Bug Summary

File:include/llvm/Support/Error.h
Warning:line 200, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyldELF.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/ExecutionEngine/RuntimeDyld -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp

1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RuntimeDyldELF.h"
14#include "RuntimeDyldCheckerImpl.h"
15#include "Targets/RuntimeDyldELFMips.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/BinaryFormat/ELF.h"
20#include "llvm/Object/ELFObjectFile.h"
21#include "llvm/Object/ObjectFile.h"
22#include "llvm/Support/Endian.h"
23#include "llvm/Support/MemoryBuffer.h"
24
25using namespace llvm;
26using namespace llvm::object;
27using namespace llvm::support::endian;
28
29#define DEBUG_TYPE"dyld" "dyld"
30
31static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32
33static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
35}
36
37template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39}
40
41static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46}
47
48// Return the bits [Start, End] from Val shifted Start bits.
49// For instance, getBits(0xF0, 4, 8) returns 0xF.
50static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
53}
54
55namespace {
56
57template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword;
59
60 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
61 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
62 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
63 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
64
65 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
66
67 typedef typename ELFT::uint addr_type;
68
69 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
70
71public:
72 static Expected<std::unique_ptr<DyldELFObject>>
73 create(MemoryBufferRef Wrapper);
74
75 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
76
77 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
78
79 // Methods for type inquiry through isa, cast and dyn_cast
80 static bool classof(const Binary *v) {
81 return (isa<ELFObjectFile<ELFT>>(v) &&
82 classof(cast<ELFObjectFile<ELFT>>(v)));
83 }
84 static bool classof(const ELFObjectFile<ELFT> *v) {
85 return v->isDyldType();
86 }
87};
88
89
90
91// The MemoryBuffer passed into this constructor is just a wrapper around the
92// actual memory. Ultimately, the Binary parent class will take ownership of
93// this MemoryBuffer object but not the underlying memory.
94template <class ELFT>
95DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
96 : ELFObjectFile<ELFT>(std::move(Obj)) {
97 this->isDyldELFObject = true;
98}
99
100template <class ELFT>
101Expected<std::unique_ptr<DyldELFObject<ELFT>>>
102DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
103 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
104 if (auto E = Obj.takeError())
105 return std::move(E);
106 std::unique_ptr<DyldELFObject<ELFT>> Ret(
107 new DyldELFObject<ELFT>(std::move(*Obj)));
108 return std::move(Ret);
109}
110
111template <class ELFT>
112void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
113 uint64_t Addr) {
114 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
115 Elf_Shdr *shdr =
116 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
117
118 // This assumes the address passed in matches the target address bitness
119 // The template-based type cast handles everything else.
120 shdr->sh_addr = static_cast<addr_type>(Addr);
121}
122
123template <class ELFT>
124void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
125 uint64_t Addr) {
126
127 Elf_Sym *sym = const_cast<Elf_Sym *>(
128 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
129
130 // This assumes the address passed in matches the target address bitness
131 // The template-based type cast handles everything else.
132 sym->st_value = static_cast<addr_type>(Addr);
133}
134
135class LoadedELFObjectInfo final
136 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
137 RuntimeDyld::LoadedObjectInfo> {
138public:
139 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
140 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
141
142 OwningBinary<ObjectFile>
143 getObjectForDebug(const ObjectFile &Obj) const override;
144};
145
146template <typename ELFT>
147static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
148createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
149 const LoadedELFObjectInfo &L) {
150 typedef typename ELFT::Shdr Elf_Shdr;
151 typedef typename ELFT::uint addr_type;
152
153 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
154 DyldELFObject<ELFT>::create(Buffer);
155 if (Error E = ObjOrErr.takeError())
156 return std::move(E);
157
158 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
159
160 // Iterate over all sections in the object.
161 auto SI = SourceObject.section_begin();
162 for (const auto &Sec : Obj->sections()) {
163 StringRef SectionName;
164 Sec.getName(SectionName);
165 if (SectionName != "") {
166 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
167 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
168 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
169
170 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
171 // This assumes that the address passed in matches the target address
172 // bitness. The template-based type cast handles everything else.
173 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
174 }
175 }
176 ++SI;
177 }
178
179 return std::move(Obj);
180}
181
182static OwningBinary<ObjectFile>
183createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
184 assert(Obj.isELF() && "Not an ELF object file.")((Obj.isELF() && "Not an ELF object file.") ? static_cast
<void> (0) : __assert_fail ("Obj.isELF() && \"Not an ELF object file.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 184, __PRETTY_FUNCTION__))
;
185
186 std::unique_ptr<MemoryBuffer> Buffer =
187 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
188
189 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
190 handleAllErrors(DebugObj.takeError());
191 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
200 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
201 DebugObj =
202 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
203 else
204 llvm_unreachable("Unexpected ELF format")::llvm::llvm_unreachable_internal("Unexpected ELF format", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 204)
;
205
206 handleAllErrors(DebugObj.takeError());
207 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
208}
209
210OwningBinary<ObjectFile>
211LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
212 return createELFDebugObject(Obj, *this);
213}
214
215} // anonymous namespace
216
217namespace llvm {
218
219RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
220 JITSymbolResolver &Resolver)
221 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
222RuntimeDyldELF::~RuntimeDyldELF() {}
223
224void RuntimeDyldELF::registerEHFrames() {
225 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
226 SID EHFrameSID = UnregisteredEHFrameSections[i];
227 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
228 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
229 size_t EHFrameSize = Sections[EHFrameSID].getSize();
230 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
231 }
232 UnregisteredEHFrameSections.clear();
233}
234
235std::unique_ptr<RuntimeDyldELF>
236llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
237 RuntimeDyld::MemoryManager &MemMgr,
238 JITSymbolResolver &Resolver) {
239 switch (Arch) {
240 default:
241 return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
242 case Triple::mips:
243 case Triple::mipsel:
244 case Triple::mips64:
245 case Triple::mips64el:
246 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
247 }
248}
249
250std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
251RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
252 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
253 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
254 else {
255 HasError = true;
256 raw_string_ostream ErrStream(ErrorStr);
257 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
258 return nullptr;
259 }
260}
261
262void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
263 uint64_t Offset, uint64_t Value,
264 uint32_t Type, int64_t Addend,
265 uint64_t SymOffset) {
266 switch (Type) {
267 default:
268 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 268)
;
269 break;
270 case ELF::R_X86_64_NONE:
271 break;
272 case ELF::R_X86_64_64: {
273 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
274 Value + Addend;
275 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
276 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
;
277 break;
278 }
279 case ELF::R_X86_64_32:
280 case ELF::R_X86_64_32S: {
281 Value += Addend;
282 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||(((Type == ELF::R_X86_64_32 && (Value <= (4294967295U
))) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <=
(2147483647) && (int64_t)Value >= (-2147483647-1)
))) ? static_cast<void> (0) : __assert_fail ("(Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 284, __PRETTY_FUNCTION__))
283 (Type == ELF::R_X86_64_32S &&(((Type == ELF::R_X86_64_32 && (Value <= (4294967295U
))) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <=
(2147483647) && (int64_t)Value >= (-2147483647-1)
))) ? static_cast<void> (0) : __assert_fail ("(Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 284, __PRETTY_FUNCTION__))
284 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)))(((Type == ELF::R_X86_64_32 && (Value <= (4294967295U
))) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <=
(2147483647) && (int64_t)Value >= (-2147483647-1)
))) ? static_cast<void> (0) : __assert_fail ("(Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 284, __PRETTY_FUNCTION__))
;
285 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
286 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
287 TruncatedAddr;
288 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
289 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
;
290 break;
291 }
292 case ELF::R_X86_64_PC8: {
293 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
294 int64_t RealOffset = Value + Addend - FinalAddress;
295 assert(isInt<8>(RealOffset))((isInt<8>(RealOffset)) ? static_cast<void> (0) :
__assert_fail ("isInt<8>(RealOffset)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 295, __PRETTY_FUNCTION__))
;
296 int8_t TruncOffset = (RealOffset & 0xFF);
297 Section.getAddress()[Offset] = TruncOffset;
298 break;
299 }
300 case ELF::R_X86_64_PC32: {
301 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
302 int64_t RealOffset = Value + Addend - FinalAddress;
303 assert(isInt<32>(RealOffset))((isInt<32>(RealOffset)) ? static_cast<void> (0) :
__assert_fail ("isInt<32>(RealOffset)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 303, __PRETTY_FUNCTION__))
;
304 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
305 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
306 TruncOffset;
307 break;
308 }
309 case ELF::R_X86_64_PC64: {
310 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
311 int64_t RealOffset = Value + Addend - FinalAddress;
312 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
313 RealOffset;
314 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", RealOffset
) << " at " << format("%p\n", FinalAddress); } } while
(false)
315 << format("%p\n", FinalAddress))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", RealOffset
) << " at " << format("%p\n", FinalAddress); } } while
(false)
;
316 break;
317 }
318 case ELF::R_X86_64_GOTOFF64: {
319 // Compute Value - GOTBase.
320 uint64_t GOTBase = 0;
321 for (const auto &Section : Sections) {
322 if (Section.getName() == ".got") {
323 GOTBase = Section.getLoadAddressWithOffset(0);
324 break;
325 }
326 }
327 assert(GOTBase != 0 && "missing GOT")((GOTBase != 0 && "missing GOT") ? static_cast<void
> (0) : __assert_fail ("GOTBase != 0 && \"missing GOT\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 327, __PRETTY_FUNCTION__))
;
328 int64_t GOTOffset = Value - GOTBase + Addend;
329 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
330 break;
331 }
332 }
333}
334
335void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
336 uint64_t Offset, uint32_t Value,
337 uint32_t Type, int32_t Addend) {
338 switch (Type) {
339 case ELF::R_386_32: {
340 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
341 Value + Addend;
342 break;
343 }
344 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
345 // reach any 32 bit address.
346 case ELF::R_386_PLT32:
347 case ELF::R_386_PC32: {
348 uint32_t FinalAddress =
349 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
350 uint32_t RealOffset = Value + Addend - FinalAddress;
351 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
352 RealOffset;
353 break;
354 }
355 default:
356 // There are other relocation types, but it appears these are the
357 // only ones currently used by the LLVM ELF object writer
358 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 358)
;
359 break;
360 }
361}
362
363void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
364 uint64_t Offset, uint64_t Value,
365 uint32_t Type, int64_t Addend) {
366 uint32_t *TargetPtr =
367 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
368 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
369 // Data should use target endian. Code should always use little endian.
370 bool isBE = Arch == Triple::aarch64_be;
371
372 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
373 << format("%llx", Section.getAddressWithOffset(Offset))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
374 << " FinalAddress: 0x" << format("%llx", FinalAddress)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
375 << " Value: 0x" << format("%llx", Value) << " Type: 0x"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
376 << format("%x", Type) << " Addend: 0x"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
377 << format("%llx", Addend) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
;
378
379 switch (Type) {
380 default:
381 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 381)
;
382 break;
383 case ELF::R_AARCH64_ABS16: {
384 uint64_t Result = Value + Addend;
385 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX)((static_cast<int64_t>(Result) >= (-32767-1) &&
Result < (65535)) ? static_cast<void> (0) : __assert_fail
("static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 385, __PRETTY_FUNCTION__))
;
386 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
387 break;
388 }
389 case ELF::R_AARCH64_ABS32: {
390 uint64_t Result = Value + Addend;
391 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX)((static_cast<int64_t>(Result) >= (-2147483647-1) &&
Result < (4294967295U)) ? static_cast<void> (0) : __assert_fail
("static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 391, __PRETTY_FUNCTION__))
;
392 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
393 break;
394 }
395 case ELF::R_AARCH64_ABS64:
396 write(isBE, TargetPtr, Value + Addend);
397 break;
398 case ELF::R_AARCH64_PREL32: {
399 uint64_t Result = Value + Addend - FinalAddress;
400 assert(static_cast<int64_t>(Result) >= INT32_MIN &&((static_cast<int64_t>(Result) >= (-2147483647-1) &&
static_cast<int64_t>(Result) <= (4294967295U)) ? static_cast
<void> (0) : __assert_fail ("static_cast<int64_t>(Result) >= INT32_MIN && static_cast<int64_t>(Result) <= UINT32_MAX"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 401, __PRETTY_FUNCTION__))
401 static_cast<int64_t>(Result) <= UINT32_MAX)((static_cast<int64_t>(Result) >= (-2147483647-1) &&
static_cast<int64_t>(Result) <= (4294967295U)) ? static_cast
<void> (0) : __assert_fail ("static_cast<int64_t>(Result) >= INT32_MIN && static_cast<int64_t>(Result) <= UINT32_MAX"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 401, __PRETTY_FUNCTION__))
;
402 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
403 break;
404 }
405 case ELF::R_AARCH64_PREL64:
406 write(isBE, TargetPtr, Value + Addend - FinalAddress);
407 break;
408 case ELF::R_AARCH64_CALL26: // fallthrough
409 case ELF::R_AARCH64_JUMP26: {
410 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
411 // calculation.
412 uint64_t BranchImm = Value + Addend - FinalAddress;
413
414 // "Check that -2^27 <= result < 2^27".
415 assert(isInt<28>(BranchImm))((isInt<28>(BranchImm)) ? static_cast<void> (0) :
__assert_fail ("isInt<28>(BranchImm)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 415, __PRETTY_FUNCTION__))
;
416 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
417 break;
418 }
419 case ELF::R_AARCH64_MOVW_UABS_G3:
420 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
421 break;
422 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
423 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
424 break;
425 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
426 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
427 break;
428 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
429 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
430 break;
431 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
432 // Operation: Page(S+A) - Page(P)
433 uint64_t Result =
434 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
435
436 // Check that -2^32 <= X < 2^32
437 assert(isInt<33>(Result) && "overflow check failed for relocation")((isInt<33>(Result) && "overflow check failed for relocation"
) ? static_cast<void> (0) : __assert_fail ("isInt<33>(Result) && \"overflow check failed for relocation\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 437, __PRETTY_FUNCTION__))
;
438
439 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
440 // from bits 32:12 of X.
441 write32AArch64Addr(TargetPtr, Result >> 12);
442 break;
443 }
444 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
445 // Operation: S + A
446 // Immediate goes in bits 21:10 of LD/ST instruction, taken
447 // from bits 11:0 of X
448 or32AArch64Imm(TargetPtr, Value + Addend);
449 break;
450 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
451 // Operation: S + A
452 // Immediate goes in bits 21:10 of LD/ST instruction, taken
453 // from bits 11:0 of X
454 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
455 break;
456 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
457 // Operation: S + A
458 // Immediate goes in bits 21:10 of LD/ST instruction, taken
459 // from bits 11:1 of X
460 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
461 break;
462 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
463 // Operation: S + A
464 // Immediate goes in bits 21:10 of LD/ST instruction, taken
465 // from bits 11:2 of X
466 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
467 break;
468 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
469 // Operation: S + A
470 // Immediate goes in bits 21:10 of LD/ST instruction, taken
471 // from bits 11:3 of X
472 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
473 break;
474 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
475 // Operation: S + A
476 // Immediate goes in bits 21:10 of LD/ST instruction, taken
477 // from bits 11:4 of X
478 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
479 break;
480 }
481}
482
483void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
484 uint64_t Offset, uint32_t Value,
485 uint32_t Type, int32_t Addend) {
486 // TODO: Add Thumb relocations.
