Bug Summary

File:include/llvm/Support/Error.h
Warning:line 200, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name IRMover.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Linker -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Linker -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Linker -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp

1//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Linker/IRMover.h"
10#include "LinkDiagnosticInfo.h"
11#include "llvm/ADT/SetVector.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/Triple.h"
14#include "llvm/IR/Constants.h"
15#include "llvm/IR/DebugInfo.h"
16#include "llvm/IR/DiagnosticPrinter.h"
17#include "llvm/IR/GVMaterializer.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/IR/TypeFinder.h"
20#include "llvm/Support/Error.h"
21#include "llvm/Transforms/Utils/Cloning.h"
22#include <utility>
23using namespace llvm;
24
25//===----------------------------------------------------------------------===//
26// TypeMap implementation.
27//===----------------------------------------------------------------------===//
28
29namespace {
30class TypeMapTy : public ValueMapTypeRemapper {
31 /// This is a mapping from a source type to a destination type to use.
32 DenseMap<Type *, Type *> MappedTypes;
33
34 /// When checking to see if two subgraphs are isomorphic, we speculatively
35 /// add types to MappedTypes, but keep track of them here in case we need to
36 /// roll back.
37 SmallVector<Type *, 16> SpeculativeTypes;
38
39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
40
41 /// This is a list of non-opaque structs in the source module that are mapped
42 /// to an opaque struct in the destination module.
43 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
44
45 /// This is the set of opaque types in the destination modules who are
46 /// getting a body from the source module.
47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
48
49public:
50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
51 : DstStructTypesSet(DstStructTypesSet) {}
52
53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
54 /// Indicate that the specified type in the destination module is conceptually
55 /// equivalent to the specified type in the source module.
56 void addTypeMapping(Type *DstTy, Type *SrcTy);
57
58 /// Produce a body for an opaque type in the dest module from a type
59 /// definition in the source module.
60 void linkDefinedTypeBodies();
61
62 /// Return the mapped type to use for the specified input type from the
63 /// source module.
64 Type *get(Type *SrcTy);
65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
66
67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
68
69 FunctionType *get(FunctionType *T) {
70 return cast<FunctionType>(get((Type *)T));
71 }
72
73private:
74 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
75
76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
77};
78}
79
80void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81 assert(SpeculativeTypes.empty())((SpeculativeTypes.empty()) ? static_cast<void> (0) : __assert_fail
("SpeculativeTypes.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 81, __PRETTY_FUNCTION__))
;
82 assert(SpeculativeDstOpaqueTypes.empty())((SpeculativeDstOpaqueTypes.empty()) ? static_cast<void>
(0) : __assert_fail ("SpeculativeDstOpaqueTypes.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 82, __PRETTY_FUNCTION__))
;
83
84 // Check to see if these types are recursively isomorphic and establish a
85 // mapping between them if so.
86 if (!areTypesIsomorphic(DstTy, SrcTy)) {
87 // Oops, they aren't isomorphic. Just discard this request by rolling out
88 // any speculative mappings we've established.
89 for (Type *Ty : SpeculativeTypes)
90 MappedTypes.erase(Ty);
91
92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
93 SpeculativeDstOpaqueTypes.size());
94 for (StructType *Ty : SpeculativeDstOpaqueTypes)
95 DstResolvedOpaqueTypes.erase(Ty);
96 } else {
97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
98 // and all its descendants to lower amount of renaming in LLVM context
99 // Renaming occurs because we load all source modules to the same context
100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
101 // As a result we may get several different types in the destination
102 // module, which are in fact the same.
103 for (Type *Ty : SpeculativeTypes)
104 if (auto *STy = dyn_cast<StructType>(Ty))
105 if (STy->hasName())
106 STy->setName("");
107 }
108 SpeculativeTypes.clear();
109 SpeculativeDstOpaqueTypes.clear();
110}
111
112/// Recursively walk this pair of types, returning true if they are isomorphic,
113/// false if they are not.
114bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
115 // Two types with differing kinds are clearly not isomorphic.
116 if (DstTy->getTypeID() != SrcTy->getTypeID())
117 return false;
118
119 // If we have an entry in the MappedTypes table, then we have our answer.
120 Type *&Entry = MappedTypes[SrcTy];
121 if (Entry)
122 return Entry == DstTy;
123
124 // Two identical types are clearly isomorphic. Remember this
125 // non-speculatively.
126 if (DstTy == SrcTy) {
127 Entry = DstTy;
128 return true;
129 }
130
131 // Okay, we have two types with identical kinds that we haven't seen before.
132
133 // If this is an opaque struct type, special case it.
134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
135 // Mapping an opaque type to any struct, just keep the dest struct.
136 if (SSTy->isOpaque()) {
137 Entry = DstTy;
138 SpeculativeTypes.push_back(SrcTy);
139 return true;
140 }
141
142 // Mapping a non-opaque source type to an opaque dest. If this is the first
143 // type that we're mapping onto this destination type then we succeed. Keep
144 // the dest, but fill it in later. If this is the second (different) type
145 // that we're trying to map onto the same opaque type then we fail.
146 if (cast<StructType>(DstTy)->isOpaque()) {
147 // We can only map one source type onto the opaque destination type.
148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
149 return false;
150 SrcDefinitionsToResolve.push_back(SSTy);
151 SpeculativeTypes.push_back(SrcTy);
152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
153 Entry = DstTy;
154 return true;
155 }
156 }
157
158 // If the number of subtypes disagree between the two types, then we fail.
159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160 return false;
161
162 // Fail if any of the extra properties (e.g. array size) of the type disagree.
163 if (isa<IntegerType>(DstTy))
164 return false; // bitwidth disagrees.
165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167 return false;
168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
170 return false;
171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
172 StructType *SSTy = cast<StructType>(SrcTy);
173 if (DSTy->isLiteral() != SSTy->isLiteral() ||
174 DSTy->isPacked() != SSTy->isPacked())
175 return false;
176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
177 if (DSeqTy->getNumElements() !=
178 cast<SequentialType>(SrcTy)->getNumElements())
179 return false;
180 }
181
182 // Otherwise, we speculate that these two types will line up and recursively
183 // check the subelements.
184 Entry = DstTy;
185 SpeculativeTypes.push_back(SrcTy);
186
187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
188 if (!areTypesIsomorphic(DstTy->getContainedType(I),
189 SrcTy->getContainedType(I)))
190 return false;
191
192 // If everything seems to have lined up, then everything is great.
193 return true;
194}
195
196void TypeMapTy::linkDefinedTypeBodies() {
197 SmallVector<Type *, 16> Elements;
198 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
200 assert(DstSTy->isOpaque())((DstSTy->isOpaque()) ? static_cast<void> (0) : __assert_fail
("DstSTy->isOpaque()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 200, __PRETTY_FUNCTION__))
;
201
202 // Map the body of the source type over to a new body for the dest type.
203 Elements.resize(SrcSTy->getNumElements());
204 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
205 Elements[I] = get(SrcSTy->getElementType(I));
206
207 DstSTy->setBody(Elements, SrcSTy->isPacked());
208 DstStructTypesSet.switchToNonOpaque(DstSTy);
209 }
210 SrcDefinitionsToResolve.clear();
211 DstResolvedOpaqueTypes.clear();
212}
213
214void TypeMapTy::finishType(StructType *DTy, StructType *STy,
215 ArrayRef<Type *> ETypes) {
216 DTy->setBody(ETypes, STy->isPacked());
217
218 // Steal STy's name.
219 if (STy->hasName()) {
220 SmallString<16> TmpName = STy->getName();
221 STy->setName("");
222 DTy->setName(TmpName);
223 }
224
225 DstStructTypesSet.addNonOpaque(DTy);
226}
227
228Type *TypeMapTy::get(Type *Ty) {
229 SmallPtrSet<StructType *, 8> Visited;
230 return get(Ty, Visited);
231}
232
233Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
234 // If we already have an entry for this type, return it.
235 Type **Entry = &MappedTypes[Ty];
236 if (*Entry)
237 return *Entry;
238
239 // These are types that LLVM itself will unique.
240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
241
242 if (!IsUniqued) {
243 StructType *STy = cast<StructType>(Ty);
244 // This is actually a type from the destination module, this can be reached
245 // when this type is loaded in another module, added to DstStructTypesSet,
246 // and then we reach the same type in another module where it has not been
247 // added to MappedTypes. (PR37684)
248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
249 DstStructTypesSet.hasType(STy))
250 return *Entry = STy;
251
252#ifndef NDEBUG
253 for (auto &Pair : MappedTypes) {
254 assert(!(Pair.first != Ty && Pair.second == Ty) &&((!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type") ? static_cast<void> (0) : __assert_fail
("!(Pair.first != Ty && Pair.second == Ty) && \"mapping to a source type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 255, __PRETTY_FUNCTION__))
255 "mapping to a source type")((!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type") ? static_cast<void> (0) : __assert_fail
("!(Pair.first != Ty && Pair.second == Ty) && \"mapping to a source type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 255, __PRETTY_FUNCTION__))
;
256 }
257#endif
258
259 if (!Visited.insert(STy).second) {
260 StructType *DTy = StructType::create(Ty->getContext());
261 return *Entry = DTy;
262 }
263 }
264
265 // If this is not a recursive type, then just map all of the elements and
266 // then rebuild the type from inside out.
267 SmallVector<Type *, 4> ElementTypes;
268
269 // If there are no element types to map, then the type is itself. This is
270 // true for the anonymous {} struct, things like 'float', integers, etc.
271 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
272 return *Entry = Ty;
273
274 // Remap all of the elements, keeping track of whether any of them change.
275 bool AnyChange = false;
276 ElementTypes.resize(Ty->getNumContainedTypes());
277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
278 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
280 }
281
282 // If we found our type while recursively processing stuff, just use it.
283 Entry = &MappedTypes[Ty];
284 if (*Entry) {
285 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
286 if (DTy->isOpaque()) {
287 auto *STy = cast<StructType>(Ty);
288 finishType(DTy, STy, ElementTypes);
289 }
290 }
291 return *Entry;
292 }
293
294 // If all of the element types mapped directly over and the type is not
295 // a named struct, then the type is usable as-is.
296 if (!AnyChange && IsUniqued)
297 return *Entry = Ty;
298
299 // Otherwise, rebuild a modified type.
300 switch (Ty->getTypeID()) {
301 default:
302 llvm_unreachable("unknown derived type to remap")::llvm::llvm_unreachable_internal("unknown derived type to remap"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 302)
;
303 case Type::ArrayTyID:
304 return *Entry = ArrayType::get(ElementTypes[0],
305 cast<ArrayType>(Ty)->getNumElements());
306 case Type::VectorTyID:
307 return *Entry = VectorType::get(ElementTypes[0],
308 cast<VectorType>(Ty)->getNumElements());
309 case Type::PointerTyID:
310 return *Entry = PointerType::get(ElementTypes[0],
311 cast<PointerType>(Ty)->getAddressSpace());
312 case Type::FunctionTyID:
313 return *Entry = FunctionType::get(ElementTypes[0],
314 makeArrayRef(ElementTypes).slice(1),
315 cast<FunctionType>(Ty)->isVarArg());
316 case Type::StructTyID: {
317 auto *STy = cast<StructType>(Ty);
318 bool IsPacked = STy->isPacked();
319 if (IsUniqued)
320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
321
322 // If the type is opaque, we can just use it directly.
323 if (STy->isOpaque()) {
324 DstStructTypesSet.addOpaque(STy);
325 return *Entry = Ty;
326 }
327
328 if (StructType *OldT =
329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
330 STy->setName("");
331 return *Entry = OldT;
332 }
333
334 if (!AnyChange) {
335 DstStructTypesSet.addNonOpaque(STy);
336 return *Entry = Ty;
337 }
338
339 StructType *DTy = StructType::create(Ty->getContext());
340 finishType(DTy, STy, ElementTypes);
341 return *Entry = DTy;
342 }
343 }
344}
345
346LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
347 const Twine &Msg)
348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
349void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
350
351//===----------------------------------------------------------------------===//
352// IRLinker implementation.
353//===----------------------------------------------------------------------===//
354
355namespace {
356class IRLinker;
357
358/// Creates prototypes for functions that are lazily linked on the fly. This
359/// speeds up linking for modules with many/ lazily linked functions of which
360/// few get used.
361class GlobalValueMaterializer final : public ValueMaterializer {
362 IRLinker &TheIRLinker;
363
364public:
365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
366 Value *materialize(Value *V) override;
367};
368
369class LocalValueMaterializer final : public ValueMaterializer {
370 IRLinker &TheIRLinker;
371
372public:
373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
374 Value *materialize(Value *V) override;
375};
376
377/// Type of the Metadata map in \a ValueToValueMapTy.
378typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
379
380/// This is responsible for keeping track of the state used for moving data
381/// from SrcM to DstM.
382class IRLinker {
383 Module &DstM;
384 std::unique_ptr<Module> SrcM;
385
386 /// See IRMover::move().
