
445 continue;
446 }
447 if (CR.index() + 1 == Regions.size() ||
448 CurStartLoc != Regions[CR.index() + 1].startLoc()) {
449 // Emit a segment if the next region doesn't start at the same location
450 // as this one.
451 startSegment(CR.value(), CurStartLoc, !GapRegion);
452 }
453
454 // This region is active (i.e not completed).
455 ActiveRegions.push_back(&CR.value());
456 }
457
458 // Complete any remaining active regions.
459 if (!ActiveRegions.empty())
460 completeRegionsUntil(None, 0);
461 }
462
463 /// Sort a nested sequence of regions from a single file.
464 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
465 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
466 if (LHS.startLoc() != RHS.startLoc())
467 return LHS.startLoc() < RHS.startLoc();
468 if (LHS.endLoc() != RHS.endLoc())
469 // When LHS completely contains RHS, we sort LHS first.
470 return RHS.endLoc() < LHS.endLoc();
471 // If LHS and RHS cover the same area, we need to sort them according
472 // to their kinds so that the most suitable region will become "active"
473 // in combineRegions(). Because we accumulate counter values only from
474 // regions of the same kind as the first region of the area, prefer
475 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
476 static_assert(CounterMappingRegion::CodeRegion <
477 CounterMappingRegion::ExpansionRegion &&
478 CounterMappingRegion::ExpansionRegion <
479 CounterMappingRegion::SkippedRegion,
480 "Unexpected order of region kind values");
481 return LHS.Kind < RHS.Kind;
482 });
483 }
484
485 /// Combine counts of regions which cover the same area.
486 static ArrayRef<CountedRegion>
487 combineRegions(MutableArrayRef<CountedRegion> Regions) {
488 if (Regions.empty())
489 return Regions;
490 auto Active = Regions.begin();
491 auto End = Regions.end();
492 for (auto I = Regions.begin() + 1; I != End; ++I) {
493 if (Active->startLoc() != I->startLoc() ||
494 Active->endLoc() != I->endLoc()) {
495 // Shift to the next region.
496 ++Active;
497 if (Active != I)
498 *Active = *I;
499 continue;
500 }
501 // Merge duplicate region.
502 // If CodeRegions and ExpansionRegions cover the same area, it's probably
503 // a macro which is fully expanded to another macro. In that case, we need
504 // to accumulate counts only from CodeRegions, or else the area will be
505 // counted twice.
506 // On the other hand, a macro may have a nested macro in its body. If the
507 // outer macro is used several times, the ExpansionRegion for the nested
508 // macro will also be added several times. These ExpansionRegions cover
509 // the same source locations and have to be combined to reach the correct
510 // value for that area.
511 // We add counts of the regions of the same kind as the active region
512 // to handle the both situations.
513 if (I->Kind == Active->Kind)
514 Active->ExecutionCount += I->ExecutionCount;
515 }
516 return Regions.drop_back(std::distance(++Active, End));
517 }
518
519public:
520 /// Build a sorted list of CoverageSegments from a list of Regions.
521 static std::vector<CoverageSegment>
522 buildSegments(MutableArrayRef<CountedRegion> Regions) {
523 std::vector<CoverageSegment> Segments;
524 SegmentBuilder Builder(Segments);
525
526 sortNestedRegions(Regions);
527 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
528
529 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
530 dbgs() << "Combined regions:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
531 for (const auto &CR : CombinedRegions)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
532 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
533 << CR.LineEnd << ":" << CR.ColumnEnddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
534 << " (count=" << CR.ExecutionCount << ")\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
535 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { { dbgs() << "Combined regions:\n"
; for (const auto &CR : CombinedRegions) dbgs() << " "
<< CR.LineStart << ":" << CR.ColumnStart <<
" -> " << CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n"
; }; } } while (false)
;
536
537 Builder.buildSegmentsImpl(CombinedRegions);
538
539#ifndef NDEBUG
540 for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
541 const auto &L = Segments[I - 1];
542 const auto &R = Segments[I];
543 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
544 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Coldo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << " ! Segment " <<
L.Line << ":" << L.Col << " followed by " <<
R.Line << ":" << R.Col << "\n"; } } while (
false)
545 << " followed by " << R.Line << ":" << R.Col << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << " ! Segment " <<
L.Line << ":" << L.Col << " followed by " <<
R.Line << ":" << R.Col << "\n"; } } while (
false)
;
546 assert(false && "Coverage segments not unique or sorted")((false && "Coverage segments not unique or sorted") ?