487 uint32_t *TargetPtr =
488 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
489 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
490 Value += Addend;
491
492 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
493 << Section.getAddressWithOffset(Offset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
494 << " FinalAddress: " << format("%p", FinalAddress)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
495 << " Value: " << format("%x", Value)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
496 << " Type: " << format("%x", Type)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
497 << " Addend: " << format("%x", Addend) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
;
498
499 switch (Type) {
500 default:
501 llvm_unreachable("Not implemented relocation type!")::llvm::llvm_unreachable_internal("Not implemented relocation type!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 501)
;
502
503 case ELF::R_ARM_NONE:
504 break;
505 // Write a 31bit signed offset
506 case ELF::R_ARM_PREL31:
507 support::ulittle32_t::ref{TargetPtr} =
508 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
509 ((Value - FinalAddress) & ~0x80000000);
510 break;
511 case ELF::R_ARM_TARGET1:
512 case ELF::R_ARM_ABS32:
513 support::ulittle32_t::ref{TargetPtr} = Value;
514 break;
515 // Write first 16 bit of 32 bit value to the mov instruction.
516 // Last 4 bit should be shifted.
517 case ELF::R_ARM_MOVW_ABS_NC:
518 case ELF::R_ARM_MOVT_ABS:
519 if (Type == ELF::R_ARM_MOVW_ABS_NC)
520 Value = Value & 0xFFFF;
521 else if (Type == ELF::R_ARM_MOVT_ABS)
522 Value = (Value >> 16) & 0xFFFF;
523 support::ulittle32_t::ref{TargetPtr} =
524 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
525 (((Value >> 12) & 0xF) << 16);
526 break;
527 // Write 24 bit relative value to the branch instruction.
528 case ELF::R_ARM_PC24: // Fall through.
529 case ELF::R_ARM_CALL: // Fall through.
530 case ELF::R_ARM_JUMP24:
531 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
532 RelValue = (RelValue & 0x03FFFFFC) >> 2;
533 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE)(((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE
) ? static_cast<void> (0) : __assert_fail ("(support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 533, __PRETTY_FUNCTION__))
;
534 support::ulittle32_t::ref{TargetPtr} =
535 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
536 break;
537 }
538}
539
540void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
541 if (Arch == Triple::UnknownArch ||
542 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
543 IsMipsO32ABI = false;
544 IsMipsN32ABI = false;
545 IsMipsN64ABI = false;
546 return;
547 }
548 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
549 unsigned AbiVariant = E->getPlatformFlags();
550 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
551 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
552 }
553 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
554}
555
556// Return the .TOC. section and offset.
557Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
558 ObjSectionToIDMap &LocalSections,
559 RelocationValueRef &Rel) {
560 // Set a default SectionID in case we do not find a TOC section below.
561 // This may happen for references to TOC base base (sym@toc, .odp
562 // relocation) without a .toc directive. In this case just use the
563 // first section (which is usually the .odp) since the code won't
564 // reference the .toc base directly.
565 Rel.SymbolName = nullptr;
566 Rel.SectionID = 0;
567
568 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
569 // order. The TOC starts where the first of these sections starts.
570 for (auto &Section: Obj.sections()) {
571 StringRef SectionName;
572 if (auto EC = Section.getName(SectionName))
573 return errorCodeToError(EC);
574
575 if (SectionName == ".got"
576 || SectionName == ".toc"
577 || SectionName == ".tocbss"
578 || SectionName == ".plt") {
579 if (auto SectionIDOrErr =
580 findOrEmitSection(Obj, Section, false, LocalSections))
581 Rel.SectionID = *SectionIDOrErr;
582 else
583 return SectionIDOrErr.takeError();
584 break;
585 }
586 }
587
588 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
589 // thus permitting a full 64 Kbytes segment.
590 Rel.Addend = 0x8000;
591
592 return Error::success();
593}
594
595// Returns the sections and offset associated with the ODP entry referenced
596// by Symbol.
597Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
598 ObjSectionToIDMap &LocalSections,
599 RelocationValueRef &Rel) {
600 // Get the ELF symbol value (st_value) to compare with Relocation offset in
601 // .opd entries
602 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
603 si != se; ++si) {
604 section_iterator RelSecI = si->getRelocatedSection();
605 if (RelSecI == Obj.section_end())
606 continue;
607
608 StringRef RelSectionName;
609 if (auto EC = RelSecI->getName(RelSectionName))
610 return errorCodeToError(EC);
611
612 if (RelSectionName != ".opd")
613 continue;
614
615 for (elf_relocation_iterator i = si->relocation_begin(),
616 e = si->relocation_end();
617 i != e;) {
618 // The R_PPC64_ADDR64 relocation indicates the first field
619 // of a .opd entry
620 uint64_t TypeFunc = i->getType();
621 if (TypeFunc != ELF::R_PPC64_ADDR64) {
622 ++i;
623 continue;
624 }
625
626 uint64_t TargetSymbolOffset = i->getOffset();
627 symbol_iterator TargetSymbol = i->getSymbol();
628 int64_t Addend;
629 if (auto AddendOrErr = i->getAddend())
630 Addend = *AddendOrErr;
631 else
632 return AddendOrErr.takeError();
633
634 ++i;
635 if (i == e)
636 break;
637
638 // Just check if following relocation is a R_PPC64_TOC
639 uint64_t TypeTOC = i->getType();
640 if (TypeTOC != ELF::R_PPC64_TOC)
641 continue;
642
643 // Finally compares the Symbol value and the target symbol offset
644 // to check if this .opd entry refers to the symbol the relocation
645 // points to.
646 if (Rel.Addend != (int64_t)TargetSymbolOffset)
647 continue;
648
649 section_iterator TSI = Obj.section_end();
650 if (auto TSIOrErr = TargetSymbol->getSection())
651 TSI = *TSIOrErr;
652 else
653 return TSIOrErr.takeError();
654 assert(TSI != Obj.section_end() && "TSI should refer to a valid section")((TSI != Obj.section_end() && "TSI should refer to a valid section"
) ? static_cast<void> (0) : __assert_fail ("TSI != Obj.section_end() && \"TSI should refer to a valid section\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 654, __PRETTY_FUNCTION__))
;
655
656 bool IsCode = TSI->isText();
657 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
658 LocalSections))
659 Rel.SectionID = *SectionIDOrErr;
660 else
661 return SectionIDOrErr.takeError();
662 Rel.Addend = (intptr_t)Addend;
663 return Error::success();
664 }
665 }
666 llvm_unreachable("Attempting to get address of ODP entry!")::llvm::llvm_unreachable_internal("Attempting to get address of ODP entry!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 666)
;
667}
668
669// Relocation masks following the #lo(value), #hi(value), #ha(value),
670// #higher(value), #highera(value), #highest(value), and #highesta(value)
671// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
672// document.
673
674static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
675
676static inline uint16_t applyPPChi(uint64_t value) {
677 return (value >> 16) & 0xffff;
678}
679
680static inline uint16_t applyPPCha (uint64_t value) {
681 return ((value + 0x8000) >> 16) & 0xffff;
682}
683
684static inline uint16_t applyPPChigher(uint64_t value) {
685 return (value >> 32) & 0xffff;
686}
687
688static inline uint16_t applyPPChighera (uint64_t value) {
689 return ((value + 0x8000) >> 32) & 0xffff;
690}
691
692static inline uint16_t applyPPChighest(uint64_t value) {
693 return (value >> 48) & 0xffff;
694}
695
696static inline uint16_t applyPPChighesta (uint64_t value) {
697 return ((value + 0x8000) >> 48) & 0xffff;
698}
699
700void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
701 uint64_t Offset, uint64_t Value,
702 uint32_t Type, int64_t Addend) {
703 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
704 switch (Type) {
705 default:
706 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 706)
;
707 break;
708 case ELF::R_PPC_ADDR16_LO:
709 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
710 break;
711 case ELF::R_PPC_ADDR16_HI:
712 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
713 break;
714 case ELF::R_PPC_ADDR16_HA:
715 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
716 break;
717 }
718}
719
720void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
721 uint64_t Offset, uint64_t Value,
722 uint32_t Type, int64_t Addend) {
723 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
724 switch (Type) {
725 default:
726 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 726)
;
727 break;
728 case ELF::R_PPC64_ADDR16:
729 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
730 break;
731 case ELF::R_PPC64_ADDR16_DS:
732 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
733 break;
734 case ELF::R_PPC64_ADDR16_LO:
735 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
736 break;
737 case ELF::R_PPC64_ADDR16_LO_DS:
738 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
739 break;
740 case ELF::R_PPC64_ADDR16_HI:
741 case ELF::R_PPC64_ADDR16_HIGH:
742 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
743 break;
744 case ELF::R_PPC64_ADDR16_HA:
745 case ELF::R_PPC64_ADDR16_HIGHA:
746 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
747 break;
748 case ELF::R_PPC64_ADDR16_HIGHER:
749 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
750 break;
751 case ELF::R_PPC64_ADDR16_HIGHERA:
752 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
753 break;
754 case ELF::R_PPC64_ADDR16_HIGHEST:
755 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
756 break;
757 case ELF::R_PPC64_ADDR16_HIGHESTA:
758 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
759 break;
760 case ELF::R_PPC64_ADDR14: {
761 assert(((Value + Addend) & 3) == 0)((((Value + Addend) & 3) == 0) ? static_cast<void> (
0) : __assert_fail ("((Value + Addend) & 3) == 0", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 761, __PRETTY_FUNCTION__))
;
762 // Preserve the AA/LK bits in the branch instruction
763 uint8_t aalk = *(LocalAddress + 3);
764 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
765 } break;
766 case ELF::R_PPC64_REL16_LO: {
767 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
768 uint64_t Delta = Value - FinalAddress + Addend;
769 writeInt16BE(LocalAddress, applyPPClo(Delta));
770 } break;
771 case ELF::R_PPC64_REL16_HI: {
772 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
773 uint64_t Delta = Value - FinalAddress + Addend;
774 writeInt16BE(LocalAddress, applyPPChi(Delta));
775 } break;
776 case ELF::R_PPC64_REL16_HA: {
777 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
778 uint64_t Delta = Value - FinalAddress + Addend;
779 writeInt16BE(LocalAddress, applyPPCha(Delta));
780 } break;
781 case ELF::R_PPC64_ADDR32: {
782 int64_t Result = static_cast<int64_t>(Value + Addend);
783 if (SignExtend64<32>(Result) != Result)
784 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow")::llvm::llvm_unreachable_internal("Relocation R_PPC64_ADDR32 overflow"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 784)
;
785 writeInt32BE(LocalAddress, Result);
786 } break;
787 case ELF::R_PPC64_REL24: {
788 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
789 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
790 if (SignExtend64<26>(delta) != delta)
791 llvm_unreachable("Relocation R_PPC64_REL24 overflow")::llvm::llvm_unreachable_internal("Relocation R_PPC64_REL24 overflow"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 791)
;
792 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
793 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
794 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
795 } break;
796 case ELF::R_PPC64_REL32: {
797 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
798 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
799 if (SignExtend64<32>(delta) != delta)
800 llvm_unreachable("Relocation R_PPC64_REL32 overflow")::llvm::llvm_unreachable_internal("Relocation R_PPC64_REL32 overflow"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 800)
;
801 writeInt32BE(LocalAddress, delta);
802 } break;
803 case ELF::R_PPC64_REL64: {
804 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
805 uint64_t Delta = Value - FinalAddress + Addend;
806 writeInt64BE(LocalAddress, Delta);
807 } break;
808 case ELF::R_PPC64_ADDR64:
809 writeInt64BE(LocalAddress, Value + Addend);
810 break;
811 }
812}
813
814void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
815 uint64_t Offset, uint64_t Value,
816 uint32_t Type, int64_t Addend) {
817 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
818 switch (Type) {
819 default:
820 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 820)
;
821 break;
822 case ELF::R_390_PC16DBL:
823 case ELF::R_390_PLT16DBL: {
824 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
825 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow")((int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"
) ? static_cast<void> (0) : __assert_fail ("int16_t(Delta / 2) * 2 == Delta && \"R_390_PC16DBL overflow\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 825, __PRETTY_FUNCTION__))
;
826 writeInt16BE(LocalAddress, Delta / 2);
827 break;
828 }
829 case ELF::R_390_PC32DBL:
830 case ELF::R_390_PLT32DBL: {
831 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
832 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow")((int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"
) ? static_cast<void> (0) : __assert_fail ("int32_t(Delta / 2) * 2 == Delta && \"R_390_PC32DBL overflow\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 832, __PRETTY_FUNCTION__))
;
833 writeInt32BE(LocalAddress, Delta / 2);
834 break;
835 }
836 case ELF::R_390_PC16: {
837 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
838 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow")((int16_t(Delta) == Delta && "R_390_PC16 overflow") ?
static_cast<void> (0) : __assert_fail ("int16_t(Delta) == Delta && \"R_390_PC16 overflow\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 838, __PRETTY_FUNCTION__))
;
839 writeInt16BE(LocalAddress, Delta);
840 break;
841 }
842 case ELF::R_390_PC32: {
843 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
844 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow")((int32_t(Delta) == Delta && "R_390_PC32 overflow") ?
static_cast<void> (0) : __assert_fail ("int32_t(Delta) == Delta && \"R_390_PC32 overflow\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 844, __PRETTY_FUNCTION__))
;
845 writeInt32BE(LocalAddress, Delta);
846 break;
847 }
848 case ELF::R_390_PC64: {
849 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
850 writeInt64BE(LocalAddress, Delta);
851 break;
852 }
853 case ELF::R_390_8:
854 *LocalAddress = (uint8_t)(Value + Addend);
855 break;
856 case ELF::R_390_16:
857 writeInt16BE(LocalAddress, Value + Addend);
858 break;
859 case ELF::R_390_32:
860 writeInt32BE(LocalAddress, Value + Addend);
861 break;
862 case ELF::R_390_64:
863 writeInt64BE(LocalAddress, Value + Addend);
864 break;
865 }
866}
867
868void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
869 uint64_t Offset, uint64_t Value,
870 uint32_t Type, int64_t Addend) {
871 bool isBE = Arch == Triple::bpfeb;
872
873 switch (Type) {
874 default:
875 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 875)
;
876 break;
877 case ELF::R_BPF_NONE:
878 break;
879 case ELF::R_BPF_64_64: {
880 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
881 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
882 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
;
883 break;
884 }
885 case ELF::R_BPF_64_32: {
886 Value += Addend;
887 assert(Value <= UINT32_MAX)((Value <= (4294967295U)) ? static_cast<void> (0) : __assert_fail
("Value <= UINT32_MAX", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 887, __PRETTY_FUNCTION__))
;
888 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
889 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", Value
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
890 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", Value
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
;
891 break;
892 }
893 }
894}
895
896// The target location for the relocation is described by RE.SectionID and
897// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
898// SectionEntry has three members describing its location.
