Bug Summary

File:include/llvm/Support/Error.h
Warning:line 200, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyld.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/ExecutionEngine/RuntimeDyld -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ExecutionEngine/RuntimeDyld.h"
14#include "RuntimeDyldCOFF.h"
15#include "RuntimeDyldELF.h"
16#include "RuntimeDyldImpl.h"
17#include "RuntimeDyldMachO.h"
18#include "llvm/Object/COFF.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/MSVCErrorWorkarounds.h"
21#include "llvm/Support/ManagedStatic.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Support/MutexGuard.h"
24
25#include <future>
26
27using namespace llvm;
28using namespace llvm::object;
29
30#define DEBUG_TYPE"dyld" "dyld"
31
32namespace {
33
34enum RuntimeDyldErrorCode {
35 GenericRTDyldError = 1
36};
37
38// FIXME: This class is only here to support the transition to llvm::Error. It
39// will be removed once this transition is complete. Clients should prefer to
40// deal with the Error value directly, rather than converting to error_code.
41class RuntimeDyldErrorCategory : public std::error_category {
42public:
43 const char *name() const noexcept override { return "runtimedyld"; }
44
45 std::string message(int Condition) const override {
46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
47 case GenericRTDyldError: return "Generic RuntimeDyld error";
48 }
49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode")::llvm::llvm_unreachable_internal("Unrecognized RuntimeDyldErrorCode"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 49)
;
50 }
51};
52
53static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
54
55}
56
57char RuntimeDyldError::ID = 0;
58
59void RuntimeDyldError::log(raw_ostream &OS) const {
60 OS << ErrMsg << "\n";
61}
62
63std::error_code RuntimeDyldError::convertToErrorCode() const {
64 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
65}
66
67// Empty out-of-line virtual destructor as the key function.
68RuntimeDyldImpl::~RuntimeDyldImpl() {}
69
70// Pin LoadedObjectInfo's vtables to this file.
71void RuntimeDyld::LoadedObjectInfo::anchor() {}
72
73namespace llvm {
74
75void RuntimeDyldImpl::registerEHFrames() {}
76
77void RuntimeDyldImpl::deregisterEHFrames() {
78 MemMgr.deregisterEHFrames();
79}
80
81#ifndef NDEBUG
82static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
83 dbgs() << "----- Contents of section " << S.getName() << " " << State
84 << " -----";
85
86 if (S.getAddress() == nullptr) {
87 dbgs() << "\n <section not emitted>\n";
88 return;
89 }
90
91 const unsigned ColsPerRow = 16;
92
93 uint8_t *DataAddr = S.getAddress();
94 uint64_t LoadAddr = S.getLoadAddress();
95
96 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
97 unsigned BytesRemaining = S.getSize();
98
99 if (StartPadding) {
100 dbgs() << "\n" << format("0x%016" PRIx64"l" "x",
101 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
102 while (StartPadding--)
103 dbgs() << " ";
104 }
105
106 while (BytesRemaining > 0) {
107 if ((LoadAddr & (ColsPerRow - 1)) == 0)
108 dbgs() << "\n" << format("0x%016" PRIx64"l" "x", LoadAddr) << ":";
109
110 dbgs() << " " << format("%02x", *DataAddr);
111
112 ++DataAddr;
113 ++LoadAddr;
114 --BytesRemaining;
115 }
116
117 dbgs() << "\n";
118}
119#endif
120
121// Resolve the relocations for all symbols we currently know about.
122void RuntimeDyldImpl::resolveRelocations() {
123 MutexGuard locked(lock);
124
125 // Print out the sections prior to relocation.
126 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
127 dumpSectionMemory(Sections[i], "before relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
;
128
129 // First, resolve relocations associated with external symbols.
130 if (auto Err = resolveExternalSymbols()) {
131 HasError = true;
132 ErrorStr = toString(std::move(Err));
133 }
134
135 resolveLocalRelocations();
136
137 // Print out sections after relocation.
138 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
139 dumpSectionMemory(Sections[i], "after relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
;
140}
141
142void RuntimeDyldImpl::resolveLocalRelocations() {
143 // Iterate over all outstanding relocations
144 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
145 // The Section here (Sections[i]) refers to the section in which the
146 // symbol for the relocation is located. The SectionID in the relocation
147 // entry provides the section to which the relocation will be applied.
148 int Idx = it->first;
149 uint64_t Addr = Sections[Idx].getLoadAddress();
150 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
151 << format("%p", (uintptr_t)Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
;
152 resolveRelocationList(it->second, Addr);
153 }
154 Relocations.clear();
155}
156
157void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
158 uint64_t TargetAddress) {
159 MutexGuard locked(lock);
160 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
161 if (Sections[i].getAddress() == LocalAddress) {
162 reassignSectionAddress(i, TargetAddress);
163 return;
164 }
165 }
166 llvm_unreachable("Attempting to remap address of unknown section!")::llvm::llvm_unreachable_internal("Attempting to remap address of unknown section!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 166)
;
167}
168
169static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
170 uint64_t &Result) {
171 Expected<uint64_t> AddressOrErr = Sym.getAddress();
172 if (!AddressOrErr)
173 return AddressOrErr.takeError();
174 Result = *AddressOrErr - Sec.getAddress();
175 return Error::success();
176}
177
178Expected<RuntimeDyldImpl::ObjSectionToIDMap>
179RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
180 MutexGuard locked(lock);
181
182 // Save information about our target
183 Arch = (Triple::ArchType)Obj.getArch();
184 IsTargetLittleEndian = Obj.isLittleEndian();
185 setMipsABI(Obj);
186
187 // Compute the memory size required to load all sections to be loaded
188 // and pass this information to the memory manager
189 if (MemMgr.needsToReserveAllocationSpace()) {
190 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
191 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
192 if (auto Err = computeTotalAllocSize(Obj,
193 CodeSize, CodeAlign,
194 RODataSize, RODataAlign,
195 RWDataSize, RWDataAlign))
196 return std::move(Err);
197 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
198 RWDataSize, RWDataAlign);
199 }
200
201 // Used sections from the object file
202 ObjSectionToIDMap LocalSections;
203
204 // Common symbols requiring allocation, with their sizes and alignments
205 CommonSymbolList CommonSymbolsToAllocate;
206
207 uint64_t CommonSize = 0;
208 uint32_t CommonAlign = 0;
209
210 // First, collect all weak and common symbols. We need to know if stronger
211 // definitions occur elsewhere.
212 JITSymbolResolver::LookupSet ResponsibilitySet;
213 {
214 JITSymbolResolver::LookupSet Symbols;
215 for (auto &Sym : Obj.symbols()) {
216 uint32_t Flags = Sym.getFlags();
217 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
218 // Get symbol name.
219 if (auto NameOrErr = Sym.getName())
220 Symbols.insert(*NameOrErr);
221 else
222 return NameOrErr.takeError();
223 }
224 }
225
226 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
227 ResponsibilitySet = std::move(*ResultOrErr);
228 else
229 return ResultOrErr.takeError();
230 }
231
232 // Parse symbols
233 LLVM_DEBUG(dbgs() << "Parse symbols:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse symbols:\n"; } } while (false
)
;
234 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
235 ++I) {
236 uint32_t Flags = I->getFlags();
237
238 // Skip undefined symbols.
239 if (Flags & SymbolRef::SF_Undefined)
240 continue;
241
242 // Get the symbol type.
243 object::SymbolRef::Type SymType;
244 if (auto SymTypeOrErr = I->getType())
245 SymType = *SymTypeOrErr;
246 else
247 return SymTypeOrErr.takeError();
248
249 // Get symbol name.
250 StringRef Name;
251 if (auto NameOrErr = I->getName())
252 Name = *NameOrErr;
253 else
254 return NameOrErr.takeError();
255
256 // Compute JIT symbol flags.
257 auto JITSymFlags = getJITSymbolFlags(*I);
258 if (!JITSymFlags)
259 return JITSymFlags.takeError();
260
261 // If this is a weak definition, check to see if there's a strong one.
262 // If there is, skip this symbol (we won't be providing it: the strong
263 // definition will). If there's no strong definition, make this definition
264 // strong.
265 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
266 // First check whether there's already a definition in this instance.
267 if (GlobalSymbolTable.count(Name))
268 continue;
269
270 // If we're not responsible for this symbol, skip it.
271 if (!ResponsibilitySet.count(Name))
272 continue;
273
274 // Otherwise update the flags on the symbol to make this definition
275 // strong.
276 if (JITSymFlags->isWeak())
277 *JITSymFlags &= ~JITSymbolFlags::Weak;
278 if (JITSymFlags->isCommon()) {
279 *JITSymFlags &= ~JITSymbolFlags::Common;
280 uint32_t Align = I->getAlignment();
281 uint64_t Size = I->getCommonSize();
282 if (!CommonAlign)
283 CommonAlign = Align;
284 CommonSize = alignTo(CommonSize, Align) + Size;
285 CommonSymbolsToAllocate.push_back(*I);
286 }
287 }
288
289 if (Flags & SymbolRef::SF_Absolute &&
290 SymType != object::SymbolRef::ST_File) {
291 uint64_t Addr = 0;
292 if (auto AddrOrErr = I->getAddress())
293 Addr = *AddrOrErr;
294 else
295 return AddrOrErr.takeError();
296
297 unsigned SectionID = AbsoluteSymbolSection;
298
299 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
300 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
301 << " Offset: " << format("%p", (uintptr_t)Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
302 << " flags: " << Flags << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
;
303 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
304 } else if (SymType == object::SymbolRef::ST_Function ||
305 SymType == object::SymbolRef::ST_Data ||
306 SymType == object::SymbolRef::ST_Unknown ||
307 SymType == object::SymbolRef::ST_Other) {
308
309 section_iterator SI = Obj.section_end();
310 if (auto SIOrErr = I->getSection())
311 SI = *SIOrErr;
312 else
313 return SIOrErr.takeError();
314
315 if (SI == Obj.section_end())
316 continue;
317
318 // Get symbol offset.
319 uint64_t SectOffset;
320 if (auto Err = getOffset(*I, *SI, SectOffset))
321 return std::move(Err);
322
323 bool IsCode = SI->isText();
324 unsigned SectionID;
325 if (auto SectionIDOrErr =
326 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
327 SectionID = *SectionIDOrErr;
328 else
329 return SectionIDOrErr.takeError();
330
331 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
332 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
333 << " Offset: " << format("%p", (uintptr_t)SectOffset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
334 << " flags: " << Flags << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
;
335 GlobalSymbolTable[Name] =
336 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
337 }
338 }
339
340 // Allocate common symbols
341 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
342 CommonAlign))
343 return std::move(Err);
344
345 // Parse and process relocations
346 LLVM_DEBUG(dbgs() << "Parse relocations:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse relocations:\n"; } } while
(false)
;
347 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
348 SI != SE; ++SI) {
349 StubMap Stubs;
350 section_iterator RelocatedSection = SI->getRelocatedSection();
351
352 if (RelocatedSection == SE)
353 continue;
354
355 relocation_iterator I = SI->relocation_begin();
356 relocation_iterator E = SI->relocation_end();
357
358 if (I == E && !ProcessAllSections)
359 continue;
360
361 bool IsCode = RelocatedSection->isText();
362 unsigned SectionID = 0;
363 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
364 LocalSections))
365 SectionID = *SectionIDOrErr;
366 else
367 return SectionIDOrErr.takeError();
368
369 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << SectionID
<< "\n"; } } while (false)
;
370
371 for (; I != E;)
372 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
373 I = *IOrErr;
374 else
375 return IOrErr.takeError();
376
377 // If there is a NotifyStubEmitted callback set, call it to register any
378 // stubs created for this section.
379 if (NotifyStubEmitted) {
380 StringRef FileName = Obj.getFileName();
381 StringRef SectionName = Sections[SectionID].getName();
382 for (auto &KV : Stubs) {
383
384 auto &VR = KV.first;
385 uint64_t StubAddr = KV.second;
386
387 // If this is a named stub, just call NotifyStubEmitted.
388 if (VR.SymbolName) {
389 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
390 StubAddr);
391 continue;
392 }
393
394 // Otherwise we will have to try a reverse lookup on the globla symbol table.