static_cast<void> (0) : __assert_fail ("false && \"Coverage segments not unique or sorted\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 546, __PRETTY_FUNCTION__))
;
547 }
548 }
549#endif
550
551 return Segments;
552 }
553};
554
555} // end anonymous namespace
556
557std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
558 std::vector<StringRef> Filenames;
559 for (const auto &Function : getCoveredFunctions())
560 Filenames.insert(Filenames.end(), Function.Filenames.begin(),
561 Function.Filenames.end());
562 llvm::sort(Filenames);
563 auto Last = std::unique(Filenames.begin(), Filenames.end());
564 Filenames.erase(Last, Filenames.end());
565 return Filenames;
566}
567
568static SmallBitVector gatherFileIDs(StringRef SourceFile,
569 const FunctionRecord &Function) {
570 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
2
Calling constructor for 'SmallBitVector'
6
Returning from constructor for 'SmallBitVector'
571 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
7
Assuming 'I' is < 'E'
8
Loop condition is true. Entering loop body
572 if (SourceFile == Function.Filenames[I])
9
Assuming the condition is true
10
Taking true branch
573 FilenameEquivalence[I] = true;
11
Calling 'reference::operator='
574 return FilenameEquivalence;
575}
576
577/// Return the ID of the file where the definition of the function is located.
578static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
579 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
580 for (const auto &CR : Function.CountedRegions)
581 if (CR.Kind == CounterMappingRegion::ExpansionRegion)
582 IsNotExpandedFile[CR.ExpandedFileID] = false;
583 int I = IsNotExpandedFile.find_first();
584 if (I == -1)
585 return None;
586 return I;
587}
588
589/// Check if SourceFile is the file that contains the definition of
590/// the Function. Return the ID of the file in that case or None otherwise.
591static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
592 const FunctionRecord &Function) {
593 Optional<unsigned> I = findMainViewFileID(Function);
594 if (I && SourceFile == Function.Filenames[*I])
595 return I;
596 return None;
597}
598
599static bool isExpansion(const CountedRegion &R, unsigned FileID) {
600 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
601}
602
603CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
604 CoverageData FileCoverage(Filename);
605 std::vector<CountedRegion> Regions;
606
607 for (const auto &Function : Functions) {
608 auto MainFileID = findMainViewFileID(Filename, Function);
609 auto FileIDs = gatherFileIDs(Filename, Function);
1
Calling 'gatherFileIDs'
610 for (const auto &CR : Function.CountedRegions)
611 if (FileIDs.test(CR.FileID)) {
612 Regions.push_back(CR);
613 if (MainFileID && isExpansion(CR, *MainFileID))
614 FileCoverage.Expansions.emplace_back(CR, Function);
615 }
616 }
617
618 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << "Emitting segments for file: "
<< Filename << "\n"; } } while (false)
;
619 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
620
621 return FileCoverage;
622}
623
624std::vector<InstantiationGroup>
625CoverageMapping::getInstantiationGroups(StringRef Filename) const {
626 FunctionInstantiationSetCollector InstantiationSetCollector;
627 for (const auto &Function : Functions) {
628 auto MainFileID = findMainViewFileID(Filename, Function);
629 if (!MainFileID)
630 continue;
631 InstantiationSetCollector.insert(Function, *MainFileID);
632 }
633
634 std::vector<InstantiationGroup> Result;
635 for (auto &InstantiationSet : InstantiationSetCollector) {
636 InstantiationGroup IG{InstantiationSet.first.first,
637 InstantiationSet.first.second,
638 std::move(InstantiationSet.second)};
639 Result.emplace_back(std::move(IG));
640 }
641 return Result;
642}
643
644CoverageData
645CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
646 auto MainFileID = findMainViewFileID(Function);
647 if (!MainFileID)
648 return CoverageData();
649
650 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
651 std::vector<CountedRegion> Regions;
652 for (const auto &CR : Function.CountedRegions)
653 if (CR.FileID == *MainFileID) {
654 Regions.push_back(CR);
655 if (isExpansion(CR, *MainFileID))
656 FunctionCoverage.Expansions.emplace_back(CR, Function);
657 }
658
659 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << "Emitting segments for function: "
<< Function.Name << "\n"; } } while (false)
660 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << "Emitting segments for function: "
<< Function.Name << "\n"; } } while (false)
;
661 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
662
663 return FunctionCoverage;
664}
665
666CoverageData CoverageMapping::getCoverageForExpansion(
667 const ExpansionRecord &Expansion) const {
668 CoverageData ExpansionCoverage(
669 Expansion.Function.Filenames[Expansion.FileID]);
670 std::vector<CountedRegion> Regions;
671 for (const auto &CR : Expansion.Function.CountedRegions)
672 if (CR.FileID == Expansion.FileID) {
673 Regions.push_back(CR);
674 if (isExpansion(CR, Expansion.FileID))
675 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
676 }
677
678 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << "Emitting segments for expansion of file "
<< Expansion.FileID << "\n"; } } while (false)
679 << Expansion.FileID << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("coverage-mapping")) { dbgs() << "Emitting segments for expansion of file "
<< Expansion.FileID << "\n"; } } while (false)
;
680 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
681
682 return ExpansionCoverage;
683}
684
685LineCoverageStats::LineCoverageStats(
686 ArrayRef<const CoverageSegment *> LineSegments,
687 const CoverageSegment *WrappedSegment, unsigned Line)
688 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
689 LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
690 // Find the minimum number of regions which start in this line.