899// SectionEntry::Address is the address at which the section has been loaded
900// into memory in the current (host) process. SectionEntry::LoadAddress is the
901// address that the section will have in the target process.
902// SectionEntry::ObjAddress is the address of the bits for this section in the
903// original emitted object image (also in the current address space).
904//
905// Relocations will be applied as if the section were loaded at
906// SectionEntry::LoadAddress, but they will be applied at an address based
907// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
908// Target memory contents if they are required for value calculations.
909//
910// The Value parameter here is the load address of the symbol for the
911// relocation to be applied. For relocations which refer to symbols in the
912// current object Value will be the LoadAddress of the section in which
913// the symbol resides (RE.Addend provides additional information about the
914// symbol location). For external symbols, Value will be the address of the
915// symbol in the target address space.
916void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
917 uint64_t Value) {
918 const SectionEntry &Section = Sections[RE.SectionID];
919 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
920 RE.SymOffset, RE.SectionID);
921}
922
923void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
924 uint64_t Offset, uint64_t Value,
925 uint32_t Type, int64_t Addend,
926 uint64_t SymOffset, SID SectionID) {
927 switch (Arch) {
928 case Triple::x86_64:
929 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
930 break;
931 case Triple::x86:
932 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
933 (uint32_t)(Addend & 0xffffffffL));
934 break;
935 case Triple::aarch64:
936 case Triple::aarch64_be:
937 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
938 break;
939 case Triple::arm: // Fall through.
940 case Triple::armeb:
941 case Triple::thumb:
942 case Triple::thumbeb:
943 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
944 (uint32_t)(Addend & 0xffffffffL));
945 break;
946 case Triple::ppc:
947 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
948 break;
949 case Triple::ppc64: // Fall through.
950 case Triple::ppc64le:
951 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
952 break;
953 case Triple::systemz:
954 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
955 break;
956 case Triple::bpfel:
957 case Triple::bpfeb:
958 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
959 break;
960 default:
961 llvm_unreachable("Unsupported CPU type!")::llvm::llvm_unreachable_internal("Unsupported CPU type!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 961)
;
962 }
963}
964
965void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
966 return (void *)(Sections[SectionID].getObjAddress() + Offset);
967}
968
969void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
970 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
971 if (Value.SymbolName)
972 addRelocationForSymbol(RE, Value.SymbolName);
973 else
974 addRelocationForSection(RE, Value.SectionID);
975}
976
977uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
978 bool IsLocal) const {
979 switch (RelType) {
980 case ELF::R_MICROMIPS_GOT16:
981 if (IsLocal)
982 return ELF::R_MICROMIPS_LO16;
983 break;
984 case ELF::R_MICROMIPS_HI16:
985 return ELF::R_MICROMIPS_LO16;
986 case ELF::R_MIPS_GOT16:
987 if (IsLocal)
988 return ELF::R_MIPS_LO16;
989 break;
990 case ELF::R_MIPS_HI16:
991 return ELF::R_MIPS_LO16;
992 case ELF::R_MIPS_PCHI16:
993 return ELF::R_MIPS_PCLO16;
994 default:
995 break;
996 }
997 return ELF::R_MIPS_NONE;
998}
999
1000// Sometimes we don't need to create thunk for a branch.
1001// This typically happens when branch target is located
1002// in the same object file. In such case target is either
1003// a weak symbol or symbol in a different executable section.
1004// This function checks if branch target is located in the
1005// same object file and if distance between source and target
1006// fits R_AARCH64_CALL26 relocation. If both conditions are
1007// met, it emits direct jump to the target and returns true.
1008// Otherwise false is returned and thunk is created.
1009bool RuntimeDyldELF::resolveAArch64ShortBranch(
1010 unsigned SectionID, relocation_iterator RelI,
1011 const RelocationValueRef &Value) {
1012 uint64_t Address;
1013 if (Value.SymbolName) {
1014 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1015
1016 // Don't create direct branch for external symbols.
1017 if (Loc == GlobalSymbolTable.end())
1018 return false;
1019
1020 const auto &SymInfo = Loc->second;
1021 Address =
1022 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1023 SymInfo.getOffset()));
1024 } else {
1025 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1026 }
1027 uint64_t Offset = RelI->getOffset();
1028 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1029
1030 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1031 // If distance between source and target is out of range then we should
1032 // create thunk.
1033 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1034 return false;
1035
1036 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1037 Value.Addend);
1038
1039 return true;
1040}
1041
1042void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1043 const RelocationValueRef &Value,
1044 relocation_iterator RelI,
1045 StubMap &Stubs) {
1046
1047 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is an AArch64 branch relocation."
; } } while (false)
;
1048 SectionEntry &Section = Sections[SectionID];
1049
1050 uint64_t Offset = RelI->getOffset();
1051 unsigned RelType = RelI->getType();
1052 // Look for an existing stub.
1053 StubMap::const_iterator i = Stubs.find(Value);
1054 if (i != Stubs.end()) {
1055 resolveRelocation(Section, Offset,
1056 (uint64_t)Section.getAddressWithOffset(i->second),
1057 RelType, 0);
1058 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1059 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1060 // Create a new stub function.
1061 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1062 Stubs[Value] = Section.getStubOffset();
1063 uint8_t *StubTargetAddr = createStubFunction(
1064 Section.getAddressWithOffset(Section.getStubOffset()));
1065
1066 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1067 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1068 RelocationEntry REmovk_g2(SectionID,
1069 StubTargetAddr - Section.getAddress() + 4,
1070 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1071 RelocationEntry REmovk_g1(SectionID,
1072 StubTargetAddr - Section.getAddress() + 8,
1073 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1074 RelocationEntry REmovk_g0(SectionID,
1075 StubTargetAddr - Section.getAddress() + 12,
1076 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1077
1078 if (Value.SymbolName) {
1079 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1080 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1081 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1082 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1083 } else {
1084 addRelocationForSection(REmovz_g3, Value.SectionID);
1085 addRelocationForSection(REmovk_g2, Value.SectionID);
1086 addRelocationForSection(REmovk_g1, Value.SectionID);
1087 addRelocationForSection(REmovk_g0, Value.SectionID);
1088 }
1089 resolveRelocation(Section, Offset,
1090 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1091 Section.getStubOffset())),
1092 RelType, 0);
1093 Section.advanceStubOffset(getMaxStubSize());
1094 }
1095}
1096
1097Expected<relocation_iterator>
1098RuntimeDyldELF::processRelocationRef(
1099 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1100 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1101 const auto &Obj = cast<ELFObjectFileBase>(O);
1102 uint64_t RelType = RelI->getType();
1103 int64_t Addend = 0;
1104 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1105 Addend = *AddendOrErr;
1106 else
1107 consumeError(AddendOrErr.takeError());
1108 elf_symbol_iterator Symbol = RelI->getSymbol();
1109
1110 // Obtain the symbol name which is referenced in the relocation
1111 StringRef TargetName;
1112 if (Symbol != Obj.symbol_end()) {
1113 if (auto TargetNameOrErr = Symbol->getName())
1114 TargetName = *TargetNameOrErr;
1115 else
1116 return TargetNameOrErr.takeError();
1117 }
1118 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addenddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tRelType: " << RelType <<
" Addend: " << Addend << " TargetName: " <<
TargetName << "\n"; } } while (false)
1119 << " TargetName: " << TargetName << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tRelType: " << RelType <<
" Addend: " << Addend << " TargetName: " <<
TargetName << "\n"; } } while (false)
;
1120 RelocationValueRef Value;
1121 // First search for the symbol in the local symbol table
1122 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1123
1124 // Search for the symbol in the global symbol table
1125 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1126 if (Symbol != Obj.symbol_end()) {
1127 gsi = GlobalSymbolTable.find(TargetName.data());
1128 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1129 if (!SymTypeOrErr) {
1130 std::string Buf;
1131 raw_string_ostream OS(Buf);
1132 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1133 OS.flush();
1134 report_fatal_error(Buf);
1135 }
1136 SymType = *SymTypeOrErr;
1137 }
1138 if (gsi != GlobalSymbolTable.end()) {
1139 const auto &SymInfo = gsi->second;
1140 Value.SectionID = SymInfo.getSectionID();
1141 Value.Offset = SymInfo.getOffset();
1142 Value.Addend = SymInfo.getOffset() + Addend;
1143 } else {
1144 switch (SymType) {
1145 case SymbolRef::ST_Debug: {
1146 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1147 // and can be changed by another developers. Maybe best way is add
1148 // a new symbol type ST_Section to SymbolRef and use it.
1149 auto SectionOrErr = Symbol->getSection();
1150 if (!SectionOrErr) {
1151 std::string Buf;
1152 raw_string_ostream OS(Buf);
1153 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1154 OS.flush();
1155 report_fatal_error(Buf);
1156 }
1157 section_iterator si = *SectionOrErr;
1158 if (si == Obj.section_end())
1159 llvm_unreachable("Symbol section not found, bad object file format!")::llvm::llvm_unreachable_internal("Symbol section not found, bad object file format!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1159)
;
1160 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is section symbol\n"; }
} while (false)
;
1161 bool isCode = si->isText();
1162 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1163 ObjSectionToID))
1164 Value.SectionID = *SectionIDOrErr;
1165 else
1166 return SectionIDOrErr.takeError();
1167 Value.Addend = Addend;
1168 break;
1169 }
1170 case SymbolRef::ST_Data:
1171 case SymbolRef::ST_Function:
1172 case SymbolRef::ST_Unknown: {
1173 Value.SymbolName = TargetName.data();
1174 Value.Addend = Addend;
1175
1176 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1177 // will manifest here as a NULL symbol name.
1178 // We can set this as a valid (but empty) symbol name, and rely
1179 // on addRelocationForSymbol to handle this.
1180 if (!Value.SymbolName)
1181 Value.SymbolName = "";
1182 break;
1183 }
1184 default:
1185 llvm_unreachable("Unresolved symbol type!")::llvm::llvm_unreachable_internal("Unresolved symbol type!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1185)
;
1186 break;
1187 }
1188 }
1189
1190 uint64_t Offset = RelI->getOffset();
1191
1192 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offsetdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset << "\n"; } } while
(false)
1193 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset << "\n"; } } while
(false)
;
1194 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1195 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1196 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1197 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1198 // Craete new GOT entry or find existing one. If GOT entry is
1199 // to be created, then we also emit ABS64 relocation for it.
1200 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1201 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1202 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1203
1204 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1205 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1206 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1207 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1208 } else {
1209 processSimpleRelocation(SectionID, Offset, RelType, Value);
1210 }
1211 } else if (Arch == Triple::arm) {
1212 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1213 RelType == ELF::R_ARM_JUMP24) {
1214 // This is an ARM branch relocation, need to use a stub function.
1215 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is an ARM branch relocation.\n"
; } } while (false)
;
1216 SectionEntry &Section = Sections[SectionID];
1217
1218 // Look for an existing stub.
1219 StubMap::const_iterator i = Stubs.find(Value);
1220 if (i != Stubs.end()) {
1221 resolveRelocation(
1222 Section, Offset,
1223 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1224 RelType, 0);
1225 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1226 } else {
1227 // Create a new stub function.
1228 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1229 Stubs[Value] = Section.getStubOffset();
1230 uint8_t *StubTargetAddr = createStubFunction(
1231 Section.getAddressWithOffset(Section.getStubOffset()));
1232 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1233 ELF::R_ARM_ABS32, Value.Addend);
1234 if (Value.SymbolName)
1235 addRelocationForSymbol(RE, Value.SymbolName);
1236 else
1237 addRelocationForSection(RE, Value.SectionID);
1238
1239 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1240 Section.getAddressWithOffset(
1241 Section.getStubOffset())),
1242 RelType, 0);
1243 Section.advanceStubOffset(getMaxStubSize());
1244 }
1245 } else {
1246 uint32_t *Placeholder =
1247 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1248 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1249 RelType == ELF::R_ARM_ABS32) {
1250 Value.Addend += *Placeholder;
1251 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1252 // See ELF for ARM documentation
1253 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1254 }
1255 processSimpleRelocation(SectionID, Offset, RelType, Value);
1256 }
1257 } else if (IsMipsO32ABI) {
1258 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1259 computePlaceholderAddress(SectionID, Offset));
1260 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1261 if (RelType == ELF::R_MIPS_26) {
1262 // This is an Mips branch relocation, need to use a stub function.
1263 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is a Mips branch relocation."
; } } while (false)
;
1264 SectionEntry &Section = Sections[SectionID];
1265
1266 // Extract the addend from the instruction.
1267 // We shift up by two since the Value will be down shifted again
1268 // when applying the relocation.
1269 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1270
1271 Value.Addend += Addend;
1272
1273 // Look up for existing stub.
1274 StubMap::const_iterator i = Stubs.find(Value);
1275 if (i != Stubs.end()) {
1276 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1277 addRelocationForSection(RE, SectionID);
1278 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1279 } else {
1280 // Create a new stub function.
1281 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1282 Stubs[Value] = Section.getStubOffset();
1283
1284 unsigned AbiVariant = Obj.getPlatformFlags();
1285
1286 uint8_t *StubTargetAddr = createStubFunction(
1287 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1288
1289 // Creating Hi and Lo relocations for the filled stub instructions.
1290 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1291 ELF::R_MIPS_HI16, Value.Addend);
1292 RelocationEntry RELo(SectionID,
1293 StubTargetAddr - Section.getAddress() + 4,
1294 ELF::R_MIPS_LO16, Value.Addend);
1295
1296 if (Value.SymbolName) {
1297 addRelocationForSymbol(REHi, Value.SymbolName);
1298 addRelocationForSymbol(RELo, Value.SymbolName);
1299 } else {
1300 addRelocationForSection(REHi, Value.SectionID);
1301 addRelocationForSection(RELo, Value.SectionID);
1302 }
1303
1304 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1305 addRelocationForSection(RE, SectionID);
1306 Section.advanceStubOffset(getMaxStubSize());
1307 }
1308 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1309 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1310 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1311 PendingRelocs.push_back(std::make_pair(Value, RE));
1312 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1313 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1314 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1315 const RelocationValueRef &MatchingValue = I->first;
1316 RelocationEntry &Reloc = I->second;
1317 if (MatchingValue == Value &&
1318 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1319 SectionID == Reloc.SectionID) {
1320 Reloc.Addend += Addend;
1321 if (Value.SymbolName)
1322 addRelocationForSymbol(Reloc, Value.SymbolName);
1323 else
1324 addRelocationForSection(Reloc, Value.SectionID);
1325 I = PendingRelocs.erase(I);
1326 } else
1327 ++I;
1328 }
1329 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1330 if (Value.SymbolName)
1331 addRelocationForSymbol(RE, Value.SymbolName);
1332 else
1333 addRelocationForSection(RE, Value.SectionID);
1334 } else {
1335 if (RelType == ELF::R_MIPS_32)
1336 Value.Addend += Opcode;
1337 else if (RelType == ELF::R_MIPS_PC16)
1338 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1339 else if (RelType == ELF::R_MIPS_PC19_S2)
1340 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1341 else if (RelType == ELF::R_MIPS_PC21_S2)
1342 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1343 else if (RelType == ELF::R_MIPS_PC26_S2)
1344 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1345 processSimpleRelocation(SectionID, Offset, RelType, Value);
1346 }
1347 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1348 uint32_t r_type = RelType & 0xff;
1349 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1350 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1351 || r_type == ELF::R_MIPS_GOT_DISP) {
1352 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1353 if (i != GOTSymbolOffsets.end())
1354 RE.SymOffset = i->second;
1355 else {
1356 RE.SymOffset = allocateGOTEntries(1);
1357 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1358 }
1359 if (Value.SymbolName)
1360 addRelocationForSymbol(RE, Value.SymbolName);
1361 else
1362 addRelocationForSection(RE, Value.SectionID);
1363 } else if (RelType == ELF::R_MIPS_26) {
1364 // This is an Mips branch relocation, need to use a stub function.
