Bug Summary

File:tools/clang/lib/Sema/SemaDecl.cpp
Warning:line 12024, column 16
Called C++ object pointer is uninitialized

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp -faddrsig
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CommentDiagnostic.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
31#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
32#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "clang/Sema/SemaInternal.h"
43#include "clang/Sema/Template.h"
44#include "llvm/ADT/SmallString.h"
45#include "llvm/ADT/Triple.h"
46#include <algorithm>
47#include <cstring>
48#include <functional>
49
50using namespace clang;
51using namespace sema;
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
54 if (OwnedType) {
55 Decl *Group[2] = { OwnedType, Ptr };
56 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
57 }
58
59 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
60}
61
62namespace {
63
64class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
65 public:
66 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
67 bool AllowTemplates = false,
68 bool AllowNonTemplates = true)
69 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
71 WantExpressionKeywords = false;
72 WantCXXNamedCasts = false;
73 WantRemainingKeywords = false;
74 }
75
76 bool ValidateCandidate(const TypoCorrection &candidate) override {
77 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78 if (!AllowInvalidDecl && ND->isInvalidDecl())
79 return false;
80
81 if (getAsTypeTemplateDecl(ND))
82 return AllowTemplates;
83
84 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
85 if (!IsType)
86 return false;
87
88 if (AllowNonTemplates)
89 return true;
90
91 // An injected-class-name of a class template (specialization) is valid
92 // as a template or as a non-template.
93 if (AllowTemplates) {
94 auto *RD = dyn_cast<CXXRecordDecl>(ND);
95 if (!RD || !RD->isInjectedClassName())
96 return false;
97 RD = cast<CXXRecordDecl>(RD->getDeclContext());
98 return RD->getDescribedClassTemplate() ||
99 isa<ClassTemplateSpecializationDecl>(RD);
100 }
101
102 return false;
103 }
104
105 return !WantClassName && candidate.isKeyword();
106 }
107
108 std::unique_ptr<CorrectionCandidateCallback> clone() override {
109 return llvm::make_unique<TypeNameValidatorCCC>(*this);
110 }
111
112 private:
113 bool AllowInvalidDecl;
114 bool WantClassName;
115 bool AllowTemplates;
116 bool AllowNonTemplates;
117};
118
119} // end anonymous namespace
120
121/// Determine whether the token kind starts a simple-type-specifier.
122bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
123 switch (Kind) {
124 // FIXME: Take into account the current language when deciding whether a
125 // token kind is a valid type specifier
126 case tok::kw_short:
127 case tok::kw_long:
128 case tok::kw___int64:
129 case tok::kw___int128:
130 case tok::kw_signed:
131 case tok::kw_unsigned:
132 case tok::kw_void:
133 case tok::kw_char:
134 case tok::kw_int:
135 case tok::kw_half:
136 case tok::kw_float:
137 case tok::kw_double:
138 case tok::kw__Float16:
139 case tok::kw___float128:
140 case tok::kw_wchar_t:
141 case tok::kw_bool:
142 case tok::kw___underlying_type:
143 case tok::kw___auto_type:
144 return true;
145
146 case tok::annot_typename:
147 case tok::kw_char16_t:
148 case tok::kw_char32_t:
149 case tok::kw_typeof:
150 case tok::annot_decltype:
151 case tok::kw_decltype:
152 return getLangOpts().CPlusPlus;
153
154 case tok::kw_char8_t:
155 return getLangOpts().Char8;
156
157 default:
158 break;
159 }
160
161 return false;
162}
163
164namespace {
165enum class UnqualifiedTypeNameLookupResult {
166 NotFound,
167 FoundNonType,
168 FoundType
169};
170} // end anonymous namespace
171
172/// Tries to perform unqualified lookup of the type decls in bases for
173/// dependent class.
174/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
175/// type decl, \a FoundType if only type decls are found.
176static UnqualifiedTypeNameLookupResult
177lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
178 SourceLocation NameLoc,
179 const CXXRecordDecl *RD) {
180 if (!RD->hasDefinition())
181 return UnqualifiedTypeNameLookupResult::NotFound;
182 // Look for type decls in base classes.
183 UnqualifiedTypeNameLookupResult FoundTypeDecl =
184 UnqualifiedTypeNameLookupResult::NotFound;
185 for (const auto &Base : RD->bases()) {
186 const CXXRecordDecl *BaseRD = nullptr;
187 if (auto *BaseTT = Base.getType()->getAs<TagType>())
188 BaseRD = BaseTT->getAsCXXRecordDecl();
189 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
190 // Look for type decls in dependent base classes that have known primary
191 // templates.
192 if (!TST || !TST->isDependentType())
193 continue;
194 auto *TD = TST->getTemplateName().getAsTemplateDecl();
195 if (!TD)
196 continue;
197 if (auto *BasePrimaryTemplate =
198 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
199 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
200 BaseRD = BasePrimaryTemplate;
201 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
202 if (const ClassTemplatePartialSpecializationDecl *PS =
203 CTD->findPartialSpecialization(Base.getType()))
204 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
205 BaseRD = PS;
206 }
207 }
208 }
209 if (BaseRD) {
210 for (NamedDecl *ND : BaseRD->lookup(&II)) {
211 if (!isa<TypeDecl>(ND))
212 return UnqualifiedTypeNameLookupResult::FoundNonType;
213 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
214 }
215 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
216 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
217 case UnqualifiedTypeNameLookupResult::FoundNonType:
218 return UnqualifiedTypeNameLookupResult::FoundNonType;
219 case UnqualifiedTypeNameLookupResult::FoundType:
220 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
221 break;
222 case UnqualifiedTypeNameLookupResult::NotFound:
223 break;
224 }
225 }
226 }
227 }
228
229 return FoundTypeDecl;
230}
231
232static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
233 const IdentifierInfo &II,
234 SourceLocation NameLoc) {
235 // Lookup in the parent class template context, if any.
236 const CXXRecordDecl *RD = nullptr;
237 UnqualifiedTypeNameLookupResult FoundTypeDecl =
238 UnqualifiedTypeNameLookupResult::NotFound;
239 for (DeclContext *DC = S.CurContext;
240 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
241 DC = DC->getParent()) {
242 // Look for type decls in dependent base classes that have known primary
243 // templates.
244 RD = dyn_cast<CXXRecordDecl>(DC);
245 if (RD && RD->getDescribedClassTemplate())
246 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
247 }
248 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
249 return nullptr;
250
251 // We found some types in dependent base classes. Recover as if the user
252 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
253 // lookup during template instantiation.
254 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
255
256 ASTContext &Context = S.Context;
257 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
258 cast<Type>(Context.getRecordType(RD)));
259 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
260
261 CXXScopeSpec SS;
262 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
263
264 TypeLocBuilder Builder;
265 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
266 DepTL.setNameLoc(NameLoc);
267 DepTL.setElaboratedKeywordLoc(SourceLocation());
268 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
269 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
270}
271
272/// If the identifier refers to a type name within this scope,
273/// return the declaration of that type.
274///
275/// This routine performs ordinary name lookup of the identifier II
276/// within the given scope, with optional C++ scope specifier SS, to
277/// determine whether the name refers to a type. If so, returns an
278/// opaque pointer (actually a QualType) corresponding to that
279/// type. Otherwise, returns NULL.
280ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
281 Scope *S, CXXScopeSpec *SS,
282 bool isClassName, bool HasTrailingDot,
283 ParsedType ObjectTypePtr,
284 bool IsCtorOrDtorName,
285 bool WantNontrivialTypeSourceInfo,
286 bool IsClassTemplateDeductionContext,
287 IdentifierInfo **CorrectedII) {
288 // FIXME: Consider allowing this outside C++1z mode as an extension.
289 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
290 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
291 !isClassName && !HasTrailingDot;
292
293 // Determine where we will perform name lookup.
294 DeclContext *LookupCtx = nullptr;
295 if (ObjectTypePtr) {
296 QualType ObjectType = ObjectTypePtr.get();
297 if (ObjectType->isRecordType())
298 LookupCtx = computeDeclContext(ObjectType);
299 } else if (SS && SS->isNotEmpty()) {
300 LookupCtx = computeDeclContext(*SS, false);
301
302 if (!LookupCtx) {
303 if (isDependentScopeSpecifier(*SS)) {
304 // C++ [temp.res]p3:
305 // A qualified-id that refers to a type and in which the
306 // nested-name-specifier depends on a template-parameter (14.6.2)
307 // shall be prefixed by the keyword typename to indicate that the
308 // qualified-id denotes a type, forming an
309 // elaborated-type-specifier (7.1.5.3).
310 //
311 // We therefore do not perform any name lookup if the result would
312 // refer to a member of an unknown specialization.
313 if (!isClassName && !IsCtorOrDtorName)
314 return nullptr;
315
316 // We know from the grammar that this name refers to a type,
317 // so build a dependent node to describe the type.
318 if (WantNontrivialTypeSourceInfo)
319 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
320
321 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
322 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
323 II, NameLoc);
324 return ParsedType::make(T);
325 }
326
327 return nullptr;
328 }
329
330 if (!LookupCtx->isDependentContext() &&
331 RequireCompleteDeclContext(*SS, LookupCtx))
332 return nullptr;
333 }
334
335 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
336 // lookup for class-names.
337 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
338 LookupOrdinaryName;
339 LookupResult Result(*this, &II, NameLoc, Kind);
340 if (LookupCtx) {
341 // Perform "qualified" name lookup into the declaration context we
342 // computed, which is either the type of the base of a member access
343 // expression or the declaration context associated with a prior
344 // nested-name-specifier.
345 LookupQualifiedName(Result, LookupCtx);
346
347 if (ObjectTypePtr && Result.empty()) {
348 // C++ [basic.lookup.classref]p3:
349 // If the unqualified-id is ~type-name, the type-name is looked up
350 // in the context of the entire postfix-expression. If the type T of
351 // the object expression is of a class type C, the type-name is also
352 // looked up in the scope of class C. At least one of the lookups shall
353 // find a name that refers to (possibly cv-qualified) T.
354 LookupName(Result, S);
355 }
356 } else {
357 // Perform unqualified name lookup.
358 LookupName(Result, S);
359
360 // For unqualified lookup in a class template in MSVC mode, look into
361 // dependent base classes where the primary class template is known.
362 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
363 if (ParsedType TypeInBase =
364 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
365 return TypeInBase;
366 }
367 }
368
369 NamedDecl *IIDecl = nullptr;
370 switch (Result.getResultKind()) {
371 case LookupResult::NotFound:
372 case LookupResult::NotFoundInCurrentInstantiation:
373 if (CorrectedII) {
374 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
375 AllowDeducedTemplate);
376 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
377 S, SS, CCC, CTK_ErrorRecovery);
378 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
379 TemplateTy Template;
380 bool MemberOfUnknownSpecialization;
381 UnqualifiedId TemplateName;
382 TemplateName.setIdentifier(NewII, NameLoc);
383 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
384 CXXScopeSpec NewSS, *NewSSPtr = SS;
385 if (SS && NNS) {
386 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
387 NewSSPtr = &NewSS;
388 }
389 if (Correction && (NNS || NewII != &II) &&
390 // Ignore a correction to a template type as the to-be-corrected
391 // identifier is not a template (typo correction for template names
392 // is handled elsewhere).