691 unsigned MinRegionCount = 0;
692 auto isStartOfRegion = [](const CoverageSegment *S) {
693 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
694 };
695 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
696 if (isStartOfRegion(LineSegments[I]))
697 ++MinRegionCount;
698
699 bool StartOfSkippedRegion = !LineSegments.empty() &&
700 !LineSegments.front()->HasCount &&
701 LineSegments.front()->IsRegionEntry;
702
703 HasMultipleRegions = MinRegionCount > 1;
704 Mapped =
705 !StartOfSkippedRegion &&
706 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
707
708 if (!Mapped)
709 return;
710
711 // Pick the max count from the non-gap, region entry segments and the
712 // wrapped count.
713 if (WrappedSegment)
714 ExecutionCount = WrappedSegment->Count;
715 if (!MinRegionCount)
716 return;
717 for (const auto *LS : LineSegments)
718 if (isStartOfRegion(LS))
719 ExecutionCount = std::max(ExecutionCount, LS->Count);
720}
721
722LineCoverageIterator &LineCoverageIterator::operator++() {
723 if (Next == CD.end()) {
724 Stats = LineCoverageStats();
725 Ended = true;
726 return *this;
727 }
728 if (Segments.size())
729 WrappedSegment = Segments.back();
730 Segments.clear();
731 while (Next != CD.end() && Next->Line == Line)
732 Segments.push_back(&*Next++);
733 Stats = LineCoverageStats(Segments, WrappedSegment, Line);
734 ++Line;
735 return *this;
736}
737
738static std::string getCoverageMapErrString(coveragemap_error Err) {
739 switch (Err) {
740 case coveragemap_error::success:
741 return "Success";
742 case coveragemap_error::eof:
743 return "End of File";
744 case coveragemap_error::no_data_found:
745 return "No coverage data found";
746 case coveragemap_error::unsupported_version:
747 return "Unsupported coverage format version";
748 case coveragemap_error::truncated:
749 return "Truncated coverage data";
750 case coveragemap_error::malformed:
751 return "Malformed coverage data";
752 }
753 llvm_unreachable("A value of coveragemap_error has no message.")::llvm::llvm_unreachable_internal("A value of coveragemap_error has no message."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ProfileData/Coverage/CoverageMapping.cpp"
, 753)
;
754}
755
756namespace {
757
758// FIXME: This class is only here to support the transition to llvm::Error. It
759// will be removed once this transition is complete. Clients should prefer to
760// deal with the Error value directly, rather than converting to error_code.
761class CoverageMappingErrorCategoryType : public std::error_category {
762 const char *name() const noexcept override { return "llvm.coveragemap"; }
763 std::string message(int IE) const override {
764 return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
765 }
766};
767
768} // end anonymous namespace
769
770std::string CoverageMapError::message() const {
771 return getCoverageMapErrString(Err);
772}
773
774static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
775
776const std::error_category &llvm::coverage::coveragemap_category() {
777 return *ErrorCategory;
778}
779
780char CoverageMapError::ID = 0;

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h

1//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SmallBitVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLBITVECTOR_H
14#define LLVM_ADT_SMALLBITVECTOR_H
15
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/iterator_range.h"
18#include "llvm/Support/MathExtras.h"
19#include <algorithm>
20#include <cassert>
21#include <climits>
22#include <cstddef>
23#include <cstdint>
24#include <limits>
25#include <utility>
26
27namespace llvm {
28
29/// This is a 'bitvector' (really, a variable-sized bit array), optimized for
30/// the case when the array is small. It contains one pointer-sized field, which
31/// is directly used as a plain collection of bits when possible, or as a
32/// pointer to a larger heap-allocated array when necessary. This allows normal
33/// "small" cases to be fast without losing generality for large inputs.
34class SmallBitVector {
35 // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
36 // unnecessary level of indirection. It would be more efficient to use a
37 // pointer to memory containing size, allocation size, and the array of bits.
38 uintptr_t X = 1;
39
40 enum {
41 // The number of bits in this class.
42 NumBaseBits = sizeof(uintptr_t) * CHAR_BIT8,
43
44 // One bit is used to discriminate between small and large mode. The
45 // remaining bits are used for the small-mode representation.