1365 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is a Mips branch relocation."
; } } while (false)
;
1366 SectionEntry &Section = Sections[SectionID];
1367
1368 // Look up for existing stub.
1369 StubMap::const_iterator i = Stubs.find(Value);
1370 if (i != Stubs.end()) {
1371 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1372 addRelocationForSection(RE, SectionID);
1373 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1374 } else {
1375 // Create a new stub function.
1376 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1377 Stubs[Value] = Section.getStubOffset();
1378
1379 unsigned AbiVariant = Obj.getPlatformFlags();
1380
1381 uint8_t *StubTargetAddr = createStubFunction(
1382 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1383
1384 if (IsMipsN32ABI) {
1385 // Creating Hi and Lo relocations for the filled stub instructions.
1386 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1387 ELF::R_MIPS_HI16, Value.Addend);
1388 RelocationEntry RELo(SectionID,
1389 StubTargetAddr - Section.getAddress() + 4,
1390 ELF::R_MIPS_LO16, Value.Addend);
1391 if (Value.SymbolName) {
1392 addRelocationForSymbol(REHi, Value.SymbolName);
1393 addRelocationForSymbol(RELo, Value.SymbolName);
1394 } else {
1395 addRelocationForSection(REHi, Value.SectionID);
1396 addRelocationForSection(RELo, Value.SectionID);
1397 }
1398 } else {
1399 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1400 // instructions.
1401 RelocationEntry REHighest(SectionID,
1402 StubTargetAddr - Section.getAddress(),
1403 ELF::R_MIPS_HIGHEST, Value.Addend);
1404 RelocationEntry REHigher(SectionID,
1405 StubTargetAddr - Section.getAddress() + 4,
1406 ELF::R_MIPS_HIGHER, Value.Addend);
1407 RelocationEntry REHi(SectionID,
1408 StubTargetAddr - Section.getAddress() + 12,
1409 ELF::R_MIPS_HI16, Value.Addend);
1410 RelocationEntry RELo(SectionID,
1411 StubTargetAddr - Section.getAddress() + 20,
1412 ELF::R_MIPS_LO16, Value.Addend);
1413 if (Value.SymbolName) {
1414 addRelocationForSymbol(REHighest, Value.SymbolName);
1415 addRelocationForSymbol(REHigher, Value.SymbolName);
1416 addRelocationForSymbol(REHi, Value.SymbolName);
1417 addRelocationForSymbol(RELo, Value.SymbolName);
1418 } else {
1419 addRelocationForSection(REHighest, Value.SectionID);
1420 addRelocationForSection(REHigher, Value.SectionID);
1421 addRelocationForSection(REHi, Value.SectionID);
1422 addRelocationForSection(RELo, Value.SectionID);
1423 }
1424 }
1425 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1426 addRelocationForSection(RE, SectionID);
1427 Section.advanceStubOffset(getMaxStubSize());
1428 }
1429 } else {
1430 processSimpleRelocation(SectionID, Offset, RelType, Value);
1431 }
1432
1433 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1434 if (RelType == ELF::R_PPC64_REL24) {
1435 // Determine ABI variant in use for this object.
1436 unsigned AbiVariant = Obj.getPlatformFlags();
1437 AbiVariant &= ELF::EF_PPC64_ABI;
1438 // A PPC branch relocation will need a stub function if the target is
1439 // an external symbol (either Value.SymbolName is set, or SymType is
1440 // Symbol::ST_Unknown) or if the target address is not within the
1441 // signed 24-bits branch address.
1442 SectionEntry &Section = Sections[SectionID];
1443 uint8_t *Target = Section.getAddressWithOffset(Offset);
1444 bool RangeOverflow = false;
1445 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1446 if (!IsExtern) {
1447 if (AbiVariant != 2) {
1448 // In the ELFv1 ABI, a function call may point to the .opd entry,
1449 // so the final symbol value is calculated based on the relocation
1450 // values in the .opd section.
1451 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1452 return std::move(Err);
1453 } else {
1454 // In the ELFv2 ABI, a function symbol may provide a local entry
1455 // point, which must be used for direct calls.
1456 if (Value.SectionID == SectionID){
1457 uint8_t SymOther = Symbol->getOther();
1458 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1459 }
1460 }
1461 uint8_t *RelocTarget =
1462 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1463 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1464 // If it is within 26-bits branch range, just set the branch target
1465 if (SignExtend64<26>(delta) != delta) {
1466 RangeOverflow = true;
1467 } else if ((AbiVariant != 2) ||
1468 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1469 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1470 addRelocationForSection(RE, Value.SectionID);
1471 }
1472 }
1473 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1474 RangeOverflow) {
1475 // It is an external symbol (either Value.SymbolName is set, or
1476 // SymType is SymbolRef::ST_Unknown) or out of range.
1477 StubMap::const_iterator i = Stubs.find(Value);
1478 if (i != Stubs.end()) {
1479 // Symbol function stub already created, just relocate to it
1480 resolveRelocation(Section, Offset,
1481 reinterpret_cast<uint64_t>(
1482 Section.getAddressWithOffset(i->second)),
1483 RelType, 0);
1484 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1485 } else {
1486 // Create a new stub function.
1487 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1488 Stubs[Value] = Section.getStubOffset();
1489 uint8_t *StubTargetAddr = createStubFunction(
1490 Section.getAddressWithOffset(Section.getStubOffset()),
1491 AbiVariant);
1492 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1493 ELF::R_PPC64_ADDR64, Value.Addend);
1494
1495 // Generates the 64-bits address loads as exemplified in section
1496 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1497 // apply to the low part of the instructions, so we have to update
1498 // the offset according to the target endianness.
1499 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1500 if (!IsTargetLittleEndian)
1501 StubRelocOffset += 2;
1502
1503 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1504 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1505 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1506 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1507 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1508 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1509 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1510 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1511
1512 if (Value.SymbolName) {
1513 addRelocationForSymbol(REhst, Value.SymbolName);
1514 addRelocationForSymbol(REhr, Value.SymbolName);
1515 addRelocationForSymbol(REh, Value.SymbolName);
1516 addRelocationForSymbol(REl, Value.SymbolName);
1517 } else {
1518 addRelocationForSection(REhst, Value.SectionID);
1519 addRelocationForSection(REhr, Value.SectionID);
1520 addRelocationForSection(REh, Value.SectionID);
1521 addRelocationForSection(REl, Value.SectionID);
1522 }
1523
1524 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1525 Section.getAddressWithOffset(
1526 Section.getStubOffset())),
1527 RelType, 0);
1528 Section.advanceStubOffset(getMaxStubSize());
1529 }
1530 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1531 // Restore the TOC for external calls
1532 if (AbiVariant == 2)
1533 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1534 else
1535 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1536 }
1537 }
1538 } else if (RelType == ELF::R_PPC64_TOC16 ||
1539 RelType == ELF::R_PPC64_TOC16_DS ||
1540 RelType == ELF::R_PPC64_TOC16_LO ||
1541 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1542 RelType == ELF::R_PPC64_TOC16_HI ||
1543 RelType == ELF::R_PPC64_TOC16_HA) {
1544 // These relocations are supposed to subtract the TOC address from
1545 // the final value. This does not fit cleanly into the RuntimeDyld
1546 // scheme, since there may be *two* sections involved in determining
1547 // the relocation value (the section of the symbol referred to by the
1548 // relocation, and the TOC section associated with the current module).
1549 //
1550 // Fortunately, these relocations are currently only ever generated
1551 // referring to symbols that themselves reside in the TOC, which means
1552 // that the two sections are actually the same. Thus they cancel out
1553 // and we can immediately resolve the relocation right now.
1554 switch (RelType) {
1555 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1556 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1557 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1558 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1559 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1560 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1561 default: llvm_unreachable("Wrong relocation type.")::llvm::llvm_unreachable_internal("Wrong relocation type.", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1561)
;
1562 }
1563
1564 RelocationValueRef TOCValue;
1565 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1566 return std::move(Err);
1567 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1568 llvm_unreachable("Unsupported TOC relocation.")::llvm::llvm_unreachable_internal("Unsupported TOC relocation."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1568)
;
1569 Value.Addend -= TOCValue.Addend;
1570 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1571 } else {
1572 // There are two ways to refer to the TOC address directly: either
1573 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1574 // ignored), or via any relocation that refers to the magic ".TOC."
1575 // symbols (in which case the addend is respected).
1576 if (RelType == ELF::R_PPC64_TOC) {
1577 RelType = ELF::R_PPC64_ADDR64;
1578 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1579 return std::move(Err);
1580 } else if (TargetName == ".TOC.") {
1581 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1582 return std::move(Err);
1583 Value.Addend += Addend;
1584 }
1585
1586 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1587
1588 if (Value.SymbolName)
1589 addRelocationForSymbol(RE, Value.SymbolName);
1590 else
1591 addRelocationForSection(RE, Value.SectionID);
1592 }
1593 } else if (Arch == Triple::systemz &&
1594 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1595 // Create function stubs for both PLT and GOT references, regardless of
1596 // whether the GOT reference is to data or code. The stub contains the
1597 // full address of the symbol, as needed by GOT references, and the
1598 // executable part only adds an overhead of 8 bytes.
1599 //
1600 // We could try to conserve space by allocating the code and data
1601 // parts of the stub separately. However, as things stand, we allocate
1602 // a stub for every relocation, so using a GOT in JIT code should be
1603 // no less space efficient than using an explicit constant pool.
1604 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is a SystemZ indirect relocation."
; } } while (false)
;
1605 SectionEntry &Section = Sections[SectionID];
1606
1607 // Look for an existing stub.
1608 StubMap::const_iterator i = Stubs.find(Value);
1609 uintptr_t StubAddress;
1610 if (i != Stubs.end()) {
1611 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1612 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1613 } else {
1614 // Create a new stub function.
1615 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1616
1617 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1618 uintptr_t StubAlignment = getStubAlignment();
1619 StubAddress =
1620 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1621 -StubAlignment;
1622 unsigned StubOffset = StubAddress - BaseAddress;
1623
1624 Stubs[Value] = StubOffset;
1625 createStubFunction((uint8_t *)StubAddress);
1626 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1627 Value.Offset);
1628 if (Value.SymbolName)
1629 addRelocationForSymbol(RE, Value.SymbolName);
1630 else
1631 addRelocationForSection(RE, Value.SectionID);
1632 Section.advanceStubOffset(getMaxStubSize());
1633 }
1634
1635 if (RelType == ELF::R_390_GOTENT)
1636 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1637 Addend);
1638 else
1639 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1640 } else if (Arch == Triple::x86_64) {
1641 if (RelType == ELF::R_X86_64_PLT32) {
1642 // The way the PLT relocations normally work is that the linker allocates
1643 // the
1644 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1645 // entry will then jump to an address provided by the GOT. On first call,
1646 // the
1647 // GOT address will point back into PLT code that resolves the symbol. After
1648 // the first call, the GOT entry points to the actual function.
1649 //
1650 // For local functions we're ignoring all of that here and just replacing
1651 // the PLT32 relocation type with PC32, which will translate the relocation
1652 // into a PC-relative call directly to the function. For external symbols we
1653 // can't be sure the function will be within 2^32 bytes of the call site, so
1654 // we need to create a stub, which calls into the GOT. This case is
1655 // equivalent to the usual PLT implementation except that we use the stub
1656 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1657 // rather than allocating a PLT section.
1658 if (Value.SymbolName) {
1659 // This is a call to an external function.
1660 // Look for an existing stub.
1661 SectionEntry &Section = Sections[SectionID];
1662 StubMap::const_iterator i = Stubs.find(Value);
1663 uintptr_t StubAddress;
1664 if (i != Stubs.end()) {
1665 StubAddress = uintptr_t(Section.getAddress()) + i->second;
1666 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1667 } else {
1668 // Create a new stub function (equivalent to a PLT entry).
1669 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1670
1671 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1672 uintptr_t StubAlignment = getStubAlignment();
1673 StubAddress =
1674 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1675 -StubAlignment;
1676 unsigned StubOffset = StubAddress - BaseAddress;
1677 Stubs[Value] = StubOffset;
1678 createStubFunction((uint8_t *)StubAddress);
1679
1680 // Bump our stub offset counter
1681 Section.advanceStubOffset(getMaxStubSize());
1682
1683 // Allocate a GOT Entry
1684 uint64_t GOTOffset = allocateGOTEntries(1);
1685
1686 // The load of the GOT address has an addend of -4
1687 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1688 ELF::R_X86_64_PC32);
1689
1690 // Fill in the value of the symbol we're targeting into the GOT
1691 addRelocationForSymbol(
1692 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1693 Value.SymbolName);
1694 }
1695
1696 // Make the target call a call into the stub table.
1697 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1698 Addend);
1699 } else {
1700 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1701 Value.Offset);
1702 addRelocationForSection(RE, Value.SectionID);
1703 }
1704 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1705 RelType == ELF::R_X86_64_GOTPCRELX ||
1706 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1707 uint64_t GOTOffset = allocateGOTEntries(1);
1708 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1709 ELF::R_X86_64_PC32);
1710
1711 // Fill in the value of the symbol we're targeting into the GOT
1712 RelocationEntry RE =
1713 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1714 if (Value.SymbolName)
1715 addRelocationForSymbol(RE, Value.SymbolName);
1716 else
1717 addRelocationForSection(RE, Value.SectionID);
1718 } else if (RelType == ELF::R_X86_64_GOT64) {
1719 // Fill in a 64-bit GOT offset.