395 for (auto &GSTMapEntry : GlobalSymbolTable) {
396 StringRef SymbolName = GSTMapEntry.first();
397 auto &GSTEntry = GSTMapEntry.second;
398 if (GSTEntry.getSectionID() == VR.SectionID &&
399 GSTEntry.getOffset() == VR.Offset) {
400 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
401 StubAddr);
402 break;
403 }
404 }
405 }
406 }
407 }
408
409 // Process remaining sections
410 if (ProcessAllSections) {
411 LLVM_DEBUG(dbgs() << "Process remaining sections:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Process remaining sections:\n"; }
} while (false)
;
412 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
413 SI != SE; ++SI) {
414
415 /* Ignore already loaded sections */
416 if (LocalSections.find(*SI) != LocalSections.end())
417 continue;
418
419 bool IsCode = SI->isText();
420 if (auto SectionIDOrErr =
421 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
422 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n"; } } while (false)
;
423 else
424 return SectionIDOrErr.takeError();
425 }
426 }
427
428 // Give the subclasses a chance to tie-up any loose ends.
429 if (auto Err = finalizeLoad(Obj, LocalSections))
430 return std::move(Err);
431
432// for (auto E : LocalSections)
433// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
434
435 return LocalSections;
436}
437
438// A helper method for computeTotalAllocSize.
439// Computes the memory size required to allocate sections with the given sizes,
440// assuming that all sections are allocated with the given alignment
441static uint64_t
442computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
443 uint64_t Alignment) {
444 uint64_t TotalSize = 0;
445 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
446 uint64_t AlignedSize =
447 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
448 TotalSize += AlignedSize;
449 }
450 return TotalSize;
451}
452
453static bool isRequiredForExecution(const SectionRef Section) {
454 const ObjectFile *Obj = Section.getObject();
455 if (isa<object::ELFObjectFileBase>(Obj))
456 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
457 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
458 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
459 // Avoid loading zero-sized COFF sections.
460 // In PE files, VirtualSize gives the section size, and SizeOfRawData
461 // may be zero for sections with content. In Obj files, SizeOfRawData
462 // gives the section size, and VirtualSize is always zero. Hence
463 // the need to check for both cases below.
464 bool HasContent =
465 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
466 bool IsDiscardable =
467 CoffSection->Characteristics &
468 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
469 return HasContent && !IsDiscardable;
470 }
471
472 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 472, __PRETTY_FUNCTION__))
;
473 return true;
474}
475
476static bool isReadOnlyData(const SectionRef Section) {
477 const ObjectFile *Obj = Section.getObject();
478 if (isa<object::ELFObjectFileBase>(Obj))
479 return !(ELFSectionRef(Section).getFlags() &
480 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
481 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
482 return ((COFFObj->getCOFFSection(Section)->Characteristics &
483 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
484 | COFF::IMAGE_SCN_MEM_READ
485 | COFF::IMAGE_SCN_MEM_WRITE))
486 ==
487 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
488 | COFF::IMAGE_SCN_MEM_READ));
489
490 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 490, __PRETTY_FUNCTION__))
;
491 return false;
492}
493
494static bool isZeroInit(const SectionRef Section) {
495 const ObjectFile *Obj = Section.getObject();
496 if (isa<object::ELFObjectFileBase>(Obj))
497 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
498 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
499 return COFFObj->getCOFFSection(Section)->Characteristics &
500 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
501
502 auto *MachO = cast<MachOObjectFile>(Obj);
503 unsigned SectionType = MachO->getSectionType(Section);
504 return SectionType == MachO::S_ZEROFILL ||
505 SectionType == MachO::S_GB_ZEROFILL;
506}
507
508// Compute an upper bound of the memory size that is required to load all
509// sections
510Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
511 uint64_t &CodeSize,
512 uint32_t &CodeAlign,
513 uint64_t &RODataSize,
514 uint32_t &RODataAlign,
515 uint64_t &RWDataSize,
516 uint32_t &RWDataAlign) {
517 // Compute the size of all sections required for execution
518 std::vector<uint64_t> CodeSectionSizes;
519 std::vector<uint64_t> ROSectionSizes;
520 std::vector<uint64_t> RWSectionSizes;
521
522 // Collect sizes of all sections to be loaded;
523 // also determine the max alignment of all sections
524 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
525 SI != SE; ++SI) {
526 const SectionRef &Section = *SI;
527
528 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
529
530 // Consider only the sections that are required to be loaded for execution
531 if (IsRequired) {
532 uint64_t DataSize = Section.getSize();
533 uint64_t Alignment64 = Section.getAlignment();
534 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
535 bool IsCode = Section.isText();
536 bool IsReadOnly = isReadOnlyData(Section);
537
538 StringRef Name;
539 if (auto EC = Section.getName(Name))
540 return errorCodeToError(EC);
541
542 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
543
544 uint64_t PaddingSize = 0;
545 if (Name == ".eh_frame")
546 PaddingSize += 4;
547 if (StubBufSize != 0)
548 PaddingSize += getStubAlignment() - 1;
549
550 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
551
552 // The .eh_frame section (at least on Linux) needs an extra four bytes
553 // padded
554 // with zeroes added at the end. For MachO objects, this section has a
555 // slightly different name, so this won't have any effect for MachO
556 // objects.
557 if (Name == ".eh_frame")
558 SectionSize += 4;
559
560 if (!SectionSize)
561 SectionSize = 1;
562
563 if (IsCode) {
564 CodeAlign = std::max(CodeAlign, Alignment);
565 CodeSectionSizes.push_back(SectionSize);
566 } else if (IsReadOnly) {
567 RODataAlign = std::max(RODataAlign, Alignment);
568 ROSectionSizes.push_back(SectionSize);
569 } else {
570 RWDataAlign = std::max(RWDataAlign, Alignment);
571 RWSectionSizes.push_back(SectionSize);
572 }
573 }
574 }
575
576 // Compute Global Offset Table size. If it is not zero we
577 // also update alignment, which is equal to a size of a
578 // single GOT entry.
579 if (unsigned GotSize = computeGOTSize(Obj)) {
580 RWSectionSizes.push_back(GotSize);
581 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
582 }
583
584 // Compute the size of all common symbols
585 uint64_t CommonSize = 0;
586 uint32_t CommonAlign = 1;
587 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
588 ++I) {
589 uint32_t Flags = I->getFlags();
590 if (Flags & SymbolRef::SF_Common) {
591 // Add the common symbols to a list. We'll allocate them all below.
592 uint64_t Size = I->getCommonSize();
593 uint32_t Align = I->getAlignment();
594 // If this is the first common symbol, use its alignment as the alignment
595 // for the common symbols section.
596 if (CommonSize == 0)
597 CommonAlign = Align;
598 CommonSize = alignTo(CommonSize, Align) + Size;
599 }
600 }
601 if (CommonSize != 0) {
602 RWSectionSizes.push_back(CommonSize);
603 RWDataAlign = std::max(RWDataAlign, CommonAlign);
604 }
605
606 // Compute the required allocation space for each different type of sections
607 // (code, read-only data, read-write data) assuming that all sections are
608 // allocated with the max alignment. Note that we cannot compute with the
609 // individual alignments of the sections, because then the required size
610 // depends on the order, in which the sections are allocated.
611 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
612 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
613 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
614
615 return Error::success();
616}
617
618// compute GOT size
619unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
620 size_t GotEntrySize = getGOTEntrySize();
621 if (!GotEntrySize)
622 return 0;
623
624 size_t GotSize = 0;
625 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
626 SI != SE; ++SI) {
627
628 for (const RelocationRef &Reloc : SI->relocations())
629 if (relocationNeedsGot(Reloc))
630 GotSize += GotEntrySize;
631 }
632
633 return GotSize;
634}
635
636// compute stub buffer size for the given section
637unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
638 const SectionRef &Section) {
639 unsigned StubSize = getMaxStubSize();
640 if (StubSize == 0) {
641 return 0;
642 }
643 // FIXME: this is an inefficient way to handle this. We should computed the
644 // necessary section allocation size in loadObject by walking all the sections
645 // once.
646 unsigned StubBufSize = 0;
647 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
648 SI != SE; ++SI) {
649 section_iterator RelSecI = SI->getRelocatedSection();
650 if (!(RelSecI == Section))
651 continue;
652
653 for (const RelocationRef &Reloc : SI->relocations())
654 if (relocationNeedsStub(Reloc))
655 StubBufSize += StubSize;
656 }
657
658 // Get section data size and alignment
659 uint64_t DataSize = Section.getSize();
660 uint64_t Alignment64 = Section.getAlignment();
661
662 // Add stubbuf size alignment
663 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
664 unsigned StubAlignment = getStubAlignment();
665 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
666 if (StubAlignment > EndAlignment)
667 StubBufSize += StubAlignment - EndAlignment;
668 return StubBufSize;
669}
670
671uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
672 unsigned Size) const {
673 uint64_t Result = 0;
674 if (IsTargetLittleEndian) {
675 Src += Size - 1;
676 while (Size--)
677 Result = (Result << 8) | *Src--;
678 } else
679 while (Size--)
680 Result = (Result << 8) | *Src++;
681
682 return Result;
683}
684
685void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
686 unsigned Size) const {
687 if (IsTargetLittleEndian) {
688 while (Size--) {
689 *Dst++ = Value & 0xFF;
690 Value >>= 8;
691 }
692 } else {
693 Dst += Size - 1;
694 while (Size--) {
695 *Dst-- = Value & 0xFF;
696 Value >>= 8;
697 }
698 }
699}
700
701Expected<JITSymbolFlags>
702RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
703 return JITSymbolFlags::fromObjectSymbol(SR);
704}
705
706Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
707 CommonSymbolList &SymbolsToAllocate,
708 uint64_t CommonSize,
709 uint32_t CommonAlign) {
710 if (SymbolsToAllocate.empty())
711 return Error::success();
712
713 // Allocate memory for the section
714 unsigned SectionID = Sections.size();
715 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
716 "<common symbols>", false);
717 if (!Addr)
718 report_fatal_error("Unable to allocate memory for common symbols!");
719 uint64_t Offset = 0;
720 Sections.push_back(
721 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
722 memset(Addr, 0, CommonSize);
723
724 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
725 << " new addr: " << format("%p", Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
726 << " DataSize: " << CommonSize << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
;
727
728 // Assign the address of each symbol
729 for (auto &Sym : SymbolsToAllocate) {
730 uint32_t Align = Sym.getAlignment();
731 uint64_t Size = Sym.getCommonSize();
732 StringRef Name;
733 if (auto NameOrErr = Sym.getName())
734 Name = *NameOrErr;
735 else
736 return NameOrErr.takeError();
737 if (Align) {
738 // This symbol has an alignment requirement.
739 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
740 Addr += AlignOffset;
741 Offset += AlignOffset;
742 }
743 auto JITSymFlags = getJITSymbolFlags(Sym);
744
745 if (!JITSymFlags)
746 return JITSymFlags.takeError();
747
748 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
749 << format("%p", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
;
750 GlobalSymbolTable[Name] =
751 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
752 Offset += Size;
753 Addr += Size;
754 }
755
756 return Error::success();
757}
758
759Expected<unsigned>
760RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
761 const SectionRef &Section,
762 bool IsCode) {
763 StringRef data;
764 uint64_t Alignment64 = Section.getAlignment();
765
766 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
767 unsigned PaddingSize = 0;
768 unsigned StubBufSize = 0;
769 bool IsRequired = isRequiredForExecution(Section);
770 bool IsVirtual = Section.isVirtual();
771 bool IsZeroInit = isZeroInit(Section);
772 bool IsReadOnly = isReadOnlyData(Section);
773 uint64_t DataSize = Section.getSize();
774
775 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
776 // while being more "polite". Other formats do not support 0-aligned sections
777 // anyway, so we should guarantee that the alignment is always at least 1.
778 Alignment = std::max(1u, Alignment);
779
780 StringRef Name;
781 if (auto EC = Section.getName(Name))
782 return errorCodeToError(EC);
783
784 StubBufSize = computeSectionStubBufSize(Obj, Section);
785
786 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
787 // with zeroes added at the end. For MachO objects, this section has a
788 // slightly different name, so this won't have any effect for MachO objects.
789 if (Name == ".eh_frame")
790 PaddingSize = 4;
791
792 uintptr_t Allocate;
793 unsigned SectionID = Sections.size();
794 uint8_t *Addr;
795 const char *pData = nullptr;
796
797 // If this section contains any bits (i.e. isn't a virtual or bss section),
798 // grab a reference to them.