46 SmallNumRawBits = NumBaseBits - 1,
47
48 // A few more bits are used to store the size of the bit set in small mode.
49 // Theoretically this is a ceil-log2. These bits are encoded in the most
50 // significant bits of the raw bits.
51 SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
52 NumBaseBits == 64 ? 6 :
53 SmallNumRawBits),
54
55 // The remaining bits are used to store the actual set in small mode.
56 SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
57 };
58
59 static_assert(NumBaseBits == 64 || NumBaseBits == 32,
60 "Unsupported word size");
61
62public:
63 using size_type = unsigned;
64
65 // Encapsulation of a single bit.
66 class reference {
67 SmallBitVector &TheVector;
68 unsigned BitPos;
69
70 public:
71 reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
72
73 reference(const reference&) = default;
74
75 reference& operator=(reference t) {
76 *this = bool(t);
77 return *this;
78 }
79
80 reference& operator=(bool t) {
81 if (t)
12
Taking true branch
82 TheVector.set(BitPos);
13
Calling 'SmallBitVector::set'
83 else
84 TheVector.reset(BitPos);
85 return *this;
86 }
87
88 operator bool() const {
89 return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
90 }
91 };
92
93private:
94 BitVector *getPointer() const {
95 assert(!isSmall())((!isSmall()) ? static_cast<void> (0) : __assert_fail (
"!isSmall()", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 95, __PRETTY_FUNCTION__))
;
96 return reinterpret_cast<BitVector *>(X);
97 }
98
99 void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
100 X = 1;
101 setSmallSize(NewSize);
102 setSmallBits(NewSmallBits);
103 }
104
105 void switchToLarge(BitVector *BV) {
106 X = reinterpret_cast<uintptr_t>(BV);
107 assert(!isSmall() && "Tried to use an unaligned pointer")((!isSmall() && "Tried to use an unaligned pointer") ?
static_cast<void> (0) : __assert_fail ("!isSmall() && \"Tried to use an unaligned pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 107, __PRETTY_FUNCTION__))
;
108 }
109
110 // Return all the bits used for the "small" representation; this includes
111 // bits for the size as well as the element bits.
112 uintptr_t getSmallRawBits() const {
113 assert(isSmall())((isSmall()) ? static_cast<void> (0) : __assert_fail ("isSmall()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 113, __PRETTY_FUNCTION__))
;
114 return X >> 1;
115 }
116
117 void setSmallRawBits(uintptr_t NewRawBits) {
118 assert(isSmall())((isSmall()) ? static_cast<void> (0) : __assert_fail ("isSmall()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 118, __PRETTY_FUNCTION__))
;
19
Assuming the condition is true
20
'?' condition is true
119 X = (NewRawBits << 1) | uintptr_t(1);
120 }
21
Potential memory leak
121
122 // Return the size.
123 size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
124
125 void setSmallSize(size_t Size) {
126 setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
127 }
128
129 // Return the element bits.
130 uintptr_t getSmallBits() const {
131 return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
132 }
133
134 void setSmallBits(uintptr_t NewBits) {
135 setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
18
Calling 'SmallBitVector::setSmallRawBits'
136 (getSmallSize() << SmallNumDataBits));
137 }
138
139public:
140 /// Creates an empty bitvector.
141 SmallBitVector() = default;
142
143 /// Creates a bitvector of specified number of bits. All bits are initialized
144 /// to the specified value.
145 explicit SmallBitVector(unsigned s, bool t = false) {
146 if (s <= SmallNumDataBits)
3
Assuming 's' is > SmallNumDataBits
4
Taking false branch
147 switchToSmall(t ? ~uintptr_t(0) : 0, s);
148 else
149 switchToLarge(new BitVector(s, t));
5
Memory is allocated
150 }
151
152 /// SmallBitVector copy ctor.
153 SmallBitVector(const SmallBitVector &RHS) {
154 if (RHS.isSmall())
155 X = RHS.X;
156 else
157 switchToLarge(new BitVector(*RHS.getPointer()));
158 }
159
160 SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
161 RHS.X = 1;
162 }
163
164 ~SmallBitVector() {
165 if (!isSmall())
166 delete getPointer();
167 }
168
169 using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
170 using set_iterator = const_set_bits_iterator;
171
172 const_set_bits_iterator set_bits_begin() const {
173 return const_set_bits_iterator(*this);
174 }
175
176 const_set_bits_iterator set_bits_end() const {
177 return const_set_bits_iterator(*this, -1);
178 }
179
180 iterator_range<const_set_bits_iterator> set_bits() const {
181 return make_range(set_bits_begin(), set_bits_end());
182 }
183
184 bool isSmall() const { return X & uintptr_t(1); }
185
186 /// Tests whether there are no bits in this bitvector.