1720 uint64_t GOTOffset = allocateGOTEntries(1);
1721 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1722 ELF::R_X86_64_64, 0);
1723
1724 // Fill in the value of the symbol we're targeting into the GOT
1725 RelocationEntry RE =
1726 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1727 if (Value.SymbolName)
1728 addRelocationForSymbol(RE, Value.SymbolName);
1729 else
1730 addRelocationForSection(RE, Value.SectionID);
1731 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1732 // Materialize the address of the base of the GOT relative to the PC.
1733 // This doesn't create a GOT entry, but it does mean we need a GOT
1734 // section.
1735 (void)allocateGOTEntries(0);
1736 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1737 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1738 // GOTOFF relocations ultimately require a section difference relocation.
1739 (void)allocateGOTEntries(0);
1740 processSimpleRelocation(SectionID, Offset, RelType, Value);
1741 } else if (RelType == ELF::R_X86_64_PC32) {
1742 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1743 processSimpleRelocation(SectionID, Offset, RelType, Value);
1744 } else if (RelType == ELF::R_X86_64_PC64) {
1745 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1746 processSimpleRelocation(SectionID, Offset, RelType, Value);
1747 } else {
1748 processSimpleRelocation(SectionID, Offset, RelType, Value);
1749 }
1750 } else {
1751 if (Arch == Triple::x86) {
1752 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1753 }
1754 processSimpleRelocation(SectionID, Offset, RelType, Value);
1755 }
1756 return ++RelI;
1757}
1758
1759size_t RuntimeDyldELF::getGOTEntrySize() {
1760 // We don't use the GOT in all of these cases, but it's essentially free
1761 // to put them all here.
1762 size_t Result = 0;
1763 switch (Arch) {
1764 case Triple::x86_64:
1765 case Triple::aarch64:
1766 case Triple::aarch64_be:
1767 case Triple::ppc64:
1768 case Triple::ppc64le:
1769 case Triple::systemz:
1770 Result = sizeof(uint64_t);
1771 break;
1772 case Triple::x86:
1773 case Triple::arm:
1774 case Triple::thumb:
1775 Result = sizeof(uint32_t);
1776 break;
1777 case Triple::mips:
1778 case Triple::mipsel:
1779 case Triple::mips64:
1780 case Triple::mips64el:
1781 if (IsMipsO32ABI || IsMipsN32ABI)
1782 Result = sizeof(uint32_t);
1783 else if (IsMipsN64ABI)
1784 Result = sizeof(uint64_t);
1785 else
1786 llvm_unreachable("Mips ABI not handled")::llvm::llvm_unreachable_internal("Mips ABI not handled", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1786)
;
1787 break;
1788 default:
1789 llvm_unreachable("Unsupported CPU type!")::llvm::llvm_unreachable_internal("Unsupported CPU type!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1789)
;
1790 }
1791 return Result;
1792}
1793
1794uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1795 if (GOTSectionID == 0) {
1796 GOTSectionID = Sections.size();
1797 // Reserve a section id. We'll allocate the section later
1798 // once we know the total size
1799 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1800 }
1801 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1802 CurrentGOTIndex += no;
1803 return StartOffset;
1804}
1805
1806uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1807 unsigned GOTRelType) {
1808 auto E = GOTOffsetMap.insert({Value, 0});
1809 if (E.second) {
1810 uint64_t GOTOffset = allocateGOTEntries(1);
1811
1812 // Create relocation for newly created GOT entry
1813 RelocationEntry RE =
1814 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1815 if (Value.SymbolName)
1816 addRelocationForSymbol(RE, Value.SymbolName);
1817 else
1818 addRelocationForSection(RE, Value.SectionID);
1819
1820 E.first->second = GOTOffset;
1821 }
1822
1823 return E.first->second;
1824}
1825
1826void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1827 uint64_t Offset,
1828 uint64_t GOTOffset,
1829 uint32_t Type) {
1830 // Fill in the relative address of the GOT Entry into the stub
1831 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1832 addRelocationForSection(GOTRE, GOTSectionID);
1833}
1834
1835RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1836 uint64_t SymbolOffset,
1837 uint32_t Type) {
1838 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1839}
1840
1841Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1842 ObjSectionToIDMap &SectionMap) {
1843 if (IsMipsO32ABI)
1
Assuming the condition is true
2
Taking true branch
1844 if (!PendingRelocs.empty())
3
Taking true branch
1845 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
4
Calling 'make_error<llvm::RuntimeDyldError, char const (&)[31]>'
1846
1847 // If necessary, allocate the global offset table
1848 if (GOTSectionID != 0) {
1849 // Allocate memory for the section
1850 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1851 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1852 GOTSectionID, ".got", false);
1853 if (!Addr)
1854 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1855
1856 Sections[GOTSectionID] =
1857 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1858
1859 // For now, initialize all GOT entries to zero. We'll fill them in as
1860 // needed when GOT-based relocations are applied.
1861 memset(Addr, 0, TotalSize);
1862 if (IsMipsN32ABI || IsMipsN64ABI) {
1863 // To correctly resolve Mips GOT relocations, we need a mapping from
1864 // object's sections to GOTs.
1865 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1866 SI != SE; ++SI) {
1867 if (SI->relocation_begin() != SI->relocation_end()) {
1868 section_iterator RelocatedSection = SI->getRelocatedSection();
1869 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1870 assert (i != SectionMap.end())((i != SectionMap.end()) ? static_cast<void> (0) : __assert_fail
("i != SectionMap.end()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1870, __PRETTY_FUNCTION__))
;
1871 SectionToGOTMap[i->second] = GOTSectionID;
1872 }
1873 }
1874 GOTSymbolOffsets.clear();
1875 }
1876 }
1877
1878 // Look for and record the EH frame section.
1879 ObjSectionToIDMap::iterator i, e;
1880 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1881 const SectionRef &Section = i->first;
1882 StringRef Name;
1883 Section.getName(Name);
1884 if (Name == ".eh_frame") {
1885 UnregisteredEHFrameSections.push_back(i->second);
1886 break;
1887 }
1888 }
1889
1890 GOTSectionID = 0;
1891 CurrentGOTIndex = 0;
1892
1893 return Error::success();
1894}
1895
1896bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1897 return Obj.isELF();
1898}
1899
1900bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1901 unsigned RelTy = R.getType();
1902 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1903 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1904 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1905
1906 if (Arch == Triple::x86_64)
1907 return RelTy == ELF::R_X86_64_GOTPCREL ||
1908 RelTy == ELF::R_X86_64_GOTPCRELX ||
1909 RelTy == ELF::R_X86_64_GOT64 ||
1910 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1911 return false;
1912}
1913
1914bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1915 if (Arch != Triple::x86_64)
1916 return true; // Conservative answer
1917
1918 switch (R.getType()) {
1919 default:
1920 return true; // Conservative answer
1921
1922
1923 case ELF::R_X86_64_GOTPCREL:
1924 case ELF::R_X86_64_GOTPCRELX:
1925 case ELF::R_X86_64_REX_GOTPCRELX:
1926 case ELF::R_X86_64_GOTPC64:
1927 case ELF::R_X86_64_GOT64:
1928 case ELF::R_X86_64_GOTOFF64:
1929 case ELF::R_X86_64_PC32:
1930 case ELF::R_X86_64_PC64:
1931 case ELF::R_X86_64_64:
1932 // We know that these reloation types won't need a stub function. This list
1933 // can be extended as needed.
1934 return false;
1935 }
1936}
1937
1938} // namespace llvm

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
159 // pointers out of this class to add to the error list.
160 friend class ErrorList;
161 friend class FileError;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
9
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
5
Calling 'make_unique<llvm::RuntimeDyldError, char const (&)[31]>'
7
Returned allocated memory
8
Calling constructor for 'Error'
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = typename std::conditional<isRef, wrap, T>::type;
445 using value_type = T;
446
447private:
448 using reference = typename std::remove_reference<T>::type &;
449 using const_reference = const typename std::remove_reference<T>::type &;
450 using pointer = typename std::remove_reference<T>::type *;
451 using const_pointer = const typename std::remove_reference<T>::type *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
476 * = nullptr)
477 : HasError(false)
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 // Expected is unchecked upon construction in Debug builds.
480 , Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(Expected<OtherT> &&Other,
493 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
494 * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
504 nullptr) {
505 moveConstruct(std::move(Other));
506 }
507
508 /// Move-assign from another Expected<T>.
509 Expected &operator=(Expected &&Other) {
510 moveAssign(std::move(Other));
511 return *this;
512 }
513
514 /// Destroy an Expected<T>.
515 ~Expected() {
516 assertIsChecked();
517 if (!HasError)
518 getStorage()->~storage_type();
519 else
520 getErrorStorage()->~error_type();
521 }
522
523 /// Return false if there is an error.
524 explicit operator bool() {
525#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
526 Unchecked = HasError;
527#endif
528 return !HasError;
529 }
530
531 /// Returns a reference to the stored T value.
532 reference get() {
533 assertIsChecked();
534 return *getStorage();
535 }
536
537 /// Returns a const reference to the stored T value.
538 const_reference get() const {
539 assertIsChecked();
540 return const_cast<Expected<T> *>(this)->get();
541 }
542
543 /// Check that this Expected<T> is an error of type ErrT.
544 template <typename ErrT> bool errorIsA() const {
545 return HasError && (*getErrorStorage())->template isA<ErrT>();
546 }
547
548 /// Take ownership of the stored error.
549 /// After calling this the Expected<T> is in an indeterminate state that can
550 /// only be safely destructed. No further calls (beside the destructor) should
551 /// be made on the Expected<T> vaule.
552 Error takeError() {
553#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
554 Unchecked = false;
555#endif
556 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
557 }
558
559 /// Returns a pointer to the stored T value.
560 pointer operator->() {
561 assertIsChecked();
562 return toPointer(getStorage());
563 }
564
565 /// Returns a const pointer to the stored T value.
566 const_pointer operator->() const {
567 assertIsChecked();
568 return toPointer(getStorage());
569 }
570
571 /// Returns a reference to the stored T value.
572 reference operator*() {
573 assertIsChecked();
574 return *getStorage();
575 }
576
577 /// Returns a const reference to the stored T value.
578 const_reference operator*() const {
579 assertIsChecked();
580 return *getStorage();
581 }
582
583private:
584 template <class T1>
585 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
586 return &a == &b;
587 }
588
589 template <class T1, class T2>
590 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
591 return false;
592 }
593
594 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
595 HasError = Other.HasError;
596#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
597 Unchecked = true;
598 Other.Unchecked = false;
599#endif
600
601 if (!HasError)
602 new (getStorage()) storage_type(std::move(*Other.getStorage()));
603 else
604 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
605 }
606
607 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
608 assertIsChecked();
609
610 if (compareThisIfSameType(*this, Other))
611 return;
612
613 this->~Expected();
614 new (this) Expected(std::move(Other));
615 }
616
617 pointer toPointer(pointer Val) { return Val; }
618
619 const_pointer toPointer(const_pointer Val) const { return Val; }
620
621 pointer toPointer(wrap *Val) { return &Val->get(); }
622
623 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
624
625 storage_type *getStorage() {
626 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 626, __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<storage_type *>(TStorage.buffer);
628 }
629
630 const storage_type *getStorage() const {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<const storage_type *>(TStorage.buffer);
633 }
634
635 error_type *getErrorStorage() {
636 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
638 }
639
640 const error_type *getErrorStorage() const {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
643 }
644
645 // Used by ExpectedAsOutParameter to reset the checked flag.
646 void setUnchecked() {
647#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
648 Unchecked = true;
649#endif
650 }
651
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
654 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
655 void fatalUncheckedExpected() const {
656 dbgs() << "Expected<T> must be checked before access or destruction.\n";
657 if (HasError) {
658 dbgs() << "Unchecked Expected<T> contained error:\n";
659 (*getErrorStorage())->log(dbgs());
660 } else
661 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
662 "values in success mode must still be checked prior to being "
663 "destroyed).\n";
664 abort();
665 }
666#endif
667
668 void assertIsChecked() {
669#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
670 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
671 fatalUncheckedExpected();
672#endif
673 }
674
675 union {
676 AlignedCharArrayUnion<storage_type> TStorage;
677 AlignedCharArrayUnion<error_type> ErrorStorage;
678 };
679 bool HasError : 1;
680#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
681 bool Unchecked : 1;
682#endif
683};
684
685/// Report a serious error, calling any installed error handler. See
686/// ErrorHandling.h.
687LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
688 bool gen_crash_diag = true);
689
690/// Report a fatal error if Err is a failure value.
691///
692/// This function can be used to wrap calls to fallible functions ONLY when it
693/// is known that the Error will always be a success value. E.g.
694///
695/// @code{.cpp}
696/// // foo only attempts the fallible operation if DoFallibleOperation is
697/// // true. If DoFallibleOperation is false then foo always returns
698/// // Error::success().
699/// Error foo(bool DoFallibleOperation);
700///
701/// cantFail(foo(false));
702/// @endcode
703inline void cantFail(Error Err, const char *Msg = nullptr) {
704 if (Err) {
705 if (!Msg)
706 Msg = "Failure value returned from cantFail wrapped call";
707 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 707)
;
708 }
709}
710
711/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
712/// returns the contained value.
713///
714/// This function can be used to wrap calls to fallible functions ONLY when it
715/// is known that the Error will always be a success value. E.g.
716///
717/// @code{.cpp}
718/// // foo only attempts the fallible operation if DoFallibleOperation is
719/// // true. If DoFallibleOperation is false then foo always returns an int.
720/// Expected<int> foo(bool DoFallibleOperation);
721///
722/// int X = cantFail(foo(false));
723/// @endcode
724template <typename T>
725T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
726 if (ValOrErr)
727 return std::move(*ValOrErr);
728 else {
729 if (!Msg)
730 Msg = "Failure value returned from cantFail wrapped call";
731 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 731)
;
732 }
733}
734
735/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
736/// returns the contained reference.
737///
738/// This function can be used to wrap calls to fallible functions ONLY when it
739/// is known that the Error will always be a success value. E.g.
740///
741/// @code{.cpp}
742/// // foo only attempts the fallible operation if DoFallibleOperation is
743/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
744/// Expected<Bar&> foo(bool DoFallibleOperation);
745///
746/// Bar &X = cantFail(foo(false));
747/// @endcode
748template <typename T>
749T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
750 if (ValOrErr)
751 return *ValOrErr;
752 else {
753 if (!Msg)
754 Msg = "Failure value returned from cantFail wrapped call";
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Helper for testing applicability of, and applying, handlers for
760/// ErrorInfo types.
761template <typename HandlerT>
762class ErrorHandlerTraits
763 : public ErrorHandlerTraits<decltype(
764 &std::remove_reference<HandlerT>::type::operator())> {};
765
766// Specialization functions of the form 'Error (const ErrT&)'.
767template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
768public:
769 static bool appliesTo(const ErrorInfoBase &E) {
770 return E.template isA<ErrT>();
771 }
772
773 template <typename HandlerT>
774 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
775 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 775, __PRETTY_FUNCTION__))
;
776 return H(static_cast<ErrT &>(*E));
777 }
778};
779
780// Specialization functions of the form 'void (const ErrT&)'.