387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
388
389 TypeMapTy TypeMap;
390 GlobalValueMaterializer GValMaterializer;
391 LocalValueMaterializer LValMaterializer;
392
393 /// A metadata map that's shared between IRLinker instances.
394 MDMapT &SharedMDs;
395
396 /// Mapping of values from what they used to be in Src, to what they are now
397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
398 /// due to the use of Value handles which the Linker doesn't actually need,
399 /// but this allows us to reuse the ValueMapper code.
400 ValueToValueMapTy ValueMap;
401 ValueToValueMapTy AliasValueMap;
402
403 DenseSet<GlobalValue *> ValuesToLink;
404 std::vector<GlobalValue *> Worklist;
405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
406
407 void maybeAdd(GlobalValue *GV) {
408 if (ValuesToLink.insert(GV).second)
409 Worklist.push_back(GV);
410 }
411
412 /// Whether we are importing globals for ThinLTO, as opposed to linking the
413 /// source module. If this flag is set, it means that we can rely on some
414 /// other object file to define any non-GlobalValue entities defined by the
415 /// source module. This currently causes us to not link retained types in
416 /// debug info metadata and module inline asm.
417 bool IsPerformingImport;
418
419 /// Set to true when all global value body linking is complete (including
420 /// lazy linking). Used to prevent metadata linking from creating new
421 /// references.
422 bool DoneLinkingBodies = false;
423
424 /// The Error encountered during materialization. We use an Optional here to
425 /// avoid needing to manage an unconsumed success value.
426 Optional<Error> FoundError;
427 void setError(Error E) {
428 if (E)
429 FoundError = std::move(E);
430 }
431
432 /// Most of the errors produced by this module are inconvertible StringErrors.
433 /// This convenience function lets us return one of those more easily.
434 Error stringErr(const Twine &T) {
435 return make_error<StringError>(T, inconvertibleErrorCode());
21
Calling 'make_error<llvm::StringError, const llvm::Twine &, std::error_code>'
436 }
437
438 /// Entry point for mapping values and alternate context for mapping aliases.
439 ValueMapper Mapper;
440 unsigned AliasMCID;
441
442 /// Handles cloning of a global values from the source module into
443 /// the destination module, including setting the attributes and visibility.
444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
445
446 void emitWarning(const Twine &Message) {
447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
448 }
449
450 /// Given a global in the source module, return the global in the
451 /// destination module that is being linked to, if any.
452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
453 // If the source has no name it can't link. If it has local linkage,
454 // there is no name match-up going on.
455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
456 return nullptr;
457
458 // Otherwise see if we have a match in the destination module's symtab.
459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
460 if (!DGV)
461 return nullptr;
462
463 // If we found a global with the same name in the dest module, but it has
464 // internal linkage, we are really not doing any linkage here.
465 if (DGV->hasLocalLinkage())
466 return nullptr;
467
468 // Otherwise, we do in fact link to the destination global.
469 return DGV;
470 }
471
472 void computeTypeMapping();
473
474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
475 const GlobalVariable *SrcGV);
476
477 /// Given the GlobaValue \p SGV in the source module, and the matching
478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
479 /// into the destination module.
480 ///
481 /// Note this code may call the client-provided \p AddLazyFor.
482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
484
485 Error linkModuleFlagsMetadata();
486
487 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
488 Error linkFunctionBody(Function &Dst, Function &Src);
489 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
490 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
491
492 /// Replace all types in the source AttributeList with the
493 /// corresponding destination type.
494 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
495
496 /// Functions that take care of cloning a specific global value type
497 /// into the destination module.
498 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
499 Function *copyFunctionProto(const Function *SF);
500 GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
501
502 /// Perform "replace all uses with" operations. These work items need to be
503 /// performed as part of materialization, but we postpone them to happen after
504 /// materialization is done. The materializer called by ValueMapper is not
505 /// expected to delete constants, as ValueMapper is holding pointers to some
506 /// of them, but constant destruction may be indirectly triggered by RAUW.
507 /// Hence, the need to move this out of the materialization call chain.
508 void flushRAUWWorklist();
509
510 /// When importing for ThinLTO, prevent importing of types listed on
511 /// the DICompileUnit that we don't need a copy of in the importing
512 /// module.
513 void prepareCompileUnitsForImport();
514 void linkNamedMDNodes();
515
516public:
517 IRLinker(Module &DstM, MDMapT &SharedMDs,
518 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
519 ArrayRef<GlobalValue *> ValuesToLink,
520 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
521 bool IsPerformingImport)
522 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
523 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
524 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
525 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
526 &GValMaterializer),
527 AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
528 &LValMaterializer)) {
529 ValueMap.getMDMap() = std::move(SharedMDs);
530 for (GlobalValue *GV : ValuesToLink)
531 maybeAdd(GV);
532 if (IsPerformingImport)
533 prepareCompileUnitsForImport();
534 }
535 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
536
537 Error run();
538 Value *materialize(Value *V, bool ForAlias);
539};
540}
541
542/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
543/// table. This is good for all clients except for us. Go through the trouble
544/// to force this back.
545static void forceRenaming(GlobalValue *GV, StringRef Name) {
546 // If the global doesn't force its name or if it already has the right name,
547 // there is nothing for us to do.
548 if (GV->hasLocalLinkage() || GV->getName() == Name)
549 return;
550
551 Module *M = GV->getParent();
552
553 // If there is a conflict, rename the conflict.
554 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
555 GV->takeName(ConflictGV);
556 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
557 assert(ConflictGV->getName() != Name && "forceRenaming didn't work")((ConflictGV->getName() != Name && "forceRenaming didn't work"
) ? static_cast<void> (0) : __assert_fail ("ConflictGV->getName() != Name && \"forceRenaming didn't work\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 557, __PRETTY_FUNCTION__))
;
558 } else {
559 GV->setName(Name); // Force the name back
560 }
561}
562
563Value *GlobalValueMaterializer::materialize(Value *SGV) {
564 return TheIRLinker.materialize(SGV, false);
1
Calling 'IRLinker::materialize'
565}
566
567Value *LocalValueMaterializer::materialize(Value *SGV) {
568 return TheIRLinker.materialize(SGV, true);
569}
570
571Value *IRLinker::materialize(Value *V, bool ForAlias) {
572 auto *SGV = dyn_cast<GlobalValue>(V);
573 if (!SGV)
2
Taking false branch
574 return nullptr;
575
576 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
3
Calling 'IRLinker::linkGlobalValueProto'
577 if (!NewProto) {
578 setError(NewProto.takeError());
579 return nullptr;
580 }
581 if (!*NewProto)
582 return nullptr;
583
584 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
585 if (!New)
586 return *NewProto;
587
588 // If we already created the body, just return.
589 if (auto *F = dyn_cast<Function>(New)) {
590 if (!F->isDeclaration())
591 return New;
592 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
593 if (V->hasInitializer() || V->hasAppendingLinkage())
594 return New;
595 } else {
596 auto *A = cast<GlobalAlias>(New);
597 if (A->getAliasee())
598 return New;
599 }
600
601 // When linking a global for an alias, it will always be linked. However we
602 // need to check if it was not already scheduled to satisfy a reference from a
603 // regular global value initializer. We know if it has been schedule if the
604 // "New" GlobalValue that is mapped here for the alias is the same as the one
605 // already mapped. If there is an entry in the ValueMap but the value is
606 // different, it means that the value already had a definition in the
607 // destination module (linkonce for instance), but we need a new definition
608 // for the alias ("New" will be different.
609 if (ForAlias && ValueMap.lookup(SGV) == New)
610 return New;
611
612 if (ForAlias || shouldLink(New, *SGV))
613 setError(linkGlobalValueBody(*New, *SGV));
614
615 return New;
616}
617
618/// Loop through the global variables in the src module and merge them into the
619/// dest module.
620GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
621 // No linking to be performed or linking from the source: simply create an
622 // identical version of the symbol over in the dest module... the
623 // initializer will be filled in later by LinkGlobalInits.
624 GlobalVariable *NewDGV =
625 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
626 SGVar->isConstant(), GlobalValue::ExternalLinkage,
627 /*init*/ nullptr, SGVar->getName(),
628 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
629 SGVar->getType()->getAddressSpace());
630 NewDGV->setAlignment(SGVar->getAlignment());
631 NewDGV->copyAttributesFrom(SGVar);
632 return NewDGV;
633}
634
635AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
636 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
637 if (Attrs.hasAttribute(i, Attribute::ByVal)) {
638 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
639 if (!Ty)
640 continue;
641
642 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
643 Attrs = Attrs.addAttribute(
644 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty)));
645 }
646 }
647 return Attrs;
648}
649
650/// Link the function in the source module into the destination module if
651/// needed, setting up mapping information.
652Function *IRLinker::copyFunctionProto(const Function *SF) {
653 // If there is no linkage to be performed or we are linking from the source,
654 // bring SF over.
655 auto *F =
656 Function::Create(TypeMap.get(SF->getFunctionType()),
657 GlobalValue::ExternalLinkage, SF->getName(), &DstM);
658 F->copyAttributesFrom(SF);
659 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
660 return F;
661}
662
663/// Set up prototypes for any aliases that come over from the source module.
664GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
665 // If there is no linkage to be performed or we're linking from the source,
666 // bring over SGA.
667 auto *Ty = TypeMap.get(SGA->getValueType());
668 auto *GA =
669 GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
670 GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
671 GA->copyAttributesFrom(SGA);
672 return GA;
673}
674
675GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
676 bool ForDefinition) {
677 GlobalValue *NewGV;
678 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
679 NewGV = copyGlobalVariableProto(SGVar);
680 } else if (auto *SF = dyn_cast<Function>(SGV)) {
681 NewGV = copyFunctionProto(SF);
682 } else {
683 if (ForDefinition)
684 NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
685 else if (SGV->getValueType()->isFunctionTy())
686 NewGV =
687 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
688 GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
689 else
690 NewGV = new GlobalVariable(
691 DstM, TypeMap.get(SGV->getValueType()),
692 /*isConstant*/ false, GlobalValue::ExternalLinkage,
693 /*init*/ nullptr, SGV->getName(),
694 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
695 SGV->getType()->getAddressSpace());
696 }
697
698 if (ForDefinition)
699 NewGV->setLinkage(SGV->getLinkage());
700 else if (SGV->hasExternalWeakLinkage())
701 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
702
703 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
704 // Metadata for global variables and function declarations is copied eagerly.
705 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
706 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
707 }
708
709 // Remove these copied constants in case this stays a declaration, since
710 // they point to the source module. If the def is linked the values will
711 // be mapped in during linkFunctionBody.
712 if (auto *NewF = dyn_cast<Function>(NewGV)) {
713 NewF->setPersonalityFn(nullptr);
714 NewF->setPrefixData(nullptr);
715 NewF->setPrologueData(nullptr);
716 }
717
718 return NewGV;
719}
720
721static StringRef getTypeNamePrefix(StringRef Name) {
722 size_t DotPos = Name.rfind('.');
723 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
724 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
725 ? Name
726 : Name.substr(0, DotPos);
727}
728
729/// Loop over all of the linked values to compute type mappings. For example,
730/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
731/// types 'Foo' but one got renamed when the module was loaded into the same
732/// LLVMContext.
733void IRLinker::computeTypeMapping() {
734 for (GlobalValue &SGV : SrcM->globals()) {
735 GlobalValue *DGV = getLinkedToGlobal(&SGV);
736 if (!DGV)
737 continue;
738
739 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
740 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
741 continue;
742 }
743
744 // Unify the element type of appending arrays.
745 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
746 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
747 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
748 }
749
750 for (GlobalValue &SGV : *SrcM)
751 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
752 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
753
754 for (GlobalValue &SGV : SrcM->aliases())
755 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
756 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
757
758 // Incorporate types by name, scanning all the types in the source module.
759 // At this point, the destination module may have a type "%foo = { i32 }" for
760 // example. When the source module got loaded into the same LLVMContext, if
761 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
762 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
763 for (StructType *ST : Types) {
764 if (!ST->hasName())
765 continue;
766
767 if (TypeMap.DstStructTypesSet.hasType(ST)) {
768 // This is actually a type from the destination module.
769 // getIdentifiedStructTypes() can have found it by walking debug info
770 // metadata nodes, some of which get linked by name when ODR Type Uniquing
771 // is enabled on the Context, from the source to the destination module.
772 continue;
773 }
774
775 auto STTypePrefix = getTypeNamePrefix(ST->getName());
776 if (STTypePrefix.size()== ST->getName().size())
777 continue;
778
779 // Check to see if the destination module has a struct with the prefix name.
780 StructType *DST = DstM.getTypeByName(STTypePrefix);
781 if (!DST)
782 continue;
783
784 // Don't use it if this actually came from the source module. They're in
785 // the same LLVMContext after all. Also don't use it unless the type is
786 // actually used in the destination module. This can happen in situations
787 // like this:
788 //
789 // Module A Module B
790 // -------- --------
791 // %Z = type { %A } %B = type { %C.1 }
792 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
793 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
794 // %C = type { i8* } %B.3 = type { %C.1 }
795 //
796 // When we link Module B with Module A, the '%B' in Module B is
797 // used. However, that would then use '%C.1'. But when we process '%C.1',
798 // we prefer to take the '%C' version. So we are then left with both
799 // '%C.1' and '%C' being used for the same types. This leads to some
800 // variables using one type and some using the other.