393 !(getLangOpts().CPlusPlus && NewSSPtr &&
394 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
395 Template, MemberOfUnknownSpecialization))) {
396 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
397 isClassName, HasTrailingDot, ObjectTypePtr,
398 IsCtorOrDtorName,
399 WantNontrivialTypeSourceInfo,
400 IsClassTemplateDeductionContext);
401 if (Ty) {
402 diagnoseTypo(Correction,
403 PDiag(diag::err_unknown_type_or_class_name_suggest)
404 << Result.getLookupName() << isClassName);
405 if (SS && NNS)
406 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
407 *CorrectedII = NewII;
408 return Ty;
409 }
410 }
411 }
412 // If typo correction failed or was not performed, fall through
413 LLVM_FALLTHROUGH[[clang::fallthrough]];
414 case LookupResult::FoundOverloaded:
415 case LookupResult::FoundUnresolvedValue:
416 Result.suppressDiagnostics();
417 return nullptr;
418
419 case LookupResult::Ambiguous:
420 // Recover from type-hiding ambiguities by hiding the type. We'll
421 // do the lookup again when looking for an object, and we can
422 // diagnose the error then. If we don't do this, then the error
423 // about hiding the type will be immediately followed by an error
424 // that only makes sense if the identifier was treated like a type.
425 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
426 Result.suppressDiagnostics();
427 return nullptr;
428 }
429
430 // Look to see if we have a type anywhere in the list of results.
431 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
432 Res != ResEnd; ++Res) {
433 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
434 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
435 if (!IIDecl ||
436 (*Res)->getLocation().getRawEncoding() <
437 IIDecl->getLocation().getRawEncoding())
438 IIDecl = *Res;
439 }
440 }
441
442 if (!IIDecl) {
443 // None of the entities we found is a type, so there is no way
444 // to even assume that the result is a type. In this case, don't
445 // complain about the ambiguity. The parser will either try to
446 // perform this lookup again (e.g., as an object name), which
447 // will produce the ambiguity, or will complain that it expected
448 // a type name.
449 Result.suppressDiagnostics();
450 return nullptr;
451 }
452
453 // We found a type within the ambiguous lookup; diagnose the
454 // ambiguity and then return that type. This might be the right
455 // answer, or it might not be, but it suppresses any attempt to
456 // perform the name lookup again.
457 break;
458
459 case LookupResult::Found:
460 IIDecl = Result.getFoundDecl();
461 break;
462 }
463
464 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 464, __PRETTY_FUNCTION__))
;
465
466 QualType T;
467 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
468 // C++ [class.qual]p2: A lookup that would find the injected-class-name
469 // instead names the constructors of the class, except when naming a class.
470 // This is ill-formed when we're not actually forming a ctor or dtor name.
471 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
472 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
473 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
474 FoundRD->isInjectedClassName() &&
475 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
476 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
477 << &II << /*Type*/1;
478
479 DiagnoseUseOfDecl(IIDecl, NameLoc);
480
481 T = Context.getTypeDeclType(TD);
482 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
483 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
484 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
485 if (!HasTrailingDot)
486 T = Context.getObjCInterfaceType(IDecl);
487 } else if (AllowDeducedTemplate) {
488 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
489 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
490 QualType(), false);
491 }
492
493 if (T.isNull()) {
494 // If it's not plausibly a type, suppress diagnostics.
495 Result.suppressDiagnostics();
496 return nullptr;
497 }
498
499 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
500 // constructor or destructor name (in such a case, the scope specifier
501 // will be attached to the enclosing Expr or Decl node).
502 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
503 !isa<ObjCInterfaceDecl>(IIDecl)) {
504 if (WantNontrivialTypeSourceInfo) {
505 // Construct a type with type-source information.
506 TypeLocBuilder Builder;
507 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
508
509 T = getElaboratedType(ETK_None, *SS, T);
510 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
511 ElabTL.setElaboratedKeywordLoc(SourceLocation());
512 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
513 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
514 } else {
515 T = getElaboratedType(ETK_None, *SS, T);
516 }
517 }
518
519 return ParsedType::make(T);
520}
521
522// Builds a fake NNS for the given decl context.
523static NestedNameSpecifier *
524synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
525 for (;; DC = DC->getLookupParent()) {
526 DC = DC->getPrimaryContext();
527 auto *ND = dyn_cast<NamespaceDecl>(DC);
528 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
529 return NestedNameSpecifier::Create(Context, nullptr, ND);
530 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
531 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
532 RD->getTypeForDecl());
533 else if (isa<TranslationUnitDecl>(DC))
534 return NestedNameSpecifier::GlobalSpecifier(Context);
535 }
536 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 536)
;
537}
538
539/// Find the parent class with dependent bases of the innermost enclosing method
540/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
541/// up allowing unqualified dependent type names at class-level, which MSVC
542/// correctly rejects.
543static const CXXRecordDecl *
544findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
545 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
546 DC = DC->getPrimaryContext();
547 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
548 if (MD->getParent()->hasAnyDependentBases())
549 return MD->getParent();
550 }
551 return nullptr;
552}
553
554ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
555 SourceLocation NameLoc,
556 bool IsTemplateTypeArg) {
557 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 557, __PRETTY_FUNCTION__))
;
558
559 NestedNameSpecifier *NNS = nullptr;
560 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
561 // If we weren't able to parse a default template argument, delay lookup
562 // until instantiation time by making a non-dependent DependentTypeName. We
563 // pretend we saw a NestedNameSpecifier referring to the current scope, and
564 // lookup is retried.
565 // FIXME: This hurts our diagnostic quality, since we get errors like "no
566 // type named 'Foo' in 'current_namespace'" when the user didn't write any
567 // name specifiers.
568 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
569 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
570 } else if (const CXXRecordDecl *RD =
571 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
572 // Build a DependentNameType that will perform lookup into RD at
573 // instantiation time.
574 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
575 RD->getTypeForDecl());
576
577 // Diagnose that this identifier was undeclared, and retry the lookup during
578 // template instantiation.
579 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
580 << RD;
581 } else {
582 // This is not a situation that we should recover from.
583 return ParsedType();
584 }
585
586 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
587
588 // Build type location information. We synthesized the qualifier, so we have
589 // to build a fake NestedNameSpecifierLoc.
590 NestedNameSpecifierLocBuilder NNSLocBuilder;
591 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
592 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
593
594 TypeLocBuilder Builder;
595 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
596 DepTL.setNameLoc(NameLoc);
597 DepTL.setElaboratedKeywordLoc(SourceLocation());
598 DepTL.setQualifierLoc(QualifierLoc);
599 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
600}
601
602/// isTagName() - This method is called *for error recovery purposes only*
603/// to determine if the specified name is a valid tag name ("struct foo"). If
604/// so, this returns the TST for the tag corresponding to it (TST_enum,
605/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
606/// cases in C where the user forgot to specify the tag.
607DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
608 // Do a tag name lookup in this scope.
609 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
610 LookupName(R, S, false);
611 R.suppressDiagnostics();
612 if (R.getResultKind() == LookupResult::Found)
613 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
614 switch (TD->getTagKind()) {
615 case TTK_Struct: return DeclSpec::TST_struct;
616 case TTK_Interface: return DeclSpec::TST_interface;
617 case TTK_Union: return DeclSpec::TST_union;
618 case TTK_Class: return DeclSpec::TST_class;
619 case TTK_Enum: return DeclSpec::TST_enum;
620 }
621 }
622
623 return DeclSpec::TST_unspecified;
624}
625
626/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
627/// if a CXXScopeSpec's type is equal to the type of one of the base classes
628/// then downgrade the missing typename error to a warning.
629/// This is needed for MSVC compatibility; Example:
630/// @code
631/// template<class T> class A {
632/// public:
633/// typedef int TYPE;
634/// };
635/// template<class T> class B : public A<T> {
636/// public:
637/// A<T>::TYPE a; // no typename required because A<T> is a base class.
638/// };
639/// @endcode
640bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
641 if (CurContext->isRecord()) {
642 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
643 return true;
644
645 const Type *Ty = SS->getScopeRep()->getAsType();
646
647 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
648 for (const auto &Base : RD->bases())
649 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
650 return true;
651 return S->isFunctionPrototypeScope();
652 }
653 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
654}
655
656void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
657 SourceLocation IILoc,
658 Scope *S,
659 CXXScopeSpec *SS,
660 ParsedType &SuggestedType,
661 bool IsTemplateName) {
662 // Don't report typename errors for editor placeholders.
663 if (II->isEditorPlaceholder())
664 return;
665 // We don't have anything to suggest (yet).
666 SuggestedType = nullptr;
667
668 // There may have been a typo in the name of the type. Look up typo
669 // results, in case we have something that we can suggest.
670 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
671 /*AllowTemplates=*/IsTemplateName,
672 /*AllowNonTemplates=*/!IsTemplateName);
673 if (TypoCorrection Corrected =
674 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
675 CCC, CTK_ErrorRecovery)) {
676 // FIXME: Support error recovery for the template-name case.
677 bool CanRecover = !IsTemplateName;
678 if (Corrected.isKeyword()) {
679 // We corrected to a keyword.
680 diagnoseTypo(Corrected,
681 PDiag(IsTemplateName ? diag::err_no_template_suggest
682 : diag::err_unknown_typename_suggest)
683 << II);
684 II = Corrected.getCorrectionAsIdentifierInfo();
685 } else {
686 // We found a similarly-named type or interface; suggest that.
687 if (!SS || !SS->isSet()) {
688 diagnoseTypo(Corrected,
689 PDiag(IsTemplateName ? diag::err_no_template_suggest
690 : diag::err_unknown_typename_suggest)
691 << II, CanRecover);
692 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
693 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
694 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
695 II->getName().equals(CorrectedStr);
696 diagnoseTypo(Corrected,
697 PDiag(IsTemplateName
698 ? diag::err_no_member_template_suggest
699 : diag::err_unknown_nested_typename_suggest)
700 << II << DC << DroppedSpecifier << SS->getRange(),
701 CanRecover);
702 } else {
703 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 703)
;
704 }
705
706 if (!CanRecover)
707 return;
708
709 CXXScopeSpec tmpSS;
710 if (Corrected.getCorrectionSpecifier())
711 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
712 SourceRange(IILoc));
713 // FIXME: Support class template argument deduction here.