781template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
782public:
783 static bool appliesTo(const ErrorInfoBase &E) {
784 return E.template isA<ErrT>();
785 }
786
787 template <typename HandlerT>
788 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
789 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 789, __PRETTY_FUNCTION__))
;
790 H(static_cast<ErrT &>(*E));
791 return Error::success();
792 }
793};
794
795/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
796template <typename ErrT>
797class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
798public:
799 static bool appliesTo(const ErrorInfoBase &E) {
800 return E.template isA<ErrT>();
801 }
802
803 template <typename HandlerT>
804 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
805 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 805, __PRETTY_FUNCTION__))
;
806 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
807 return H(std::move(SubE));
808 }
809};
810
811/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
812template <typename ErrT>
813class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
814public:
815 static bool appliesTo(const ErrorInfoBase &E) {
816 return E.template isA<ErrT>();
817 }
818
819 template <typename HandlerT>
820 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
821 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 821, __PRETTY_FUNCTION__))
;
822 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
823 H(std::move(SubE));
824 return Error::success();
825 }
826};
827
828// Specialization for member functions of the form 'RetT (const ErrT&)'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833// Specialization for member functions of the form 'RetT (const ErrT&) const'.
834template <typename C, typename RetT, typename ErrT>
835class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
836 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
837
838// Specialization for member functions of the form 'RetT (const ErrT&)'.
839template <typename C, typename RetT, typename ErrT>
840class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
841 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
842
843// Specialization for member functions of the form 'RetT (const ErrT&) const'.
844template <typename C, typename RetT, typename ErrT>
845class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
846 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
847
848/// Specialization for member functions of the form
849/// 'RetT (std::unique_ptr<ErrT>)'.
850template <typename C, typename RetT, typename ErrT>
851class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
852 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
853
854/// Specialization for member functions of the form
855/// 'RetT (std::unique_ptr<ErrT>) const'.
856template <typename C, typename RetT, typename ErrT>
857class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
858 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
859
860inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
861 return Error(std::move(Payload));
862}
863
864template <typename HandlerT, typename... HandlerTs>
865Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
866 HandlerT &&Handler, HandlerTs &&... Handlers) {
867 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
868 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
869 std::move(Payload));
870 return handleErrorImpl(std::move(Payload),
871 std::forward<HandlerTs>(Handlers)...);
872}
873
874/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
875/// unhandled errors (or Errors returned by handlers) are re-concatenated and
876/// returned.
877/// Because this function returns an error, its result must also be checked
878/// or returned. If you intend to handle all errors use handleAllErrors
879/// (which returns void, and will abort() on unhandled errors) instead.
880template <typename... HandlerTs>
881Error handleErrors(Error E, HandlerTs &&... Hs) {
882 if (!E)
883 return Error::success();
884
885 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
886
887 if (Payload->isA<ErrorList>()) {
888 ErrorList &List = static_cast<ErrorList &>(*Payload);
889 Error R;
890 for (auto &P : List.Payloads)
891 R = ErrorList::join(
892 std::move(R),
893 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
894 return R;
895 }
896
897 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
898}
899
900/// Behaves the same as handleErrors, except that by contract all errors
901/// *must* be handled by the given handlers (i.e. there must be no remaining
902/// errors after running the handlers, or llvm_unreachable is called).
903template <typename... HandlerTs>
904void handleAllErrors(Error E, HandlerTs &&... Handlers) {
905 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
906}
907
908/// Check that E is a non-error, then drop it.
909/// If E is an error, llvm_unreachable will be called.
910inline void handleAllErrors(Error E) {
911 cantFail(std::move(E));
912}
913
914/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
915///
916/// If the incoming value is a success value it is returned unmodified. If it
917/// is a failure value then it the contained error is passed to handleErrors.
918/// If handleErrors is able to handle the error then the RecoveryPath functor
919/// is called to supply the final result. If handleErrors is not able to
920/// handle all errors then the unhandled errors are returned.
921///
922/// This utility enables the follow pattern:
923///
924/// @code{.cpp}
925/// enum FooStrategy { Aggressive, Conservative };
926/// Expected<Foo> foo(FooStrategy S);
927///
928/// auto ResultOrErr =
929/// handleExpected(
930/// foo(Aggressive),
931/// []() { return foo(Conservative); },
932/// [](AggressiveStrategyError&) {
933/// // Implicitly conusme this - we'll recover by using a conservative
934/// // strategy.
935/// });
936///
937/// @endcode
938template <typename T, typename RecoveryFtor, typename... HandlerTs>
939Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
940 HandlerTs &&... Handlers) {
941 if (ValOrErr)
942 return ValOrErr;
943
944 if (auto Err = handleErrors(ValOrErr.takeError(),
945 std::forward<HandlerTs>(Handlers)...))
946 return std::move(Err);
947
948 return RecoveryPath();
949}
950
951/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
952/// will be printed before the first one is logged. A newline will be printed
953/// after each error.
954///
955/// This function is compatible with the helpers from Support/WithColor.h. You
956/// can pass any of them as the OS. Please consider using them instead of
957/// including 'error: ' in the ErrorBanner.
958///
959/// This is useful in the base level of your program to allow clean termination
960/// (allowing clean deallocation of resources, etc.), while reporting error
961/// information to the user.
962void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
963
964/// Write all error messages (if any) in E to a string. The newline character
965/// is used to separate error messages.
966inline std::string toString(Error E) {
967 SmallVector<std::string, 2> Errors;
968 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
969 Errors.push_back(EI.message());
970 });
971 return join(Errors.begin(), Errors.end(), "\n");
972}
973
974/// Consume a Error without doing anything. This method should be used
975/// only where an error can be considered a reasonable and expected return
976/// value.
977///
978/// Uses of this method are potentially indicative of design problems: If it's
979/// legitimate to do nothing while processing an "error", the error-producer
980/// might be more clearly refactored to return an Optional<T>.
981inline void consumeError(Error Err) {
982 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
983}
984
985/// Helper for converting an Error to a bool.
986///
987/// This method returns true if Err is in an error state, or false if it is
988/// in a success state. Puts Err in a checked state in both cases (unlike
989/// Error::operator bool(), which only does this for success states).
990inline bool errorToBool(Error Err) {
991 bool IsError = static_cast<bool>(Err);
992 if (IsError)
993 consumeError(std::move(Err));
994 return IsError;
995}
996
997/// Helper for Errors used as out-parameters.
998///
999/// This helper is for use with the Error-as-out-parameter idiom, where an error
1000/// is passed to a function or method by reference, rather than being returned.
1001/// In such cases it is helpful to set the checked bit on entry to the function
1002/// so that the error can be written to (unchecked Errors abort on assignment)
1003/// and clear the checked bit on exit so that clients cannot accidentally forget
1004/// to check the result. This helper performs these actions automatically using
1005/// RAII:
1006///
1007/// @code{.cpp}
1008/// Result foo(Error &Err) {
1009/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1010/// // <body of foo>
1011/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1012/// }
1013/// @endcode
1014///
1015/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1016/// used with optional Errors (Error pointers that are allowed to be null). If
1017/// ErrorAsOutParameter took an Error reference, an instance would have to be
1018/// created inside every condition that verified that Error was non-null. By
1019/// taking an Error pointer we can just create one instance at the top of the
1020/// function.
1021class ErrorAsOutParameter {
1022public:
1023 ErrorAsOutParameter(Error *Err) : Err(Err) {
1024 // Raise the checked bit if Err is success.
1025 if (Err)
1026 (void)!!*Err;
1027 }
1028
1029 ~ErrorAsOutParameter() {
1030 // Clear the checked bit.
1031 if (Err && !*Err)
1032 *Err = Error::success();
1033 }
1034
1035private:
1036 Error *Err;
1037};
1038
1039/// Helper for Expected<T>s used as out-parameters.
1040///
1041/// See ErrorAsOutParameter.
1042template <typename T>
1043class ExpectedAsOutParameter {
1044public:
1045 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1046 : ValOrErr(ValOrErr) {
1047 if (ValOrErr)
1048 (void)!!*ValOrErr;
1049 }
1050
1051 ~ExpectedAsOutParameter() {
1052 if (ValOrErr)
1053 ValOrErr->setUnchecked();
1054 }
1055
1056private:
1057 Expected<T> *ValOrErr;
1058};
1059
1060/// This class wraps a std::error_code in a Error.
1061///
1062/// This is useful if you're writing an interface that returns a Error
1063/// (or Expected) and you want to call code that still returns
1064/// std::error_codes.
1065class ECError : public ErrorInfo<ECError> {
1066 friend Error errorCodeToError(std::error_code);
1067
1068 virtual void anchor() override;
1069
1070public:
1071 void setErrorCode(std::error_code EC) { this->EC = EC; }
1072 std::error_code convertToErrorCode() const override { return EC; }
1073 void log(raw_ostream &OS) const override { OS << EC.message(); }
1074
1075 // Used by ErrorInfo::classID.
1076 static char ID;
1077
1078protected:
1079 ECError() = default;
1080 ECError(std::error_code EC) : EC(EC) {}
1081
1082 std::error_code EC;
1083};
1084
1085/// The value returned by this function can be returned from convertToErrorCode
1086/// for Error values where no sensible translation to std::error_code exists.
1087/// It should only be used in this situation, and should never be used where a
1088/// sensible conversion to std::error_code is available, as attempts to convert
1089/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1090///error to try to convert such a value).
1091std::error_code inconvertibleErrorCode();
1092
1093/// Helper for converting an std::error_code to a Error.
1094Error errorCodeToError(std::error_code EC);
1095
1096/// Helper for converting an ECError to a std::error_code.
1097///
1098/// This method requires that Err be Error() or an ECError, otherwise it
1099/// will trigger a call to abort().
1100std::error_code errorToErrorCode(Error Err);
1101
1102/// Convert an ErrorOr<T> to an Expected<T>.
1103template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1104 if (auto EC = EO.getError())
1105 return errorCodeToError(EC);
1106 return std::move(*EO);
1107}
1108
1109/// Convert an Expected<T> to an ErrorOr<T>.
1110template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1111 if (auto Err = E.takeError())
1112 return errorToErrorCode(std::move(Err));
1113 return std::move(*E);
1114}
1115
1116/// This class wraps a string in an Error.
1117///
1118/// StringError is useful in cases where the client is not expected to be able
1119/// to consume the specific error message programmatically (for example, if the
1120/// error message is to be presented to the user).
1121///
1122/// StringError can also be used when additional information is to be printed
1123/// along with a error_code message. Depending on the constructor called, this
1124/// class can either display:
1125/// 1. the error_code message (ECError behavior)
1126/// 2. a string
1127/// 3. the error_code message and a string
1128///
1129/// These behaviors are useful when subtyping is required; for example, when a
1130/// specific library needs an explicit error type. In the example below,
1131/// PDBError is derived from StringError:
1132///
1133/// @code{.cpp}
1134/// Expected<int> foo() {
1135/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1136/// "Additional information");
1137/// }
1138/// @endcode
1139///
1140class StringError : public ErrorInfo<StringError> {
1141public:
1142 static char ID;
1143
1144 // Prints EC + S and converts to EC
1145 StringError(std::error_code EC, const Twine &S = Twine());
1146
1147 // Prints S and converts to EC
1148 StringError(const Twine &S, std::error_code EC);
1149
1150 void log(raw_ostream &OS) const override;
1151 std::error_code convertToErrorCode() const override;
1152
1153 const std::string &getMessage() const { return Msg; }
1154
1155private:
1156 std::string Msg;
1157 std::error_code EC;
1158 const bool PrintMsgOnly = false;
1159};
1160
1161/// Create formatted StringError object.
1162template <typename... Ts>
1163Error createStringError(std::error_code EC, char const *Fmt,
1164 const Ts &... Vals) {
1165 std::string Buffer;
1166 raw_string_ostream Stream(Buffer);
1167 Stream << format(Fmt, Vals...);
1168 return make_error<StringError>(Stream.str(), EC);
1169}
1170
1171Error createStringError(std::error_code EC, char const *Msg);
1172
1173/// This class wraps a filename and another Error.
1174///
1175/// In some cases, an error needs to live along a 'source' name, in order to
1176/// show more detailed information to the user.
1177class FileError final : public ErrorInfo<FileError> {
1178
1179 friend Error createFileError(const Twine &, Error);
1180 friend Error createFileError(const Twine &, size_t, Error);
1181
1182public:
1183 void log(raw_ostream &OS) const override {
1184 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1184, __PRETTY_FUNCTION__))
;
1185 OS << "'" << FileName << "': ";
1186 if (Line.hasValue())
1187 OS << "line " << Line.getValue() << ": ";
1188 Err->log(OS);
1189 }
1190
1191 Error takeError() { return Error(std::move(Err)); }
1192
1193 std::error_code convertToErrorCode() const override;
1194
1195 // Used by ErrorInfo::classID.
1196 static char ID;
1197
1198private:
1199 FileError(const Twine &F, Optional<size_t> LineNum,
1200 std::unique_ptr<ErrorInfoBase> E) {
1201 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1201, __PRETTY_FUNCTION__))
;
1202 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
1203 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 FileName = F.str();
1205 Err = std::move(E);
1206 Line = std::move(LineNum);
1207 }
1208
1209 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1210 return Error(
1211 std::unique_ptr<FileError>(new FileError(F, Line, E.takePayload())));
1212 }
1213
1214 std::string FileName;
1215 Optional<size_t> Line;
1216 std::unique_ptr<ErrorInfoBase> Err;
1217};
1218
1219/// Concatenate a source file path and/or name with an Error. The resulting
1220/// Error is unchecked.
1221inline Error createFileError(const Twine &F, Error E) {
1222 return FileError::build(F, Optional<size_t>(), std::move(E));
1223}
1224
1225/// Concatenate a source file path and/or name with line number and an Error.
1226/// The resulting Error is unchecked.
1227inline Error createFileError(const Twine &F, size_t Line, Error E) {
1228 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1229}
1230
1231/// Concatenate a source file path and/or name with a std::error_code
1232/// to form an Error object.
1233inline Error createFileError(const Twine &F, std::error_code EC) {
1234 return createFileError(F, errorCodeToError(EC));
1235}
1236
1237/// Concatenate a source file path and/or name with line number and
1238/// std::error_code to form an Error object.
1239inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1240 return createFileError(F, Line, errorCodeToError(EC));
1241}
1242
1243Error createFileError(const Twine &F, ErrorSuccess) = delete;
1244
1245/// Helper for check-and-exit error handling.
1246///
1247/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1248///
1249class ExitOnError {
1250public:
1251 /// Create an error on exit helper.
1252 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1253 : Banner(std::move(Banner)),
1254 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1255
1256 /// Set the banner string for any errors caught by operator().
1257 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1258
1259 /// Set the exit-code mapper function.
1260 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1261 this->GetExitCode = std::move(GetExitCode);
1262 }
1263
1264 /// Check Err. If it's in a failure state log the error(s) and exit.