801 if (TypeMap.DstStructTypesSet.hasType(DST))
802 TypeMap.addTypeMapping(DST, ST);
803 }
804
805 // Now that we have discovered all of the type equivalences, get a body for
806 // any 'opaque' types in the dest module that are now resolved.
807 TypeMap.linkDefinedTypeBodies();
808}
809
810static void getArrayElements(const Constant *C,
811 SmallVectorImpl<Constant *> &Dest) {
812 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
813
814 for (unsigned i = 0; i != NumElements; ++i)
815 Dest.push_back(C->getAggregateElement(i));
816}
817
818/// If there were any appending global variables, link them together now.
819Expected<Constant *>
820IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
821 const GlobalVariable *SrcGV) {
822 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
823 ->getElementType();
824
825 // FIXME: This upgrade is done during linking to support the C API. Once the
826 // old form is deprecated, we should move this upgrade to
827 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
828 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
829 StringRef Name = SrcGV->getName();
830 bool IsNewStructor = false;
831 bool IsOldStructor = false;
832 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
9
Assuming the condition is true
10
Taking true branch
833 if (cast<StructType>(EltTy)->getNumElements() == 3)
11
Assuming the condition is true
12
Taking true branch
834 IsNewStructor = true;
835 else
836 IsOldStructor = true;
837 }
838
839 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
840 if (IsOldStructor) {
13
Taking false branch
841 auto &ST = *cast<StructType>(EltTy);
842 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
843 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
844 }
845
846 uint64_t DstNumElements = 0;
847 if (DstGV) {
14
Taking true branch
848 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
849 DstNumElements = DstTy->getNumElements();
850
851 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
15
Taking false branch
852 return stringErr(
853 "Linking globals named '" + SrcGV->getName() +
854 "': can only link appending global with another appending "
855 "global!");
856
857 // Check to see that they two arrays agree on type.
858 if (EltTy != DstTy->getElementType())
16
Assuming the condition is false
17
Taking false branch
859 return stringErr("Appending variables with different element types!");
860 if (DstGV->isConstant() != SrcGV->isConstant())
18
Assuming the condition is true
19
Taking true branch
861 return stringErr("Appending variables linked with different const'ness!");
20
Calling 'IRLinker::stringErr'
862
863 if (DstGV->getAlignment() != SrcGV->getAlignment())
864 return stringErr(
865 "Appending variables with different alignment need to be linked!");
866
867 if (DstGV->getVisibility() != SrcGV->getVisibility())
868 return stringErr(
869 "Appending variables with different visibility need to be linked!");
870
871 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
872 return stringErr(
873 "Appending variables with different unnamed_addr need to be linked!");
874
875 if (DstGV->getSection() != SrcGV->getSection())
876 return stringErr(
877 "Appending variables with different section name need to be linked!");
878 }
879
880 SmallVector<Constant *, 16> SrcElements;
881 getArrayElements(SrcGV->getInitializer(), SrcElements);
882
883 if (IsNewStructor) {
884 auto It = remove_if(SrcElements, [this](Constant *E) {
885 auto *Key =
886 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
887 if (!Key)
888 return false;
889 GlobalValue *DGV = getLinkedToGlobal(Key);
890 return !shouldLink(DGV, *Key);
891 });
892 SrcElements.erase(It, SrcElements.end());
893 }
894 uint64_t NewSize = DstNumElements + SrcElements.size();
895 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
896
897 // Create the new global variable.
898 GlobalVariable *NG = new GlobalVariable(
899 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
900 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
901 SrcGV->getType()->getAddressSpace());
902
903 NG->copyAttributesFrom(SrcGV);
904 forceRenaming(NG, SrcGV->getName());
905
906 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
907
908 Mapper.scheduleMapAppendingVariable(*NG,
909 DstGV ? DstGV->getInitializer() : nullptr,
910 IsOldStructor, SrcElements);
911
912 // Replace any uses of the two global variables with uses of the new
913 // global.
914 if (DstGV) {
915 RAUWWorklist.push_back(
916 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
917 }
918
919 return Ret;
920}
921
922bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
923 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
924 return true;
925
926 if (DGV && !DGV->isDeclarationForLinker())
927 return false;
928
929 if (SGV.isDeclaration() || DoneLinkingBodies)
930 return false;
931
932 // Callback to the client to give a chance to lazily add the Global to the
933 // list of value to link.
934 bool LazilyAdded = false;
935 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
936 maybeAdd(&GV);
937 LazilyAdded = true;
938 });
939 return LazilyAdded;
940}
941
942Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
943 bool ForAlias) {
944 GlobalValue *DGV = getLinkedToGlobal(SGV);
945
946 bool ShouldLink = shouldLink(DGV, *SGV);
947
948 // just missing from map
949 if (ShouldLink) {
4
Taking false branch
950 auto I = ValueMap.find(SGV);
951 if (I != ValueMap.end())
952 return cast<Constant>(I->second);
953
954 I = AliasValueMap.find(SGV);
955 if (I != AliasValueMap.end())
956 return cast<Constant>(I->second);
957 }
958
959 if (!ShouldLink && ForAlias)
5
Taking false branch
960 DGV = nullptr;
961
962 // Handle the ultra special appending linkage case first.
963 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage())((!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage
()) ? static_cast<void> (0) : __assert_fail ("!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 963, __PRETTY_FUNCTION__))
;
6
'?' condition is true
964 if (SGV->hasAppendingLinkage())
7
Taking true branch
965 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
8
Calling 'IRLinker::linkAppendingVarProto'
966 cast<GlobalVariable>(SGV));
967
968 GlobalValue *NewGV;
969 if (DGV && !ShouldLink) {
970 NewGV = DGV;
971 } else {
972 // If we are done linking global value bodies (i.e. we are performing
973 // metadata linking), don't link in the global value due to this
974 // reference, simply map it to null.
975 if (DoneLinkingBodies)
976 return nullptr;
977
978 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias);
979 if (ShouldLink || !ForAlias)
980 forceRenaming(NewGV, SGV->getName());
981 }
982
983 // Overloaded intrinsics have overloaded types names as part of their
984 // names. If we renamed overloaded types we should rename the intrinsic
985 // as well.
986 if (Function *F = dyn_cast<Function>(NewGV))
987 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
988 NewGV = Remangled.getValue();
989
990 if (ShouldLink || ForAlias) {
991 if (const Comdat *SC = SGV->getComdat()) {
992 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
993 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
994 DC->setSelectionKind(SC->getSelectionKind());
995 GO->setComdat(DC);
996 }
997 }
998 }
999
1000 if (!ShouldLink && ForAlias)
1001 NewGV->setLinkage(GlobalValue::InternalLinkage);
1002
1003 Constant *C = NewGV;
1004 // Only create a bitcast if necessary. In particular, with
1005 // DebugTypeODRUniquing we may reach metadata in the destination module
1006 // containing a GV from the source module, in which case SGV will be
1007 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1008 // assumes it is being invoked on a type in the source module.
1009 if (DGV && NewGV != SGV) {
1010 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1011 NewGV, TypeMap.get(SGV->getType()));
1012 }
1013
1014 if (DGV && NewGV != DGV) {
1015 // Schedule "replace all uses with" to happen after materializing is
1016 // done. It is not safe to do it now, since ValueMapper may be holding
1017 // pointers to constants that will get deleted if RAUW runs.
1018 RAUWWorklist.push_back(std::make_pair(
1019 DGV,
1020 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1021 }
1022
1023 return C;
1024}
1025
1026/// Update the initializers in the Dest module now that all globals that may be
1027/// referenced are in Dest.
1028void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1029 // Figure out what the initializer looks like in the dest module.
1030 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1031}
1032
1033/// Copy the source function over into the dest function and fix up references
1034/// to values. At this point we know that Dest is an external function, and
1035/// that Src is not.
1036Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1037 assert(Dst.isDeclaration() && !Src.isDeclaration())((Dst.isDeclaration() && !Src.isDeclaration()) ? static_cast
<void> (0) : __assert_fail ("Dst.isDeclaration() && !Src.isDeclaration()"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1037, __PRETTY_FUNCTION__))
;
1038
1039 // Materialize if needed.
1040 if (Error Err = Src.materialize())
1041 return Err;
1042
1043 // Link in the operands without remapping.
1044 if (Src.hasPrefixData())
1045 Dst.setPrefixData(Src.getPrefixData());
1046 if (Src.hasPrologueData())
1047 Dst.setPrologueData(Src.getPrologueData());
1048 if (Src.hasPersonalityFn())
1049 Dst.setPersonalityFn(Src.getPersonalityFn());
1050
1051 // Copy over the metadata attachments without remapping.
1052 Dst.copyMetadata(&Src, 0);
1053
1054 // Steal arguments and splice the body of Src into Dst.
1055 Dst.stealArgumentListFrom(Src);
1056 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1057
1058 // Everything has been moved over. Remap it.
1059 Mapper.scheduleRemapFunction(Dst);
1060 return Error::success();
1061}
1062
1063void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1064 Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
1065}
1066
1067Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1068 if (auto *F = dyn_cast<Function>(&Src))
1069 return linkFunctionBody(cast<Function>(Dst), *F);
1070 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1071 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1072 return Error::success();
1073 }
1074 linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
1075 return Error::success();
1076}
1077
1078void IRLinker::flushRAUWWorklist() {
1079 for (const auto Elem : RAUWWorklist) {
1080 GlobalValue *Old;
1081 Value *New;
1082 std::tie(Old, New) = Elem;
1083
1084 Old->replaceAllUsesWith(New);
1085 Old->eraseFromParent();
1086 }
1087 RAUWWorklist.clear();
1088}
1089
1090void IRLinker::prepareCompileUnitsForImport() {
1091 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1092 if (!SrcCompileUnits)
1093 return;
1094 // When importing for ThinLTO, prevent importing of types listed on
1095 // the DICompileUnit that we don't need a copy of in the importing
1096 // module. They will be emitted by the originating module.
1097 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1098 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1099 assert(CU && "Expected valid compile unit")((CU && "Expected valid compile unit") ? static_cast<
void> (0) : __assert_fail ("CU && \"Expected valid compile unit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1099, __PRETTY_FUNCTION__))
;
1100 // Enums, macros, and retained types don't need to be listed on the
1101 // imported DICompileUnit. This means they will only be imported
1102 // if reached from the mapped IR. Do this by setting their value map
1103 // entries to nullptr, which will automatically prevent their importing
1104 // when reached from the DICompileUnit during metadata mapping.
1105 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1106 ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1107 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1108 // The original definition (or at least its debug info - if the variable is
1109 // internalized an optimized away) will remain in the source module, so
1110 // there's no need to import them.
1111 // If LLVM ever does more advanced optimizations on global variables
1112 // (removing/localizing write operations, for instance) that can track
1113 // through debug info, this decision may need to be revisited - but do so
1114 // with care when it comes to debug info size. Emitting small CUs containing
1115 // only a few imported entities into every destination module may be very
1116 // size inefficient.
1117 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1118
1119 // Imported entities only need to be mapped in if they have local
1120 // scope, as those might correspond to an imported entity inside a
1121 // function being imported (any locally scoped imported entities that
1122 // don't end up referenced by an imported function will not be emitted
1123 // into the object). Imported entities not in a local scope
1124 // (e.g. on the namespace) only need to be emitted by the originating
1125 // module. Create a list of the locally scoped imported entities, and
1126 // replace the source CUs imported entity list with the new list, so
1127 // only those are mapped in.
1128 // FIXME: Locally-scoped imported entities could be moved to the
1129 // functions they are local to instead of listing them on the CU, and
1130 // we would naturally only link in those needed by function importing.
1131 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1132 bool ReplaceImportedEntities = false;
1133 for (auto *IE : CU->getImportedEntities()) {
1134 DIScope *Scope = IE->getScope();
1135 assert(Scope && "Invalid Scope encoding!")((Scope && "Invalid Scope encoding!") ? static_cast<
void> (0) : __assert_fail ("Scope && \"Invalid Scope encoding!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1135, __PRETTY_FUNCTION__))
;
1136 if (isa<DILocalScope>(Scope))
1137 AllImportedModules.emplace_back(IE);
1138 else
1139 ReplaceImportedEntities = true;
1140 }
1141 if (ReplaceImportedEntities) {
1142 if (!AllImportedModules.empty())
1143 CU->replaceImportedEntities(MDTuple::get(
1144 CU->getContext(),
1145 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1146 AllImportedModules.end())));
1147 else
1148 // If there were no local scope imported entities, we can map
1149 // the whole list to nullptr.
1150 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1151 }
1152 }
1153}
1154
1155/// Insert all of the named MDNodes in Src into the Dest module.
1156void IRLinker::linkNamedMDNodes() {
1157 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1158 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1159 // Don't link module flags here. Do them separately.