187 bool empty() const {
188 return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
189 }
190
191 /// Returns the number of bits in this bitvector.
192 size_t size() const {
193 return isSmall() ? getSmallSize() : getPointer()->size();
194 }
195
196 /// Returns the number of bits which are set.
197 size_type count() const {
198 if (isSmall()) {
199 uintptr_t Bits = getSmallBits();
200 return countPopulation(Bits);
201 }
202 return getPointer()->count();
203 }
204
205 /// Returns true if any bit is set.
206 bool any() const {
207 if (isSmall())
208 return getSmallBits() != 0;
209 return getPointer()->any();
210 }
211
212 /// Returns true if all bits are set.
213 bool all() const {
214 if (isSmall())
215 return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
216 return getPointer()->all();
217 }
218
219 /// Returns true if none of the bits are set.
220 bool none() const {
221 if (isSmall())
222 return getSmallBits() == 0;
223 return getPointer()->none();
224 }
225
226 /// Returns the index of the first set bit, -1 if none of the bits are set.
227 int find_first() const {
228 if (isSmall()) {
229 uintptr_t Bits = getSmallBits();
230 if (Bits == 0)
231 return -1;
232 return countTrailingZeros(Bits);
233 }
234 return getPointer()->find_first();
235 }
236
237 int find_last() const {
238 if (isSmall()) {
239 uintptr_t Bits = getSmallBits();
240 if (Bits == 0)
241 return -1;
242 return NumBaseBits - countLeadingZeros(Bits) - 1;
243 }
244 return getPointer()->find_last();
245 }
246
247 /// Returns the index of the first unset bit, -1 if all of the bits are set.
248 int find_first_unset() const {
249 if (isSmall()) {
250 if (count() == getSmallSize())
251 return -1;
252
253 uintptr_t Bits = getSmallBits();
254 return countTrailingOnes(Bits);
255 }
256 return getPointer()->find_first_unset();
257 }
258
259 int find_last_unset() const {
260 if (isSmall()) {
261 if (count() == getSmallSize())
262 return -1;
263
264 uintptr_t Bits = getSmallBits();
265 // Set unused bits.
266 Bits |= ~uintptr_t(0) << getSmallSize();
267 return NumBaseBits - countLeadingOnes(Bits) - 1;
268 }
269 return getPointer()->find_last_unset();
270 }
271
272 /// Returns the index of the next set bit following the "Prev" bit.
273 /// Returns -1 if the next set bit is not found.
274 int find_next(unsigned Prev) const {
275 if (isSmall()) {
276 uintptr_t Bits = getSmallBits();
277 // Mask off previous bits.
278 Bits &= ~uintptr_t(0) << (Prev + 1);
279 if (Bits == 0 || Prev + 1 >= getSmallSize())
280 return -1;
281 return countTrailingZeros(Bits);
282 }
283 return getPointer()->find_next(Prev);
284 }
285
286 /// Returns the index of the next unset bit following the "Prev" bit.
287 /// Returns -1 if the next unset bit is not found.
288 int find_next_unset(unsigned Prev) const {
289 if (isSmall()) {
290 ++Prev;
291 uintptr_t Bits = getSmallBits();
292 // Mask in previous bits.
293 uintptr_t Mask = (1 << Prev) - 1;
294 Bits |= Mask;
295
296 if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
297 return -1;
298 return countTrailingOnes(Bits);
299 }
300 return getPointer()->find_next_unset(Prev);
301 }
302
303 /// find_prev - Returns the index of the first set bit that precedes the
304 /// the bit at \p PriorTo. Returns -1 if all previous bits are unset.
305 int find_prev(unsigned PriorTo) const {
306 if (isSmall()) {
307 if (PriorTo == 0)
308 return -1;
309
310 --PriorTo;
311 uintptr_t Bits = getSmallBits();
312 Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
313 if (Bits == 0)
314 return -1;
315
316 return NumBaseBits - countLeadingZeros(Bits) - 1;
317 }
318 return getPointer()->find_prev(PriorTo);
319 }
320
321 /// Clear all bits.
322 void clear() {
323 if (!isSmall())
324 delete getPointer();
325 switchToSmall(0, 0);
326 }
327
328 /// Grow or shrink the bitvector.