714 SuggestedType =
715 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
716 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
717 /*IsCtorOrDtorName=*/false,
718 /*NonTrivialTypeSourceInfo=*/true);
719 }
720 return;
721 }
722
723 if (getLangOpts().CPlusPlus && !IsTemplateName) {
724 // See if II is a class template that the user forgot to pass arguments to.
725 UnqualifiedId Name;
726 Name.setIdentifier(II, IILoc);
727 CXXScopeSpec EmptySS;
728 TemplateTy TemplateResult;
729 bool MemberOfUnknownSpecialization;
730 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
731 Name, nullptr, true, TemplateResult,
732 MemberOfUnknownSpecialization) == TNK_Type_template) {
733 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
734 return;
735 }
736 }
737
738 // FIXME: Should we move the logic that tries to recover from a missing tag
739 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
740
741 if (!SS || (!SS->isSet() && !SS->isInvalid()))
742 Diag(IILoc, IsTemplateName ? diag::err_no_template
743 : diag::err_unknown_typename)
744 << II;
745 else if (DeclContext *DC = computeDeclContext(*SS, false))
746 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
747 : diag::err_typename_nested_not_found)
748 << II << DC << SS->getRange();
749 else if (isDependentScopeSpecifier(*SS)) {
750 unsigned DiagID = diag::err_typename_missing;
751 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
752 DiagID = diag::ext_typename_missing;
753
754 Diag(SS->getRange().getBegin(), DiagID)
755 << SS->getScopeRep() << II->getName()
756 << SourceRange(SS->getRange().getBegin(), IILoc)
757 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
758 SuggestedType = ActOnTypenameType(S, SourceLocation(),
759 *SS, *II, IILoc).get();
760 } else {
761 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 762, __PRETTY_FUNCTION__))
762 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 762, __PRETTY_FUNCTION__))
;
763 }
764}
765
766/// Determine whether the given result set contains either a type name
767/// or
768static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
769 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
770 NextToken.is(tok::less);
771
772 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
773 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
774 return true;
775
776 if (CheckTemplate && isa<TemplateDecl>(*I))
777 return true;
778 }
779
780 return false;
781}
782
783static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
784 Scope *S, CXXScopeSpec &SS,
785 IdentifierInfo *&Name,
786 SourceLocation NameLoc) {
787 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
788 SemaRef.LookupParsedName(R, S, &SS);
789 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
790 StringRef FixItTagName;
791 switch (Tag->getTagKind()) {
792 case TTK_Class:
793 FixItTagName = "class ";
794 break;
795
796 case TTK_Enum:
797 FixItTagName = "enum ";
798 break;
799
800 case TTK_Struct:
801 FixItTagName = "struct ";
802 break;
803
804 case TTK_Interface:
805 FixItTagName = "__interface ";
806 break;
807
808 case TTK_Union:
809 FixItTagName = "union ";
810 break;
811 }
812
813 StringRef TagName = FixItTagName.drop_back();
814 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
815 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
816 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
817
818 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
819 I != IEnd; ++I)
820 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
821 << Name << TagName;
822
823 // Replace lookup results with just the tag decl.
824 Result.clear(Sema::LookupTagName);
825 SemaRef.LookupParsedName(Result, S, &SS);
826 return true;
827 }
828
829 return false;
830}
831
832/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
833static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
834 QualType T, SourceLocation NameLoc) {
835 ASTContext &Context = S.Context;
836
837 TypeLocBuilder Builder;
838 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
839
840 T = S.getElaboratedType(ETK_None, SS, T);
841 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
842 ElabTL.setElaboratedKeywordLoc(SourceLocation());
843 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
844 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
845}
846
847Sema::NameClassification
848Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
849 SourceLocation NameLoc, const Token &NextToken,
850 bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) {
851 DeclarationNameInfo NameInfo(Name, NameLoc);
852 ObjCMethodDecl *CurMethod = getCurMethodDecl();
853
854 if (NextToken.is(tok::coloncolon)) {
855 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
856 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
857 } else if (getLangOpts().CPlusPlus && SS.isSet() &&
858 isCurrentClassName(*Name, S, &SS)) {
859 // Per [class.qual]p2, this names the constructors of SS, not the
860 // injected-class-name. We don't have a classification for that.
861 // There's not much point caching this result, since the parser
862 // will reject it later.
863 return NameClassification::Unknown();
864 }
865
866 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
867 LookupParsedName(Result, S, &SS, !CurMethod);
868
869 // For unqualified lookup in a class template in MSVC mode, look into
870 // dependent base classes where the primary class template is known.
871 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
872 if (ParsedType TypeInBase =
873 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
874 return TypeInBase;
875 }
876
877 // Perform lookup for Objective-C instance variables (including automatically
878 // synthesized instance variables), if we're in an Objective-C method.
879 // FIXME: This lookup really, really needs to be folded in to the normal
880 // unqualified lookup mechanism.
881 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
882 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
883 if (E.get() || E.isInvalid())
884 return E;
885 }
886
887 bool SecondTry = false;
888 bool IsFilteredTemplateName = false;
889
890Corrected:
891 switch (Result.getResultKind()) {
892 case LookupResult::NotFound:
893 // If an unqualified-id is followed by a '(', then we have a function
894 // call.
895 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
896 // In C++, this is an ADL-only call.
897 // FIXME: Reference?
898 if (getLangOpts().CPlusPlus)
899 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
900
901 // C90 6.3.2.2:
902 // If the expression that precedes the parenthesized argument list in a
903 // function call consists solely of an identifier, and if no
904 // declaration is visible for this identifier, the identifier is
905 // implicitly declared exactly as if, in the innermost block containing
906 // the function call, the declaration
907 //
908 // extern int identifier ();
909 //
910 // appeared.
911 //
912 // We also allow this in C99 as an extension.
913 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
914 Result.addDecl(D);
915 Result.resolveKind();
916 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
917 }
918 }
919
920 if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) {
921 // In C++20 onwards, this could be an ADL-only call to a function
922 // template, and we're required to assume that this is a template name.
923 //
924 // FIXME: Find a way to still do typo correction in this case.
925 TemplateName Template =
926 Context.getAssumedTemplateName(NameInfo.getName());
927 return NameClassification::UndeclaredTemplate(Template);
928 }
929
930 // In C, we first see whether there is a tag type by the same name, in
931 // which case it's likely that the user just forgot to write "enum",
932 // "struct", or "union".
933 if (!getLangOpts().CPlusPlus && !SecondTry &&
934 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
935 break;
936 }
937
938 // Perform typo correction to determine if there is another name that is
939 // close to this name.
940 if (!SecondTry && CCC) {
941 SecondTry = true;
942 if (TypoCorrection Corrected =
943 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
944 &SS, *CCC, CTK_ErrorRecovery)) {
945 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
946 unsigned QualifiedDiag = diag::err_no_member_suggest;
947
948 NamedDecl *FirstDecl = Corrected.getFoundDecl();
949 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
950 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
951 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
952 UnqualifiedDiag = diag::err_no_template_suggest;
953 QualifiedDiag = diag::err_no_member_template_suggest;
954 } else if (UnderlyingFirstDecl &&
955 (isa<TypeDecl>(UnderlyingFirstDecl) ||
956 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
957 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
958 UnqualifiedDiag = diag::err_unknown_typename_suggest;
959 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
960 }
961
962 if (SS.isEmpty()) {
963 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
964 } else {// FIXME: is this even reachable? Test it.
965 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
966 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
967 Name->getName().equals(CorrectedStr);
968 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
969 << Name << computeDeclContext(SS, false)
970 << DroppedSpecifier << SS.getRange());
971 }
972
973 // Update the name, so that the caller has the new name.
974 Name = Corrected.getCorrectionAsIdentifierInfo();
975
976 // Typo correction corrected to a keyword.
977 if (Corrected.isKeyword())
978 return Name;
979
980 // Also update the LookupResult...
981 // FIXME: This should probably go away at some point
982 Result.clear();
983 Result.setLookupName(Corrected.getCorrection());
984 if (FirstDecl)
985 Result.addDecl(FirstDecl);
986
987 // If we found an Objective-C instance variable, let
988 // LookupInObjCMethod build the appropriate expression to
989 // reference the ivar.
990 // FIXME: This is a gross hack.
991 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
992 Result.clear();
993 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
994 return E;
995 }
996
997 goto Corrected;
998 }
999 }
1000
1001 // We failed to correct; just fall through and let the parser deal with it.
1002 Result.suppressDiagnostics();
1003 return NameClassification::Unknown();
1004
1005 case LookupResult::NotFoundInCurrentInstantiation: {
1006 // We performed name lookup into the current instantiation, and there were
1007 // dependent bases, so we treat this result the same way as any other
1008 // dependent nested-name-specifier.
1009
1010 // C++ [temp.res]p2:
1011 // A name used in a template declaration or definition and that is
1012 // dependent on a template-parameter is assumed not to name a type
1013 // unless the applicable name lookup finds a type name or the name is
1014 // qualified by the keyword typename.
1015 //
1016 // FIXME: If the next token is '<', we might want to ask the parser to
1017 // perform some heroics to see if we actually have a
1018 // template-argument-list, which would indicate a missing 'template'
1019 // keyword here.
1020 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1021 NameInfo, IsAddressOfOperand,
1022 /*TemplateArgs=*/nullptr);
1023 }
1024
1025 case LookupResult::Found:
1026 case LookupResult::FoundOverloaded:
1027 case LookupResult::FoundUnresolvedValue:
1028 break;
1029
1030 case LookupResult::Ambiguous:
1031 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1032 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1033 /*AllowDependent=*/false)) {
1034 // C++ [temp.local]p3:
1035 // A lookup that finds an injected-class-name (10.2) can result in an
1036 // ambiguity in certain cases (for example, if it is found in more than
1037 // one base class). If all of the injected-class-names that are found
1038 // refer to specializations of the same class template, and if the name
1039 // is followed by a template-argument-list, the reference refers to the
1040 // class template itself and not a specialization thereof, and is not
1041 // ambiguous.
1042 //
1043 // This filtering can make an ambiguous result into an unambiguous one,
1044 // so try again after filtering out template names.
1045 FilterAcceptableTemplateNames(Result);
1046 if (!Result.isAmbiguous()) {
1047 IsFilteredTemplateName = true;
1048 break;
1049 }
1050 }
1051
1052 // Diagnose the ambiguity and return an error.
1053 return NameClassification::Error();
1054 }
1055
1056 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1057 (IsFilteredTemplateName ||
1058 hasAnyAcceptableTemplateNames(
1059 Result, /*AllowFunctionTemplates=*/true,
1060 /*AllowDependent=*/false,
1061 /*AllowNonTemplateFunctions*/ !SS.isSet() &&
1062 getLangOpts().CPlusPlus2a))) {
1063 // C++ [temp.names]p3:
1064 // After name lookup (3.4) finds that a name is a template-name or that
1065 // an operator-function-id or a literal- operator-id refers to a set of
1066 // overloaded functions any member of which is a function template if
1067 // this is followed by a <, the < is always taken as the delimiter of a
1068 // template-argument-list and never as the less-than operator.