1160 if (&NMD == SrcModFlags)
1161 continue;
1162 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1163 // Add Src elements into Dest node.
1164 for (const MDNode *Op : NMD.operands())
1165 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1166 }
1167}
1168
1169/// Merge the linker flags in Src into the Dest module.
1170Error IRLinker::linkModuleFlagsMetadata() {
1171 // If the source module has no module flags, we are done.
1172 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1173 if (!SrcModFlags)
1174 return Error::success();
1175
1176 // If the destination module doesn't have module flags yet, then just copy
1177 // over the source module's flags.
1178 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1179 if (DstModFlags->getNumOperands() == 0) {
1180 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1181 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1182
1183 return Error::success();
1184 }
1185
1186 // First build a map of the existing module flags and requirements.
1187 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1188 SmallSetVector<MDNode *, 16> Requirements;
1189 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1190 MDNode *Op = DstModFlags->getOperand(I);
1191 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1192 MDString *ID = cast<MDString>(Op->getOperand(1));
1193
1194 if (Behavior->getZExtValue() == Module::Require) {
1195 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1196 } else {
1197 Flags[ID] = std::make_pair(Op, I);
1198 }
1199 }
1200
1201 // Merge in the flags from the source module, and also collect its set of
1202 // requirements.
1203 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1204 MDNode *SrcOp = SrcModFlags->getOperand(I);
1205 ConstantInt *SrcBehavior =
1206 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1207 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1208 MDNode *DstOp;
1209 unsigned DstIndex;
1210 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1211 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1212
1213 // If this is a requirement, add it and continue.
1214 if (SrcBehaviorValue == Module::Require) {
1215 // If the destination module does not already have this requirement, add
1216 // it.
1217 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1218 DstModFlags->addOperand(SrcOp);
1219 }
1220 continue;
1221 }
1222
1223 // If there is no existing flag with this ID, just add it.
1224 if (!DstOp) {
1225 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1226 DstModFlags->addOperand(SrcOp);
1227 continue;
1228 }
1229
1230 // Otherwise, perform a merge.
1231 ConstantInt *DstBehavior =
1232 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1233 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1234
1235 auto overrideDstValue = [&]() {
1236 DstModFlags->setOperand(DstIndex, SrcOp);
1237 Flags[ID].first = SrcOp;
1238 };
1239
1240 // If either flag has override behavior, handle it first.
1241 if (DstBehaviorValue == Module::Override) {
1242 // Diagnose inconsistent flags which both have override behavior.
1243 if (SrcBehaviorValue == Module::Override &&
1244 SrcOp->getOperand(2) != DstOp->getOperand(2))
1245 return stringErr("linking module flags '" + ID->getString() +
1246 "': IDs have conflicting override values in '" +
1247 SrcM->getModuleIdentifier() + "' and '" +
1248 DstM.getModuleIdentifier() + "'");
1249 continue;
1250 } else if (SrcBehaviorValue == Module::Override) {
1251 // Update the destination flag to that of the source.
1252 overrideDstValue();
1253 continue;
1254 }
1255
1256 // Diagnose inconsistent merge behavior types.
1257 if (SrcBehaviorValue != DstBehaviorValue)
1258 return stringErr("linking module flags '" + ID->getString() +
1259 "': IDs have conflicting behaviors in '" +
1260 SrcM->getModuleIdentifier() + "' and '" +
1261 DstM.getModuleIdentifier() + "'");
1262
1263 auto replaceDstValue = [&](MDNode *New) {
1264 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1265 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1266 DstModFlags->setOperand(DstIndex, Flag);
1267 Flags[ID].first = Flag;
1268 };
1269
1270 // Perform the merge for standard behavior types.
1271 switch (SrcBehaviorValue) {
1272 case Module::Require:
1273 case Module::Override:
1274 llvm_unreachable("not possible")::llvm::llvm_unreachable_internal("not possible", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1274)
;
1275 case Module::Error: {
1276 // Emit an error if the values differ.
1277 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1278 return stringErr("linking module flags '" + ID->getString() +
1279 "': IDs have conflicting values in '" +
1280 SrcM->getModuleIdentifier() + "' and '" +
1281 DstM.getModuleIdentifier() + "'");
1282 continue;
1283 }
1284 case Module::Warning: {
1285 // Emit a warning if the values differ.
1286 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1287 std::string str;
1288 raw_string_ostream(str)
1289 << "linking module flags '" << ID->getString()
1290 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1291 << "' from " << SrcM->getModuleIdentifier() << " with '"
1292 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1293 << ')';
1294 emitWarning(str);
1295 }
1296 continue;
1297 }
1298 case Module::Max: {
1299 ConstantInt *DstValue =
1300 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1301 ConstantInt *SrcValue =
1302 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1303 if (SrcValue->getZExtValue() > DstValue->getZExtValue())
1304 overrideDstValue();
1305 break;
1306 }
1307 case Module::Append: {
1308 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1309 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1310 SmallVector<Metadata *, 8> MDs;
1311 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1312 MDs.append(DstValue->op_begin(), DstValue->op_end());
1313 MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1314
1315 replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1316 break;
1317 }
1318 case Module::AppendUnique: {
1319 SmallSetVector<Metadata *, 16> Elts;
1320 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1321 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1322 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1323 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1324
1325 replaceDstValue(MDNode::get(DstM.getContext(),
1326 makeArrayRef(Elts.begin(), Elts.end())));
1327 break;
1328 }
1329 }
1330 }
1331
1332 // Check all of the requirements.
1333 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1334 MDNode *Requirement = Requirements[I];
1335 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1336 Metadata *ReqValue = Requirement->getOperand(1);
1337
1338 MDNode *Op = Flags[Flag].first;
1339 if (!Op || Op->getOperand(2) != ReqValue)
1340 return stringErr("linking module flags '" + Flag->getString() +
1341 "': does not have the required value");
1342 }
1343 return Error::success();
1344}
1345
1346/// Return InlineAsm adjusted with target-specific directives if required.
1347/// For ARM and Thumb, we have to add directives to select the appropriate ISA
1348/// to support mixing module-level inline assembly from ARM and Thumb modules.
1349static std::string adjustInlineAsm(const std::string &InlineAsm,
1350 const Triple &Triple) {
1351 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1352 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1353 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1354 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1355 return InlineAsm;
1356}
1357
1358Error IRLinker::run() {
1359 // Ensure metadata materialized before value mapping.
1360 if (SrcM->getMaterializer())
1361 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1362 return Err;
1363
1364 // Inherit the target data from the source module if the destination module
1365 // doesn't have one already.
1366 if (DstM.getDataLayout().isDefault())
1367 DstM.setDataLayout(SrcM->getDataLayout());
1368
1369 if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1370 emitWarning("Linking two modules of different data layouts: '" +
1371 SrcM->getModuleIdentifier() + "' is '" +
1372 SrcM->getDataLayoutStr() + "' whereas '" +
1373 DstM.getModuleIdentifier() + "' is '" +
1374 DstM.getDataLayoutStr() + "'\n");
1375 }
1376
1377 // Copy the target triple from the source to dest if the dest's is empty.
1378 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1379 DstM.setTargetTriple(SrcM->getTargetTriple());
1380
1381 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1382
1383 if (!SrcM->getTargetTriple().empty()&&
1384 !SrcTriple.isCompatibleWith(DstTriple))
1385 emitWarning("Linking two modules of different target triples: " +
1386 SrcM->getModuleIdentifier() + "' is '" +
1387 SrcM->getTargetTriple() + "' whereas '" +
1388 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1389 "'\n");
1390
1391 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1392
1393 // Append the module inline asm string.
1394 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1395 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
1396 SrcTriple);
1397 if (DstM.getModuleInlineAsm().empty())
1398 DstM.setModuleInlineAsm(SrcModuleInlineAsm);
1399 else
1400 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1401 SrcModuleInlineAsm);
1402 }
1403
1404 // Loop over all of the linked values to compute type mappings.
1405 computeTypeMapping();
1406
1407 std::reverse(Worklist.begin(), Worklist.end());
1408 while (!Worklist.empty()) {
1409 GlobalValue *GV = Worklist.back();
1410 Worklist.pop_back();
1411
1412 // Already mapped.
1413 if (ValueMap.find(GV) != ValueMap.end() ||
1414 AliasValueMap.find(GV) != AliasValueMap.end())
1415 continue;
1416
1417 assert(!GV->isDeclaration())((!GV->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("!GV->isDeclaration()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1417, __PRETTY_FUNCTION__))
;
1418 Mapper.mapValue(*GV);
1419 if (FoundError)
1420 return std::move(*FoundError);
1421 flushRAUWWorklist();
1422 }
1423
1424 // Note that we are done linking global value bodies. This prevents
1425 // metadata linking from creating new references.
1426 DoneLinkingBodies = true;
1427 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1428
1429 // Remap all of the named MDNodes in Src into the DstM module. We do this
1430 // after linking GlobalValues so that MDNodes that reference GlobalValues
1431 // are properly remapped.
1432 linkNamedMDNodes();
1433
1434 // Merge the module flags into the DstM module.
1435 return linkModuleFlagsMetadata();
1436}
1437
1438IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1439 : ETypes(E), IsPacked(P) {}
1440
1441IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1442 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1443
1444bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1445 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1446}
1447
1448bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1449 return !this->operator==(That);
1450}
1451
1452StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1453 return DenseMapInfo<StructType *>::getEmptyKey();
1454}
1455
1456StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1457 return DenseMapInfo<StructType *>::getTombstoneKey();
1458}
1459
1460unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1461 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1462 Key.IsPacked);
1463}
1464
1465unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1466 return getHashValue(KeyTy(ST));
1467}
1468
1469bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1470 const StructType *RHS) {
1471 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1472 return false;
1473 return LHS == KeyTy(RHS);
1474}
1475
1476bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1477 const StructType *RHS) {
1478 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1479 return LHS == RHS;
1480 return KeyTy(LHS) == KeyTy(RHS);
1481}
1482
1483void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1484 assert(!Ty->isOpaque())((!Ty->isOpaque()) ? static_cast<void> (0) : __assert_fail
("!Ty->isOpaque()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1484, __PRETTY_FUNCTION__))
;
1485 NonOpaqueStructTypes.insert(Ty);
1486}
1487
1488void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1489 assert(!Ty->isOpaque())((!Ty->isOpaque()) ? static_cast<void> (0) : __assert_fail
("!Ty->isOpaque()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1489, __PRETTY_FUNCTION__))
;
1490 NonOpaqueStructTypes.insert(Ty);
1491 bool Removed = OpaqueStructTypes.erase(Ty);
1492 (void)Removed;
1493 assert(Removed)((Removed) ? static_cast<void> (0) : __assert_fail ("Removed"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1493, __PRETTY_FUNCTION__))
;
1494}
1495
1496void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1497 assert(Ty->isOpaque())((Ty->isOpaque()) ? static_cast<void> (0) : __assert_fail
("Ty->isOpaque()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Linker/IRMover.cpp"
, 1497, __PRETTY_FUNCTION__))
;
1498 OpaqueStructTypes.insert(Ty);
1499}
1500
1501StructType *
1502IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1503 bool IsPacked) {
1504 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1505 auto I = NonOpaqueStructTypes.find_as(Key);
1506 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1507}
1508
1509bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1510 if (Ty->isOpaque())
1511 return OpaqueStructTypes.count(Ty);
1512 auto I = NonOpaqueStructTypes.find(Ty);
1513 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1514}
1515
1516IRMover::IRMover(Module &M) : Composite(M) {
1517 TypeFinder StructTypes;
1518 StructTypes.run(M, /* OnlyNamed */ false);
1519 for (StructType *Ty : StructTypes) {
1520 if (Ty->isOpaque())
1521 IdentifiedStructTypes.addOpaque(Ty);
1522 else
1523 IdentifiedStructTypes.addNonOpaque(Ty);
1524 }
1525 // Self-map metadatas in the destination module. This is needed when
1526 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1527 // destination module may be reached from the source module.
1528 for (auto *MD : StructTypes.getVisitedMetadata()) {
1529 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1530 }
1531}
1532
1533Error IRMover::move(
1534 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1535 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1536 bool IsPerformingImport) {
1537 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1538 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1539 IsPerformingImport);
1540 Error E = TheIRLinker.run();
1541 Composite.dropTriviallyDeadConstantArrays();
1542 return E;
1543}

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
159 // pointers out of this class to add to the error list.
160 friend class ErrorList;
161 friend class FileError;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
26
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
22
Calling 'make_unique<llvm::StringError, const llvm::Twine &, std::error_code>'
24
Returned allocated memory
25
Calling constructor for 'Error'
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = typename std::conditional<isRef, wrap, T>::type;
445 using value_type = T;
446
447private:
448 using reference = typename std::remove_reference<T>::type &;
449 using const_reference = const typename std::remove_reference<T>::type &;
450 using pointer = typename std::remove_reference<T>::type *;
451 using const_pointer = const typename std::remove_reference<T>::type *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
476 * = nullptr)
477 : HasError(false)
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 // Expected is unchecked upon construction in Debug builds.