329 void resize(unsigned N, bool t = false) {
330 if (!isSmall()) {
331 getPointer()->resize(N, t);
332 } else if (SmallNumDataBits >= N) {
333 uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
334 setSmallSize(N);
335 setSmallBits(NewBits | getSmallBits());
336 } else {
337 BitVector *BV = new BitVector(N, t);
338 uintptr_t OldBits = getSmallBits();
339 for (size_t i = 0, e = getSmallSize(); i != e; ++i)
340 (*BV)[i] = (OldBits >> i) & 1;
341 switchToLarge(BV);
342 }
343 }
344
345 void reserve(unsigned N) {
346 if (isSmall()) {
347 if (N > SmallNumDataBits) {
348 uintptr_t OldBits = getSmallRawBits();
349 size_t SmallSize = getSmallSize();
350 BitVector *BV = new BitVector(SmallSize);
351 for (size_t i = 0; i < SmallSize; ++i)
352 if ((OldBits >> i) & 1)
353 BV->set(i);
354 BV->reserve(N);
355 switchToLarge(BV);
356 }
357 } else {
358 getPointer()->reserve(N);
359 }
360 }
361
362 // Set, reset, flip
363 SmallBitVector &set() {
364 if (isSmall())
365 setSmallBits(~uintptr_t(0));
366 else
367 getPointer()->set();
368 return *this;
369 }
370
371 SmallBitVector &set(unsigned Idx) {
372 if (isSmall()) {
14
Assuming the condition is true
15
Taking true branch
373 assert(Idx <= static_cast<unsigned>(((Idx <= static_cast<unsigned>( std::numeric_limits<
uintptr_t>::digits) && "undefined behavior") ? static_cast
<void> (0) : __assert_fail ("Idx <= static_cast<unsigned>( std::numeric_limits<uintptr_t>::digits) && \"undefined behavior\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 375, __PRETTY_FUNCTION__))
16
'?' condition is true
374 std::numeric_limits<uintptr_t>::digits) &&((Idx <= static_cast<unsigned>( std::numeric_limits<
uintptr_t>::digits) && "undefined behavior") ? static_cast
<void> (0) : __assert_fail ("Idx <= static_cast<unsigned>( std::numeric_limits<uintptr_t>::digits) && \"undefined behavior\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 375, __PRETTY_FUNCTION__))
375 "undefined behavior")((Idx <= static_cast<unsigned>( std::numeric_limits<
uintptr_t>::digits) && "undefined behavior") ? static_cast
<void> (0) : __assert_fail ("Idx <= static_cast<unsigned>( std::numeric_limits<uintptr_t>::digits) && \"undefined behavior\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 375, __PRETTY_FUNCTION__))
;
376 setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
17
Calling 'SmallBitVector::setSmallBits'
377 }
378 else
379 getPointer()->set(Idx);
380 return *this;
381 }
382
383 /// Efficiently set a range of bits in [I, E)
384 SmallBitVector &set(unsigned I, unsigned E) {
385 assert(I <= E && "Attempted to set backwards range!")((I <= E && "Attempted to set backwards range!") ?
static_cast<void> (0) : __assert_fail ("I <= E && \"Attempted to set backwards range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 385, __PRETTY_FUNCTION__))
;
386 assert(E <= size() && "Attempted to set out-of-bounds range!")((E <= size() && "Attempted to set out-of-bounds range!"
) ? static_cast<void> (0) : __assert_fail ("E <= size() && \"Attempted to set out-of-bounds range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 386, __PRETTY_FUNCTION__))
;
387 if (I == E) return *this;
388 if (isSmall()) {
389 uintptr_t EMask = ((uintptr_t)1) << E;
390 uintptr_t IMask = ((uintptr_t)1) << I;
391 uintptr_t Mask = EMask - IMask;
392 setSmallBits(getSmallBits() | Mask);
393 } else
394 getPointer()->set(I, E);
395 return *this;
396 }
397
398 SmallBitVector &reset() {
399 if (isSmall())
400 setSmallBits(0);
401 else
402 getPointer()->reset();
403 return *this;
404 }
405
406 SmallBitVector &reset(unsigned Idx) {
407 if (isSmall())
408 setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
409 else
410 getPointer()->reset(Idx);
411 return *this;
412 }
413
414 /// Efficiently reset a range of bits in [I, E)
415 SmallBitVector &reset(unsigned I, unsigned E) {
416 assert(I <= E && "Attempted to reset backwards range!")((I <= E && "Attempted to reset backwards range!")
? static_cast<void> (0) : __assert_fail ("I <= E && \"Attempted to reset backwards range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 416, __PRETTY_FUNCTION__))
;
417 assert(E <= size() && "Attempted to reset out-of-bounds range!")((E <= size() && "Attempted to reset out-of-bounds range!"
) ? static_cast<void> (0) : __assert_fail ("E <= size() && \"Attempted to reset out-of-bounds range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 417, __PRETTY_FUNCTION__))
;
418 if (I == E) return *this;
419 if (isSmall()) {
420 uintptr_t EMask = ((uintptr_t)1) << E;
421 uintptr_t IMask = ((uintptr_t)1) << I;
422 uintptr_t Mask = EMask - IMask;
423 setSmallBits(getSmallBits() & ~Mask);
424 } else
425 getPointer()->reset(I, E);
426 return *this;
427 }
428
429 SmallBitVector &flip() {
430 if (isSmall())
431 setSmallBits(~getSmallBits());
432 else
433 getPointer()->flip();
434 return *this;
435 }
436
437 SmallBitVector &flip(unsigned Idx) {
438 if (isSmall())
439 setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
440 else
441 getPointer()->flip(Idx);
442 return *this;
443 }
444
445 // No argument flip.