799 if (!IsVirtual && !IsZeroInit) {
800 // In either case, set the location of the unrelocated section in memory,
801 // since we still process relocations for it even if we're not applying them.
802 if (Expected<StringRef> E = Section.getContents())
803 data = *E;
804 else
805 return E.takeError();
806 pData = data.data();
807 }
808
809 // If there are any stubs then the section alignment needs to be at least as
810 // high as stub alignment or padding calculations may by incorrect when the
811 // section is remapped.
812 if (StubBufSize != 0) {
813 Alignment = std::max(Alignment, getStubAlignment());
814 PaddingSize += getStubAlignment() - 1;
815 }
816
817 // Some sections, such as debug info, don't need to be loaded for execution.
818 // Process those only if explicitly requested.
819 if (IsRequired || ProcessAllSections) {
820 Allocate = DataSize + PaddingSize + StubBufSize;
821 if (!Allocate)
822 Allocate = 1;
823 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
824 Name)
825 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
826 Name, IsReadOnly);
827 if (!Addr)
828 report_fatal_error("Unable to allocate section memory!");
829
830 // Zero-initialize or copy the data from the image
831 if (IsZeroInit || IsVirtual)
832 memset(Addr, 0, DataSize);
833 else
834 memcpy(Addr, pData, DataSize);
835
836 // Fill in any extra bytes we allocated for padding
837 if (PaddingSize != 0) {
838 memset(Addr + DataSize, 0, PaddingSize);
839 // Update the DataSize variable to include padding.
840 DataSize += PaddingSize;
841
842 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
843 // have been increased above to account for this).
844 if (StubBufSize > 0)
845 DataSize &= -(uint64_t)getStubAlignment();
846 }
847
848 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
849 << Name << " obj addr: " << format("%p", pData)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
850 << " new addr: " << format("%p", Addr) << " DataSize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
851 << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
852 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
;
853 } else {
854 // Even if we didn't load the section, we need to record an entry for it
855 // to handle later processing (and by 'handle' I mean don't do anything
856 // with these sections).
857 Allocate = 0;
858 Addr = nullptr;
859 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
860 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
861 << " obj addr: " << format("%p", data.data()) << " new addr: 0"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
862 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
863 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
;
864 }
865
866 Sections.push_back(
867 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
868
869 // Debug info sections are linked as if their load address was zero
870 if (!IsRequired)
871 Sections.back().setLoadAddress(0);
872
873 return SectionID;
874}
875
876Expected<unsigned>
877RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
878 const SectionRef &Section,
879 bool IsCode,
880 ObjSectionToIDMap &LocalSections) {
881
882 unsigned SectionID = 0;
883 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
884 if (i != LocalSections.end())
885 SectionID = i->second;
886 else {
887 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
888 SectionID = *SectionIDOrErr;
889 else
890 return SectionIDOrErr.takeError();
891 LocalSections[Section] = SectionID;
892 }
893 return SectionID;
894}
895
896void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
897 unsigned SectionID) {
898 Relocations[SectionID].push_back(RE);
899}
900
901void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
902 StringRef SymbolName) {
903 // Relocation by symbol. If the symbol is found in the global symbol table,
904 // create an appropriate section relocation. Otherwise, add it to
905 // ExternalSymbolRelocations.
906 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
907 if (Loc == GlobalSymbolTable.end()) {
908 ExternalSymbolRelocations[SymbolName].push_back(RE);
909 } else {
910 // Copy the RE since we want to modify its addend.
911 RelocationEntry RECopy = RE;
912 const auto &SymInfo = Loc->second;
913 RECopy.Addend += SymInfo.getOffset();
914 Relocations[SymInfo.getSectionID()].push_back(RECopy);
915 }
916}
917
918uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
919 unsigned AbiVariant) {
920 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
921 // This stub has to be able to access the full address space,
922 // since symbol lookup won't necessarily find a handy, in-range,
923 // PLT stub for functions which could be anywhere.
924 // Stub can use ip0 (== x16) to calculate address
925 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
926 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
927 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
928 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
929 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
930
931 return Addr;
932 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
933 // TODO: There is only ARM far stub now. We should add the Thumb stub,
934 // and stubs for branches Thumb - ARM and ARM - Thumb.
935 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
936 return Addr + 4;
937 } else if (IsMipsO32ABI || IsMipsN32ABI) {
938 // 0: 3c190000 lui t9,%hi(addr).
939 // 4: 27390000 addiu t9,t9,%lo(addr).
940 // 8: 03200008 jr t9.
941 // c: 00000000 nop.
942 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
943 const unsigned NopInstr = 0x0;
944 unsigned JrT9Instr = 0x03200008;
945 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
946 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
947 JrT9Instr = 0x03200009;
948
949 writeBytesUnaligned(LuiT9Instr, Addr, 4);
950 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
951 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
952 writeBytesUnaligned(NopInstr, Addr + 12, 4);
953 return Addr;
954 } else if (IsMipsN64ABI) {
955 // 0: 3c190000 lui t9,%highest(addr).
956 // 4: 67390000 daddiu t9,t9,%higher(addr).
957 // 8: 0019CC38 dsll t9,t9,16.
958 // c: 67390000 daddiu t9,t9,%hi(addr).
959 // 10: 0019CC38 dsll t9,t9,16.
960 // 14: 67390000 daddiu t9,t9,%lo(addr).
961 // 18: 03200008 jr t9.
962 // 1c: 00000000 nop.
963 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
964 DsllT9Instr = 0x19CC38;
965 const unsigned NopInstr = 0x0;
966 unsigned JrT9Instr = 0x03200008;
967 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
968 JrT9Instr = 0x03200009;
969
970 writeBytesUnaligned(LuiT9Instr, Addr, 4);
971 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
972 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
973 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
974 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
975 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
976 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
977 writeBytesUnaligned(NopInstr, Addr + 28, 4);
978 return Addr;
979 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
980 // Depending on which version of the ELF ABI is in use, we need to
981 // generate one of two variants of the stub. They both start with
982 // the same sequence to load the target address into r12.
983 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
984 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
985 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
986 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
987 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
988 if (AbiVariant == 2) {
989 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
990 // The address is already in r12 as required by the ABI. Branch to it.
991 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
992 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
993 writeInt32BE(Addr+28, 0x4E800420); // bctr
994 } else {
995 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
996 // Load the function address on r11 and sets it to control register. Also
997 // loads the function TOC in r2 and environment pointer to r11.
998 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
999 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1000 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1001 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1002 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1003 writeInt32BE(Addr+40, 0x4E800420); // bctr
1004 }
1005 return Addr;
1006 } else if (Arch == Triple::systemz) {
1007 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1008 writeInt16BE(Addr+2, 0x0000);
1009 writeInt16BE(Addr+4, 0x0004);
1010 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1011 // 8-byte address stored at Addr + 8
1012 return Addr;
1013 } else if (Arch == Triple::x86_64) {
1014 *Addr = 0xFF; // jmp
1015 *(Addr+1) = 0x25; // rip
1016 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1017 } else if (Arch == Triple::x86) {
1018 *Addr = 0xE9; // 32-bit pc-relative jump.
1019 }
1020 return Addr;
1021}
1022
1023// Assign an address to a symbol name and resolve all the relocations
1024// associated with it.
1025void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1026 uint64_t Addr) {
1027 // The address to use for relocation resolution is not
1028 // the address of the local section buffer. We must be doing
1029 // a remote execution environment of some sort. Relocations can't
1030 // be applied until all the sections have been moved. The client must
1031 // trigger this with a call to MCJIT::finalize() or
1032 // RuntimeDyld::resolveRelocations().
1033 //
1034 // Addr is a uint64_t because we can't assume the pointer width
1035 // of the target is the same as that of the host. Just use a generic
1036 // "big enough" type.
1037 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1038 dbgs() << "Reassigning address for section " << SectionID << " ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1039 << Sections[SectionID].getName() << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1040 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1041 << " -> " << format("0x%016" PRIx64, Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
;
1042 Sections[SectionID].setLoadAddress(Addr);
1043}
1044
1045void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1046 uint64_t Value) {
1047 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1048 const RelocationEntry &RE = Relocs[i];
1049 // Ignore relocations for sections that were not loaded
1050 if (Sections[RE.SectionID].getAddress() == nullptr)
1051 continue;
1052 resolveRelocation(RE, Value);
1053 }
1054}
1055
1056void RuntimeDyldImpl::applyExternalSymbolRelocations(
1057 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1058 while (!ExternalSymbolRelocations.empty()) {
1059
1060 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1061
1062 StringRef Name = i->first();
1063 if (Name.size() == 0) {
1064 // This is an absolute symbol, use an address of zero.
1065 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
1066 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
;
1067 RelocationList &Relocs = i->second;
1068 resolveRelocationList(Relocs, 0);
1069 } else {
1070 uint64_t Addr = 0;
1071 JITSymbolFlags Flags;
1072 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1073 if (Loc == GlobalSymbolTable.end()) {
1074 auto RRI = ExternalSymbolMap.find(Name);
1075 assert(RRI != ExternalSymbolMap.end() && "No result for symbol")((RRI != ExternalSymbolMap.end() && "No result for symbol"
) ? static_cast<void> (0) : __assert_fail ("RRI != ExternalSymbolMap.end() && \"No result for symbol\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1075, __PRETTY_FUNCTION__))
;
1076 Addr = RRI->second.getAddress();
1077 Flags = RRI->second.getFlags();
1078 // The call to getSymbolAddress may have caused additional modules to
1079 // be loaded, which may have added new entries to the
1080 // ExternalSymbolRelocations map. Consquently, we need to update our
1081 // iterator. This is also why retrieval of the relocation list
1082 // associated with this symbol is deferred until below this point.
1083 // New entries may have been added to the relocation list.
1084 i = ExternalSymbolRelocations.find(Name);
1085 } else {
1086 // We found the symbol in our global table. It was probably in a
1087 // Module that we loaded previously.
1088 const auto &SymInfo = Loc->second;
1089 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1090 SymInfo.getOffset();
1091 Flags = SymInfo.getFlags();
1092 }
1093
1094 // FIXME: Implement error handling that doesn't kill the host program!
1095 if (!Addr)
1096 report_fatal_error("Program used external function '" + Name +
1097 "' which could not be resolved!");
1098
1099 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1100 // manually and we shouldn't resolve its relocations.
1101 if (Addr != UINT64_MAX(18446744073709551615UL)) {
1102
1103 // Tweak the address based on the symbol flags if necessary.
1104 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1105 // if the target symbol is Thumb.
1106 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1107
1108 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
1109 << format("0x%lx", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
;
1110 // This list may have been updated when we called getSymbolAddress, so
1111 // don't change this code to get the list earlier.
1112 RelocationList &Relocs = i->second;
1113 resolveRelocationList(Relocs, Addr);
1114 }
1115 }
1116
1117 ExternalSymbolRelocations.erase(i);
1118 }
1119}
1120
1121Error RuntimeDyldImpl::resolveExternalSymbols() {
1122 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1123
1124 // Resolution can trigger emission of more symbols, so iterate until
1125 // we've resolved *everything*.
1126 {
1127 JITSymbolResolver::LookupSet ResolvedSymbols;
1128
1129 while (true) {
1130 JITSymbolResolver::LookupSet NewSymbols;
1131
1132 for (auto &RelocKV : ExternalSymbolRelocations) {
1133 StringRef Name = RelocKV.first();
1134 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1135 !ResolvedSymbols.count(Name))
1136 NewSymbols.insert(Name);
1137 }
1138
1139 if (NewSymbols.empty())
1140 break;
1141
1142#ifdef _MSC_VER
1143 using ExpectedLookupResult =
1144 MSVCPExpected<JITSymbolResolver::LookupResult>;
1145#else
1146 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1147#endif
1148
1149 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1150 auto NewSymbolsF = NewSymbolsP->get_future();
1151 Resolver.lookup(NewSymbols,
1152 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1153 NewSymbolsP->set_value(std::move(Result));
1154 });
1155
1156 auto NewResolverResults = NewSymbolsF.get();
1157
1158 if (!NewResolverResults)
1159 return NewResolverResults.takeError();
1160
1161 assert(NewResolverResults->size() == NewSymbols.size() &&((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1162, __PRETTY_FUNCTION__))
1162 "Should have errored on unresolved symbols")((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1162, __PRETTY_FUNCTION__))
;
1163
1164 for (auto &RRKV : *NewResolverResults) {
1165 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?")((!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"
) ? static_cast<void> (0) : __assert_fail ("!ResolvedSymbols.count(RRKV.first) && \"Redundant resolution?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1165, __PRETTY_FUNCTION__))
;
1166 ExternalSymbolMap.insert(RRKV);
1167 ResolvedSymbols.insert(RRKV.first);
1168 }
1169 }
1170 }
1171
1172 applyExternalSymbolRelocations(ExternalSymbolMap);
1173
1174 return Error::success();
1175}
1176
1177void RuntimeDyldImpl::finalizeAsync(
1178 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
1179 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1180
1181 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1182 // c++14.