1069 // C++2a [temp.names]p2:
1070 // A name is also considered to refer to a template if it is an
1071 // unqualified-id followed by a < and name lookup finds either one
1072 // or more functions or finds nothing.
1073 if (!IsFilteredTemplateName)
1074 FilterAcceptableTemplateNames(Result);
1075
1076 bool IsFunctionTemplate;
1077 bool IsVarTemplate;
1078 TemplateName Template;
1079 if (Result.end() - Result.begin() > 1) {
1080 IsFunctionTemplate = true;
1081 Template = Context.getOverloadedTemplateName(Result.begin(),
1082 Result.end());
1083 } else if (!Result.empty()) {
1084 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1085 *Result.begin(), /*AllowFunctionTemplates=*/true,
1086 /*AllowDependent=*/false));
1087 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1088 IsVarTemplate = isa<VarTemplateDecl>(TD);
1089
1090 if (SS.isSet() && !SS.isInvalid())
1091 Template =
1092 Context.getQualifiedTemplateName(SS.getScopeRep(),
1093 /*TemplateKeyword=*/false, TD);
1094 else
1095 Template = TemplateName(TD);
1096 } else {
1097 // All results were non-template functions. This is a function template
1098 // name.
1099 IsFunctionTemplate = true;
1100 Template = Context.getAssumedTemplateName(NameInfo.getName());
1101 }
1102
1103 if (IsFunctionTemplate) {
1104 // Function templates always go through overload resolution, at which
1105 // point we'll perform the various checks (e.g., accessibility) we need
1106 // to based on which function we selected.
1107 Result.suppressDiagnostics();
1108
1109 return NameClassification::FunctionTemplate(Template);
1110 }
1111
1112 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1113 : NameClassification::TypeTemplate(Template);
1114 }
1115
1116 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1117 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1118 DiagnoseUseOfDecl(Type, NameLoc);
1119 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1120 QualType T = Context.getTypeDeclType(Type);
1121 if (SS.isNotEmpty())
1122 return buildNestedType(*this, SS, T, NameLoc);
1123 return ParsedType::make(T);
1124 }
1125
1126 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1127 if (!Class) {
1128 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1129 if (ObjCCompatibleAliasDecl *Alias =
1130 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1131 Class = Alias->getClassInterface();
1132 }
1133
1134 if (Class) {
1135 DiagnoseUseOfDecl(Class, NameLoc);
1136
1137 if (NextToken.is(tok::period)) {
1138 // Interface. <something> is parsed as a property reference expression.
1139 // Just return "unknown" as a fall-through for now.
1140 Result.suppressDiagnostics();
1141 return NameClassification::Unknown();
1142 }
1143
1144 QualType T = Context.getObjCInterfaceType(Class);
1145 return ParsedType::make(T);
1146 }
1147
1148 // We can have a type template here if we're classifying a template argument.
1149 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1150 !isa<VarTemplateDecl>(FirstDecl))
1151 return NameClassification::TypeTemplate(
1152 TemplateName(cast<TemplateDecl>(FirstDecl)));
1153
1154 // Check for a tag type hidden by a non-type decl in a few cases where it
1155 // seems likely a type is wanted instead of the non-type that was found.
1156 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1157 if ((NextToken.is(tok::identifier) ||
1158 (NextIsOp &&
1159 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1160 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1161 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1162 DiagnoseUseOfDecl(Type, NameLoc);
1163 QualType T = Context.getTypeDeclType(Type);
1164 if (SS.isNotEmpty())
1165 return buildNestedType(*this, SS, T, NameLoc);
1166 return ParsedType::make(T);
1167 }
1168
1169 if (FirstDecl->isCXXClassMember())
1170 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1171 nullptr, S);
1172
1173 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1174 return BuildDeclarationNameExpr(SS, Result, ADL);
1175}
1176
1177Sema::TemplateNameKindForDiagnostics
1178Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1179 auto *TD = Name.getAsTemplateDecl();
1180 if (!TD)
1181 return TemplateNameKindForDiagnostics::DependentTemplate;
1182 if (isa<ClassTemplateDecl>(TD))
1183 return TemplateNameKindForDiagnostics::ClassTemplate;
1184 if (isa<FunctionTemplateDecl>(TD))
1185 return TemplateNameKindForDiagnostics::FunctionTemplate;
1186 if (isa<VarTemplateDecl>(TD))
1187 return TemplateNameKindForDiagnostics::VarTemplate;
1188 if (isa<TypeAliasTemplateDecl>(TD))
1189 return TemplateNameKindForDiagnostics::AliasTemplate;
1190 if (isa<TemplateTemplateParmDecl>(TD))
1191 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1192 return TemplateNameKindForDiagnostics::DependentTemplate;
1193}
1194
1195// Determines the context to return to after temporarily entering a
1196// context. This depends in an unnecessarily complicated way on the
1197// exact ordering of callbacks from the parser.
1198DeclContext *Sema::getContainingDC(DeclContext *DC) {
1199
1200 // Functions defined inline within classes aren't parsed until we've
1201 // finished parsing the top-level class, so the top-level class is
1202 // the context we'll need to return to.
1203 // A Lambda call operator whose parent is a class must not be treated
1204 // as an inline member function. A Lambda can be used legally
1205 // either as an in-class member initializer or a default argument. These
1206 // are parsed once the class has been marked complete and so the containing
1207 // context would be the nested class (when the lambda is defined in one);
1208 // If the class is not complete, then the lambda is being used in an
1209 // ill-formed fashion (such as to specify the width of a bit-field, or
1210 // in an array-bound) - in which case we still want to return the
1211 // lexically containing DC (which could be a nested class).
1212 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1213 DC = DC->getLexicalParent();
1214
1215 // A function not defined within a class will always return to its
1216 // lexical context.
1217 if (!isa<CXXRecordDecl>(DC))
1218 return DC;
1219
1220 // A C++ inline method/friend is parsed *after* the topmost class
1221 // it was declared in is fully parsed ("complete"); the topmost
1222 // class is the context we need to return to.
1223 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1224 DC = RD;
1225
1226 // Return the declaration context of the topmost class the inline method is
1227 // declared in.
1228 return DC;
1229 }
1230
1231 return DC->getLexicalParent();
1232}
1233
1234void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1235 assert(getContainingDC(DC) == CurContext &&((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1236, __PRETTY_FUNCTION__))
1236 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1236, __PRETTY_FUNCTION__))
;
1237 CurContext = DC;
1238 S->setEntity(DC);
1239}
1240
1241void Sema::PopDeclContext() {
1242 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1242, __PRETTY_FUNCTION__))
;
1243
1244 CurContext = getContainingDC(CurContext);
1245 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1245, __PRETTY_FUNCTION__))
;
1246}
1247
1248Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1249 Decl *D) {
1250 // Unlike PushDeclContext, the context to which we return is not necessarily
1251 // the containing DC of TD, because the new context will be some pre-existing
1252 // TagDecl definition instead of a fresh one.
1253 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1254 CurContext = cast<TagDecl>(D)->getDefinition();
1255 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1255, __PRETTY_FUNCTION__))
;
1256 // Start lookups from the parent of the current context; we don't want to look
1257 // into the pre-existing complete definition.
1258 S->setEntity(CurContext->getLookupParent());
1259 return Result;
1260}
1261
1262void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1263 CurContext = static_cast<decltype(CurContext)>(Context);
1264}
1265
1266/// EnterDeclaratorContext - Used when we must lookup names in the context
1267/// of a declarator's nested name specifier.
1268///
1269void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1270 // C++0x [basic.lookup.unqual]p13:
1271 // A name used in the definition of a static data member of class
1272 // X (after the qualified-id of the static member) is looked up as
1273 // if the name was used in a member function of X.
1274 // C++0x [basic.lookup.unqual]p14:
1275 // If a variable member of a namespace is defined outside of the
1276 // scope of its namespace then any name used in the definition of
1277 // the variable member (after the declarator-id) is looked up as
1278 // if the definition of the variable member occurred in its
1279 // namespace.
1280 // Both of these imply that we should push a scope whose context
1281 // is the semantic context of the declaration. We can't use
1282 // PushDeclContext here because that context is not necessarily
1283 // lexically contained in the current context. Fortunately,
1284 // the containing scope should have the appropriate information.
1285
1286 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1286, __PRETTY_FUNCTION__))
;
1287
1288#ifndef NDEBUG
1289 Scope *Ancestor = S->getParent();
1290 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1291 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1291, __PRETTY_FUNCTION__))
;
1292#endif
1293
1294 CurContext = DC;
1295 S->setEntity(DC);
1296}
1297
1298void Sema::ExitDeclaratorContext(Scope *S) {
1299 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1299, __PRETTY_FUNCTION__))
;
1300
1301 // Switch back to the lexical context. The safety of this is
1302 // enforced by an assert in EnterDeclaratorContext.
1303 Scope *Ancestor = S->getParent();
1304 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1305 CurContext = Ancestor->getEntity();
1306
1307 // We don't need to do anything with the scope, which is going to
1308 // disappear.
1309}
1310
1311void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1312 // We assume that the caller has already called
1313 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1314 FunctionDecl *FD = D->getAsFunction();
1315 if (!FD)
1316 return;
1317
1318 // Same implementation as PushDeclContext, but enters the context
1319 // from the lexical parent, rather than the top-level class.
1320 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1321, __PRETTY_FUNCTION__))
1321 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1321, __PRETTY_FUNCTION__))
;
1322 CurContext = FD;
1323 S->setEntity(CurContext);
1324
1325 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1326 ParmVarDecl *Param = FD->getParamDecl(P);
1327 // If the parameter has an identifier, then add it to the scope
1328 if (Param->getIdentifier()) {
1329 S->AddDecl(Param);
1330 IdResolver.AddDecl(Param);
1331 }
1332 }
1333}
1334
1335void Sema::ActOnExitFunctionContext() {
1336 // Same implementation as PopDeclContext, but returns to the lexical parent,
1337 // rather than the top-level class.
1338 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1338, __PRETTY_FUNCTION__))
;
1339 CurContext = CurContext->getLexicalParent();
1340 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1340, __PRETTY_FUNCTION__))
;
1341}
1342
1343/// Determine whether we allow overloading of the function
1344/// PrevDecl with another declaration.
1345///
1346/// This routine determines whether overloading is possible, not
1347/// whether some new function is actually an overload. It will return
1348/// true in C++ (where we can always provide overloads) or, as an
1349/// extension, in C when the previous function is already an
1350/// overloaded function declaration or has the "overloadable"
1351/// attribute.
1352static bool AllowOverloadingOfFunction(LookupResult &Previous,
1353 ASTContext &Context,
1354 const FunctionDecl *New) {
1355 if (Context.getLangOpts().CPlusPlus)
1356 return true;
1357
1358 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1359 return true;
1360
1361 return Previous.getResultKind() == LookupResult::Found &&
1362 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1363 New->hasAttr<OverloadableAttr>());
1364}
1365
1366/// Add this decl to the scope shadowed decl chains.