1265 void operator()(Error Err) const { checkError(std::move(Err)); }
1266
1267 /// Check E. If it's in a success state then return the contained value. If
1268 /// it's in a failure state log the error(s) and exit.
1269 template <typename T> T operator()(Expected<T> &&E) const {
1270 checkError(E.takeError());
1271 return std::move(*E);
1272 }
1273
1274 /// Check E. If it's in a success state then return the contained reference. If
1275 /// it's in a failure state log the error(s) and exit.
1276 template <typename T> T& operator()(Expected<T&> &&E) const {
1277 checkError(E.takeError());
1278 return *E;
1279 }
1280
1281private:
1282 void checkError(Error Err) const {
1283 if (Err) {
1284 int ExitCode = GetExitCode(Err);
1285 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1286 exit(ExitCode);
1287 }
1288 }
1289
1290 std::string Banner;
1291 std::function<int(const Error &)> GetExitCode;
1292};
1293
1294/// Conversion from Error to LLVMErrorRef for C error bindings.
1295inline LLVMErrorRef wrap(Error Err) {
1296 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1297}
1298
1299/// Conversion from LLVMErrorRef to Error for C error bindings.
1300inline Error unwrap(LLVMErrorRef ErrRef) {
1301 return Error(std::unique_ptr<ErrorInfoBase>(
1302 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1303}
1304
1305} // end namespace llvm
1306
1307#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
76};
77
78template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
81};
82
83//===----------------------------------------------------------------------===//
84// Extra additions to <functional>
85//===----------------------------------------------------------------------===//
86
87template <class Ty> struct identity {
88 using argument_type = Ty;
89
90 Ty &operator()(Ty &self) const {
91 return self;
92 }
93 const Ty &operator()(const Ty &self) const {
94 return self;
95 }
96};
97
98template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
101 }
102};
103
104template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
107 }
108};
109
110/// An efficient, type-erasing, non-owning reference to a callable. This is
111/// intended for use as the type of a function parameter that is not used
112/// after the function in question returns.
113///
114/// This class does not own the callable, so it is not in general safe to store
115/// a function_ref.
116template<typename Fn> class function_ref;
117
118template<typename Ret, typename ...Params>
119class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
122
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
127 }
128
129public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
132
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
143 }
144
145 operator bool() const { return callback; }
146};
147
148// deleter - Very very very simple method that is used to invoke operator
149// delete on something. It is used like this:
150//
151// for_each(V.begin(), B.end(), deleter<Interval>);
152template <class T>
153inline void deleter(T *Ptr) {
154 delete Ptr;
155}
156
157//===----------------------------------------------------------------------===//
158// Extra additions to <iterator>
159//===----------------------------------------------------------------------===//
160
161namespace adl_detail {
162
163using std::begin;
164
165template <typename ContainerTy>
166auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
169}
170
171using std::end;
172
173template <typename ContainerTy>
174auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
177}
178
179using std::swap;
180
181template <typename T>
182void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
185}
186
187} // end namespace adl_detail
188
189template <typename ContainerTy>
190auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193}
194
195template <typename ContainerTy>
196auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
199}
200
201template <typename T>
202void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205}
206
207/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208template <typename T>
209constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211}
212
213// mapped_iterator - This is a simple iterator adapter that causes a function to
214// be applied whenever operator* is invoked on the iterator.
215
216template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228 ItTy getCurrent() { return this->I; }
229
230 FuncReturnTy operator*() { return F(*this->I); }
231
232private:
233 FuncTy F;
234};
235
236// map_iterator - Provide a convenient way to create mapped_iterators, just like
237// make_pair is useful for creating pairs...
238template <class ItTy, class FuncTy>
239inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241}
242
243/// Helper to determine if type T has a member called rbegin().
244template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
247
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
250
251 template <typename>
252 static no& test(...);
253
254public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
256};
257
258/// Metafunction to determine if T& or T has a member called rbegin().
259template <typename Ty>
260struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
261};
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have rbegin()/rend() methods for this to work.
265template <typename ContainerTy>
266auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
270}
271
272// Returns a std::reverse_iterator wrapped around the given iterator.
273template <typename IteratorTy>
274std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
276}
277
278// Returns an iterator_range over the given container which iterates in reverse.
279// Note that the container must have begin()/end() methods which return
280// bidirectional iterators for this to work.
281template <typename ContainerTy>
282auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
289}
290
291/// An iterator adaptor that filters the elements of given inner iterators.
292///
293/// The predicate parameter should be a callable object that accepts the wrapped
294/// iterator's reference type and returns a bool. When incrementing or
295/// decrementing the iterator, it will call the predicate on each element and
296/// skip any where it returns false.
297///
298/// \code
299/// int A[] = { 1, 2, 3, 4 };
300/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301/// // R contains { 1, 3 }.
302/// \endcode
303///
304/// Note: filter_iterator_base implements support for forward iteration.
305/// filter_iterator_impl exists to provide support for bidirectional iteration,
306/// conditional on whether the wrapped iterator supports it.
307template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
321
322protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
325
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
329 }
330
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
338 }
339
340public:
341 using BaseT::operator++;
342
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
347 }
348};
349
350/// Specialization of filter_iterator_base for forward iteration only.
351template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
356
357public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
361};
362
363/// Specialization of filter_iterator_base for bidirectional iteration.
364template <typename WrappedIteratorT, typename PredicateT>
365class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
374 }
375
376public:
377 using BaseT::operator--;
378
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
382
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
387 }
388};
389
390namespace detail {
391
392template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
394};
395
396template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
398};
399
400/// Helper which sets its type member to forward_iterator_tag if the category
401/// of \p IterT does not derive from bidirectional_iterator_tag, and to
402/// bidirectional_iterator_tag otherwise.
403template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
407};
408
409} // namespace detail
410
411/// Defines filter_iterator to a suitable specialization of
412/// filter_iterator_impl, based on the underlying iterator's category.
413template <typename WrappedIteratorT, typename PredicateT>
414using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
417
418/// Convenience function that takes a range of elements and a predicate,
419/// and return a new filter_iterator range.
420///
421/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422/// lifetime of that temporary is not kept by the returned range object, and the
423/// temporary is going to be dropped on the floor after the make_iterator_range
424/// full expression that contains this function call.
425template <typename RangeT, typename PredicateT>
426iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
435}
436
437/// A pseudo-iterator adaptor that is designed to implement "early increment"
438/// style loops.
439///
440/// This is *not a normal iterator* and should almost never be used directly. It
441/// is intended primarily to be used with range based for loops and some range
442/// algorithms.
443///
444/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445/// somewhere between them. The constraints of these iterators are:
446///
447/// - On construction or after being incremented, it is comparable and
448/// dereferencable. It is *not* incrementable.
449/// - After being dereferenced, it is neither comparable nor dereferencable, it
450/// is only incrementable.
451///
452/// This means you can only dereference the iterator once, and you can only
453/// increment it once between dereferences.
454template <typename WrappedIteratorT>
455class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
461
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
463
464protected:
465#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
466 bool IsEarlyIncremented = false;
467#endif
468
469public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
471
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
475 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 475, __PRETTY_FUNCTION__))
;
476 IsEarlyIncremented = true;
477#endif
478 return *(this->I)++;
479 }
480
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 484, __PRETTY_FUNCTION__))
;
485 IsEarlyIncremented = false;
486#endif
487 return *this;
488 }
489
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 493, __PRETTY_FUNCTION__))
;
494#endif
495 return BaseT::operator==(RHS);
496 }
497};
498
499/// Make a range that does early increment to allow mutation of the underlying
500/// range without disrupting iteration.
501///
502/// The underlying iterator will be incremented immediately after it is
503/// dereferenced, allowing deletion of the current node or insertion of nodes to
504/// not disrupt iteration provided they do not invalidate the *next* iterator --
505/// the current iterator can be invalidated.
506///
507/// This requires a very exact pattern of use that is only really suitable to
508/// range based for loops and other range algorithms that explicitly guarantee
509/// to dereference exactly once each element, and to increment exactly once each
510/// element.
511template <typename RangeT>
512iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
518}
519
520// forward declarations required by zip_shortest/zip_first/zip_longest
521template <typename R, typename UnaryPredicate>
522bool all_of(R &&range, UnaryPredicate P);
523template <typename R, typename UnaryPredicate>
524bool any_of(R &&range, UnaryPredicate P);
525
526template <size_t... I> struct index_sequence;
527
528template <class... Ts> struct index_sequence_for;
529
530namespace detail {
531
532using std::declval;
533
534// We have to alias this since inlining the actual type at the usage site
535// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
538};
539
540template <typename ZipType, typename... Iters>
541using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
555
556template <typename ZipType, typename... Iters>
557struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
560
561 std::tuple<Iters...> iterators;
562
563protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
571 }
572
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
576 }
577
578public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
580
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
582
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
585 }
586
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
590 }
591
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
597 }
598};
599
600template <typename... Iters>
601struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
603
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
606 }
607
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
609};
610
611template <typename... Iters>
612class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
618 }
619
620public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
622
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
624
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
627 }
628};
629
630template <template <typename...> class ItType, typename... Args> class zippy {
631public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
638
639private:
640 std::tuple<Args...> ts;
641
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
644 }
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
647 }
648
649public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
651
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
654};
655
656} // end namespace detail
657
658/// zip iterator for two or more iteratable types.
659template <typename T, typename U, typename... Args>
660detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
664}
665
666/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667/// be the shortest.
668template <typename T, typename U, typename... Args>
669detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
673}
674
675namespace detail {
676template <typename Iter>
677static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
681}
682
683template <typename Iter>
684static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
690}
691
692template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
696};
697
698template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
700};
701
702template <typename... Iters>
703class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
716
717private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
720
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
728 }
729
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
733 }
734
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
739 }
740
741public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
745
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
747
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
749
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
753 }
754
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
757 }
758};
759
760template <typename... Args> class zip_longest_range {
761public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
769
770private:
771 std::tuple<Args...> ts;
772
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
781 }
782
783public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
785
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
788};
789} // namespace detail
790
791/// Iterate over two or more iterators at the same time. Iteration continues
792/// until all iterators reach the end. The llvm::Optional only contains a value
793/// if the iterator has not reached the end.
794template <typename T, typename U, typename... Args>
795detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
799}
800
801/// Iterator wrapper that concatenates sequences together.
802///
803/// This can concatenate different iterators, even with different types, into
804/// a single iterator provided the value types of all the concatenated
805/// iterators expose `reference` and `pointer` types that can be converted to
806/// `ValueT &` and `ValueT *` respectively. It doesn't support more
807/// interesting/customized pointer or reference types.
808///
809/// Currently this only supports forward or higher iterator categories as
810/// inputs and always exposes a forward iterator interface.
811template <typename ValueT, typename... IterTs>
812class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
816
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
819 ///
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
825
826 /// Attempts to increment a specific iterator.
827 ///
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
835
836 ++Begin;
837 return true;
838 }
839
840 /// Increments the first non-end iterator.
841 ///
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
847
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
852
853 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 853)
;
854 }
855
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
864
865 return &*Begin;
866 }
867
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
870 ///
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
876
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
881
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 882)
;
883 }
884
885public:
886 /// Constructs an iterator from a squence of ranges.
887 ///
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
893
894 using BaseT::operator++;
895
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
899 }
900
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
902
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
905 }
906};
907
908namespace detail {
909
910/// Helper to store a sequence of ranges being concatenated and access them.
911///
912/// This is designed to facilitate providing actual storage when temporaries
913/// are passed into the constructor such that we can use it as part of range
914/// based for loops.
915template <typename ValueT, typename... RangeTs> class concat_range {
916public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
920
921private:
922 std::tuple<RangeTs...> Ranges;
923
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
926 }
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
930 }
931
932public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
935
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
938};
939
940} // end namespace detail
941
942/// Concatenated range across two or more ranges.
943///
944/// The desired value type must be explicitly specified.
945template <typename ValueT, typename... RangeTs>
946detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
951}
952
953//===----------------------------------------------------------------------===//
954// Extra additions to <utility>
955//===----------------------------------------------------------------------===//
956
957/// Function object to check whether the first component of a std::pair
958/// compares less than the first component of another std::pair.
959struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
962 }
963};
964
965/// Function object to check whether the second component of a std::pair
966/// compares less than the second component of another std::pair.
967struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
970 }
971};
972
973/// \brief Function object to apply a binary function to the first component of
974/// a std::pair.
975template<typename FuncTy>
976struct on_first {
977 FuncTy func;
978
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
983 }
984};
985
986// A subset of N3658. More stuff can be added as-needed.
987
988/// Represents a compile-time sequence of integers.
989template <class T, T... I> struct integer_sequence {
990 using value_type = T;
991
992 static constexpr size_t size() { return sizeof...(I); }
993};
994
995/// Alias for the common case of a sequence of size_ts.
996template <size_t... I>
997struct index_sequence : integer_sequence<std::size_t, I...> {};
998
999template <std::size_t N, std::size_t... I>
1000struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001template <std::size_t... I>
1002struct build_index_impl<0, I...> : index_sequence<I...> {};
1003
1004/// Creates a compile-time integer sequence for a parameter pack.
1005template <class... Ts>
1006struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1007
1008/// Utility type to build an inheritance chain that makes it easy to rank
1009/// overload candidates.
1010template <int N> struct rank : rank<N - 1> {};
1011template <> struct rank<0> {};
1012
1013/// traits class for checking whether type T is one of any of the given
1014/// types in the variadic list.
1015template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1017};
1018
1019template <typename T, typename U, typename... Ts>
1020struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1023};
1024
1025/// traits class for checking whether type T is a base class for all
1026/// the given types in the variadic list.
1027template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1029};
1030
1031template <typename T, typename U, typename... Ts>
1032struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1035};
1036
1037//===----------------------------------------------------------------------===//
1038// Extra additions for arrays
1039//===----------------------------------------------------------------------===//
1040
1041/// Find the length of an array.
1042template <class T, std::size_t N>
1043constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1045}
1046
1047/// Adapt std::less<T> for array_pod_sort.
1048template<typename T>
1049inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1057}
1058
1059/// get_array_pod_sort_comparator - This is an internal helper function used to
1060/// get type deduction of T right.
1061template<typename T>
1062inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1065}
1066
1067/// array_pod_sort - This sorts an array with the specified start and end
1068/// extent. This is just like std::sort, except that it calls qsort instead of
1069/// using an inlined template. qsort is slightly slower than std::sort, but
1070/// most sorts are not performance critical in LLVM and std::sort has to be
1071/// template instantiated for each type, leading to significant measured code
1072/// bloat. This function should generally be used instead of std::sort where
1073/// possible.
1074///
1075/// This function assumes that you have simple POD-like types that can be
1076/// compared with std::less and can be moved with memcpy. If this isn't true,
1077/// you should use std::sort.
1078///
1079/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080/// default to std::less.
1081template<class IteratorTy>
1082inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087#ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090#endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092}
1093
1094template <class IteratorTy>
1095inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104#ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107#endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1110}
1111
1112// Provide wrappers to std::sort which shuffle the elements before sorting
1113// to help uncover non-deterministic behavior (PR35135).