1183 auto SharedUnderlyingBuffer =
1184 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
1185 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1186 auto PostResolveContinuation =
1187 [SharedThis, OnEmitted, SharedUnderlyingBuffer](
1188 Expected<JITSymbolResolver::LookupResult> Result) {
1189 if (!Result) {
1190 OnEmitted(Result.takeError());
1191 return;
1192 }
1193
1194 /// Copy the result into a StringMap, where the keys are held by value.
1195 StringMap<JITEvaluatedSymbol> Resolved;
1196 for (auto &KV : *Result)
1197 Resolved[KV.first] = KV.second;
1198
1199 SharedThis->applyExternalSymbolRelocations(Resolved);
1200 SharedThis->resolveLocalRelocations();
1201 SharedThis->registerEHFrames();
1202 std::string ErrMsg;
1203 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1204 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1205 inconvertibleErrorCode()));
1206 else
1207 OnEmitted(Error::success());
1208 };
1209
1210 JITSymbolResolver::LookupSet Symbols;
1211
1212 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1213 StringRef Name = RelocKV.first();
1214 assert(!Name.empty() && "Symbol has no name?")((!Name.empty() && "Symbol has no name?") ? static_cast
<void> (0) : __assert_fail ("!Name.empty() && \"Symbol has no name?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215 assert(!SharedThis->GlobalSymbolTable.count(Name) &&((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1217, __PRETTY_FUNCTION__))
1216 "Name already processed. RuntimeDyld instances can not be re-used "((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1217, __PRETTY_FUNCTION__))
1217 "when finalizing with finalizeAsync.")((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1217, __PRETTY_FUNCTION__))
;
1218 Symbols.insert(Name);
1219 }
1220
1221 if (!Symbols.empty()) {
1222 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
1223 } else
1224 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1225}
1226
1227//===----------------------------------------------------------------------===//
1228// RuntimeDyld class implementation
1229
1230uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1231 const object::SectionRef &Sec) const {
1232
1233 auto I = ObjSecToIDMap.find(Sec);
1234 if (I != ObjSecToIDMap.end())
1235 return RTDyld.Sections[I->second].getLoadAddress();
1236
1237 return 0;
1238}
1239
1240void RuntimeDyld::MemoryManager::anchor() {}
1241void JITSymbolResolver::anchor() {}
1242void LegacyJITSymbolResolver::anchor() {}
1243
1244RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1245 JITSymbolResolver &Resolver)
1246 : MemMgr(MemMgr), Resolver(Resolver) {
1247 // FIXME: There's a potential issue lurking here if a single instance of
1248 // RuntimeDyld is used to load multiple objects. The current implementation
1249 // associates a single memory manager with a RuntimeDyld instance. Even
1250 // though the public class spawns a new 'impl' instance for each load,
1251 // they share a single memory manager. This can become a problem when page
1252 // permissions are applied.
1253 Dyld = nullptr;
1254 ProcessAllSections = false;
1255}
1256
1257RuntimeDyld::~RuntimeDyld() {}
1258
1259static std::unique_ptr<RuntimeDyldCOFF>
1260createRuntimeDyldCOFF(
1261 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1262 JITSymbolResolver &Resolver, bool ProcessAllSections,
1263 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1264 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1265 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1266 Dyld->setProcessAllSections(ProcessAllSections);
1267 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1268 return Dyld;
1269}
1270
1271static std::unique_ptr<RuntimeDyldELF>
1272createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1273 JITSymbolResolver &Resolver, bool ProcessAllSections,
1274 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1275 std::unique_ptr<RuntimeDyldELF> Dyld =
1276 RuntimeDyldELF::create(Arch, MM, Resolver);
1277 Dyld->setProcessAllSections(ProcessAllSections);
1278 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1279 return Dyld;
1280}
1281
1282static std::unique_ptr<RuntimeDyldMachO>
1283createRuntimeDyldMachO(
1284 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285 JITSymbolResolver &Resolver,
1286 bool ProcessAllSections,
1287 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1288 std::unique_ptr<RuntimeDyldMachO> Dyld =
1289 RuntimeDyldMachO::create(Arch, MM, Resolver);
1290 Dyld->setProcessAllSections(ProcessAllSections);
1291 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1292 return Dyld;
1293}
1294
1295std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1296RuntimeDyld::loadObject(const ObjectFile &Obj) {
1297 if (!Dyld) {
1298 if (Obj.isELF())
1299 Dyld =
1300 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1301 MemMgr, Resolver, ProcessAllSections,
1302 std::move(NotifyStubEmitted));
1303 else if (Obj.isMachO())
1304 Dyld = createRuntimeDyldMachO(
1305 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1306 ProcessAllSections, std::move(NotifyStubEmitted));
1307 else if (Obj.isCOFF())
1308 Dyld = createRuntimeDyldCOFF(
1309 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1310 ProcessAllSections, std::move(NotifyStubEmitted));
1311 else
1312 report_fatal_error("Incompatible object format!");
1313 }
1314
1315 if (!Dyld->isCompatibleFile(Obj))
1316 report_fatal_error("Incompatible object format!");
1317
1318 auto LoadedObjInfo = Dyld->loadObject(Obj);
1319 MemMgr.notifyObjectLoaded(*this, Obj);
1320 return LoadedObjInfo;
1321}
1322
1323void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1324 if (!Dyld)
1325 return nullptr;
1326 return Dyld->getSymbolLocalAddress(Name);
1327}
1328
1329unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1330 assert(Dyld && "No RuntimeDyld instance attached")((Dyld && "No RuntimeDyld instance attached") ? static_cast
<void> (0) : __assert_fail ("Dyld && \"No RuntimeDyld instance attached\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1330, __PRETTY_FUNCTION__))
;
1331 return Dyld->getSymbolSectionID(Name);
1332}
1333
1334JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1335 if (!Dyld)
1336 return nullptr;
1337 return Dyld->getSymbol(Name);
1338}
1339
1340std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1341 if (!Dyld)
1342 return std::map<StringRef, JITEvaluatedSymbol>();
1343 return Dyld->getSymbolTable();
1344}
1345
1346void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1347
1348void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1349 Dyld->reassignSectionAddress(SectionID, Addr);
1350}
1351
1352void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1353 uint64_t TargetAddress) {
1354 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1355}
1356
1357bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1358
1359StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1360
1361void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1362 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1363 MemMgr.FinalizationLocked = true;
1364 resolveRelocations();
1365 registerEHFrames();
1366 if (!MemoryFinalizationLocked) {
1367 MemMgr.finalizeMemory();
1368 MemMgr.FinalizationLocked = false;
1369 }
1370}
1371
1372StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1373 assert(Dyld && "No Dyld instance attached")((Dyld && "No Dyld instance attached") ? static_cast<
void> (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1373, __PRETTY_FUNCTION__))
;
1374 return Dyld->getSectionContent(SectionID);
1375}
1376
1377uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1378 assert(Dyld && "No Dyld instance attached")((Dyld && "No Dyld instance attached") ? static_cast<
void> (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1378, __PRETTY_FUNCTION__))
;
1379 return Dyld->getSectionLoadAddress(SectionID);
1380}
1381
1382void RuntimeDyld::registerEHFrames() {
1383 if (Dyld)
1384 Dyld->registerEHFrames();
1385}
1386
1387void RuntimeDyld::deregisterEHFrames() {
1388 if (Dyld)
1389 Dyld->deregisterEHFrames();
1390}
1391// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1392// so that we can re-use RuntimeDyld's implementation without twisting the
1393// interface any further for ORC's purposes.
1394void jitLinkForORC(object::ObjectFile &Obj,
1395 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1396 RuntimeDyld::MemoryManager &MemMgr,
1397 JITSymbolResolver &Resolver, bool ProcessAllSections,
1398 std::function<Error(
1399 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1400 std::map<StringRef, JITEvaluatedSymbol>)>
1401 OnLoaded,
1402 std::function<void(Error)> OnEmitted) {
1403
1404 RuntimeDyld RTDyld(MemMgr, Resolver);
1405 RTDyld.setProcessAllSections(ProcessAllSections);
1406
1407 auto Info = RTDyld.loadObject(Obj);
1408
1409 if (RTDyld.hasError()) {
1
Assuming the condition is true
2
Taking true branch
1410 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
3
Calling 'make_error<llvm::StringError, llvm::StringRef, std::error_code>'
1411 inconvertibleErrorCode()));
1412 return;
1413 }
1414
1415 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1416 OnEmitted(std::move(Err));
1417
1418 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1419 std::move(UnderlyingBuffer));
1420}
1421
1422} // end namespace llvm

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
159 // pointers out of this class to add to the error list.
160 friend class ErrorList;
161 friend class FileError;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
8
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
4
Calling 'make_unique<llvm::StringError, llvm::StringRef, std::error_code>'
6
Returned allocated memory
7
Calling constructor for 'Error'
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = typename std::conditional<isRef, wrap, T>::type;
445 using value_type = T;
446
447private:
448 using reference = typename std::remove_reference<T>::type &;
449 using const_reference = const typename std::remove_reference<T>::type &;
450 using pointer = typename std::remove_reference<T>::type *;
451 using const_pointer = const typename std::remove_reference<T>::type *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
476 * = nullptr)
477 : HasError(false)
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 // Expected is unchecked upon construction in Debug builds.
480 , Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(Expected<OtherT> &&Other,
493 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
494 * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
504 nullptr) {
505 moveConstruct(std::move(Other));
506 }
507
508 /// Move-assign from another Expected<T>.
509 Expected &operator=(Expected &&Other) {
510 moveAssign(std::move(Other));
511 return *this;
512 }
513
514 /// Destroy an Expected<T>.
515 ~Expected() {
516 assertIsChecked();
517 if (!HasError)
518 getStorage()->~storage_type();
519 else
520 getErrorStorage()->~error_type();
521 }
522
523 /// Return false if there is an error.
524 explicit operator bool() {
525#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
526 Unchecked = HasError;
527#endif
528 return !HasError;
529 }
530
531 /// Returns a reference to the stored T value.
532 reference get() {
533 assertIsChecked();
534 return *getStorage();
535 }
536
537 /// Returns a const reference to the stored T value.
538 const_reference get() const {
539 assertIsChecked();
540 return const_cast<Expected<T> *>(this)->get();
541 }
542
543 /// Check that this Expected<T> is an error of type ErrT.
544 template <typename ErrT> bool errorIsA() const {
545 return HasError && (*getErrorStorage())->template isA<ErrT>();
546 }
547
548 /// Take ownership of the stored error.
549 /// After calling this the Expected<T> is in an indeterminate state that can
550 /// only be safely destructed. No further calls (beside the destructor) should
551 /// be made on the Expected<T> vaule.
552 Error takeError() {
553#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
554 Unchecked = false;
555#endif
556 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
557 }
558
559 /// Returns a pointer to the stored T value.
560 pointer operator->() {
561 assertIsChecked();
562 return toPointer(getStorage());
563 }
564
565 /// Returns a const pointer to the stored T value.
566 const_pointer operator->() const {
567 assertIsChecked();
568 return toPointer(getStorage());
569 }
570
571 /// Returns a reference to the stored T value.
572 reference operator*() {
573 assertIsChecked();
574 return *getStorage();
575 }
576
577 /// Returns a const reference to the stored T value.