1367void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1368 // Move up the scope chain until we find the nearest enclosing
1369 // non-transparent context. The declaration will be introduced into this
1370 // scope.
1371 while (S->getEntity() && S->getEntity()->isTransparentContext())
1372 S = S->getParent();
1373
1374 // Add scoped declarations into their context, so that they can be
1375 // found later. Declarations without a context won't be inserted
1376 // into any context.
1377 if (AddToContext)
1378 CurContext->addDecl(D);
1379
1380 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1381 // are function-local declarations.
1382 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1383 !D->getDeclContext()->getRedeclContext()->Equals(
1384 D->getLexicalDeclContext()->getRedeclContext()) &&
1385 !D->getLexicalDeclContext()->isFunctionOrMethod())
1386 return;
1387
1388 // Template instantiations should also not be pushed into scope.
1389 if (isa<FunctionDecl>(D) &&
1390 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1391 return;
1392
1393 // If this replaces anything in the current scope,
1394 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1395 IEnd = IdResolver.end();
1396 for (; I != IEnd; ++I) {
1397 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1398 S->RemoveDecl(*I);
1399 IdResolver.RemoveDecl(*I);
1400
1401 // Should only need to replace one decl.
1402 break;
1403 }
1404 }
1405
1406 S->AddDecl(D);
1407
1408 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1409 // Implicitly-generated labels may end up getting generated in an order that
1410 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1411 // the label at the appropriate place in the identifier chain.
1412 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1413 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1414 if (IDC == CurContext) {
1415 if (!S->isDeclScope(*I))
1416 continue;
1417 } else if (IDC->Encloses(CurContext))
1418 break;
1419 }
1420
1421 IdResolver.InsertDeclAfter(I, D);
1422 } else {
1423 IdResolver.AddDecl(D);
1424 }
1425}
1426
1427bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1428 bool AllowInlineNamespace) {
1429 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1430}
1431
1432Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1433 DeclContext *TargetDC = DC->getPrimaryContext();
1434 do {
1435 if (DeclContext *ScopeDC = S->getEntity())
1436 if (ScopeDC->getPrimaryContext() == TargetDC)
1437 return S;
1438 } while ((S = S->getParent()));
1439
1440 return nullptr;
1441}
1442
1443static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1444 DeclContext*,
1445 ASTContext&);
1446
1447/// Filters out lookup results that don't fall within the given scope
1448/// as determined by isDeclInScope.
1449void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1450 bool ConsiderLinkage,
1451 bool AllowInlineNamespace) {
1452 LookupResult::Filter F = R.makeFilter();
1453 while (F.hasNext()) {
1454 NamedDecl *D = F.next();
1455
1456 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1457 continue;
1458
1459 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1460 continue;
1461
1462 F.erase();
1463 }
1464
1465 F.done();
1466}
1467
1468/// We've determined that \p New is a redeclaration of \p Old. Check that they
1469/// have compatible owning modules.
1470bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1471 // FIXME: The Modules TS is not clear about how friend declarations are
1472 // to be treated. It's not meaningful to have different owning modules for
1473 // linkage in redeclarations of the same entity, so for now allow the
1474 // redeclaration and change the owning modules to match.
1475 if (New->getFriendObjectKind() &&
1476 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1477 New->setLocalOwningModule(Old->getOwningModule());
1478 makeMergedDefinitionVisible(New);
1479 return false;
1480 }
1481
1482 Module *NewM = New->getOwningModule();
1483 Module *OldM = Old->getOwningModule();
1484
1485 if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1486 NewM = NewM->Parent;
1487 if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1488 OldM = OldM->Parent;
1489
1490 if (NewM == OldM)
1491 return false;
1492
1493 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1494 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1495 if (NewIsModuleInterface || OldIsModuleInterface) {
1496 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1497 // if a declaration of D [...] appears in the purview of a module, all
1498 // other such declarations shall appear in the purview of the same module
1499 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1500 << New
1501 << NewIsModuleInterface
1502 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1503 << OldIsModuleInterface
1504 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1505 Diag(Old->getLocation(), diag::note_previous_declaration);
1506 New->setInvalidDecl();
1507 return true;
1508 }
1509
1510 return false;
1511}
1512
1513static bool isUsingDecl(NamedDecl *D) {
1514 return isa<UsingShadowDecl>(D) ||
1515 isa<UnresolvedUsingTypenameDecl>(D) ||
1516 isa<UnresolvedUsingValueDecl>(D);
1517}
1518
1519/// Removes using shadow declarations from the lookup results.
1520static void RemoveUsingDecls(LookupResult &R) {
1521 LookupResult::Filter F = R.makeFilter();
1522 while (F.hasNext())
1523 if (isUsingDecl(F.next()))
1524 F.erase();
1525
1526 F.done();
1527}
1528
1529/// Check for this common pattern:
1530/// @code
1531/// class S {
1532/// S(const S&); // DO NOT IMPLEMENT
1533/// void operator=(const S&); // DO NOT IMPLEMENT
1534/// };
1535/// @endcode
1536static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1537 // FIXME: Should check for private access too but access is set after we get
1538 // the decl here.
1539 if (D->doesThisDeclarationHaveABody())
1540 return false;
1541
1542 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1543 return CD->isCopyConstructor();
1544 return D->isCopyAssignmentOperator();
1545}
1546
1547// We need this to handle
1548//
1549// typedef struct {
1550// void *foo() { return 0; }
1551// } A;
1552//
1553// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1554// for example. If 'A', foo will have external linkage. If we have '*A',
1555// foo will have no linkage. Since we can't know until we get to the end
1556// of the typedef, this function finds out if D might have non-external linkage.
1557// Callers should verify at the end of the TU if it D has external linkage or
1558// not.
1559bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1560 const DeclContext *DC = D->getDeclContext();
1561 while (!DC->isTranslationUnit()) {
1562 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1563 if (!RD->hasNameForLinkage())
1564 return true;
1565 }
1566 DC = DC->getParent();
1567 }
1568
1569 return !D->isExternallyVisible();
1570}
1571
1572// FIXME: This needs to be refactored; some other isInMainFile users want
1573// these semantics.
1574static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1575 if (S.TUKind != TU_Complete)
1576 return false;
1577 return S.SourceMgr.isInMainFile(Loc);
1578}
1579
1580bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1581 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1581, __PRETTY_FUNCTION__))
;
1582
1583 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1584 return false;
1585
1586 // Ignore all entities declared within templates, and out-of-line definitions
1587 // of members of class templates.
1588 if (D->getDeclContext()->isDependentContext() ||
1589 D->getLexicalDeclContext()->isDependentContext())
1590 return false;
1591
1592 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1593 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1594 return false;
1595 // A non-out-of-line declaration of a member specialization was implicitly
1596 // instantiated; it's the out-of-line declaration that we're interested in.
1597 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1598 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1599 return false;
1600
1601 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1602 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1603 return false;
1604 } else {
1605 // 'static inline' functions are defined in headers; don't warn.
1606 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1607 return false;
1608 }
1609
1610 if (FD->doesThisDeclarationHaveABody() &&
1611 Context.DeclMustBeEmitted(FD))
1612 return false;
1613 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1614 // Constants and utility variables are defined in headers with internal
1615 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1616 // like "inline".)
1617 if (!isMainFileLoc(*this, VD->getLocation()))
1618 return false;
1619
1620 if (Context.DeclMustBeEmitted(VD))
1621 return false;
1622
1623 if (VD->isStaticDataMember() &&
1624 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1625 return false;
1626 if (VD->isStaticDataMember() &&
1627 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1628 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1629 return false;
1630
1631 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1632 return false;
1633 } else {
1634 return false;
1635 }
1636
1637 // Only warn for unused decls internal to the translation unit.
1638 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1639 // for inline functions defined in the main source file, for instance.
1640 return mightHaveNonExternalLinkage(D);
1641}
1642
1643void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1644 if (!D)
1645 return;
1646
1647 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1648 const FunctionDecl *First = FD->getFirstDecl();
1649 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1650 return; // First should already be in the vector.
1651 }
1652
1653 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1654 const VarDecl *First = VD->getFirstDecl();
1655 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1656 return; // First should already be in the vector.
1657 }
1658
1659 if (ShouldWarnIfUnusedFileScopedDecl(D))
1660 UnusedFileScopedDecls.push_back(D);
1661}
1662
1663static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1664 if (D->isInvalidDecl())
1665 return false;
1666
1667 bool Referenced = false;
1668 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1669 // For a decomposition declaration, warn if none of the bindings are
1670 // referenced, instead of if the variable itself is referenced (which
1671 // it is, by the bindings' expressions).
1672 for (auto *BD : DD->bindings()) {
1673 if (BD->isReferenced()) {
1674 Referenced = true;
1675 break;
1676 }
1677 }
1678 } else if (!D->getDeclName()) {
1679 return false;
1680 } else if (D->isReferenced() || D->isUsed()) {
1681 Referenced = true;
1682 }
1683
1684 if (Referenced || D->hasAttr<UnusedAttr>() ||
1685 D->hasAttr<ObjCPreciseLifetimeAttr>())
1686 return false;
1687
1688 if (isa<LabelDecl>(D))
1689 return true;
1690
1691 // Except for labels, we only care about unused decls that are local to
1692 // functions.
1693 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1694 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1695 // For dependent types, the diagnostic is deferred.
1696 WithinFunction =
1697 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1698 if (!WithinFunction)
1699 return false;
1700
1701 if (isa<TypedefNameDecl>(D))
1702 return true;
1703
1704 // White-list anything that isn't a local variable.
1705 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1706 return false;
1707
1708 // Types of valid local variables should be complete, so this should succeed.
1709 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1710
1711 // White-list anything with an __attribute__((unused)) type.
1712 const auto *Ty = VD->getType().getTypePtr();
1713
1714 // Only look at the outermost level of typedef.
1715 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1716 if (TT->getDecl()->hasAttr<UnusedAttr>())
1717 return false;
1718 }
1719
1720 // If we failed to complete the type for some reason, or if the type is
1721 // dependent, don't diagnose the variable.
1722 if (Ty->isIncompleteType() || Ty->isDependentType())
1723 return false;
1724
1725 // Look at the element type to ensure that the warning behaviour is
1726 // consistent for both scalars and arrays.