480 , Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(Expected<OtherT> &&Other,
493 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
494 * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
504 nullptr) {
505 moveConstruct(std::move(Other));
506 }
507
508 /// Move-assign from another Expected<T>.
509 Expected &operator=(Expected &&Other) {
510 moveAssign(std::move(Other));
511 return *this;
512 }
513
514 /// Destroy an Expected<T>.
515 ~Expected() {
516 assertIsChecked();
517 if (!HasError)
518 getStorage()->~storage_type();
519 else
520 getErrorStorage()->~error_type();
521 }
522
523 /// Return false if there is an error.
524 explicit operator bool() {
525#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
526 Unchecked = HasError;
527#endif
528 return !HasError;
529 }
530
531 /// Returns a reference to the stored T value.
532 reference get() {
533 assertIsChecked();
534 return *getStorage();
535 }
536
537 /// Returns a const reference to the stored T value.
538 const_reference get() const {
539 assertIsChecked();
540 return const_cast<Expected<T> *>(this)->get();
541 }
542
543 /// Check that this Expected<T> is an error of type ErrT.
544 template <typename ErrT> bool errorIsA() const {
545 return HasError && (*getErrorStorage())->template isA<ErrT>();
546 }
547
548 /// Take ownership of the stored error.
549 /// After calling this the Expected<T> is in an indeterminate state that can
550 /// only be safely destructed. No further calls (beside the destructor) should
551 /// be made on the Expected<T> vaule.
552 Error takeError() {
553#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
554 Unchecked = false;
555#endif
556 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
557 }
558
559 /// Returns a pointer to the stored T value.
560 pointer operator->() {
561 assertIsChecked();
562 return toPointer(getStorage());
563 }
564
565 /// Returns a const pointer to the stored T value.
566 const_pointer operator->() const {
567 assertIsChecked();
568 return toPointer(getStorage());
569 }
570
571 /// Returns a reference to the stored T value.
572 reference operator*() {
573 assertIsChecked();
574 return *getStorage();
575 }
576
577 /// Returns a const reference to the stored T value.
578 const_reference operator*() const {
579 assertIsChecked();
580 return *getStorage();
581 }
582
583private:
584 template <class T1>
585 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
586 return &a == &b;
587 }
588
589 template <class T1, class T2>
590 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
591 return false;
592 }
593
594 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
595 HasError = Other.HasError;
596#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
597 Unchecked = true;
598 Other.Unchecked = false;
599#endif
600
601 if (!HasError)
602 new (getStorage()) storage_type(std::move(*Other.getStorage()));
603 else
604 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
605 }
606
607 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
608 assertIsChecked();
609
610 if (compareThisIfSameType(*this, Other))
611 return;
612
613 this->~Expected();
614 new (this) Expected(std::move(Other));
615 }
616
617 pointer toPointer(pointer Val) { return Val; }
618
619 const_pointer toPointer(const_pointer Val) const { return Val; }
620
621 pointer toPointer(wrap *Val) { return &Val->get(); }
622
623 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
624
625 storage_type *getStorage() {
626 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 626, __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<storage_type *>(TStorage.buffer);
628 }
629
630 const storage_type *getStorage() const {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<const storage_type *>(TStorage.buffer);
633 }
634
635 error_type *getErrorStorage() {
636 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
638 }
639
640 const error_type *getErrorStorage() const {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
643 }
644
645 // Used by ExpectedAsOutParameter to reset the checked flag.
646 void setUnchecked() {
647#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
648 Unchecked = true;
649#endif
650 }
651
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
654 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
655 void fatalUncheckedExpected() const {
656 dbgs() << "Expected<T> must be checked before access or destruction.\n";
657 if (HasError) {
658 dbgs() << "Unchecked Expected<T> contained error:\n";
659 (*getErrorStorage())->log(dbgs());
660 } else
661 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
662 "values in success mode must still be checked prior to being "
663 "destroyed).\n";
664 abort();
665 }
666#endif
667
668 void assertIsChecked() {
669#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
670 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
671 fatalUncheckedExpected();
672#endif
673 }
674
675 union {
676 AlignedCharArrayUnion<storage_type> TStorage;
677 AlignedCharArrayUnion<error_type> ErrorStorage;
678 };
679 bool HasError : 1;
680#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
681 bool Unchecked : 1;
682#endif
683};
684
685/// Report a serious error, calling any installed error handler. See
686/// ErrorHandling.h.
687LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
688 bool gen_crash_diag = true);
689
690/// Report a fatal error if Err is a failure value.
691///
692/// This function can be used to wrap calls to fallible functions ONLY when it
693/// is known that the Error will always be a success value. E.g.
694///
695/// @code{.cpp}
696/// // foo only attempts the fallible operation if DoFallibleOperation is
697/// // true. If DoFallibleOperation is false then foo always returns
698/// // Error::success().
699/// Error foo(bool DoFallibleOperation);
700///
701/// cantFail(foo(false));
702/// @endcode
703inline void cantFail(Error Err, const char *Msg = nullptr) {
704 if (Err) {
705 if (!Msg)
706 Msg = "Failure value returned from cantFail wrapped call";
707 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 707)
;
708 }
709}
710
711/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
712/// returns the contained value.
713///
714/// This function can be used to wrap calls to fallible functions ONLY when it
715/// is known that the Error will always be a success value. E.g.
716///
717/// @code{.cpp}
718/// // foo only attempts the fallible operation if DoFallibleOperation is
719/// // true. If DoFallibleOperation is false then foo always returns an int.
720/// Expected<int> foo(bool DoFallibleOperation);
721///
722/// int X = cantFail(foo(false));
723/// @endcode
724template <typename T>
725T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
726 if (ValOrErr)
727 return std::move(*ValOrErr);
728 else {
729 if (!Msg)
730 Msg = "Failure value returned from cantFail wrapped call";
731 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 731)
;
732 }
733}
734
735/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
736/// returns the contained reference.
737///
738/// This function can be used to wrap calls to fallible functions ONLY when it
739/// is known that the Error will always be a success value. E.g.
740///
741/// @code{.cpp}
742/// // foo only attempts the fallible operation if DoFallibleOperation is
743/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
744/// Expected<Bar&> foo(bool DoFallibleOperation);
745///
746/// Bar &X = cantFail(foo(false));
747/// @endcode
748template <typename T>
749T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
750 if (ValOrErr)
751 return *ValOrErr;
752 else {
753 if (!Msg)
754 Msg = "Failure value returned from cantFail wrapped call";
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Helper for testing applicability of, and applying, handlers for
760/// ErrorInfo types.
761template <typename HandlerT>
762class ErrorHandlerTraits
763 : public ErrorHandlerTraits<decltype(
764 &std::remove_reference<HandlerT>::type::operator())> {};
765
766// Specialization functions of the form 'Error (const ErrT&)'.
767template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
768public:
769 static bool appliesTo(const ErrorInfoBase &E) {
770 return E.template isA<ErrT>();
771 }
772
773 template <typename HandlerT>
774 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
775 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 775, __PRETTY_FUNCTION__))
;
776 return H(static_cast<ErrT &>(*E));
777 }
778};
779
780// Specialization functions of the form 'void (const ErrT&)'.
781template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
782public:
783 static bool appliesTo(const ErrorInfoBase &E) {
784 return E.template isA<ErrT>();
785 }
786
787 template <typename HandlerT>
788 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
789 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 789, __PRETTY_FUNCTION__))
;
790 H(static_cast<ErrT &>(*E));
791 return Error::success();
792 }
793};
794
795/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
796template <typename ErrT>
797class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
798public:
799 static bool appliesTo(const ErrorInfoBase &E) {
800 return E.template isA<ErrT>();
801 }
802
803 template <typename HandlerT>
804 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
805 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 805, __PRETTY_FUNCTION__))
;
806 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
807 return H(std::move(SubE));
808 }
809};
810
811/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
812template <typename ErrT>
813class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
814public:
815 static bool appliesTo(const ErrorInfoBase &E) {
816 return E.template isA<ErrT>();
817 }
818
819 template <typename HandlerT>
820 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
821 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 821, __PRETTY_FUNCTION__))
;
822 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
823 H(std::move(SubE));
824 return Error::success();
825 }
826};
827
828// Specialization for member functions of the form 'RetT (const ErrT&)'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833// Specialization for member functions of the form 'RetT (const ErrT&) const'.
834template <typename C, typename RetT, typename ErrT>
835class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
836 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
837
838// Specialization for member functions of the form 'RetT (const ErrT&)'.
839template <typename C, typename RetT, typename ErrT>
840class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
841 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
842
843// Specialization for member functions of the form 'RetT (const ErrT&) const'.
844template <typename C, typename RetT, typename ErrT>
845class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
846 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
847
848/// Specialization for member functions of the form
849/// 'RetT (std::unique_ptr<ErrT>)'.
850template <typename C, typename RetT, typename ErrT>
851class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
852 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
853
854/// Specialization for member functions of the form
855/// 'RetT (std::unique_ptr<ErrT>) const'.
856template <typename C, typename RetT, typename ErrT>
857class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
858 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
859
860inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
861 return Error(std::move(Payload));
862}
863
864template <typename HandlerT, typename... HandlerTs>
865Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
866 HandlerT &&Handler, HandlerTs &&... Handlers) {
867 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
868 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
869 std::move(Payload));
870 return handleErrorImpl(std::move(Payload),
871 std::forward<HandlerTs>(Handlers)...);
872}
873
874/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
875/// unhandled errors (or Errors returned by handlers) are re-concatenated and
876/// returned.
877/// Because this function returns an error, its result must also be checked
878/// or returned. If you intend to handle all errors use handleAllErrors
879/// (which returns void, and will abort() on unhandled errors) instead.
880template <typename... HandlerTs>
881Error handleErrors(Error E, HandlerTs &&... Hs) {
882 if (!E)
883 return Error::success();
884
885 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
886
887 if (Payload->isA<ErrorList>()) {
888 ErrorList &List = static_cast<ErrorList &>(*Payload);
889 Error R;
890 for (auto &P : List.Payloads)
891 R = ErrorList::join(
892 std::move(R),
893 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
894 return R;
895 }
896
897 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
898}
899
900/// Behaves the same as handleErrors, except that by contract all errors
901/// *must* be handled by the given handlers (i.e. there must be no remaining
902/// errors after running the handlers, or llvm_unreachable is called).
903template <typename... HandlerTs>
904void handleAllErrors(Error E, HandlerTs &&... Handlers) {
905 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
906}
907
908/// Check that E is a non-error, then drop it.
909/// If E is an error, llvm_unreachable will be called.
910inline void handleAllErrors(Error E) {
911 cantFail(std::move(E));
912}
913
914/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
915///
916/// If the incoming value is a success value it is returned unmodified. If it
917/// is a failure value then it the contained error is passed to handleErrors.
918/// If handleErrors is able to handle the error then the RecoveryPath functor
919/// is called to supply the final result. If handleErrors is not able to
920/// handle all errors then the unhandled errors are returned.
921///
922/// This utility enables the follow pattern:
923///
924/// @code{.cpp}
925/// enum FooStrategy { Aggressive, Conservative };
926/// Expected<Foo> foo(FooStrategy S);
927///
928/// auto ResultOrErr =
929/// handleExpected(
930/// foo(Aggressive),
931/// []() { return foo(Conservative); },
932/// [](AggressiveStrategyError&) {
933/// // Implicitly conusme this - we'll recover by using a conservative
934/// // strategy.
935/// });
936///
937/// @endcode
938template <typename T, typename RecoveryFtor, typename... HandlerTs>
939Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
940 HandlerTs &&... Handlers) {
941 if (ValOrErr)
942 return ValOrErr;
943
944 if (auto Err = handleErrors(ValOrErr.takeError(),
945 std::forward<HandlerTs>(Handlers)...))
946 return std::move(Err);
947
948 return RecoveryPath();
949}
950
951/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
952/// will be printed before the first one is logged. A newline will be printed
953/// after each error.
954///
955/// This function is compatible with the helpers from Support/WithColor.h. You
956/// can pass any of them as the OS. Please consider using them instead of
957/// including 'error: ' in the ErrorBanner.
958///
959/// This is useful in the base level of your program to allow clean termination
960/// (allowing clean deallocation of resources, etc.), while reporting error
961/// information to the user.
962void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
963
964/// Write all error messages (if any) in E to a string. The newline character
965/// is used to separate error messages.
966inline std::string toString(Error E) {
967 SmallVector<std::string, 2> Errors;
968 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
969 Errors.push_back(EI.message());
970 });
971 return join(Errors.begin(), Errors.end(), "\n");
972}
973
974/// Consume a Error without doing anything. This method should be used
975/// only where an error can be considered a reasonable and expected return
976/// value.
977///
978/// Uses of this method are potentially indicative of design problems: If it's
979/// legitimate to do nothing while processing an "error", the error-producer
980/// might be more clearly refactored to return an Optional<T>.
981inline void consumeError(Error Err) {
982 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
983}
984
985/// Helper for converting an Error to a bool.