578 const_reference operator*() const {
579 assertIsChecked();
580 return *getStorage();
581 }
582
583private:
584 template <class T1>
585 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
586 return &a == &b;
587 }
588
589 template <class T1, class T2>
590 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
591 return false;
592 }
593
594 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
595 HasError = Other.HasError;
596#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
597 Unchecked = true;
598 Other.Unchecked = false;
599#endif
600
601 if (!HasError)
602 new (getStorage()) storage_type(std::move(*Other.getStorage()));
603 else
604 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
605 }
606
607 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
608 assertIsChecked();
609
610 if (compareThisIfSameType(*this, Other))
611 return;
612
613 this->~Expected();
614 new (this) Expected(std::move(Other));
615 }
616
617 pointer toPointer(pointer Val) { return Val; }
618
619 const_pointer toPointer(const_pointer Val) const { return Val; }
620
621 pointer toPointer(wrap *Val) { return &Val->get(); }
622
623 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
624
625 storage_type *getStorage() {
626 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 626, __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<storage_type *>(TStorage.buffer);
628 }
629
630 const storage_type *getStorage() const {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<const storage_type *>(TStorage.buffer);
633 }
634
635 error_type *getErrorStorage() {
636 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
638 }
639
640 const error_type *getErrorStorage() const {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
643 }
644
645 // Used by ExpectedAsOutParameter to reset the checked flag.
646 void setUnchecked() {
647#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
648 Unchecked = true;
649#endif
650 }
651
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
654 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
655 void fatalUncheckedExpected() const {
656 dbgs() << "Expected<T> must be checked before access or destruction.\n";
657 if (HasError) {
658 dbgs() << "Unchecked Expected<T> contained error:\n";
659 (*getErrorStorage())->log(dbgs());
660 } else
661 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
662 "values in success mode must still be checked prior to being "
663 "destroyed).\n";
664 abort();
665 }
666#endif
667
668 void assertIsChecked() {
669#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
670 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
671 fatalUncheckedExpected();
672#endif
673 }
674
675 union {
676 AlignedCharArrayUnion<storage_type> TStorage;
677 AlignedCharArrayUnion<error_type> ErrorStorage;
678 };
679 bool HasError : 1;
680#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
681 bool Unchecked : 1;
682#endif
683};
684
685/// Report a serious error, calling any installed error handler. See
686/// ErrorHandling.h.
687LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
688 bool gen_crash_diag = true);
689
690/// Report a fatal error if Err is a failure value.
691///
692/// This function can be used to wrap calls to fallible functions ONLY when it
693/// is known that the Error will always be a success value. E.g.
694///
695/// @code{.cpp}
696/// // foo only attempts the fallible operation if DoFallibleOperation is
697/// // true. If DoFallibleOperation is false then foo always returns
698/// // Error::success().
699/// Error foo(bool DoFallibleOperation);
700///
701/// cantFail(foo(false));
702/// @endcode
703inline void cantFail(Error Err, const char *Msg = nullptr) {
704 if (Err) {
705 if (!Msg)
706 Msg = "Failure value returned from cantFail wrapped call";
707 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 707)
;
708 }
709}
710
711/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
712/// returns the contained value.
713///
714/// This function can be used to wrap calls to fallible functions ONLY when it
715/// is known that the Error will always be a success value. E.g.
716///
717/// @code{.cpp}
718/// // foo only attempts the fallible operation if DoFallibleOperation is
719/// // true. If DoFallibleOperation is false then foo always returns an int.
720/// Expected<int> foo(bool DoFallibleOperation);
721///
722/// int X = cantFail(foo(false));
723/// @endcode
724template <typename T>
725T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
726 if (ValOrErr)
727 return std::move(*ValOrErr);
728 else {
729 if (!Msg)
730 Msg = "Failure value returned from cantFail wrapped call";
731 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 731)
;
732 }
733}
734
735/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
736/// returns the contained reference.
737///
738/// This function can be used to wrap calls to fallible functions ONLY when it
739/// is known that the Error will always be a success value. E.g.
740///
741/// @code{.cpp}
742/// // foo only attempts the fallible operation if DoFallibleOperation is
743/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
744/// Expected<Bar&> foo(bool DoFallibleOperation);
745///
746/// Bar &X = cantFail(foo(false));
747/// @endcode
748template <typename T>
749T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
750 if (ValOrErr)
751 return *ValOrErr;
752 else {
753 if (!Msg)
754 Msg = "Failure value returned from cantFail wrapped call";
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Helper for testing applicability of, and applying, handlers for
760/// ErrorInfo types.
761template <typename HandlerT>
762class ErrorHandlerTraits
763 : public ErrorHandlerTraits<decltype(
764 &std::remove_reference<HandlerT>::type::operator())> {};
765
766// Specialization functions of the form 'Error (const ErrT&)'.
767template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
768public:
769 static bool appliesTo(const ErrorInfoBase &E) {
770 return E.template isA<ErrT>();
771 }
772
773 template <typename HandlerT>
774 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
775 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 775, __PRETTY_FUNCTION__))
;
776 return H(static_cast<ErrT &>(*E));
777 }
778};
779
780// Specialization functions of the form 'void (const ErrT&)'.
781template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
782public:
783 static bool appliesTo(const ErrorInfoBase &E) {
784 return E.template isA<ErrT>();
785 }
786
787 template <typename HandlerT>
788 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
789 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 789, __PRETTY_FUNCTION__))
;
790 H(static_cast<ErrT &>(*E));
791 return Error::success();
792 }
793};
794
795/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
796template <typename ErrT>
797class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
798public:
799 static bool appliesTo(const ErrorInfoBase &E) {
800 return E.template isA<ErrT>();
801 }
802
803 template <typename HandlerT>
804 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
805 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 805, __PRETTY_FUNCTION__))
;
806 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
807 return H(std::move(SubE));
808 }
809};
810
811/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
812template <typename ErrT>
813class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
814public:
815 static bool appliesTo(const ErrorInfoBase &E) {
816 return E.template isA<ErrT>();
817 }
818
819 template <typename HandlerT>
820 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
821 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 821, __PRETTY_FUNCTION__))
;
822 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
823 H(std::move(SubE));
824 return Error::success();
825 }
826};
827
828// Specialization for member functions of the form 'RetT (const ErrT&)'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833// Specialization for member functions of the form 'RetT (const ErrT&) const'.
834template <typename C, typename RetT, typename ErrT>
835class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
836 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
837
838// Specialization for member functions of the form 'RetT (const ErrT&)'.
839template <typename C, typename RetT, typename ErrT>
840class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
841 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
842
843// Specialization for member functions of the form 'RetT (const ErrT&) const'.
844template <typename C, typename RetT, typename ErrT>
845class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
846 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
847
848/// Specialization for member functions of the form
849/// 'RetT (std::unique_ptr<ErrT>)'.
850template <typename C, typename RetT, typename ErrT>
851class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
852 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
853
854/// Specialization for member functions of the form
855/// 'RetT (std::unique_ptr<ErrT>) const'.
856template <typename C, typename RetT, typename ErrT>
857class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
858 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
859
860inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
861 return Error(std::move(Payload));
862}
863
864template <typename HandlerT, typename... HandlerTs>
865Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
866 HandlerT &&Handler, HandlerTs &&... Handlers) {
867 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
868 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
869 std::move(Payload));
870 return handleErrorImpl(std::move(Payload),
871 std::forward<HandlerTs>(Handlers)...);
872}
873
874/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
875/// unhandled errors (or Errors returned by handlers) are re-concatenated and
876/// returned.
877/// Because this function returns an error, its result must also be checked
878/// or returned. If you intend to handle all errors use handleAllErrors
879/// (which returns void, and will abort() on unhandled errors) instead.
880template <typename... HandlerTs>
881Error handleErrors(Error E, HandlerTs &&... Hs) {
882 if (!E)
883 return Error::success();
884
885 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
886
887 if (Payload->isA<ErrorList>()) {
888 ErrorList &List = static_cast<ErrorList &>(*Payload);
889 Error R;
890 for (auto &P : List.Payloads)
891 R = ErrorList::join(
892 std::move(R),
893 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
894 return R;
895 }
896
897 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
898}
899
900/// Behaves the same as handleErrors, except that by contract all errors
901/// *must* be handled by the given handlers (i.e. there must be no remaining
902/// errors after running the handlers, or llvm_unreachable is called).
903template <typename... HandlerTs>
904void handleAllErrors(Error E, HandlerTs &&... Handlers) {
905 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
906}
907
908/// Check that E is a non-error, then drop it.
909/// If E is an error, llvm_unreachable will be called.
910inline void handleAllErrors(Error E) {
911 cantFail(std::move(E));
912}
913
914/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
915///
916/// If the incoming value is a success value it is returned unmodified. If it
917/// is a failure value then it the contained error is passed to handleErrors.
918/// If handleErrors is able to handle the error then the RecoveryPath functor
919/// is called to supply the final result. If handleErrors is not able to
920/// handle all errors then the unhandled errors are returned.
921///
922/// This utility enables the follow pattern:
923///
924/// @code{.cpp}
925/// enum FooStrategy { Aggressive, Conservative };
926/// Expected<Foo> foo(FooStrategy S);
927///
928/// auto ResultOrErr =
929/// handleExpected(
930/// foo(Aggressive),
931/// []() { return foo(Conservative); },
932/// [](AggressiveStrategyError&) {
933/// // Implicitly conusme this - we'll recover by using a conservative
934/// // strategy.
935/// });
936///
937/// @endcode
938template <typename T, typename RecoveryFtor, typename... HandlerTs>
939Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
940 HandlerTs &&... Handlers) {
941 if (ValOrErr)
942 return ValOrErr;
943
944 if (auto Err = handleErrors(ValOrErr.takeError(),
945 std::forward<HandlerTs>(Handlers)...))
946 return std::move(Err);
947
948 return RecoveryPath();
949}
950
951/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
952/// will be printed before the first one is logged. A newline will be printed
953/// after each error.
954///
955/// This function is compatible with the helpers from Support/WithColor.h. You
956/// can pass any of them as the OS. Please consider using them instead of
957/// including 'error: ' in the ErrorBanner.
958///
959/// This is useful in the base level of your program to allow clean termination
960/// (allowing clean deallocation of resources, etc.), while reporting error
961/// information to the user.
962void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
963
964/// Write all error messages (if any) in E to a string. The newline character
965/// is used to separate error messages.
966inline std::string toString(Error E) {
967 SmallVector<std::string, 2> Errors;
968 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
969 Errors.push_back(EI.message());
970 });
971 return join(Errors.begin(), Errors.end(), "\n");
972}
973
974/// Consume a Error without doing anything. This method should be used
975/// only where an error can be considered a reasonable and expected return
976/// value.
977///
978/// Uses of this method are potentially indicative of design problems: If it's
979/// legitimate to do nothing while processing an "error", the error-producer
980/// might be more clearly refactored to return an Optional<T>.
981inline void consumeError(Error Err) {
982 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
983}
984
985/// Helper for converting an Error to a bool.
986///
987/// This method returns true if Err is in an error state, or false if it is
988/// in a success state. Puts Err in a checked state in both cases (unlike
989/// Error::operator bool(), which only does this for success states).
990inline bool errorToBool(Error Err) {
991 bool IsError = static_cast<bool>(Err);
992 if (IsError)
993 consumeError(std::move(Err));
994 return IsError;
995}
996
997/// Helper for Errors used as out-parameters.
998///
999/// This helper is for use with the Error-as-out-parameter idiom, where an error
1000/// is passed to a function or method by reference, rather than being returned.
1001/// In such cases it is helpful to set the checked bit on entry to the function
1002/// so that the error can be written to (unchecked Errors abort on assignment)
1003/// and clear the checked bit on exit so that clients cannot accidentally forget
1004/// to check the result. This helper performs these actions automatically using
1005/// RAII:
1006///
1007/// @code{.cpp}
1008/// Result foo(Error &Err) {
1009/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1010/// // <body of foo>
1011/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1012/// }
1013/// @endcode
1014///
1015/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1016/// used with optional Errors (Error pointers that are allowed to be null). If
1017/// ErrorAsOutParameter took an Error reference, an instance would have to be
1018/// created inside every condition that verified that Error was non-null. By
1019/// taking an Error pointer we can just create one instance at the top of the
1020/// function.
1021class ErrorAsOutParameter {
1022public:
1023 ErrorAsOutParameter(Error *Err) : Err(Err) {
1024 // Raise the checked bit if Err is success.
1025 if (Err)
1026 (void)!!*Err;
1027 }
1028
1029 ~ErrorAsOutParameter() {
1030 // Clear the checked bit.
1031 if (Err && !*Err)
1032 *Err = Error::success();
1033 }
1034
1035private:
1036 Error *Err;
1037};
1038
1039/// Helper for Expected<T>s used as out-parameters.
1040///
1041/// See ErrorAsOutParameter.