1727 Ty = Ty->getBaseElementTypeUnsafe();
1728
1729 if (const TagType *TT = Ty->getAs<TagType>()) {
1730 const TagDecl *Tag = TT->getDecl();
1731 if (Tag->hasAttr<UnusedAttr>())
1732 return false;
1733
1734 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1735 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1736 return false;
1737
1738 if (const Expr *Init = VD->getInit()) {
1739 if (const ExprWithCleanups *Cleanups =
1740 dyn_cast<ExprWithCleanups>(Init))
1741 Init = Cleanups->getSubExpr();
1742 const CXXConstructExpr *Construct =
1743 dyn_cast<CXXConstructExpr>(Init);
1744 if (Construct && !Construct->isElidable()) {
1745 CXXConstructorDecl *CD = Construct->getConstructor();
1746 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1747 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1748 return false;
1749 }
1750 }
1751 }
1752 }
1753
1754 // TODO: __attribute__((unused)) templates?
1755 }
1756
1757 return true;
1758}
1759
1760static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1761 FixItHint &Hint) {
1762 if (isa<LabelDecl>(D)) {
1763 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1764 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1765 true);
1766 if (AfterColon.isInvalid())
1767 return;
1768 Hint = FixItHint::CreateRemoval(
1769 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1770 }
1771}
1772
1773void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1774 if (D->getTypeForDecl()->isDependentType())
1775 return;
1776
1777 for (auto *TmpD : D->decls()) {
1778 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1779 DiagnoseUnusedDecl(T);
1780 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1781 DiagnoseUnusedNestedTypedefs(R);
1782 }
1783}
1784
1785/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1786/// unless they are marked attr(unused).
1787void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1788 if (!ShouldDiagnoseUnusedDecl(D))
1789 return;
1790
1791 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1792 // typedefs can be referenced later on, so the diagnostics are emitted
1793 // at end-of-translation-unit.
1794 UnusedLocalTypedefNameCandidates.insert(TD);
1795 return;
1796 }
1797
1798 FixItHint Hint;
1799 GenerateFixForUnusedDecl(D, Context, Hint);
1800
1801 unsigned DiagID;
1802 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1803 DiagID = diag::warn_unused_exception_param;
1804 else if (isa<LabelDecl>(D))
1805 DiagID = diag::warn_unused_label;
1806 else
1807 DiagID = diag::warn_unused_variable;
1808
1809 Diag(D->getLocation(), DiagID) << D << Hint;
1810}
1811
1812static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1813 // Verify that we have no forward references left. If so, there was a goto
1814 // or address of a label taken, but no definition of it. Label fwd
1815 // definitions are indicated with a null substmt which is also not a resolved
1816 // MS inline assembly label name.
1817 bool Diagnose = false;
1818 if (L->isMSAsmLabel())
1819 Diagnose = !L->isResolvedMSAsmLabel();
1820 else
1821 Diagnose = L->getStmt() == nullptr;
1822 if (Diagnose)
1823 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1824}
1825
1826void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1827 S->mergeNRVOIntoParent();
1828
1829 if (S->decl_empty()) return;
1830 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1831, __PRETTY_FUNCTION__))
1831 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1831, __PRETTY_FUNCTION__))
;
1832
1833 for (auto *TmpD : S->decls()) {
1834 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1834, __PRETTY_FUNCTION__))
;
1835
1836 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1836, __PRETTY_FUNCTION__))
;
1837 NamedDecl *D = cast<NamedDecl>(TmpD);
1838
1839 // Diagnose unused variables in this scope.
1840 if (!S->hasUnrecoverableErrorOccurred()) {
1841 DiagnoseUnusedDecl(D);
1842 if (const auto *RD = dyn_cast<RecordDecl>(D))
1843 DiagnoseUnusedNestedTypedefs(RD);
1844 }
1845
1846 if (!D->getDeclName()) continue;
1847
1848 // If this was a forward reference to a label, verify it was defined.
1849 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1850 CheckPoppedLabel(LD, *this);
1851
1852 // Remove this name from our lexical scope, and warn on it if we haven't
1853 // already.
1854 IdResolver.RemoveDecl(D);
1855 auto ShadowI = ShadowingDecls.find(D);
1856 if (ShadowI != ShadowingDecls.end()) {
1857 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1858 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1859 << D << FD << FD->getParent();
1860 Diag(FD->getLocation(), diag::note_previous_declaration);
1861 }
1862 ShadowingDecls.erase(ShadowI);
1863 }
1864 }
1865}
1866
1867/// Look for an Objective-C class in the translation unit.
1868///
1869/// \param Id The name of the Objective-C class we're looking for. If
1870/// typo-correction fixes this name, the Id will be updated
1871/// to the fixed name.
1872///
1873/// \param IdLoc The location of the name in the translation unit.
1874///
1875/// \param DoTypoCorrection If true, this routine will attempt typo correction
1876/// if there is no class with the given name.
1877///
1878/// \returns The declaration of the named Objective-C class, or NULL if the
1879/// class could not be found.
1880ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1881 SourceLocation IdLoc,
1882 bool DoTypoCorrection) {
1883 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1884 // creation from this context.
1885 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1886
1887 if (!IDecl && DoTypoCorrection) {
1888 // Perform typo correction at the given location, but only if we
1889 // find an Objective-C class name.
1890 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1891 if (TypoCorrection C =
1892 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1893 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1894 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1895 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1896 Id = IDecl->getIdentifier();
1897 }
1898 }
1899 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1900 // This routine must always return a class definition, if any.
1901 if (Def && Def->getDefinition())
1902 Def = Def->getDefinition();
1903 return Def;
1904}
1905
1906/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1907/// from S, where a non-field would be declared. This routine copes
1908/// with the difference between C and C++ scoping rules in structs and
1909/// unions. For example, the following code is well-formed in C but
1910/// ill-formed in C++:
1911/// @code
1912/// struct S6 {
1913/// enum { BAR } e;
1914/// };
1915///
1916/// void test_S6() {
1917/// struct S6 a;
1918/// a.e = BAR;
1919/// }
1920/// @endcode
1921/// For the declaration of BAR, this routine will return a different
1922/// scope. The scope S will be the scope of the unnamed enumeration
1923/// within S6. In C++, this routine will return the scope associated
1924/// with S6, because the enumeration's scope is a transparent
1925/// context but structures can contain non-field names. In C, this
1926/// routine will return the translation unit scope, since the
1927/// enumeration's scope is a transparent context and structures cannot
1928/// contain non-field names.
1929Scope *Sema::getNonFieldDeclScope(Scope *S) {
1930 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1931 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1932 (S->isClassScope() && !getLangOpts().CPlusPlus))
1933 S = S->getParent();
1934 return S;
1935}
1936
1937/// Looks up the declaration of "struct objc_super" and
1938/// saves it for later use in building builtin declaration of
1939/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1940/// pre-existing declaration exists no action takes place.
1941static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1942 IdentifierInfo *II) {
1943 if (!II->isStr("objc_msgSendSuper"))
1944 return;
1945 ASTContext &Context = ThisSema.Context;
1946
1947 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1948 SourceLocation(), Sema::LookupTagName);
1949 ThisSema.LookupName(Result, S);
1950 if (Result.getResultKind() == LookupResult::Found)
1951 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1952 Context.setObjCSuperType(Context.getTagDeclType(TD));
1953}
1954
1955static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
1956 ASTContext::GetBuiltinTypeError Error) {
1957 switch (Error) {
1958 case ASTContext::GE_None:
1959 return "";
1960 case ASTContext::GE_Missing_type:
1961 return BuiltinInfo.getHeaderName(ID);
1962 case ASTContext::GE_Missing_stdio:
1963 return "stdio.h";
1964 case ASTContext::GE_Missing_setjmp:
1965 return "setjmp.h";
1966 case ASTContext::GE_Missing_ucontext:
1967 return "ucontext.h";
1968 }
1969 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 1969)
;
1970}
1971
1972/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1973/// file scope. lazily create a decl for it. ForRedeclaration is true
1974/// if we're creating this built-in in anticipation of redeclaring the
1975/// built-in.
1976NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1977 Scope *S, bool ForRedeclaration,
1978 SourceLocation Loc) {
1979 LookupPredefedObjCSuperType(*this, S, II);
1980
1981 ASTContext::GetBuiltinTypeError Error;
1982 QualType R = Context.GetBuiltinType(ID, Error);
1983 if (Error) {
1984 if (ForRedeclaration)
1985 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1986 << getHeaderName(Context.BuiltinInfo, ID, Error)
1987 << Context.BuiltinInfo.getName(ID);
1988 return nullptr;
1989 }
1990
1991 if (!ForRedeclaration &&
1992 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1993 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1994 Diag(Loc, diag::ext_implicit_lib_function_decl)
1995 << Context.BuiltinInfo.getName(ID) << R;
1996 if (Context.BuiltinInfo.getHeaderName(ID) &&
1997 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1998 Diag(Loc, diag::note_include_header_or_declare)
1999 << Context.BuiltinInfo.getHeaderName(ID)
2000 << Context.BuiltinInfo.getName(ID);
2001 }
2002
2003 if (R.isNull())
2004 return nullptr;
2005
2006 DeclContext *Parent = Context.getTranslationUnitDecl();
2007 if (getLangOpts().CPlusPlus) {
2008 LinkageSpecDecl *CLinkageDecl =
2009 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2010 LinkageSpecDecl::lang_c, false);
2011 CLinkageDecl->setImplicit();
2012 Parent->addDecl(CLinkageDecl);
2013 Parent = CLinkageDecl;
2014 }
2015
2016 FunctionDecl *New = FunctionDecl::Create(Context,
2017 Parent,
2018 Loc, Loc, II, R, /*TInfo=*/nullptr,
2019 SC_Extern,
2020 false,
2021 R->isFunctionProtoType());
2022 New->setImplicit();
2023
2024 // Create Decl objects for each parameter, adding them to the
2025 // FunctionDecl.
2026 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2027 SmallVector<ParmVarDecl*, 16> Params;
2028 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2029 ParmVarDecl *parm =
2030 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2031 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2032 SC_None, nullptr);
2033 parm->setScopeInfo(0, i);
2034 Params.push_back(parm);
2035 }
2036 New->setParams(Params);
2037 }
2038
2039 AddKnownFunctionAttributes(New);
2040 RegisterLocallyScopedExternCDecl(New, S);
2041
2042 // TUScope is the translation-unit scope to insert this function into.
2043 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2044 // relate Scopes to DeclContexts, and probably eliminate CurContext
2045 // entirely, but we're not there yet.
2046 DeclContext *SavedContext = CurContext;
2047 CurContext = Parent;
2048 PushOnScopeChains(New, TUScope);
2049 CurContext = SavedContext;
2050 return New;
2051}
2052
2053/// Typedef declarations don't have linkage, but they still denote the same
2054/// entity if their types are the same.
2055/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2056/// isSameEntity.
2057static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2058 TypedefNameDecl *Decl,
2059 LookupResult &Previous) {
2060 // This is only interesting when modules are enabled.
2061 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2062 return;
2063
2064 // Empty sets are uninteresting.
2065 if (Previous.empty())
2066 return;
2067
2068 LookupResult::Filter Filter = Previous.makeFilter();
2069 while (Filter.hasNext()) {
2070 NamedDecl *Old = Filter.next();
2071
2072 // Non-hidden declarations are never ignored.