446 SmallBitVector operator~() const {
447 return SmallBitVector(*this).flip();
448 }
449
450 // Indexing.
451 reference operator[](unsigned Idx) {
452 assert(Idx < size() && "Out-of-bounds Bit access.")((Idx < size() && "Out-of-bounds Bit access.") ? static_cast
<void> (0) : __assert_fail ("Idx < size() && \"Out-of-bounds Bit access.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 452, __PRETTY_FUNCTION__))
;
453 return reference(*this, Idx);
454 }
455
456 bool operator[](unsigned Idx) const {
457 assert(Idx < size() && "Out-of-bounds Bit access.")((Idx < size() && "Out-of-bounds Bit access.") ? static_cast
<void> (0) : __assert_fail ("Idx < size() && \"Out-of-bounds Bit access.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 457, __PRETTY_FUNCTION__))
;
458 if (isSmall())
459 return ((getSmallBits() >> Idx) & 1) != 0;
460 return getPointer()->operator[](Idx);
461 }
462
463 bool test(unsigned Idx) const {
464 return (*this)[Idx];
465 }
466
467 // Push single bit to end of vector.
468 void push_back(bool Val) {
469 resize(size() + 1, Val);
470 }
471
472 /// Test if any common bits are set.
473 bool anyCommon(const SmallBitVector &RHS) const {
474 if (isSmall() && RHS.isSmall())
475 return (getSmallBits() & RHS.getSmallBits()) != 0;
476 if (!isSmall() && !RHS.isSmall())
477 return getPointer()->anyCommon(*RHS.getPointer());
478
479 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
480 if (test(i) && RHS.test(i))
481 return true;
482 return false;
483 }
484
485 // Comparison operators.
486 bool operator==(const SmallBitVector &RHS) const {
487 if (size() != RHS.size())
488 return false;
489 if (isSmall() && RHS.isSmall())
490 return getSmallBits() == RHS.getSmallBits();
491 else if (!isSmall() && !RHS.isSmall())
492 return *getPointer() == *RHS.getPointer();
493 else {
494 for (size_t i = 0, e = size(); i != e; ++i) {
495 if ((*this)[i] != RHS[i])
496 return false;
497 }
498 return true;
499 }
500 }
501
502 bool operator!=(const SmallBitVector &RHS) const {
503 return !(*this == RHS);
504 }
505
506 // Intersection, union, disjoint union.
507 // FIXME BitVector::operator&= does not resize the LHS but this does
508 SmallBitVector &operator&=(const SmallBitVector &RHS) {
509 resize(std::max(size(), RHS.size()));
510 if (isSmall() && RHS.isSmall())
511 setSmallBits(getSmallBits() & RHS.getSmallBits());
512 else if (!isSmall() && !RHS.isSmall())
513 getPointer()->operator&=(*RHS.getPointer());
514 else {
515 size_t i, e;
516 for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
517 (*this)[i] = test(i) && RHS.test(i);
518 for (e = size(); i != e; ++i)
519 reset(i);
520 }
521 return *this;
522 }
523
524 /// Reset bits that are set in RHS. Same as *this &= ~RHS.