1042template <typename T>
1043class ExpectedAsOutParameter {
1044public:
1045 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1046 : ValOrErr(ValOrErr) {
1047 if (ValOrErr)
1048 (void)!!*ValOrErr;
1049 }
1050
1051 ~ExpectedAsOutParameter() {
1052 if (ValOrErr)
1053 ValOrErr->setUnchecked();
1054 }
1055
1056private:
1057 Expected<T> *ValOrErr;
1058};
1059
1060/// This class wraps a std::error_code in a Error.
1061///
1062/// This is useful if you're writing an interface that returns a Error
1063/// (or Expected) and you want to call code that still returns
1064/// std::error_codes.
1065class ECError : public ErrorInfo<ECError> {
1066 friend Error errorCodeToError(std::error_code);
1067
1068 virtual void anchor() override;
1069
1070public:
1071 void setErrorCode(std::error_code EC) { this->EC = EC; }
1072 std::error_code convertToErrorCode() const override { return EC; }
1073 void log(raw_ostream &OS) const override { OS << EC.message(); }
1074
1075 // Used by ErrorInfo::classID.
1076 static char ID;
1077
1078protected:
1079 ECError() = default;
1080 ECError(std::error_code EC) : EC(EC) {}
1081
1082 std::error_code EC;
1083};
1084
1085/// The value returned by this function can be returned from convertToErrorCode
1086/// for Error values where no sensible translation to std::error_code exists.
1087/// It should only be used in this situation, and should never be used where a
1088/// sensible conversion to std::error_code is available, as attempts to convert
1089/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1090///error to try to convert such a value).
1091std::error_code inconvertibleErrorCode();
1092
1093/// Helper for converting an std::error_code to a Error.
1094Error errorCodeToError(std::error_code EC);
1095
1096/// Helper for converting an ECError to a std::error_code.
1097///
1098/// This method requires that Err be Error() or an ECError, otherwise it
1099/// will trigger a call to abort().
1100std::error_code errorToErrorCode(Error Err);
1101
1102/// Convert an ErrorOr<T> to an Expected<T>.
1103template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1104 if (auto EC = EO.getError())
1105 return errorCodeToError(EC);
1106 return std::move(*EO);
1107}
1108
1109/// Convert an Expected<T> to an ErrorOr<T>.
1110template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1111 if (auto Err = E.takeError())
1112 return errorToErrorCode(std::move(Err));
1113 return std::move(*E);
1114}
1115
1116/// This class wraps a string in an Error.
1117///
1118/// StringError is useful in cases where the client is not expected to be able
1119/// to consume the specific error message programmatically (for example, if the
1120/// error message is to be presented to the user).
1121///
1122/// StringError can also be used when additional information is to be printed
1123/// along with a error_code message. Depending on the constructor called, this
1124/// class can either display:
1125/// 1. the error_code message (ECError behavior)
1126/// 2. a string
1127/// 3. the error_code message and a string
1128///
1129/// These behaviors are useful when subtyping is required; for example, when a
1130/// specific library needs an explicit error type. In the example below,
1131/// PDBError is derived from StringError:
1132///
1133/// @code{.cpp}
1134/// Expected<int> foo() {
1135/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1136/// "Additional information");
1137/// }
1138/// @endcode
1139///
1140class StringError : public ErrorInfo<StringError> {
1141public:
1142 static char ID;
1143
1144 // Prints EC + S and converts to EC
1145 StringError(std::error_code EC, const Twine &S = Twine());
1146
1147 // Prints S and converts to EC
1148 StringError(const Twine &S, std::error_code EC);
1149
1150 void log(raw_ostream &OS) const override;
1151 std::error_code convertToErrorCode() const override;
1152
1153 const std::string &getMessage() const { return Msg; }
1154
1155private:
1156 std::string Msg;
1157 std::error_code EC;
1158 const bool PrintMsgOnly = false;
1159};
1160
1161/// Create formatted StringError object.
1162template <typename... Ts>
1163Error createStringError(std::error_code EC, char const *Fmt,
1164 const Ts &... Vals) {
1165 std::string Buffer;
1166 raw_string_ostream Stream(Buffer);
1167 Stream << format(Fmt, Vals...);
1168 return make_error<StringError>(Stream.str(), EC);
1169}
1170
1171Error createStringError(std::error_code EC, char const *Msg);
1172
1173/// This class wraps a filename and another Error.
1174///
1175/// In some cases, an error needs to live along a 'source' name, in order to
1176/// show more detailed information to the user.
1177class FileError final : public ErrorInfo<FileError> {
1178
1179 friend Error createFileError(const Twine &, Error);
1180 friend Error createFileError(const Twine &, size_t, Error);
1181
1182public:
1183 void log(raw_ostream &OS) const override {
1184 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1184, __PRETTY_FUNCTION__))
;
1185 OS << "'" << FileName << "': ";
1186 if (Line.hasValue())
1187 OS << "line " << Line.getValue() << ": ";
1188 Err->log(OS);
1189 }
1190
1191 Error takeError() { return Error(std::move(Err)); }
1192
1193 std::error_code convertToErrorCode() const override;
1194
1195 // Used by ErrorInfo::classID.
1196 static char ID;
1197
1198private:
1199 FileError(const Twine &F, Optional<size_t> LineNum,
1200 std::unique_ptr<ErrorInfoBase> E) {
1201 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1201, __PRETTY_FUNCTION__))
;
1202 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
1203 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 FileName = F.str();
1205 Err = std::move(E);
1206 Line = std::move(LineNum);
1207 }
1208
1209 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1210 return Error(
1211 std::unique_ptr<FileError>(new FileError(F, Line, E.takePayload())));
1212 }
1213
1214 std::string FileName;
1215 Optional<size_t> Line;
1216 std::unique_ptr<ErrorInfoBase> Err;
1217};
1218
1219/// Concatenate a source file path and/or name with an Error. The resulting
1220/// Error is unchecked.
1221inline Error createFileError(const Twine &F, Error E) {
1222 return FileError::build(F, Optional<size_t>(), std::move(E));
1223}
1224
1225/// Concatenate a source file path and/or name with line number and an Error.
1226/// The resulting Error is unchecked.
1227inline Error createFileError(const Twine &F, size_t Line, Error E) {
1228 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1229}
1230
1231/// Concatenate a source file path and/or name with a std::error_code
1232/// to form an Error object.
1233inline Error createFileError(const Twine &F, std::error_code EC) {
1234 return createFileError(F, errorCodeToError(EC));
1235}
1236
1237/// Concatenate a source file path and/or name with line number and
1238/// std::error_code to form an Error object.
1239inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1240 return createFileError(F, Line, errorCodeToError(EC));
1241}
1242
1243Error createFileError(const Twine &F, ErrorSuccess) = delete;
1244
1245/// Helper for check-and-exit error handling.
1246///
1247/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1248///
1249class ExitOnError {
1250public:
1251 /// Create an error on exit helper.
1252 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1253 : Banner(std::move(Banner)),
1254 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1255
1256 /// Set the banner string for any errors caught by operator().
1257 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1258
1259 /// Set the exit-code mapper function.
1260 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1261 this->GetExitCode = std::move(GetExitCode);
1262 }
1263
1264 /// Check Err. If it's in a failure state log the error(s) and exit.
1265 void operator()(Error Err) const { checkError(std::move(Err)); }
1266
1267 /// Check E. If it's in a success state then return the contained value. If
1268 /// it's in a failure state log the error(s) and exit.
1269 template <typename T> T operator()(Expected<T> &&E) const {
1270 checkError(E.takeError());
1271 return std::move(*E);
1272 }
1273
1274 /// Check E. If it's in a success state then return the contained reference. If
1275 /// it's in a failure state log the error(s) and exit.
1276 template <typename T> T& operator()(Expected<T&> &&E) const {
1277 checkError(E.takeError());
1278 return *E;
1279 }
1280
1281private:
1282 void checkError(Error Err) const {
1283 if (Err) {
1284 int ExitCode = GetExitCode(Err);
1285 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1286 exit(ExitCode);
1287 }
1288 }
1289
1290 std::string Banner;
1291 std::function<int(const Error &)> GetExitCode;
1292};
1293
1294/// Conversion from Error to LLVMErrorRef for C error bindings.
1295inline LLVMErrorRef wrap(Error Err) {
1296 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1297}
1298
1299/// Conversion from LLVMErrorRef to Error for C error bindings.
1300inline Error unwrap(LLVMErrorRef ErrRef) {
1301 return Error(std::unique_ptr<ErrorInfoBase>(
1302 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1303}
1304
1305} // end namespace llvm
1306
1307#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
76};
77
78template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
81};
82
83//===----------------------------------------------------------------------===//
84// Extra additions to <functional>
85//===----------------------------------------------------------------------===//
86
87template <class Ty> struct identity {
88 using argument_type = Ty;
89
90 Ty &operator()(Ty &self) const {
91 return self;
92 }
93 const Ty &operator()(const Ty &self) const {
94 return self;
95 }
96};
97
98template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
101 }
102};
103
104template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
107 }
108};
109
110/// An efficient, type-erasing, non-owning reference to a callable. This is
111/// intended for use as the type of a function parameter that is not used
112/// after the function in question returns.
113///
114/// This class does not own the callable, so it is not in general safe to store
115/// a function_ref.
116template<typename Fn> class function_ref;
117
118template<typename Ret, typename ...Params>
119class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
122
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
127 }
128
129public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
132
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
143 }
144
145 operator bool() const { return callback; }
146};
147
148// deleter - Very very very simple method that is used to invoke operator
149// delete on something. It is used like this:
150//
151// for_each(V.begin(), B.end(), deleter<Interval>);
152template <class T>
153inline void deleter(T *Ptr) {
154 delete Ptr;
155}
156
157//===----------------------------------------------------------------------===//
158// Extra additions to <iterator>
159//===----------------------------------------------------------------------===//
160
161namespace adl_detail {
162
163using std::begin;
164
165template <typename ContainerTy>
166auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
169}
170
171using std::end;
172
173template <typename ContainerTy>
174auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
177}
178
179using std::swap;
180
181template <typename T>
182void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
185}
186
187} // end namespace adl_detail
188
189template <typename ContainerTy>
190auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193}
194
195template <typename ContainerTy>
196auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
199}
200
201template <typename T>
202void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205}
206
207/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208template <typename T>
209constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211}
212
213// mapped_iterator - This is a simple iterator adapter that causes a function to
214// be applied whenever operator* is invoked on the iterator.
215
216template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228 ItTy getCurrent() { return this->I; }
229
230 FuncReturnTy operator*() { return F(*this->I); }
231
232private:
233 FuncTy F;
234};
235
236// map_iterator - Provide a convenient way to create mapped_iterators, just like
237// make_pair is useful for creating pairs...
238template <class ItTy, class FuncTy>
239inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241}
242
243/// Helper to determine if type T has a member called rbegin().
244template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
247
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
250
251 template <typename>
252 static no& test(...);
253
254public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
256};
257
258/// Metafunction to determine if T& or T has a member called rbegin().
259template <typename Ty>
260struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
261};
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have rbegin()/rend() methods for this to work.
265template <typename ContainerTy>
266auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
270}
271
272// Returns a std::reverse_iterator wrapped around the given iterator.
273template <typename IteratorTy>
274std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
276}
277
278// Returns an iterator_range over the given container which iterates in reverse.
279// Note that the container must have begin()/end() methods which return
280// bidirectional iterators for this to work.
281template <typename ContainerTy>
282auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
289}
290
291/// An iterator adaptor that filters the elements of given inner iterators.
292///
293/// The predicate parameter should be a callable object that accepts the wrapped
294/// iterator's reference type and returns a bool. When incrementing or
295/// decrementing the iterator, it will call the predicate on each element and
296/// skip any where it returns false.
297///
298/// \code
299/// int A[] = { 1, 2, 3, 4 };
300/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301/// // R contains { 1, 3 }.
302/// \endcode
303///
304/// Note: filter_iterator_base implements support for forward iteration.
305/// filter_iterator_impl exists to provide support for bidirectional iteration,
306/// conditional on whether the wrapped iterator supports it.
307template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
321
322protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
325
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
329 }
330
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
338 }
339
340public:
341 using BaseT::operator++;
342
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
347 }
348};
349
350/// Specialization of filter_iterator_base for forward iteration only.
351template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
356
357public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
361};
362
363/// Specialization of filter_iterator_base for bidirectional iteration.