2073 if (S.isVisible(Old))
2074 continue;
2075
2076 // Declarations of the same entity are not ignored, even if they have
2077 // different linkages.
2078 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2079 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2080 Decl->getUnderlyingType()))
2081 continue;
2082
2083 // If both declarations give a tag declaration a typedef name for linkage
2084 // purposes, then they declare the same entity.
2085 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2086 Decl->getAnonDeclWithTypedefName())
2087 continue;
2088 }
2089
2090 Filter.erase();
2091 }
2092
2093 Filter.done();
2094}
2095
2096bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2097 QualType OldType;
2098 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2099 OldType = OldTypedef->getUnderlyingType();
2100 else
2101 OldType = Context.getTypeDeclType(Old);
2102 QualType NewType = New->getUnderlyingType();
2103
2104 if (NewType->isVariablyModifiedType()) {
2105 // Must not redefine a typedef with a variably-modified type.
2106 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2107 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2108 << Kind << NewType;
2109 if (Old->getLocation().isValid())
2110 notePreviousDefinition(Old, New->getLocation());
2111 New->setInvalidDecl();
2112 return true;
2113 }
2114
2115 if (OldType != NewType &&
2116 !OldType->isDependentType() &&
2117 !NewType->isDependentType() &&
2118 !Context.hasSameType(OldType, NewType)) {
2119 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2120 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2121 << Kind << NewType << OldType;
2122 if (Old->getLocation().isValid())
2123 notePreviousDefinition(Old, New->getLocation());
2124 New->setInvalidDecl();
2125 return true;
2126 }
2127 return false;
2128}
2129
2130/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2131/// same name and scope as a previous declaration 'Old'. Figure out
2132/// how to resolve this situation, merging decls or emitting
2133/// diagnostics as appropriate. If there was an error, set New to be invalid.
2134///
2135void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2136 LookupResult &OldDecls) {
2137 // If the new decl is known invalid already, don't bother doing any
2138 // merging checks.
2139 if (New->isInvalidDecl()) return;
2140
2141 // Allow multiple definitions for ObjC built-in typedefs.
2142 // FIXME: Verify the underlying types are equivalent!
2143 if (getLangOpts().ObjC) {
2144 const IdentifierInfo *TypeID = New->getIdentifier();
2145 switch (TypeID->getLength()) {
2146 default: break;
2147 case 2:
2148 {
2149 if (!TypeID->isStr("id"))
2150 break;
2151 QualType T = New->getUnderlyingType();
2152 if (!T->isPointerType())
2153 break;
2154 if (!T->isVoidPointerType()) {
2155 QualType PT = T->getAs<PointerType>()->getPointeeType();
2156 if (!PT->isStructureType())
2157 break;
2158 }
2159 Context.setObjCIdRedefinitionType(T);
2160 // Install the built-in type for 'id', ignoring the current definition.
2161 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2162 return;
2163 }
2164 case 5:
2165 if (!TypeID->isStr("Class"))
2166 break;
2167 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2168 // Install the built-in type for 'Class', ignoring the current definition.
2169 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2170 return;
2171 case 3:
2172 if (!TypeID->isStr("SEL"))
2173 break;
2174 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2175 // Install the built-in type for 'SEL', ignoring the current definition.
2176 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2177 return;
2178 }
2179 // Fall through - the typedef name was not a builtin type.
2180 }
2181
2182 // Verify the old decl was also a type.
2183 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2184 if (!Old) {
2185 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2186 << New->getDeclName();
2187
2188 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2189 if (OldD->getLocation().isValid())
2190 notePreviousDefinition(OldD, New->getLocation());
2191
2192 return New->setInvalidDecl();
2193 }
2194
2195 // If the old declaration is invalid, just give up here.
2196 if (Old->isInvalidDecl())
2197 return New->setInvalidDecl();
2198
2199 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2200 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2201 auto *NewTag = New->getAnonDeclWithTypedefName();
2202 NamedDecl *Hidden = nullptr;
2203 if (OldTag && NewTag &&
2204 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2205 !hasVisibleDefinition(OldTag, &Hidden)) {
2206 // There is a definition of this tag, but it is not visible. Use it
2207 // instead of our tag.
2208 New->setTypeForDecl(OldTD->getTypeForDecl());
2209 if (OldTD->isModed())
2210 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2211 OldTD->getUnderlyingType());
2212 else
2213 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2214
2215 // Make the old tag definition visible.
2216 makeMergedDefinitionVisible(Hidden);
2217
2218 // If this was an unscoped enumeration, yank all of its enumerators
2219 // out of the scope.
2220 if (isa<EnumDecl>(NewTag)) {
2221 Scope *EnumScope = getNonFieldDeclScope(S);
2222 for (auto *D : NewTag->decls()) {
2223 auto *ED = cast<EnumConstantDecl>(D);
2224 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 2224, __PRETTY_FUNCTION__))
;
2225 EnumScope->RemoveDecl(ED);
2226 IdResolver.RemoveDecl(ED);
2227 ED->getLexicalDeclContext()->removeDecl(ED);
2228 }
2229 }
2230 }
2231 }
2232
2233 // If the typedef types are not identical, reject them in all languages and
2234 // with any extensions enabled.
2235 if (isIncompatibleTypedef(Old, New))
2236 return;
2237
2238 // The types match. Link up the redeclaration chain and merge attributes if
2239 // the old declaration was a typedef.
2240 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2241 New->setPreviousDecl(Typedef);
2242 mergeDeclAttributes(New, Old);
2243 }
2244
2245 if (getLangOpts().MicrosoftExt)
2246 return;
2247
2248 if (getLangOpts().CPlusPlus) {
2249 // C++ [dcl.typedef]p2:
2250 // In a given non-class scope, a typedef specifier can be used to
2251 // redefine the name of any type declared in that scope to refer
2252 // to the type to which it already refers.
2253 if (!isa<CXXRecordDecl>(CurContext))
2254 return;
2255
2256 // C++0x [dcl.typedef]p4:
2257 // In a given class scope, a typedef specifier can be used to redefine
2258 // any class-name declared in that scope that is not also a typedef-name
2259 // to refer to the type to which it already refers.
2260 //
2261 // This wording came in via DR424, which was a correction to the
2262 // wording in DR56, which accidentally banned code like:
2263 //
2264 // struct S {
2265 // typedef struct A { } A;
2266 // };
2267 //
2268 // in the C++03 standard. We implement the C++0x semantics, which
2269 // allow the above but disallow
2270 //
2271 // struct S {
2272 // typedef int I;
2273 // typedef int I;
2274 // };
2275 //
2276 // since that was the intent of DR56.
2277 if (!isa<TypedefNameDecl>(Old))
2278 return;
2279
2280 Diag(New->getLocation(), diag::err_redefinition)
2281 << New->getDeclName();
2282 notePreviousDefinition(Old, New->getLocation());
2283 return New->setInvalidDecl();
2284 }
2285
2286 // Modules always permit redefinition of typedefs, as does C11.
2287 if (getLangOpts().Modules || getLangOpts().C11)
2288 return;
2289
2290 // If we have a redefinition of a typedef in C, emit a warning. This warning
2291 // is normally mapped to an error, but can be controlled with
2292 // -Wtypedef-redefinition. If either the original or the redefinition is
2293 // in a system header, don't emit this for compatibility with GCC.
2294 if (getDiagnostics().getSuppressSystemWarnings() &&
2295 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2296 (Old->isImplicit() ||
2297 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2298 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2299 return;
2300
2301 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2302 << New->getDeclName();
2303 notePreviousDefinition(Old, New->getLocation());
2304}
2305
2306/// DeclhasAttr - returns true if decl Declaration already has the target
2307/// attribute.
2308static bool DeclHasAttr(const Decl *D, const Attr *A) {
2309 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2310 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2311 for (const auto *i : D->attrs())
2312 if (i->getKind() == A->getKind()) {
2313 if (Ann) {
2314 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2315 return true;
2316 continue;
2317 }
2318 // FIXME: Don't hardcode this check
2319 if (OA && isa<OwnershipAttr>(i))
2320 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2321 return true;
2322 }
2323
2324 return false;
2325}
2326
2327static bool isAttributeTargetADefinition(Decl *D) {
2328 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2329 return VD->isThisDeclarationADefinition();
2330 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2331 return TD->isCompleteDefinition() || TD->isBeingDefined();
2332 return true;
2333}
2334
2335/// Merge alignment attributes from \p Old to \p New, taking into account the
2336/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2337///
2338/// \return \c true if any attributes were added to \p New.
2339static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2340 // Look for alignas attributes on Old, and pick out whichever attribute
2341 // specifies the strictest alignment requirement.
2342 AlignedAttr *OldAlignasAttr = nullptr;
2343 AlignedAttr *OldStrictestAlignAttr = nullptr;
2344 unsigned OldAlign = 0;
2345 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2346 // FIXME: We have no way of representing inherited dependent alignments
2347 // in a case like:
2348 // template<int A, int B> struct alignas(A) X;
2349 // template<int A, int B> struct alignas(B) X {};
2350 // For now, we just ignore any alignas attributes which are not on the
2351 // definition in such a case.
2352 if (I->isAlignmentDependent())
2353 return false;
2354
2355 if (I->isAlignas())
2356 OldAlignasAttr = I;
2357
2358 unsigned Align = I->getAlignment(S.Context);
2359 if (Align > OldAlign) {
2360 OldAlign = Align;
2361 OldStrictestAlignAttr = I;
2362 }
2363 }
2364
2365 // Look for alignas attributes on New.
2366 AlignedAttr *NewAlignasAttr = nullptr;
2367 unsigned NewAlign = 0;
2368 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2369 if (I->isAlignmentDependent())
2370 return false;
2371
2372 if (I->isAlignas())
2373 NewAlignasAttr = I;
2374
2375 unsigned Align = I->getAlignment(S.Context);
2376 if (Align > NewAlign)
2377 NewAlign = Align;
2378 }
2379
2380 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2381 // Both declarations have 'alignas' attributes. We require them to match.
2382 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2383 // fall short. (If two declarations both have alignas, they must both match
2384 // every definition, and so must match each other if there is a definition.)
2385
2386 // If either declaration only contains 'alignas(0)' specifiers, then it
2387 // specifies the natural alignment for the type.
2388 if (OldAlign == 0 || NewAlign == 0) {
2389 QualType Ty;
2390 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2391 Ty = VD->getType();
2392 else
2393 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2394
2395 if (OldAlign == 0)
2396 OldAlign = S.Context.getTypeAlign(Ty);
2397 if (NewAlign == 0)
2398 NewAlign = S.Context.getTypeAlign(Ty);
2399 }
2400
2401 if (OldAlign != NewAlign) {
2402 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2403 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2404 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2405 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2406 }
2407 }
2408
2409 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2410 // C++11 [dcl.align]p6:
2411 // if any declaration of an entity has an alignment-specifier,
2412 // every defining declaration of that entity shall specify an
2413 // equivalent alignment.