525 SmallBitVector &reset(const SmallBitVector &RHS) {
526 if (isSmall() && RHS.isSmall())
527 setSmallBits(getSmallBits() & ~RHS.getSmallBits());
528 else if (!isSmall() && !RHS.isSmall())
529 getPointer()->reset(*RHS.getPointer());
530 else
531 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
532 if (RHS.test(i))
533 reset(i);
534
535 return *this;
536 }
537
538 /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
539 bool test(const SmallBitVector &RHS) const {
540 if (isSmall() && RHS.isSmall())
541 return (getSmallBits() & ~RHS.getSmallBits()) != 0;
542 if (!isSmall() && !RHS.isSmall())
543 return getPointer()->test(*RHS.getPointer());
544
545 unsigned i, e;
546 for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
547 if (test(i) && !RHS.test(i))
548 return true;
549
550 for (e = size(); i != e; ++i)
551 if (test(i))
552 return true;
553
554 return false;
555 }
556
557 SmallBitVector &operator|=(const SmallBitVector &RHS) {
558 resize(std::max(size(), RHS.size()));
559 if (isSmall() && RHS.isSmall())
560 setSmallBits(getSmallBits() | RHS.getSmallBits());
561 else if (!isSmall() && !RHS.isSmall())
562 getPointer()->operator|=(*RHS.getPointer());
563 else {
564 for (size_t i = 0, e = RHS.size(); i != e; ++i)
565 (*this)[i] = test(i) || RHS.test(i);
566 }
567 return *this;
568 }
569
570 SmallBitVector &operator^=(const SmallBitVector &RHS) {
571 resize(std::max(size(), RHS.size()));
572 if (isSmall() && RHS.isSmall())
573 setSmallBits(getSmallBits() ^ RHS.getSmallBits());
574 else if (!isSmall() && !RHS.isSmall())
575 getPointer()->operator^=(*RHS.getPointer());
576 else {
577 for (size_t i = 0, e = RHS.size(); i != e; ++i)
578 (*this)[i] = test(i) != RHS.test(i);
579 }
580 return *this;
581 }
582
583 SmallBitVector &operator<<=(unsigned N) {
584 if (isSmall())
585 setSmallBits(getSmallBits() << N);
586 else
587 getPointer()->operator<<=(N);
588 return *this;
589 }
590
591 SmallBitVector &operator>>=(unsigned N) {
592 if (isSmall())
593 setSmallBits(getSmallBits() >> N);
594 else
595 getPointer()->operator>>=(N);
596 return *this;
597 }
598
599 // Assignment operator.
600 const SmallBitVector &operator=(const SmallBitVector &RHS) {
601 if (isSmall()) {
602 if (RHS.isSmall())
603 X = RHS.X;
604 else
605 switchToLarge(new BitVector(*RHS.getPointer()));
606 } else {
607 if (!RHS.isSmall())
608 *getPointer() = *RHS.getPointer();
609 else {
610 delete getPointer();
611 X = RHS.X;
612 }
613 }
614 return *this;
615 }
616
617 const SmallBitVector &operator=(SmallBitVector &&RHS) {
618 if (this != &RHS) {
619 clear();
620 swap(RHS);
621 }
622 return *this;
623 }
624
625 void swap(SmallBitVector &RHS) {
626 std::swap(X, RHS.X);
627 }
628
629 /// Add '1' bits from Mask to this vector. Don't resize.
630 /// This computes "*this |= Mask".
631 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
632 if (isSmall())
633 applyMask<true, false>(Mask, MaskWords);
634 else
635 getPointer()->setBitsInMask(Mask, MaskWords);
636 }
637
638 /// Clear any bits in this vector that are set in Mask. Don't resize.
639 /// This computes "*this &= ~Mask".
640 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
641 if (isSmall())
642 applyMask<false, false>(Mask, MaskWords);
643 else
644 getPointer()->clearBitsInMask(Mask, MaskWords);
645 }
646
647 /// Add a bit to this vector for every '0' bit in Mask. Don't resize.
648 /// This computes "*this |= ~Mask".
649 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
650 if (isSmall())
651 applyMask<true, true>(Mask, MaskWords);
652 else
653 getPointer()->setBitsNotInMask(Mask, MaskWords);
654 }
655
656 /// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
657 /// This computes "*this &= Mask".
658 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
659 if (isSmall())
660 applyMask<false, true>(Mask, MaskWords);
661 else
662 getPointer()->clearBitsNotInMask(Mask, MaskWords);
663 }
664
665private:
666 template <bool AddBits, bool InvertMask>
667 void applyMask(const uint32_t *Mask, unsigned MaskWords) {
668 assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!")((MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!"
) ? static_cast<void> (0) : __assert_fail ("MaskWords <= sizeof(uintptr_t) && \"Mask is larger than base!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/SmallBitVector.h"
, 668, __PRETTY_FUNCTION__))
;
669 uintptr_t M = Mask[0];
670 if (NumBaseBits == 64)
671 M |= uint64_t(Mask[1]) << 32;
672 if (InvertMask)
673 M = ~M;
674 if (AddBits)
675 setSmallBits(getSmallBits() | M);
676 else
677 setSmallBits(getSmallBits() & ~M);
678 }
679};
680
681inline SmallBitVector
682operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
683 SmallBitVector Result(LHS);
684 Result &= RHS;
685 return Result;
686}
687
688inline SmallBitVector
689operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
690 SmallBitVector Result(LHS);
691 Result |= RHS;
692 return Result;
693}
694
695inline SmallBitVector
696operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
697 SmallBitVector Result(LHS);
698 Result ^= RHS;
699 return Result;
700}
701
702} // end namespace llvm
703
704namespace std {
705
706/// Implement std::swap in terms of BitVector swap.
707inline void
708swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
709 LHS.swap(RHS);
710}
711
712} // end namespace std
713
714#endif // LLVM_ADT_SMALLBITVECTOR_H