986///
987/// This method returns true if Err is in an error state, or false if it is
988/// in a success state. Puts Err in a checked state in both cases (unlike
989/// Error::operator bool(), which only does this for success states).
990inline bool errorToBool(Error Err) {
991 bool IsError = static_cast<bool>(Err);
992 if (IsError)
993 consumeError(std::move(Err));
994 return IsError;
995}
996
997/// Helper for Errors used as out-parameters.
998///
999/// This helper is for use with the Error-as-out-parameter idiom, where an error
1000/// is passed to a function or method by reference, rather than being returned.
1001/// In such cases it is helpful to set the checked bit on entry to the function
1002/// so that the error can be written to (unchecked Errors abort on assignment)
1003/// and clear the checked bit on exit so that clients cannot accidentally forget
1004/// to check the result. This helper performs these actions automatically using
1005/// RAII:
1006///
1007/// @code{.cpp}
1008/// Result foo(Error &Err) {
1009/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1010/// // <body of foo>
1011/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1012/// }
1013/// @endcode
1014///
1015/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1016/// used with optional Errors (Error pointers that are allowed to be null). If
1017/// ErrorAsOutParameter took an Error reference, an instance would have to be
1018/// created inside every condition that verified that Error was non-null. By
1019/// taking an Error pointer we can just create one instance at the top of the
1020/// function.
1021class ErrorAsOutParameter {
1022public:
1023 ErrorAsOutParameter(Error *Err) : Err(Err) {
1024 // Raise the checked bit if Err is success.
1025 if (Err)
1026 (void)!!*Err;
1027 }
1028
1029 ~ErrorAsOutParameter() {
1030 // Clear the checked bit.
1031 if (Err && !*Err)
1032 *Err = Error::success();
1033 }
1034
1035private:
1036 Error *Err;
1037};
1038
1039/// Helper for Expected<T>s used as out-parameters.
1040///
1041/// See ErrorAsOutParameter.
1042template <typename T>
1043class ExpectedAsOutParameter {
1044public:
1045 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1046 : ValOrErr(ValOrErr) {
1047 if (ValOrErr)
1048 (void)!!*ValOrErr;
1049 }
1050
1051 ~ExpectedAsOutParameter() {
1052 if (ValOrErr)
1053 ValOrErr->setUnchecked();
1054 }
1055
1056private:
1057 Expected<T> *ValOrErr;
1058};
1059
1060/// This class wraps a std::error_code in a Error.
1061///
1062/// This is useful if you're writing an interface that returns a Error
1063/// (or Expected) and you want to call code that still returns
1064/// std::error_codes.
1065class ECError : public ErrorInfo<ECError> {
1066 friend Error errorCodeToError(std::error_code);
1067
1068 virtual void anchor() override;
1069
1070public:
1071 void setErrorCode(std::error_code EC) { this->EC = EC; }
1072 std::error_code convertToErrorCode() const override { return EC; }
1073 void log(raw_ostream &OS) const override { OS << EC.message(); }
1074
1075 // Used by ErrorInfo::classID.
1076 static char ID;
1077
1078protected:
1079 ECError() = default;
1080 ECError(std::error_code EC) : EC(EC) {}
1081
1082 std::error_code EC;
1083};
1084
1085/// The value returned by this function can be returned from convertToErrorCode
1086/// for Error values where no sensible translation to std::error_code exists.
1087/// It should only be used in this situation, and should never be used where a
1088/// sensible conversion to std::error_code is available, as attempts to convert
1089/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1090///error to try to convert such a value).
1091std::error_code inconvertibleErrorCode();
1092
1093/// Helper for converting an std::error_code to a Error.
1094Error errorCodeToError(std::error_code EC);
1095
1096/// Helper for converting an ECError to a std::error_code.
1097///
1098/// This method requires that Err be Error() or an ECError, otherwise it
1099/// will trigger a call to abort().
1100std::error_code errorToErrorCode(Error Err);
1101
1102/// Convert an ErrorOr<T> to an Expected<T>.
1103template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1104 if (auto EC = EO.getError())
1105 return errorCodeToError(EC);
1106 return std::move(*EO);
1107}
1108
1109/// Convert an Expected<T> to an ErrorOr<T>.
1110template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1111 if (auto Err = E.takeError())
1112 return errorToErrorCode(std::move(Err));
1113 return std::move(*E);
1114}
1115
1116/// This class wraps a string in an Error.
1117///
1118/// StringError is useful in cases where the client is not expected to be able
1119/// to consume the specific error message programmatically (for example, if the
1120/// error message is to be presented to the user).
1121///
1122/// StringError can also be used when additional information is to be printed
1123/// along with a error_code message. Depending on the constructor called, this
1124/// class can either display:
1125/// 1. the error_code message (ECError behavior)
1126/// 2. a string
1127/// 3. the error_code message and a string
1128///
1129/// These behaviors are useful when subtyping is required; for example, when a
1130/// specific library needs an explicit error type. In the example below,
1131/// PDBError is derived from StringError:
1132///
1133/// @code{.cpp}
1134/// Expected<int> foo() {
1135/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1136/// "Additional information");
1137/// }
1138/// @endcode
1139///
1140class StringError : public ErrorInfo<StringError> {
1141public:
1142 static char ID;
1143
1144 // Prints EC + S and converts to EC
1145 StringError(std::error_code EC, const Twine &S = Twine());
1146
1147 // Prints S and converts to EC
1148 StringError(const Twine &S, std::error_code EC);
1149
1150 void log(raw_ostream &OS) const override;
1151 std::error_code convertToErrorCode() const override;
1152
1153 const std::string &getMessage() const { return Msg; }
1154
1155private:
1156 std::string Msg;
1157 std::error_code EC;
1158 const bool PrintMsgOnly = false;
1159};
1160
1161/// Create formatted StringError object.
1162template <typename... Ts>
1163Error createStringError(std::error_code EC, char const *Fmt,
1164 const Ts &... Vals) {
1165 std::string Buffer;
1166 raw_string_ostream Stream(Buffer);
1167 Stream << format(Fmt, Vals...);
1168 return make_error<StringError>(Stream.str(), EC);
1169}
1170
1171Error createStringError(std::error_code EC, char const *Msg);
1172
1173/// This class wraps a filename and another Error.
1174///
1175/// In some cases, an error needs to live along a 'source' name, in order to
1176/// show more detailed information to the user.
1177class FileError final : public ErrorInfo<FileError> {
1178
1179 friend Error createFileError(const Twine &, Error);
1180 friend Error createFileError(const Twine &, size_t, Error);
1181
1182public:
1183 void log(raw_ostream &OS) const override {
1184 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1184, __PRETTY_FUNCTION__))
;
1185 OS << "'" << FileName << "': ";
1186 if (Line.hasValue())
1187 OS << "line " << Line.getValue() << ": ";
1188 Err->log(OS);
1189 }
1190
1191 Error takeError() { return Error(std::move(Err)); }
1192
1193 std::error_code convertToErrorCode() const override;
1194
1195 // Used by ErrorInfo::classID.
1196 static char ID;
1197
1198private:
1199 FileError(const Twine &F, Optional<size_t> LineNum,
1200 std::unique_ptr<ErrorInfoBase> E) {
1201 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1201, __PRETTY_FUNCTION__))
;
1202 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
1203 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 FileName = F.str();
1205 Err = std::move(E);
1206 Line = std::move(LineNum);
1207 }
1208
1209 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1210 return Error(
1211 std::unique_ptr<FileError>(new FileError(F, Line, E.takePayload())));
1212 }
1213
1214 std::string FileName;
1215 Optional<size_t> Line;
1216 std::unique_ptr<ErrorInfoBase> Err;
1217};
1218
1219/// Concatenate a source file path and/or name with an Error. The resulting
1220/// Error is unchecked.
1221inline Error createFileError(const Twine &F, Error E) {
1222 return FileError::build(F, Optional<size_t>(), std::move(E));
1223}
1224
1225/// Concatenate a source file path and/or name with line number and an Error.
1226/// The resulting Error is unchecked.
1227inline Error createFileError(const Twine &F, size_t Line, Error E) {
1228 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1229}
1230
1231/// Concatenate a source file path and/or name with a std::error_code
1232/// to form an Error object.
1233inline Error createFileError(const Twine &F, std::error_code EC) {
1234 return createFileError(F, errorCodeToError(EC));
1235}
1236
1237/// Concatenate a source file path and/or name with line number and
1238/// std::error_code to form an Error object.
1239inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1240 return createFileError(F, Line, errorCodeToError(EC));
1241}
1242
1243Error createFileError(const Twine &F, ErrorSuccess) = delete;
1244
1245/// Helper for check-and-exit error handling.
1246///
1247/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1248///
1249class ExitOnError {
1250public:
1251 /// Create an error on exit helper.
1252 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1253 : Banner(std::move(Banner)),
1254 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1255
1256 /// Set the banner string for any errors caught by operator().
1257 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1258
1259 /// Set the exit-code mapper function.
1260 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1261 this->GetExitCode = std::move(GetExitCode);
1262 }
1263
1264 /// Check Err. If it's in a failure state log the error(s) and exit.
1265 void operator()(Error Err) const { checkError(std::move(Err)); }
1266
1267 /// Check E. If it's in a success state then return the contained value. If
1268 /// it's in a failure state log the error(s) and exit.
1269 template <typename T> T operator()(Expected<T> &&E) const {
1270 checkError(E.takeError());
1271 return std::move(*E);
1272 }
1273
1274 /// Check E. If it's in a success state then return the contained reference. If
1275 /// it's in a failure state log the error(s) and exit.
1276 template <typename T> T& operator()(Expected<T&> &&E) const {
1277 checkError(E.takeError());
1278 return *E;
1279 }
1280
1281private:
1282 void checkError(Error Err) const {
1283 if (Err) {
1284 int ExitCode = GetExitCode(Err);
1285 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1286 exit(ExitCode);
1287 }
1288 }
1289
1290 std::string Banner;
1291 std::function<int(const Error &)> GetExitCode;
1292};
1293
1294/// Conversion from Error to LLVMErrorRef for C error bindings.
1295inline LLVMErrorRef wrap(Error Err) {
1296 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1297}
1298
1299/// Conversion from LLVMErrorRef to Error for C error bindings.
1300inline Error unwrap(LLVMErrorRef ErrRef) {
1301 return Error(std::unique_ptr<ErrorInfoBase>(
1302 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1303}
1304
1305} // end namespace llvm
1306
1307#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
76};
77
78template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
81};
82
83//===----------------------------------------------------------------------===//
84// Extra additions to <functional>
85//===----------------------------------------------------------------------===//
86
87template <class Ty> struct identity {
88 using argument_type = Ty;
89
90 Ty &operator()(Ty &self) const {
91 return self;
92 }
93 const Ty &operator()(const Ty &self) const {
94 return self;
95 }
96};
97
98template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
101 }
102};
103
104template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
107 }
108};
109
110/// An efficient, type-erasing, non-owning reference to a callable. This is
111/// intended for use as the type of a function parameter that is not used
112/// after the function in question returns.
113///
114/// This class does not own the callable, so it is not in general safe to store
115/// a function_ref.
116template<typename Fn> class function_ref;
117
118template<typename Ret, typename ...Params>
119class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
122
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
127 }
128
129public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
132
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
143 }
144
145 operator bool() const { return callback; }
146};
147
148// deleter - Very very very simple method that is used to invoke operator
149// delete on something. It is used like this:
150//
151// for_each(V.begin(), B.end(), deleter<Interval>);
152template <class T>
153inline void deleter(T *Ptr) {
154 delete Ptr;
155}
156
157//===----------------------------------------------------------------------===//
158// Extra additions to <iterator>
159//===----------------------------------------------------------------------===//
160
161namespace adl_detail {
162
163using std::begin;
164
165template <typename ContainerTy>
166auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
169}
170
171using std::end;
172
173template <typename ContainerTy>
174auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
177}
178
179using std::swap;
180
181template <typename T>
182void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
185}
186
187} // end namespace adl_detail
188
189template <typename ContainerTy>
190auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193}
194
195template <typename ContainerTy>
196auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
199}
200
201template <typename T>
202void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205}
206
207/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208template <typename T>
209constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211}
212
213// mapped_iterator - This is a simple iterator adapter that causes a function to
214// be applied whenever operator* is invoked on the iterator.
215
216template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228 ItTy getCurrent() { return this->I; }
229
230 FuncReturnTy operator*() { return F(*this->I); }
231
232private:
233 FuncTy F;
234};
235
236// map_iterator - Provide a convenient way to create mapped_iterators, just like
237// make_pair is useful for creating pairs...
238template <class ItTy, class FuncTy>
239inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241}
242
243/// Helper to determine if type T has a member called rbegin().
244template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
247
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
250
251 template <typename>
252 static no& test(...);
253
254public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
256};
257
258/// Metafunction to determine if T& or T has a member called rbegin().
259template <typename Ty>
260struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
261};
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have rbegin()/rend() methods for this to work.
265template <typename ContainerTy>
266auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
270}
271
272// Returns a std::reverse_iterator wrapped around the given iterator.