364template <typename WrappedIteratorT, typename PredicateT>
365class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
374 }
375
376public:
377 using BaseT::operator--;
378
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
382
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
387 }
388};
389
390namespace detail {
391
392template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
394};
395
396template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
398};
399
400/// Helper which sets its type member to forward_iterator_tag if the category
401/// of \p IterT does not derive from bidirectional_iterator_tag, and to
402/// bidirectional_iterator_tag otherwise.
403template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
407};
408
409} // namespace detail
410
411/// Defines filter_iterator to a suitable specialization of
412/// filter_iterator_impl, based on the underlying iterator's category.
413template <typename WrappedIteratorT, typename PredicateT>
414using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
417
418/// Convenience function that takes a range of elements and a predicate,
419/// and return a new filter_iterator range.
420///
421/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422/// lifetime of that temporary is not kept by the returned range object, and the
423/// temporary is going to be dropped on the floor after the make_iterator_range
424/// full expression that contains this function call.
425template <typename RangeT, typename PredicateT>
426iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
435}
436
437/// A pseudo-iterator adaptor that is designed to implement "early increment"
438/// style loops.
439///
440/// This is *not a normal iterator* and should almost never be used directly. It
441/// is intended primarily to be used with range based for loops and some range
442/// algorithms.
443///
444/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445/// somewhere between them. The constraints of these iterators are:
446///
447/// - On construction or after being incremented, it is comparable and
448/// dereferencable. It is *not* incrementable.
449/// - After being dereferenced, it is neither comparable nor dereferencable, it
450/// is only incrementable.
451///
452/// This means you can only dereference the iterator once, and you can only
453/// increment it once between dereferences.
454template <typename WrappedIteratorT>
455class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
461
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
463
464protected:
465#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
466 bool IsEarlyIncremented = false;
467#endif
468
469public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
471
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
475 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 475, __PRETTY_FUNCTION__))
;
476 IsEarlyIncremented = true;
477#endif
478 return *(this->I)++;
479 }
480
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 484, __PRETTY_FUNCTION__))
;
485 IsEarlyIncremented = false;
486#endif
487 return *this;
488 }
489
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 493, __PRETTY_FUNCTION__))
;
494#endif
495 return BaseT::operator==(RHS);
496 }
497};
498
499/// Make a range that does early increment to allow mutation of the underlying
500/// range without disrupting iteration.
501///
502/// The underlying iterator will be incremented immediately after it is
503/// dereferenced, allowing deletion of the current node or insertion of nodes to
504/// not disrupt iteration provided they do not invalidate the *next* iterator --
505/// the current iterator can be invalidated.
506///
507/// This requires a very exact pattern of use that is only really suitable to
508/// range based for loops and other range algorithms that explicitly guarantee
509/// to dereference exactly once each element, and to increment exactly once each
510/// element.
511template <typename RangeT>
512iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
518}
519
520// forward declarations required by zip_shortest/zip_first/zip_longest
521template <typename R, typename UnaryPredicate>
522bool all_of(R &&range, UnaryPredicate P);
523template <typename R, typename UnaryPredicate>
524bool any_of(R &&range, UnaryPredicate P);
525
526template <size_t... I> struct index_sequence;
527
528template <class... Ts> struct index_sequence_for;
529
530namespace detail {
531
532using std::declval;
533
534// We have to alias this since inlining the actual type at the usage site
535// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
538};
539
540template <typename ZipType, typename... Iters>
541using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
555
556template <typename ZipType, typename... Iters>
557struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
560
561 std::tuple<Iters...> iterators;
562
563protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
571 }
572
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
576 }
577
578public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
580
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
582
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
585 }
586
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
590 }
591
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
597 }
598};
599
600template <typename... Iters>
601struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
603
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
606 }
607
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
609};
610
611template <typename... Iters>
612class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
618 }
619
620public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
622
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
624
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
627 }
628};
629
630template <template <typename...> class ItType, typename... Args> class zippy {
631public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
638
639private:
640 std::tuple<Args...> ts;
641
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
644 }
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
647 }
648
649public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
651
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
654};
655
656} // end namespace detail
657
658/// zip iterator for two or more iteratable types.
659template <typename T, typename U, typename... Args>
660detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
664}
665
666/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667/// be the shortest.
668template <typename T, typename U, typename... Args>
669detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
673}
674
675namespace detail {
676template <typename Iter>
677static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
681}
682
683template <typename Iter>
684static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
690}
691
692template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
696};
697
698template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
700};
701
702template <typename... Iters>
703class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
716
717private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
720
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
728 }
729
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
733 }
734
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
739 }
740
741public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
745
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
747
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
749
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
753 }
754
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
757 }
758};
759
760template <typename... Args> class zip_longest_range {
761public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
769
770private:
771 std::tuple<Args...> ts;
772
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
781 }
782
783public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
785
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
788};
789} // namespace detail
790
791/// Iterate over two or more iterators at the same time. Iteration continues
792/// until all iterators reach the end. The llvm::Optional only contains a value
793/// if the iterator has not reached the end.
794template <typename T, typename U, typename... Args>
795detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
799}
800
801/// Iterator wrapper that concatenates sequences together.
802///
803/// This can concatenate different iterators, even with different types, into
804/// a single iterator provided the value types of all the concatenated
805/// iterators expose `reference` and `pointer` types that can be converted to
806/// `ValueT &` and `ValueT *` respectively. It doesn't support more
807/// interesting/customized pointer or reference types.
808///
809/// Currently this only supports forward or higher iterator categories as
810/// inputs and always exposes a forward iterator interface.
811template <typename ValueT, typename... IterTs>
812class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
816
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
819 ///
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
825
826 /// Attempts to increment a specific iterator.
827 ///
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
835
836 ++Begin;
837 return true;
838 }
839
840 /// Increments the first non-end iterator.
841 ///
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
847
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
852
853 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 853)
;
854 }
855
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
864
865 return &*Begin;
866 }
867
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
870 ///
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
876
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
881
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 882)
;
883 }
884
885public:
886 /// Constructs an iterator from a squence of ranges.
887 ///
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
893
894 using BaseT::operator++;
895
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
899 }
900
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
902
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
905 }
906};
907
908namespace detail {
909
910/// Helper to store a sequence of ranges being concatenated and access them.
911///
912/// This is designed to facilitate providing actual storage when temporaries
913/// are passed into the constructor such that we can use it as part of range
914/// based for loops.
915template <typename ValueT, typename... RangeTs> class concat_range {
916public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
920
921private:
922 std::tuple<RangeTs...> Ranges;
923
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
926 }
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
930 }
931
932public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
935
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
938};
939
940} // end namespace detail
941
942/// Concatenated range across two or more ranges.
943///
944/// The desired value type must be explicitly specified.
945template <typename ValueT, typename... RangeTs>
946detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
951}
952
953//===----------------------------------------------------------------------===//
954// Extra additions to <utility>
955//===----------------------------------------------------------------------===//
956
957/// Function object to check whether the first component of a std::pair
958/// compares less than the first component of another std::pair.
959struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
962 }
963};
964
965/// Function object to check whether the second component of a std::pair
966/// compares less than the second component of another std::pair.
967struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
970 }
971};
972
973/// \brief Function object to apply a binary function to the first component of
974/// a std::pair.
975template<typename FuncTy>
976struct on_first {
977 FuncTy func;
978
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
983 }
984};
985
986// A subset of N3658. More stuff can be added as-needed.
987
988/// Represents a compile-time sequence of integers.
989template <class T, T... I> struct integer_sequence {
990 using value_type = T;
991
992 static constexpr size_t size() { return sizeof...(I); }
993};
994
995/// Alias for the common case of a sequence of size_ts.
996template <size_t... I>
997struct index_sequence : integer_sequence<std::size_t, I...> {};
998
999template <std::size_t N, std::size_t... I>
1000struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001template <std::size_t... I>
1002struct build_index_impl<0, I...> : index_sequence<I...> {};
1003
1004/// Creates a compile-time integer sequence for a parameter pack.
1005template <class... Ts>
1006struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1007
1008/// Utility type to build an inheritance chain that makes it easy to rank
1009/// overload candidates.
1010template <int N> struct rank : rank<N - 1> {};
1011template <> struct rank<0> {};
1012
1013/// traits class for checking whether type T is one of any of the given
1014/// types in the variadic list.
1015template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1017};
1018
1019template <typename T, typename U, typename... Ts>
1020struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1023};
1024
1025/// traits class for checking whether type T is a base class for all
1026/// the given types in the variadic list.
1027template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1029};
1030
1031template <typename T, typename U, typename... Ts>
1032struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1035};
1036
1037//===----------------------------------------------------------------------===//
1038// Extra additions for arrays
1039//===----------------------------------------------------------------------===//
1040
1041/// Find the length of an array.
1042template <class T, std::size_t N>
1043constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1045}
1046
1047/// Adapt std::less<T> for array_pod_sort.
1048template<typename T>
1049inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1057}
1058
1059/// get_array_pod_sort_comparator - This is an internal helper function used to
1060/// get type deduction of T right.
1061template<typename T>
1062inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1065}
1066
1067/// array_pod_sort - This sorts an array with the specified start and end
1068/// extent. This is just like std::sort, except that it calls qsort instead of
1069/// using an inlined template. qsort is slightly slower than std::sort, but
1070/// most sorts are not performance critical in LLVM and std::sort has to be
1071/// template instantiated for each type, leading to significant measured code
1072/// bloat. This function should generally be used instead of std::sort where
1073/// possible.
1074///
1075/// This function assumes that you have simple POD-like types that can be
1076/// compared with std::less and can be moved with memcpy. If this isn't true,
1077/// you should use std::sort.
1078///
1079/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080/// default to std::less.
1081template<class IteratorTy>
1082inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087#ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090#endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092}
1093
1094template <class IteratorTy>
1095inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104#ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107#endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1110}
1111
1112// Provide wrappers to std::sort which shuffle the elements before sorting
1113// to help uncover non-deterministic behavior (PR35135).
1114template <typename IteratorTy>
1115inline void sort(IteratorTy Start, IteratorTy End) {
1116#ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119#endif
1120 std::sort(Start, End);
1121}
1122
1123template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1125}
1126
1127template <typename IteratorTy, typename Compare>
1128inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129#ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132#endif
1133 std::sort(Start, End, Comp);
1134}
1135
1136template <typename Container, typename Compare>
1137inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Extra additions to <algorithm>
1143//===----------------------------------------------------------------------===//
1144
1145/// For a container of pointers, deletes the pointers and then clears the
1146/// container.
1147template<typename Container>
1148void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1152}
1153
1154/// In a container of pairs (usually a map) whose second element is a pointer,
1155/// deletes the second elements and then clears the container.
1156template<typename Container>
1157void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1161}
1162
1163/// Get the size of a range. This is a wrapper function around std::distance
1164/// which is only enabled when the operation is O(1).
1165template <typename R>
1166auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1173}
1174
1175/// Provide wrappers to std::for_each which take ranges instead of having to
1176/// pass begin/end explicitly.
1177template <typename R, typename UnaryPredicate>
1178UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1180}
1181
1182/// Provide wrappers to std::all_of which take ranges instead of having to pass
1183/// begin/end explicitly.
1184template <typename R, typename UnaryPredicate>
1185bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1187}
1188
1189/// Provide wrappers to std::any_of which take ranges instead of having to pass
1190/// begin/end explicitly.
1191template <typename R, typename UnaryPredicate>
1192bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1194}
1195
1196/// Provide wrappers to std::none_of which take ranges instead of having to pass
1197/// begin/end explicitly.
1198template <typename R, typename UnaryPredicate>
1199bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1201}
1202
1203/// Provide wrappers to std::find which take ranges instead of having to pass
1204/// begin/end explicitly.
1205template <typename R, typename T>
1206auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1208}
1209
1210/// Provide wrappers to std::find_if which take ranges instead of having to pass
1211/// begin/end explicitly.
1212template <typename R, typename UnaryPredicate>
1213auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217template <typename R, typename UnaryPredicate>
1218auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1220}
1221
1222/// Provide wrappers to std::remove_if which take ranges instead of having to
1223/// pass begin/end explicitly.
1224template <typename R, typename UnaryPredicate>
1225auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1227}
1228
1229/// Provide wrappers to std::copy_if which take ranges instead of having to
1230/// pass begin/end explicitly.
1231template <typename R, typename OutputIt, typename UnaryPredicate>
1232OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1234}
1235
1236template <typename R, typename OutputIt>
1237OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1239}
1240
1241/// Wrapper function around std::find to detect if an element exists
1242/// in a container.