1114template <typename IteratorTy>
1115inline void sort(IteratorTy Start, IteratorTy End) {
1116#ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119#endif
1120 std::sort(Start, End);
1121}
1122
1123template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1125}
1126
1127template <typename IteratorTy, typename Compare>
1128inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129#ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132#endif
1133 std::sort(Start, End, Comp);
1134}
1135
1136template <typename Container, typename Compare>
1137inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Extra additions to <algorithm>
1143//===----------------------------------------------------------------------===//
1144
1145/// For a container of pointers, deletes the pointers and then clears the
1146/// container.
1147template<typename Container>
1148void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1152}
1153
1154/// In a container of pairs (usually a map) whose second element is a pointer,
1155/// deletes the second elements and then clears the container.
1156template<typename Container>
1157void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1161}
1162
1163/// Get the size of a range. This is a wrapper function around std::distance
1164/// which is only enabled when the operation is O(1).
1165template <typename R>
1166auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1173}
1174
1175/// Provide wrappers to std::for_each which take ranges instead of having to
1176/// pass begin/end explicitly.
1177template <typename R, typename UnaryPredicate>
1178UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1180}
1181
1182/// Provide wrappers to std::all_of which take ranges instead of having to pass
1183/// begin/end explicitly.
1184template <typename R, typename UnaryPredicate>
1185bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1187}
1188
1189/// Provide wrappers to std::any_of which take ranges instead of having to pass
1190/// begin/end explicitly.
1191template <typename R, typename UnaryPredicate>
1192bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1194}
1195
1196/// Provide wrappers to std::none_of which take ranges instead of having to pass
1197/// begin/end explicitly.
1198template <typename R, typename UnaryPredicate>
1199bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1201}
1202
1203/// Provide wrappers to std::find which take ranges instead of having to pass
1204/// begin/end explicitly.
1205template <typename R, typename T>
1206auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1208}
1209
1210/// Provide wrappers to std::find_if which take ranges instead of having to pass
1211/// begin/end explicitly.
1212template <typename R, typename UnaryPredicate>
1213auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217template <typename R, typename UnaryPredicate>
1218auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1220}
1221
1222/// Provide wrappers to std::remove_if which take ranges instead of having to
1223/// pass begin/end explicitly.
1224template <typename R, typename UnaryPredicate>
1225auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1227}
1228
1229/// Provide wrappers to std::copy_if which take ranges instead of having to
1230/// pass begin/end explicitly.
1231template <typename R, typename OutputIt, typename UnaryPredicate>
1232OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1234}
1235
1236template <typename R, typename OutputIt>
1237OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1239}
1240
1241/// Wrapper function around std::find to detect if an element exists
1242/// in a container.
1243template <typename R, typename E>
1244bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1246}
1247
1248/// Wrapper function around std::count to count the number of times an element
1249/// \p Element occurs in the given range \p Range.
1250template <typename R, typename E>
1251auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1254}
1255
1256/// Wrapper function around std::count_if to count the number of times an
1257/// element satisfying a given predicate occurs in a range.
1258template <typename R, typename UnaryPredicate>
1259auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1262}
1263
1264/// Wrapper function around std::transform to apply a function to a range and
1265/// store the result elsewhere.
1266template <typename R, typename OutputIt, typename UnaryPredicate>
1267OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1269}
1270
1271/// Provide wrappers to std::partition which take ranges instead of having to
1272/// pass begin/end explicitly.
1273template <typename R, typename UnaryPredicate>
1274auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1276}
1277
1278/// Provide wrappers to std::lower_bound which take ranges instead of having to
1279/// pass begin/end explicitly.
1280template <typename R, typename T>
1281auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range),
1283 std::forward<T>(Value));
1284}
1285
1286template <typename R, typename T, typename Compare>
1287auto lower_bound(R &&Range, T &&Value, Compare C)
1288 -> decltype(adl_begin(Range)) {
1289 return std::lower_bound(adl_begin(Range), adl_end(Range),
1290 std::forward<T>(Value), C);
1291}
1292
1293/// Provide wrappers to std::upper_bound which take ranges instead of having to
1294/// pass begin/end explicitly.
1295template <typename R, typename T>
1296auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1297 return std::upper_bound(adl_begin(Range), adl_end(Range),
1298 std::forward<T>(Value));
1299}
1300
1301template <typename R, typename T, typename Compare>
1302auto upper_bound(R &&Range, T &&Value, Compare C)
1303 -> decltype(adl_begin(Range)) {
1304 return std::upper_bound(adl_begin(Range), adl_end(Range),
1305 std::forward<T>(Value), C);
1306}
1307
1308template <typename R>
1309void stable_sort(R &&Range) {
1310 std::stable_sort(adl_begin(Range), adl_end(Range));
1311}
1312
1313template <typename R, typename Compare>
1314void stable_sort(R &&Range, Compare C) {
1315 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1316}
1317
1318/// Binary search for the first index where a predicate is true.
1319/// Returns the first I in [Lo, Hi) where C(I) is true, or Hi if it never is.
1320/// Requires that C is always false below some limit, and always true above it.
1321///
1322/// Example:
1323/// size_t DawnModernEra = bsearch(1776, 2050, [](size_t Year){
1324/// return Presidents.for(Year).twitterHandle() != None;
1325/// });
1326///
1327/// Note the return value differs from std::binary_search!
1328template <typename Predicate>
1329size_t bsearch(size_t Lo, size_t Hi, Predicate P) {
1330 while (Lo != Hi) {
1331 assert(Hi > Lo)((Hi > Lo) ? static_cast<void> (0) : __assert_fail (
"Hi > Lo", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 size_t Mid = Lo + (Hi - Lo) / 2;
1333 if (P(Mid))
1334 Hi = Mid;
1335 else
1336 Lo = Mid + 1;
1337 }
1338 return Hi;
1339}
1340
1341/// Binary search for the first iterator where a predicate is true.
1342/// Returns the first I in [Lo, Hi) where C(*I) is true, or Hi if it never is.
1343/// Requires that C is always false below some limit, and always true above it.
1344template <typename It, typename Predicate,
1345 typename Val = decltype(*std::declval<It>())>
1346It bsearch(It Lo, It Hi, Predicate P) {
1347 return std::lower_bound(Lo, Hi, 0u,
1348 [&](const Val &V, unsigned) { return !P(V); });
1349}
1350
1351/// Binary search for the first iterator in a range where a predicate is true.
1352/// Requires that C is always false below some limit, and always true above it.
1353template <typename R, typename Predicate>
1354auto bsearch(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1355 return bsearch(adl_begin(Range), adl_end(Range), P);
1356}
1357
1358/// Wrapper function around std::equal to detect if all elements
1359/// in a container are same.
1360template <typename R>
1361bool is_splat(R &&Range) {
1362 size_t range_size = size(Range);
1363 return range_size != 0 && (range_size == 1 ||
1364 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1365}
1366
1367/// Given a range of type R, iterate the entire range and return a
1368/// SmallVector with elements of the vector. This is useful, for example,
1369/// when you want to iterate a range and then sort the results.
1370template <unsigned Size, typename R>
1371SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1372to_vector(R &&Range) {
1373 return {adl_begin(Range), adl_end(Range)};
1374}
1375
1376/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1377/// `erase_if` which is equivalent to:
1378///
1379/// C.erase(remove_if(C, pred), C.end());
1380///
1381/// This version works for any container with an erase method call accepting
1382/// two iterators.
1383template <typename Container, typename UnaryPredicate>
1384void erase_if(Container &C, UnaryPredicate P) {
1385 C.erase(remove_if(C, P), C.end());
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Extra additions to <memory>
1390//===----------------------------------------------------------------------===//
1391
1392// Implement make_unique according to N3656.
1393
1394/// Constructs a `new T()` with the given args and returns a
1395/// `unique_ptr<T>` which owns the object.
1396///
1397/// Example:
1398///
1399/// auto p = make_unique<int>();
1400/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1401template <class T, class... Args>
1402typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1403make_unique(Args &&... args) {
1404 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
6
Memory is allocated
1405}
1406
1407/// Constructs a `new T[n]` with the given args and returns a
1408/// `unique_ptr<T[]>` which owns the object.
1409///
1410/// \param n size of the new array.
1411///
1412/// Example:
1413///
1414/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1415template <class T>
1416typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1417 std::unique_ptr<T>>::type
1418make_unique(size_t n) {
1419 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1420}
1421
1422/// This function isn't used and is only here to provide better compile errors.
1423template <class T, class... Args>
1424typename std::enable_if<std::extent<T>::value != 0>::type
1425make_unique(Args &&...) = delete;
1426
1427struct FreeDeleter {
1428 void operator()(void* v) {
1429 ::free(v);
1430 }
1431};
1432
1433template<typename First, typename Second>
1434struct pair_hash {
1435 size_t operator()(const std::pair<First, Second> &P) const {
1436 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1437 }
1438};
1439
1440/// A functor like C++14's std::less<void> in its absence.
1441struct less {
1442 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1443 return std::forward<A>(a) < std::forward<B>(b);
1444 }
1445};
1446
1447/// A functor like C++14's std::equal<void> in its absence.
1448struct equal {
1449 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1450 return std::forward<A>(a) == std::forward<B>(b);
1451 }
1452};
1453
1454/// Binary functor that adapts to any other binary functor after dereferencing
1455/// operands.
1456template <typename T> struct deref {
1457 T func;
1458
1459 // Could be further improved to cope with non-derivable functors and
1460 // non-binary functors (should be a variadic template member function
1461 // operator()).
1462 template <typename A, typename B>
1463 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1464 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return func(*lhs, *rhs);
1467 }
1468};
1469
1470namespace detail {
1471
1472template <typename R> class enumerator_iter;
1473
1474template <typename R> struct result_pair {
1475 friend class enumerator_iter<R>;
1476
1477 result_pair() = default;
1478 result_pair(std::size_t Index, IterOfRange<R> Iter)
1479 : Index(Index), Iter(Iter) {}
1480
1481 result_pair<R> &operator=(const result_pair<R> &Other) {
1482 Index = Other.Index;
1483 Iter = Other.Iter;
1484 return *this;
1485 }
1486
1487 std::size_t index() const { return Index; }
1488 const ValueOfRange<R> &value() const { return *Iter; }
1489 ValueOfRange<R> &value() { return *Iter; }
1490
1491private:
1492 std::size_t Index = std::numeric_limits<std::size_t>::max();
1493 IterOfRange<R> Iter;
1494};
1495
1496template <typename R>
1497class enumerator_iter
1498 : public iterator_facade_base<
1499 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1500 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1501 typename std::iterator_traits<IterOfRange<R>>::pointer,
1502 typename std::iterator_traits<IterOfRange<R>>::reference> {
1503 using result_type = result_pair<R>;
1504
1505public:
1506 explicit enumerator_iter(IterOfRange<R> EndIter)
1507 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1508
1509 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1510 : Result(Index, Iter) {}
1511
1512 result_type &operator*() { return Result; }
1513 const result_type &operator*() const { return Result; }
1514
1515 enumerator_iter<R> &operator++() {
1516 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1516, __PRETTY_FUNCTION__))
;
1517 ++Result.Iter;
1518 ++Result.Index;
1519 return *this;
1520 }
1521
1522 bool operator==(const enumerator_iter<R> &RHS) const {
1523 // Don't compare indices here, only iterators. It's possible for an end
1524 // iterator to have different indices depending on whether it was created
1525 // by calling std::end() versus incrementing a valid iterator.
1526 return Result.Iter == RHS.Result.Iter;
1527 }
1528
1529 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1530 Result = Other.Result;
1531 return *this;
1532 }
1533
1534private:
1535 result_type Result;
1536};
1537
1538template <typename R> class enumerator {
1539public:
1540 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1541
1542 enumerator_iter<R> begin() {
1543 return enumerator_iter<R>(0, std::begin(TheRange));
1544 }
1545
1546 enumerator_iter<R> end() {
1547 return enumerator_iter<R>(std::end(TheRange));
1548 }
1549
1550private:
1551 R TheRange;
1552};
1553
1554} // end namespace detail
1555
1556/// Given an input range, returns a new range whose values are are pair (A,B)
1557/// such that A is the 0-based index of the item in the sequence, and B is
1558/// the value from the original sequence. Example:
1559///
1560/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1561/// for (auto X : enumerate(Items)) {
1562/// printf("Item %d - %c\n", X.index(), X.value());
1563/// }
1564///
1565/// Output:
1566/// Item 0 - A
1567/// Item 1 - B
1568/// Item 2 - C
1569/// Item 3 - D
1570///
1571template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1572 return detail::enumerator<R>(std::forward<R>(TheRange));
1573}
1574
1575namespace detail {
1576
1577template <typename F, typename Tuple, std::size_t... I>
1578auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1579 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1580 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1581}
1582
1583} // end namespace detail
1584
1585/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1586/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1587/// return the result.
1588template <typename F, typename Tuple>
1589auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1590 std::forward<F>(f), std::forward<Tuple>(t),
1591 build_index_impl<
1592 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1593 using Indices = build_index_impl<
1594 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1595
1596 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1597 Indices{});
1598}
1599
1600/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1601/// time. Not meant for use with random-access iterators.
1602template <typename IterTy>
1603bool hasNItems(
1604 IterTy &&Begin, IterTy &&End, unsigned N,
1605 typename std::enable_if<
1606 !std::is_same<
1607 typename std::iterator_traits<typename std::remove_reference<
1608 decltype(Begin)>::type>::iterator_category,
1609 std::random_access_iterator_tag>::value,
1610 void>::type * = nullptr) {
1611 for (; N; --N, ++Begin)
1612 if (Begin == End)
1613 return false; // Too few.
1614 return Begin == End;
1615}
1616
1617/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1618/// time. Not meant for use with random-access iterators.
1619template <typename IterTy>
1620bool hasNItemsOrMore(
1621 IterTy &&Begin, IterTy &&End, unsigned N,
1622 typename std::enable_if<
1623 !std::is_same<
1624 typename std::iterator_traits<typename std::remove_reference<
1625 decltype(Begin)>::type>::iterator_category,
1626 std::random_access_iterator_tag>::value,
1627 void>::type * = nullptr) {
1628 for (; N; --N, ++Begin)
1629 if (Begin == End)
1630 return false; // Too few.
1631 return true;
1632}
1633
1634/// Returns a raw pointer that represents the same address as the argument.
1635///
1636/// The late bound return should be removed once we move to C++14 to better
1637/// align with the C++20 declaration. Also, this implementation can be removed
1638/// once we move to C++20 where it's defined as std::to_addres()
1639///
1640/// The std::pointer_traits<>::to_address(p) variations of these overloads has
1641/// not been implemented.
1642template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1643 return P.operator->();
1644}
1645template <class T> constexpr T *to_address(T *P) { return P; }
1646
1647} // end namespace llvm
1648
1649#endif // LLVM_ADT_STLEXTRAS_H