273template <typename IteratorTy>
274std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
276}
277
278// Returns an iterator_range over the given container which iterates in reverse.
279// Note that the container must have begin()/end() methods which return
280// bidirectional iterators for this to work.
281template <typename ContainerTy>
282auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
289}
290
291/// An iterator adaptor that filters the elements of given inner iterators.
292///
293/// The predicate parameter should be a callable object that accepts the wrapped
294/// iterator's reference type and returns a bool. When incrementing or
295/// decrementing the iterator, it will call the predicate on each element and
296/// skip any where it returns false.
297///
298/// \code
299/// int A[] = { 1, 2, 3, 4 };
300/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301/// // R contains { 1, 3 }.
302/// \endcode
303///
304/// Note: filter_iterator_base implements support for forward iteration.
305/// filter_iterator_impl exists to provide support for bidirectional iteration,
306/// conditional on whether the wrapped iterator supports it.
307template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
321
322protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
325
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
329 }
330
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
338 }
339
340public:
341 using BaseT::operator++;
342
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
347 }
348};
349
350/// Specialization of filter_iterator_base for forward iteration only.
351template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
356
357public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
361};
362
363/// Specialization of filter_iterator_base for bidirectional iteration.
364template <typename WrappedIteratorT, typename PredicateT>
365class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
374 }
375
376public:
377 using BaseT::operator--;
378
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
382
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
387 }
388};
389
390namespace detail {
391
392template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
394};
395
396template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
398};
399
400/// Helper which sets its type member to forward_iterator_tag if the category
401/// of \p IterT does not derive from bidirectional_iterator_tag, and to
402/// bidirectional_iterator_tag otherwise.
403template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
407};
408
409} // namespace detail
410
411/// Defines filter_iterator to a suitable specialization of
412/// filter_iterator_impl, based on the underlying iterator's category.
413template <typename WrappedIteratorT, typename PredicateT>
414using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
417
418/// Convenience function that takes a range of elements and a predicate,
419/// and return a new filter_iterator range.
420///
421/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422/// lifetime of that temporary is not kept by the returned range object, and the
423/// temporary is going to be dropped on the floor after the make_iterator_range
424/// full expression that contains this function call.
425template <typename RangeT, typename PredicateT>
426iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
435}
436
437/// A pseudo-iterator adaptor that is designed to implement "early increment"
438/// style loops.
439///
440/// This is *not a normal iterator* and should almost never be used directly. It
441/// is intended primarily to be used with range based for loops and some range
442/// algorithms.
443///
444/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445/// somewhere between them. The constraints of these iterators are:
446///
447/// - On construction or after being incremented, it is comparable and
448/// dereferencable. It is *not* incrementable.
449/// - After being dereferenced, it is neither comparable nor dereferencable, it
450/// is only incrementable.
451///
452/// This means you can only dereference the iterator once, and you can only
453/// increment it once between dereferences.
454template <typename WrappedIteratorT>
455class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
461
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
463
464protected:
465#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
466 bool IsEarlyIncremented = false;
467#endif
468
469public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
471
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
475 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 475, __PRETTY_FUNCTION__))
;
476 IsEarlyIncremented = true;
477#endif
478 return *(this->I)++;
479 }
480
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 484, __PRETTY_FUNCTION__))
;
485 IsEarlyIncremented = false;
486#endif
487 return *this;
488 }
489
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 493, __PRETTY_FUNCTION__))
;
494#endif
495 return BaseT::operator==(RHS);
496 }
497};
498
499/// Make a range that does early increment to allow mutation of the underlying
500/// range without disrupting iteration.
501///
502/// The underlying iterator will be incremented immediately after it is
503/// dereferenced, allowing deletion of the current node or insertion of nodes to
504/// not disrupt iteration provided they do not invalidate the *next* iterator --
505/// the current iterator can be invalidated.
506///
507/// This requires a very exact pattern of use that is only really suitable to
508/// range based for loops and other range algorithms that explicitly guarantee
509/// to dereference exactly once each element, and to increment exactly once each
510/// element.
511template <typename RangeT>
512iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
518}
519
520// forward declarations required by zip_shortest/zip_first/zip_longest
521template <typename R, typename UnaryPredicate>
522bool all_of(R &&range, UnaryPredicate P);
523template <typename R, typename UnaryPredicate>
524bool any_of(R &&range, UnaryPredicate P);
525
526template <size_t... I> struct index_sequence;
527
528template <class... Ts> struct index_sequence_for;
529
530namespace detail {
531
532using std::declval;
533
534// We have to alias this since inlining the actual type at the usage site
535// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
538};
539
540template <typename ZipType, typename... Iters>
541using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
555
556template <typename ZipType, typename... Iters>
557struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
560
561 std::tuple<Iters...> iterators;
562
563protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
571 }
572
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
576 }
577
578public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
580
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
582
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
585 }
586
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
590 }
591
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
597 }
598};
599
600template <typename... Iters>
601struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
603
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
606 }
607
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
609};
610
611template <typename... Iters>
612class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
618 }
619
620public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
622
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
624
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
627 }
628};
629
630template <template <typename...> class ItType, typename... Args> class zippy {
631public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
638
639private:
640 std::tuple<Args...> ts;
641
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
644 }
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
647 }
648
649public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
651
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
654};
655
656} // end namespace detail
657
658/// zip iterator for two or more iteratable types.
659template <typename T, typename U, typename... Args>
660detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
664}
665
666/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667/// be the shortest.
668template <typename T, typename U, typename... Args>
669detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
673}
674
675namespace detail {
676template <typename Iter>
677static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
681}
682
683template <typename Iter>
684static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
690}
691
692template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
696};
697
698template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
700};
701
702template <typename... Iters>
703class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
716
717private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
720
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
728 }
729
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
733 }
734
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
739 }
740
741public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
745
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
747
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
749
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
753 }
754
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
757 }
758};
759
760template <typename... Args> class zip_longest_range {
761public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
769
770private:
771 std::tuple<Args...> ts;
772
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
781 }
782
783public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
785
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
788};
789} // namespace detail
790
791/// Iterate over two or more iterators at the same time. Iteration continues
792/// until all iterators reach the end. The llvm::Optional only contains a value
793/// if the iterator has not reached the end.
794template <typename T, typename U, typename... Args>
795detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
799}
800
801/// Iterator wrapper that concatenates sequences together.
802///
803/// This can concatenate different iterators, even with different types, into
804/// a single iterator provided the value types of all the concatenated
805/// iterators expose `reference` and `pointer` types that can be converted to
806/// `ValueT &` and `ValueT *` respectively. It doesn't support more
807/// interesting/customized pointer or reference types.
808///
809/// Currently this only supports forward or higher iterator categories as
810/// inputs and always exposes a forward iterator interface.
811template <typename ValueT, typename... IterTs>
812class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
816
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
819 ///
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
825
826 /// Attempts to increment a specific iterator.
827 ///
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
835
836 ++Begin;
837 return true;
838 }
839
840 /// Increments the first non-end iterator.
841 ///
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
847
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
852
853 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 853)
;
854 }
855
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
864
865 return &*Begin;
866 }
867
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
870 ///
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
876
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
881
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 882)
;
883 }
884
885public:
886 /// Constructs an iterator from a squence of ranges.
887 ///
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
893
894 using BaseT::operator++;
895
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
899 }
900
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
902
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
905 }
906};
907
908namespace detail {
909
910/// Helper to store a sequence of ranges being concatenated and access them.
911///
912/// This is designed to facilitate providing actual storage when temporaries
913/// are passed into the constructor such that we can use it as part of range
914/// based for loops.
915template <typename ValueT, typename... RangeTs> class concat_range {
916public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
920
921private:
922 std::tuple<RangeTs...> Ranges;
923
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
926 }
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
930 }
931
932public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
935
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
938};
939
940} // end namespace detail
941
942/// Concatenated range across two or more ranges.
943///
944/// The desired value type must be explicitly specified.
945template <typename ValueT, typename... RangeTs>
946detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
951}
952
953//===----------------------------------------------------------------------===//
954// Extra additions to <utility>
955//===----------------------------------------------------------------------===//
956
957/// Function object to check whether the first component of a std::pair
958/// compares less than the first component of another std::pair.
959struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
962 }
963};
964
965/// Function object to check whether the second component of a std::pair
966/// compares less than the second component of another std::pair.
967struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
970 }
971};
972
973/// \brief Function object to apply a binary function to the first component of
974/// a std::pair.
975template<typename FuncTy>
976struct on_first {
977 FuncTy func;
978
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
983 }
984};
985
986// A subset of N3658. More stuff can be added as-needed.
987
988/// Represents a compile-time sequence of integers.
989template <class T, T... I> struct integer_sequence {
990 using value_type = T;
991
992 static constexpr size_t size() { return sizeof...(I); }
993};
994
995/// Alias for the common case of a sequence of size_ts.
996template <size_t... I>
997struct index_sequence : integer_sequence<std::size_t, I...> {};
998
999template <std::size_t N, std::size_t... I>
1000struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001template <std::size_t... I>
1002struct build_index_impl<0, I...> : index_sequence<I...> {};
1003
1004/// Creates a compile-time integer sequence for a parameter pack.
1005template <class... Ts>
1006struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1007
1008/// Utility type to build an inheritance chain that makes it easy to rank
1009/// overload candidates.
1010template <int N> struct rank : rank<N - 1> {};
1011template <> struct rank<0> {};
1012
1013/// traits class for checking whether type T is one of any of the given
1014/// types in the variadic list.
1015template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1017};
1018
1019template <typename T, typename U, typename... Ts>
1020struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1023};
1024
1025/// traits class for checking whether type T is a base class for all
1026/// the given types in the variadic list.
1027template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1029};
1030
1031template <typename T, typename U, typename... Ts>
1032struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1035};
1036
1037//===----------------------------------------------------------------------===//
1038// Extra additions for arrays
1039//===----------------------------------------------------------------------===//
1040
1041/// Find the length of an array.
1042template <class T, std::size_t N>
1043constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1045}
1046
1047/// Adapt std::less<T> for array_pod_sort.
1048template<typename T>
1049inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1057}
1058
1059/// get_array_pod_sort_comparator - This is an internal helper function used to
1060/// get type deduction of T right.
1061template<typename T>
1062inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1065}
1066
1067/// array_pod_sort - This sorts an array with the specified start and end
1068/// extent. This is just like std::sort, except that it calls qsort instead of
1069/// using an inlined template. qsort is slightly slower than std::sort, but
1070/// most sorts are not performance critical in LLVM and std::sort has to be
1071/// template instantiated for each type, leading to significant measured code
1072/// bloat. This function should generally be used instead of std::sort where
1073/// possible.
1074///
1075/// This function assumes that you have simple POD-like types that can be
1076/// compared with std::less and can be moved with memcpy. If this isn't true,
1077/// you should use std::sort.
1078///
1079/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080/// default to std::less.
1081template<class IteratorTy>
1082inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087#ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090#endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092}
1093
1094template <class IteratorTy>
1095inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104#ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107#endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1110}
1111
1112// Provide wrappers to std::sort which shuffle the elements before sorting
1113// to help uncover non-deterministic behavior (PR35135).
1114template <typename IteratorTy>
1115inline void sort(IteratorTy Start, IteratorTy End) {
1116#ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119#endif
1120 std::sort(Start, End);
1121}
1122
1123template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1125}
1126
1127template <typename IteratorTy, typename Compare>
1128inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129#ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132#endif
1133 std::sort(Start, End, Comp);
1134}
1135
1136template <typename Container, typename Compare>
1137inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Extra additions to <algorithm>
1143//===----------------------------------------------------------------------===//
1144
1145/// For a container of pointers, deletes the pointers and then clears the
1146/// container.
1147template<typename Container>
1148void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1152}
1153
1154/// In a container of pairs (usually a map) whose second element is a pointer,
1155/// deletes the second elements and then clears the container.
1156template<typename Container>
1157void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1161}
1162
1163/// Get the size of a range. This is a wrapper function around std::distance
1164/// which is only enabled when the operation is O(1).
1165template <typename R>
1166auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1173}
1174
1175/// Provide wrappers to std::for_each which take ranges instead of having to
1176/// pass begin/end explicitly.
1177template <typename R, typename UnaryPredicate>
1178UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1180}
1181
1182/// Provide wrappers to std::all_of which take ranges instead of having to pass
1183/// begin/end explicitly.
1184template <typename R, typename UnaryPredicate>
1185bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1187}
1188
1189/// Provide wrappers to std::any_of which take ranges instead of having to pass
1190/// begin/end explicitly.
1191template <typename R, typename UnaryPredicate>
1192bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1194}
1195
1196/// Provide wrappers to std::none_of which take ranges instead of having to pass
1197/// begin/end explicitly.
1198template <typename R, typename UnaryPredicate>
1199bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1201}
1202
1203/// Provide wrappers to std::find which take ranges instead of having to pass
1204/// begin/end explicitly.
1205template <typename R, typename T>
1206auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1208}
1209
1210/// Provide wrappers to std::find_if which take ranges instead of having to pass
1211/// begin/end explicitly.