1243template <typename R, typename E>
1244bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1246}
1247
1248/// Wrapper function around std::count to count the number of times an element
1249/// \p Element occurs in the given range \p Range.
1250template <typename R, typename E>
1251auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1254}
1255
1256/// Wrapper function around std::count_if to count the number of times an
1257/// element satisfying a given predicate occurs in a range.
1258template <typename R, typename UnaryPredicate>
1259auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1262}
1263
1264/// Wrapper function around std::transform to apply a function to a range and
1265/// store the result elsewhere.
1266template <typename R, typename OutputIt, typename UnaryPredicate>
1267OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1269}
1270
1271/// Provide wrappers to std::partition which take ranges instead of having to
1272/// pass begin/end explicitly.
1273template <typename R, typename UnaryPredicate>
1274auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1276}
1277
1278/// Provide wrappers to std::lower_bound which take ranges instead of having to
1279/// pass begin/end explicitly.
1280template <typename R, typename T>
1281auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range),
1283 std::forward<T>(Value));
1284}
1285
1286template <typename R, typename T, typename Compare>
1287auto lower_bound(R &&Range, T &&Value, Compare C)
1288 -> decltype(adl_begin(Range)) {
1289 return std::lower_bound(adl_begin(Range), adl_end(Range),
1290 std::forward<T>(Value), C);
1291}
1292
1293/// Provide wrappers to std::upper_bound which take ranges instead of having to
1294/// pass begin/end explicitly.
1295template <typename R, typename T>
1296auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1297 return std::upper_bound(adl_begin(Range), adl_end(Range),
1298 std::forward<T>(Value));
1299}
1300
1301template <typename R, typename T, typename Compare>
1302auto upper_bound(R &&Range, T &&Value, Compare C)
1303 -> decltype(adl_begin(Range)) {
1304 return std::upper_bound(adl_begin(Range), adl_end(Range),
1305 std::forward<T>(Value), C);
1306}
1307
1308template <typename R>
1309void stable_sort(R &&Range) {
1310 std::stable_sort(adl_begin(Range), adl_end(Range));
1311}
1312
1313template <typename R, typename Compare>
1314void stable_sort(R &&Range, Compare C) {
1315 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1316}
1317
1318/// Binary search for the first index where a predicate is true.
1319/// Returns the first I in [Lo, Hi) where C(I) is true, or Hi if it never is.
1320/// Requires that C is always false below some limit, and always true above it.
1321///
1322/// Example:
1323/// size_t DawnModernEra = bsearch(1776, 2050, [](size_t Year){
1324/// return Presidents.for(Year).twitterHandle() != None;
1325/// });
1326///
1327/// Note the return value differs from std::binary_search!
1328template <typename Predicate>
1329size_t bsearch(size_t Lo, size_t Hi, Predicate P) {
1330 while (Lo != Hi) {
1331 assert(Hi > Lo)((Hi > Lo) ? static_cast<void> (0) : __assert_fail (
"Hi > Lo", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 size_t Mid = Lo + (Hi - Lo) / 2;
1333 if (P(Mid))
1334 Hi = Mid;
1335 else
1336 Lo = Mid + 1;
1337 }
1338 return Hi;
1339}
1340
1341/// Binary search for the first iterator where a predicate is true.
1342/// Returns the first I in [Lo, Hi) where C(*I) is true, or Hi if it never is.
1343/// Requires that C is always false below some limit, and always true above it.
1344template <typename It, typename Predicate,
1345 typename Val = decltype(*std::declval<It>())>
1346It bsearch(It Lo, It Hi, Predicate P) {
1347 return std::lower_bound(Lo, Hi, 0u,
1348 [&](const Val &V, unsigned) { return !P(V); });
1349}
1350
1351/// Binary search for the first iterator in a range where a predicate is true.
1352/// Requires that C is always false below some limit, and always true above it.
1353template <typename R, typename Predicate>
1354auto bsearch(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1355 return bsearch(adl_begin(Range), adl_end(Range), P);
1356}
1357
1358/// Wrapper function around std::equal to detect if all elements
1359/// in a container are same.
1360template <typename R>
1361bool is_splat(R &&Range) {
1362 size_t range_size = size(Range);
1363 return range_size != 0 && (range_size == 1 ||
1364 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1365}
1366
1367/// Given a range of type R, iterate the entire range and return a
1368/// SmallVector with elements of the vector. This is useful, for example,
1369/// when you want to iterate a range and then sort the results.
1370template <unsigned Size, typename R>
1371SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1372to_vector(R &&Range) {
1373 return {adl_begin(Range), adl_end(Range)};
1374}
1375
1376/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1377/// `erase_if` which is equivalent to:
1378///
1379/// C.erase(remove_if(C, pred), C.end());
1380///
1381/// This version works for any container with an erase method call accepting
1382/// two iterators.
1383template <typename Container, typename UnaryPredicate>
1384void erase_if(Container &C, UnaryPredicate P) {
1385 C.erase(remove_if(C, P), C.end());
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Extra additions to <memory>
1390//===----------------------------------------------------------------------===//
1391
1392// Implement make_unique according to N3656.
1393
1394/// Constructs a `new T()` with the given args and returns a
1395/// `unique_ptr<T>` which owns the object.
1396///
1397/// Example:
1398///
1399/// auto p = make_unique<int>();
1400/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1401template <class T, class... Args>
1402typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1403make_unique(Args &&... args) {
1404 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
5
Memory is allocated
1405}
1406
1407/// Constructs a `new T[n]` with the given args and returns a
1408/// `unique_ptr<T[]>` which owns the object.
1409///
1410/// \param n size of the new array.
1411///
1412/// Example:
1413///
1414/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1415template <class T>
1416typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1417 std::unique_ptr<T>>::type
1418make_unique(size_t n) {
1419 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1420}
1421
1422/// This function isn't used and is only here to provide better compile errors.
1423template <class T, class... Args>
1424typename std::enable_if<std::extent<T>::value != 0>::type
1425make_unique(Args &&...) = delete;
1426
1427struct FreeDeleter {
1428 void operator()(void* v) {
1429 ::free(v);
1430 }
1431};
1432
1433template<typename First, typename Second>
1434struct pair_hash {
1435 size_t operator()(const std::pair<First, Second> &P) const {
1436 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1437 }
1438};
1439
1440/// A functor like C++14's std::less<void> in its absence.
1441struct less {
1442 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1443 return std::forward<A>(a) < std::forward<B>(b);
1444 }
1445};
1446
1447/// A functor like C++14's std::equal<void> in its absence.
1448struct equal {
1449 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1450 return std::forward<A>(a) == std::forward<B>(b);
1451 }
1452};
1453
1454/// Binary functor that adapts to any other binary functor after dereferencing
1455/// operands.
1456template <typename T> struct deref {
1457 T func;
1458
1459 // Could be further improved to cope with non-derivable functors and
1460 // non-binary functors (should be a variadic template member function
1461 // operator()).
1462 template <typename A, typename B>
1463 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1464 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return func(*lhs, *rhs);
1467 }
1468};
1469
1470namespace detail {
1471
1472template <typename R> class enumerator_iter;
1473
1474template <typename R> struct result_pair {
1475 friend class enumerator_iter<R>;
1476
1477 result_pair() = default;
1478 result_pair(std::size_t Index, IterOfRange<R> Iter)
1479 : Index(Index), Iter(Iter) {}
1480
1481 result_pair<R> &operator=(const result_pair<R> &Other) {
1482 Index = Other.Index;
1483 Iter = Other.Iter;
1484 return *this;
1485 }
1486
1487 std::size_t index() const { return Index; }
1488 const ValueOfRange<R> &value() const { return *Iter; }
1489 ValueOfRange<R> &value() { return *Iter; }
1490
1491private:
1492 std::size_t Index = std::numeric_limits<std::size_t>::max();
1493 IterOfRange<R> Iter;
1494};
1495
1496template <typename R>
1497class enumerator_iter
1498 : public iterator_facade_base<
1499 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1500 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1501 typename std::iterator_traits<IterOfRange<R>>::pointer,
1502 typename std::iterator_traits<IterOfRange<R>>::reference> {
1503 using result_type = result_pair<R>;
1504
1505public:
1506 explicit enumerator_iter(IterOfRange<R> EndIter)
1507 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1508
1509 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1510 : Result(Index, Iter) {}
1511
1512 result_type &operator*() { return Result; }
1513 const result_type &operator*() const { return Result; }
1514
1515 enumerator_iter<R> &operator++() {
1516 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1516, __PRETTY_FUNCTION__))
;
1517 ++Result.Iter;
1518 ++Result.Index;
1519 return *this;
1520 }
1521
1522 bool operator==(const enumerator_iter<R> &RHS) const {
1523 // Don't compare indices here, only iterators. It's possible for an end
1524 // iterator to have different indices depending on whether it was created
1525 // by calling std::end() versus incrementing a valid iterator.
1526 return Result.Iter == RHS.Result.Iter;
1527 }
1528
1529 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1530 Result = Other.Result;
1531 return *this;
1532 }
1533
1534private:
1535 result_type Result;
1536};
1537
1538template <typename R> class enumerator {
1539public:
1540 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1541
1542 enumerator_iter<R> begin() {
1543 return enumerator_iter<R>(0, std::begin(TheRange));
1544 }
1545
1546 enumerator_iter<R> end() {
1547 return enumerator_iter<R>(std::end(TheRange));
1548 }
1549
1550private:
1551 R TheRange;
1552};
1553
1554} // end namespace detail
1555
1556/// Given an input range, returns a new range whose values are are pair (A,B)
1557/// such that A is the 0-based index of the item in the sequence, and B is
1558/// the value from the original sequence. Example:
1559///
1560/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1561/// for (auto X : enumerate(Items)) {
1562/// printf("Item %d - %c\n", X.index(), X.value());
1563/// }
1564///
1565/// Output:
1566/// Item 0 - A
1567/// Item 1 - B
1568/// Item 2 - C
1569/// Item 3 - D
1570///
1571template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1572 return detail::enumerator<R>(std::forward<R>(TheRange));
1573}
1574
1575namespace detail {
1576
1577template <typename F, typename Tuple, std::size_t... I>
1578auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1579 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1580 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1581}
1582
1583} // end namespace detail
1584
1585/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1586/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1587/// return the result.
1588template <typename F, typename Tuple>
1589auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1590 std::forward<F>(f), std::forward<Tuple>(t),
1591 build_index_impl<
1592 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1593 using Indices = build_index_impl<
1594 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1595
1596 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1597 Indices{});
1598}
1599
1600/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1601/// time. Not meant for use with random-access iterators.
1602template <typename IterTy>
1603bool hasNItems(
1604 IterTy &&Begin, IterTy &&End, unsigned N,
1605 typename std::enable_if<
1606 !std::is_same<
1607 typename std::iterator_traits<typename std::remove_reference<
1608 decltype(Begin)>::type>::iterator_category,
1609 std::random_access_iterator_tag>::value,
1610 void>::type * = nullptr) {
1611 for (; N; --N, ++Begin)
1612 if (Begin == End)
1613 return false; // Too few.
1614 return Begin == End;
1615}
1616
1617/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1618/// time. Not meant for use with random-access iterators.
1619template <typename IterTy>
1620bool hasNItemsOrMore(
1621 IterTy &&Begin, IterTy &&End, unsigned N,
1622 typename std::enable_if<
1623 !std::is_same<
1624 typename std::iterator_traits<typename std::remove_reference<
1625 decltype(Begin)>::type>::iterator_category,
1626 std::random_access_iterator_tag>::value,
1627 void>::type * = nullptr) {
1628 for (; N; --N, ++Begin)
1629 if (Begin == End)
1630 return false; // Too few.
1631 return true;
1632}
1633
1634/// Returns a raw pointer that represents the same address as the argument.
1635///
1636/// The late bound return should be removed once we move to C++14 to better
1637/// align with the C++20 declaration. Also, this implementation can be removed
1638/// once we move to C++20 where it's defined as std::to_addres()
1639///
1640/// The std::pointer_traits<>::to_address(p) variations of these overloads has
1641/// not been implemented.
1642template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1643 return P.operator->();
1644}
1645template <class T> constexpr T *to_address(T *P) { return P; }
1646
1647} // end namespace llvm
1648
1649#endif // LLVM_ADT_STLEXTRAS_H