1212template <typename R, typename UnaryPredicate>
1213auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217template <typename R, typename UnaryPredicate>
1218auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1220}
1221
1222/// Provide wrappers to std::remove_if which take ranges instead of having to
1223/// pass begin/end explicitly.
1224template <typename R, typename UnaryPredicate>
1225auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1227}
1228
1229/// Provide wrappers to std::copy_if which take ranges instead of having to
1230/// pass begin/end explicitly.
1231template <typename R, typename OutputIt, typename UnaryPredicate>
1232OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1234}
1235
1236template <typename R, typename OutputIt>
1237OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1239}
1240
1241/// Wrapper function around std::find to detect if an element exists
1242/// in a container.
1243template <typename R, typename E>
1244bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1246}
1247
1248/// Wrapper function around std::count to count the number of times an element
1249/// \p Element occurs in the given range \p Range.
1250template <typename R, typename E>
1251auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1254}
1255
1256/// Wrapper function around std::count_if to count the number of times an
1257/// element satisfying a given predicate occurs in a range.
1258template <typename R, typename UnaryPredicate>
1259auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1262}
1263
1264/// Wrapper function around std::transform to apply a function to a range and
1265/// store the result elsewhere.
1266template <typename R, typename OutputIt, typename UnaryPredicate>
1267OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1269}
1270
1271/// Provide wrappers to std::partition which take ranges instead of having to
1272/// pass begin/end explicitly.
1273template <typename R, typename UnaryPredicate>
1274auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1276}
1277
1278/// Provide wrappers to std::lower_bound which take ranges instead of having to
1279/// pass begin/end explicitly.
1280template <typename R, typename T>
1281auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range),
1283 std::forward<T>(Value));
1284}
1285
1286template <typename R, typename T, typename Compare>
1287auto lower_bound(R &&Range, T &&Value, Compare C)
1288 -> decltype(adl_begin(Range)) {
1289 return std::lower_bound(adl_begin(Range), adl_end(Range),
1290 std::forward<T>(Value), C);
1291}
1292
1293/// Provide wrappers to std::upper_bound which take ranges instead of having to
1294/// pass begin/end explicitly.
1295template <typename R, typename T>
1296auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1297 return std::upper_bound(adl_begin(Range), adl_end(Range),
1298 std::forward<T>(Value));
1299}
1300
1301template <typename R, typename T, typename Compare>
1302auto upper_bound(R &&Range, T &&Value, Compare C)
1303 -> decltype(adl_begin(Range)) {
1304 return std::upper_bound(adl_begin(Range), adl_end(Range),
1305 std::forward<T>(Value), C);
1306}
1307
1308template <typename R>
1309void stable_sort(R &&Range) {
1310 std::stable_sort(adl_begin(Range), adl_end(Range));
1311}
1312
1313template <typename R, typename Compare>
1314void stable_sort(R &&Range, Compare C) {
1315 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1316}
1317
1318/// Binary search for the first index where a predicate is true.
1319/// Returns the first I in [Lo, Hi) where C(I) is true, or Hi if it never is.
1320/// Requires that C is always false below some limit, and always true above it.
1321///
1322/// Example:
1323/// size_t DawnModernEra = bsearch(1776, 2050, [](size_t Year){
1324/// return Presidents.for(Year).twitterHandle() != None;
1325/// });
1326///
1327/// Note the return value differs from std::binary_search!
1328template <typename Predicate>
1329size_t bsearch(size_t Lo, size_t Hi, Predicate P) {
1330 while (Lo != Hi) {
1331 assert(Hi > Lo)((Hi > Lo) ? static_cast<void> (0) : __assert_fail (
"Hi > Lo", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 size_t Mid = Lo + (Hi - Lo) / 2;
1333 if (P(Mid))
1334 Hi = Mid;
1335 else
1336 Lo = Mid + 1;
1337 }
1338 return Hi;
1339}
1340
1341/// Binary search for the first iterator where a predicate is true.
1342/// Returns the first I in [Lo, Hi) where C(*I) is true, or Hi if it never is.
1343/// Requires that C is always false below some limit, and always true above it.
1344template <typename It, typename Predicate,
1345 typename Val = decltype(*std::declval<It>())>
1346It bsearch(It Lo, It Hi, Predicate P) {
1347 return std::lower_bound(Lo, Hi, 0u,
1348 [&](const Val &V, unsigned) { return !P(V); });
1349}
1350
1351/// Binary search for the first iterator in a range where a predicate is true.
1352/// Requires that C is always false below some limit, and always true above it.
1353template <typename R, typename Predicate>
1354auto bsearch(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1355 return bsearch(adl_begin(Range), adl_end(Range), P);
1356}
1357
1358/// Wrapper function around std::equal to detect if all elements
1359/// in a container are same.
1360template <typename R>
1361bool is_splat(R &&Range) {
1362 size_t range_size = size(Range);
1363 return range_size != 0 && (range_size == 1 ||
1364 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1365}
1366
1367/// Given a range of type R, iterate the entire range and return a
1368/// SmallVector with elements of the vector. This is useful, for example,
1369/// when you want to iterate a range and then sort the results.
1370template <unsigned Size, typename R>
1371SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1372to_vector(R &&Range) {
1373 return {adl_begin(Range), adl_end(Range)};
1374}
1375
1376/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1377/// `erase_if` which is equivalent to:
1378///
1379/// C.erase(remove_if(C, pred), C.end());
1380///
1381/// This version works for any container with an erase method call accepting
1382/// two iterators.
1383template <typename Container, typename UnaryPredicate>
1384void erase_if(Container &C, UnaryPredicate P) {
1385 C.erase(remove_if(C, P), C.end());
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Extra additions to <memory>
1390//===----------------------------------------------------------------------===//
1391
1392// Implement make_unique according to N3656.
1393
1394/// Constructs a `new T()` with the given args and returns a
1395/// `unique_ptr<T>` which owns the object.
1396///
1397/// Example:
1398///
1399/// auto p = make_unique<int>();
1400/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1401template <class T, class... Args>
1402typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1403make_unique(Args &&... args) {
1404 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
23
Memory is allocated
1405}
1406
1407/// Constructs a `new T[n]` with the given args and returns a
1408/// `unique_ptr<T[]>` which owns the object.
1409///
1410/// \param n size of the new array.
1411///
1412/// Example:
1413///
1414/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1415template <class T>
1416typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1417 std::unique_ptr<T>>::type
1418make_unique(size_t n) {
1419 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1420}
1421
1422/// This function isn't used and is only here to provide better compile errors.
1423template <class T, class... Args>
1424typename std::enable_if<std::extent<T>::value != 0>::type
1425make_unique(Args &&...) = delete;
1426
1427struct FreeDeleter {
1428 void operator()(void* v) {
1429 ::free(v);
1430 }
1431};
1432
1433template<typename First, typename Second>
1434struct pair_hash {
1435 size_t operator()(const std::pair<First, Second> &P) const {
1436 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1437 }
1438};
1439
1440/// A functor like C++14's std::less<void> in its absence.
1441struct less {
1442 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1443 return std::forward<A>(a) < std::forward<B>(b);
1444 }
1445};
1446
1447/// A functor like C++14's std::equal<void> in its absence.
1448struct equal {
1449 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1450 return std::forward<A>(a) == std::forward<B>(b);
1451 }
1452};
1453
1454/// Binary functor that adapts to any other binary functor after dereferencing
1455/// operands.
1456template <typename T> struct deref {
1457 T func;
1458
1459 // Could be further improved to cope with non-derivable functors and
1460 // non-binary functors (should be a variadic template member function
1461 // operator()).
1462 template <typename A, typename B>
1463 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1464 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return func(*lhs, *rhs);
1467 }
1468};
1469
1470namespace detail {
1471
1472template <typename R> class enumerator_iter;
1473
1474template <typename R> struct result_pair {
1475 friend class enumerator_iter<R>;
1476
1477 result_pair() = default;
1478 result_pair(std::size_t Index, IterOfRange<R> Iter)
1479 : Index(Index), Iter(Iter) {}
1480
1481 result_pair<R> &operator=(const result_pair<R> &Other) {
1482 Index = Other.Index;
1483 Iter = Other.Iter;
1484 return *this;
1485 }
1486
1487 std::size_t index() const { return Index; }
1488 const ValueOfRange<R> &value() const { return *Iter; }
1489 ValueOfRange<R> &value() { return *Iter; }
1490
1491private:
1492 std::size_t Index = std::numeric_limits<std::size_t>::max();
1493 IterOfRange<R> Iter;
1494};
1495
1496template <typename R>
1497class enumerator_iter
1498 : public iterator_facade_base<
1499 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1500 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1501 typename std::iterator_traits<IterOfRange<R>>::pointer,
1502 typename std::iterator_traits<IterOfRange<R>>::reference> {
1503 using result_type = result_pair<R>;
1504
1505public:
1506 explicit enumerator_iter(IterOfRange<R> EndIter)
1507 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1508
1509 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1510 : Result(Index, Iter) {}
1511
1512 result_type &operator*() { return Result; }
1513 const result_type &operator*() const { return Result; }
1514
1515 enumerator_iter<R> &operator++() {
1516 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1516, __PRETTY_FUNCTION__))
;
1517 ++Result.Iter;
1518 ++Result.Index;
1519 return *this;
1520 }
1521
1522 bool operator==(const enumerator_iter<R> &RHS) const {
1523 // Don't compare indices here, only iterators. It's possible for an end
1524 // iterator to have different indices depending on whether it was created
1525 // by calling std::end() versus incrementing a valid iterator.
1526 return Result.Iter == RHS.Result.Iter;
1527 }
1528
1529 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1530 Result = Other.Result;
1531 return *this;
1532 }
1533
1534private:
1535 result_type Result;
1536};
1537
1538template <typename R> class enumerator {
1539public:
1540 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1541
1542 enumerator_iter<R> begin() {
1543 return enumerator_iter<R>(0, std::begin(TheRange));
1544 }
1545
1546 enumerator_iter<R> end() {
1547 return enumerator_iter<R>(std::end(TheRange));
1548 }
1549
1550private:
1551 R TheRange;
1552};
1553
1554} // end namespace detail
1555
1556/// Given an input range, returns a new range whose values are are pair (A,B)
1557/// such that A is the 0-based index of the item in the sequence, and B is
1558/// the value from the original sequence. Example:
1559///
1560/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1561/// for (auto X : enumerate(Items)) {
1562/// printf("Item %d - %c\n", X.index(), X.value());
1563/// }
1564///
1565/// Output:
1566/// Item 0 - A
1567/// Item 1 - B
1568/// Item 2 - C
1569/// Item 3 - D
1570///
1571template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1572 return detail::enumerator<R>(std::forward<R>(TheRange));
1573}
1574
1575namespace detail {
1576
1577template <typename F, typename Tuple, std::size_t... I>
1578auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1579 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1580 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1581}
1582
1583} // end namespace detail
1584
1585/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1586/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1587/// return the result.
1588template <typename F, typename Tuple>
1589auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1590 std::forward<F>(f), std::forward<Tuple>(t),
1591 build_index_impl<
1592 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1593 using Indices = build_index_impl<
1594 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1595
1596 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1597 Indices{});
1598}
1599
1600/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1601/// time. Not meant for use with random-access iterators.
1602template <typename IterTy>
1603bool hasNItems(
1604 IterTy &&Begin, IterTy &&End, unsigned N,
1605 typename std::enable_if<
1606 !std::is_same<
1607 typename std::iterator_traits<typename std::remove_reference<
1608 decltype(Begin)>::type>::iterator_category,
1609 std::random_access_iterator_tag>::value,
1610 void>::type * = nullptr) {
1611 for (; N; --N, ++Begin)
1612 if (Begin == End)
1613 return false; // Too few.
1614 return Begin == End;
1615}
1616
1617/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1618/// time. Not meant for use with random-access iterators.
1619template <typename IterTy>
1620bool hasNItemsOrMore(
1621 IterTy &&Begin, IterTy &&End, unsigned N,
1622 typename std::enable_if<
1623 !std::is_same<
1624 typename std::iterator_traits<typename std::remove_reference<
1625 decltype(Begin)>::type>::iterator_category,
1626 std::random_access_iterator_tag>::value,
1627 void>::type * = nullptr) {
1628 for (; N; --N, ++Begin)
1629 if (Begin == End)
1630 return false; // Too few.
1631 return true;
1632}
1633
1634/// Returns a raw pointer that represents the same address as the argument.
1635///
1636/// The late bound return should be removed once we move to C++14 to better
1637/// align with the C++20 declaration. Also, this implementation can be removed
1638/// once we move to C++20 where it's defined as std::to_addres()
1639///
1640/// The std::pointer_traits<>::to_address(p) variations of these overloads has
1641/// not been implemented.
1642template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1643 return P.operator->();
1644}
1645template <class T> constexpr T *to_address(T *P) { return P; }
1646
1647} // end namespace llvm
1648
1649#endif // LLVM_ADT_STLEXTRAS_H