2414 // C11 6.7.5/7:
2415 // If the definition of an object does not have an alignment
2416 // specifier, any other declaration of that object shall also
2417 // have no alignment specifier.
2418 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2419 << OldAlignasAttr;
2420 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2421 << OldAlignasAttr;
2422 }
2423
2424 bool AnyAdded = false;
2425
2426 // Ensure we have an attribute representing the strictest alignment.
2427 if (OldAlign > NewAlign) {
2428 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2429 Clone->setInherited(true);
2430 New->addAttr(Clone);
2431 AnyAdded = true;
2432 }
2433
2434 // Ensure we have an alignas attribute if the old declaration had one.
2435 if (OldAlignasAttr && !NewAlignasAttr &&
2436 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2437 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2438 Clone->setInherited(true);
2439 New->addAttr(Clone);
2440 AnyAdded = true;
2441 }
2442
2443 return AnyAdded;
2444}
2445
2446static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2447 const InheritableAttr *Attr,
2448 Sema::AvailabilityMergeKind AMK) {
2449 // This function copies an attribute Attr from a previous declaration to the
2450 // new declaration D if the new declaration doesn't itself have that attribute
2451 // yet or if that attribute allows duplicates.
2452 // If you're adding a new attribute that requires logic different from
2453 // "use explicit attribute on decl if present, else use attribute from
2454 // previous decl", for example if the attribute needs to be consistent
2455 // between redeclarations, you need to call a custom merge function here.
2456 InheritableAttr *NewAttr = nullptr;
2457 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2458 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2459 NewAttr = S.mergeAvailabilityAttr(
2460 D, AA->getRange(), AA->getPlatform(), AA->isImplicit(),
2461 AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(),
2462 AA->getUnavailable(), AA->getMessage(), AA->getStrict(),
2463 AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex);
2464 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2465 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2466 AttrSpellingListIndex);
2467 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2468 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2469 AttrSpellingListIndex);
2470 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2471 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2472 AttrSpellingListIndex);
2473 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2474 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2475 AttrSpellingListIndex);
2476 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2477 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2478 FA->getFormatIdx(), FA->getFirstArg(),
2479 AttrSpellingListIndex);
2480 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2481 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2482 AttrSpellingListIndex);
2483 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2484 NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2485 AttrSpellingListIndex);
2486 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2487 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2488 AttrSpellingListIndex,
2489 IA->getSemanticSpelling());
2490 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2491 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2492 &S.Context.Idents.get(AA->getSpelling()),
2493 AttrSpellingListIndex);
2494 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2495 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2496 isa<CUDAGlobalAttr>(Attr))) {
2497 // CUDA target attributes are part of function signature for
2498 // overloading purposes and must not be merged.
2499 return false;
2500 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2501 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2502 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2503 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2504 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2505 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2506 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2507 NewAttr = S.mergeCommonAttr(D, *CommonA);
2508 else if (isa<AlignedAttr>(Attr))
2509 // AlignedAttrs are handled separately, because we need to handle all
2510 // such attributes on a declaration at the same time.
2511 NewAttr = nullptr;
2512 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2513 (AMK == Sema::AMK_Override ||
2514 AMK == Sema::AMK_ProtocolImplementation))
2515 NewAttr = nullptr;
2516 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2517 NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2518 UA->getGuid());
2519 else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2520 NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2521 else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2522 NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2523 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2524 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2525
2526 if (NewAttr) {
2527 NewAttr->setInherited(true);
2528 D->addAttr(NewAttr);
2529 if (isa<MSInheritanceAttr>(NewAttr))
2530 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2531 return true;
2532 }
2533
2534 return false;
2535}
2536
2537static const NamedDecl *getDefinition(const Decl *D) {
2538 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2539 return TD->getDefinition();
2540 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2541 const VarDecl *Def = VD->getDefinition();
2542 if (Def)
2543 return Def;
2544 return VD->getActingDefinition();
2545 }
2546 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2547 return FD->getDefinition();
2548 return nullptr;
2549}
2550
2551static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2552 for (const auto *Attribute : D->attrs())
2553 if (Attribute->getKind() == Kind)
2554 return true;
2555 return false;
2556}
2557
2558/// checkNewAttributesAfterDef - If we already have a definition, check that
2559/// there are no new attributes in this declaration.
2560static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2561 if (!New->hasAttrs())
2562 return;
2563
2564 const NamedDecl *Def = getDefinition(Old);
2565 if (!Def || Def == New)
2566 return;
2567
2568 AttrVec &NewAttributes = New->getAttrs();
2569 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2570 const Attr *NewAttribute = NewAttributes[I];
2571
2572 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2573 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2574 Sema::SkipBodyInfo SkipBody;
2575 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2576
2577 // If we're skipping this definition, drop the "alias" attribute.
2578 if (SkipBody.ShouldSkip) {
2579 NewAttributes.erase(NewAttributes.begin() + I);
2580 --E;
2581 continue;
2582 }
2583 } else {
2584 VarDecl *VD = cast<VarDecl>(New);
2585 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2586 VarDecl::TentativeDefinition
2587 ? diag::err_alias_after_tentative
2588 : diag::err_redefinition;
2589 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2590 if (Diag == diag::err_redefinition)
2591 S.notePreviousDefinition(Def, VD->getLocation());
2592 else
2593 S.Diag(Def->getLocation(), diag::note_previous_definition);
2594 VD->setInvalidDecl();
2595 }
2596 ++I;
2597 continue;
2598 }
2599
2600 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2601 // Tentative definitions are only interesting for the alias check above.
2602 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2603 ++I;
2604 continue;
2605 }
2606 }
2607
2608 if (hasAttribute(Def, NewAttribute->getKind())) {
2609 ++I;
2610 continue; // regular attr merging will take care of validating this.
2611 }
2612
2613 if (isa<C11NoReturnAttr>(NewAttribute)) {
2614 // C's _Noreturn is allowed to be added to a function after it is defined.
2615 ++I;
2616 continue;
2617 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2618 if (AA->isAlignas()) {
2619 // C++11 [dcl.align]p6:
2620 // if any declaration of an entity has an alignment-specifier,
2621 // every defining declaration of that entity shall specify an
2622 // equivalent alignment.
2623 // C11 6.7.5/7:
2624 // If the definition of an object does not have an alignment
2625 // specifier, any other declaration of that object shall also
2626 // have no alignment specifier.
2627 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2628 << AA;
2629 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2630 << AA;
2631 NewAttributes.erase(NewAttributes.begin() + I);
2632 --E;
2633 continue;
2634 }
2635 }
2636
2637 S.Diag(NewAttribute->getLocation(),
2638 diag::warn_attribute_precede_definition);
2639 S.Diag(Def->getLocation(), diag::note_previous_definition);
2640 NewAttributes.erase(NewAttributes.begin() + I);
2641 --E;
2642 }
2643}
2644
2645/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2646void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2647 AvailabilityMergeKind AMK) {
2648 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2649 UsedAttr *NewAttr = OldAttr->clone(Context);
2650 NewAttr->setInherited(true);
2651 New->addAttr(NewAttr);
2652 }
2653
2654 if (!Old->hasAttrs() && !New->hasAttrs())
2655 return;
2656
2657 // Attributes declared post-definition are currently ignored.
2658 checkNewAttributesAfterDef(*this, New, Old);
2659
2660 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2661 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2662 if (OldA->getLabel() != NewA->getLabel()) {
2663 // This redeclaration changes __asm__ label.
2664 Diag(New->getLocation(), diag::err_different_asm_label);
2665 Diag(OldA->getLocation(), diag::note_previous_declaration);
2666 }
2667 } else if (Old->isUsed()) {
2668 // This redeclaration adds an __asm__ label to a declaration that has
2669 // already been ODR-used.
2670 Diag(New->getLocation(), diag::err_late_asm_label_name)
2671 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2672 }
2673 }
2674
2675 // Re-declaration cannot add abi_tag's.
2676 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2677 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2678 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2679 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2680 NewTag) == OldAbiTagAttr->tags_end()) {
2681 Diag(NewAbiTagAttr->getLocation(),
2682 diag::err_new_abi_tag_on_redeclaration)
2683 << NewTag;
2684 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2685 }
2686 }
2687 } else {
2688 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2689 Diag(Old->getLocation(), diag::note_previous_declaration);
2690 }
2691 }
2692
2693 // This redeclaration adds a section attribute.
2694 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2695 if (auto *VD = dyn_cast<VarDecl>(New)) {
2696 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2697 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2698 Diag(Old->getLocation(), diag::note_previous_declaration);
2699 }
2700 }
2701 }
2702
2703 // Redeclaration adds code-seg attribute.
2704 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2705 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2706 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2707 Diag(New->getLocation(), diag::warn_mismatched_section)
2708 << 0 /*codeseg*/;
2709 Diag(Old->getLocation(), diag::note_previous_declaration);
2710 }
2711
2712 if (!Old->hasAttrs())
2713 return;
2714
2715 bool foundAny = New->hasAttrs();
2716
2717 // Ensure that any moving of objects within the allocated map is done before
2718 // we process them.
2719 if (!foundAny) New->setAttrs(AttrVec());
2720
2721 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2722 // Ignore deprecated/unavailable/availability attributes if requested.
2723 AvailabilityMergeKind LocalAMK = AMK_None;
2724 if (isa<DeprecatedAttr>(I) ||
2725 isa<UnavailableAttr>(I) ||
2726 isa<AvailabilityAttr>(I)) {
2727 switch (AMK) {
2728 case AMK_None:
2729 continue;
2730
2731 case AMK_Redeclaration:
2732 case AMK_Override:
2733 case AMK_ProtocolImplementation:
2734 LocalAMK = AMK;
2735 break;
2736 }
2737 }
2738
2739 // Already handled.
2740 if (isa<UsedAttr>(I))
2741 continue;
2742
2743 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2744 foundAny = true;
2745 }
2746
2747 if (mergeAlignedAttrs(*this, New, Old))
2748 foundAny = true;
2749
2750 if (!foundAny) New->dropAttrs();
2751}
2752
2753/// mergeParamDeclAttributes - Copy attributes from the old parameter
2754/// to the new one.
2755static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2756 const ParmVarDecl *oldDecl,
2757 Sema &S) {
2758 // C++11 [dcl.attr.depend]p2:
2759 // The first declaration of a function shall specify the
2760 // carries_dependency attribute for its declarator-id if any declaration
2761 // of the function specifies the carries_dependency attribute.
2762 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2763 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2764 S.Diag(CDA->getLocation(),
2765 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2766 // Find the first declaration of the parameter.
2767 // FIXME: Should we build redeclaration chains for function parameters?
2768 const FunctionDecl *FirstFD =
2769 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2770 const ParmVarDecl *FirstVD =
2771 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2772 S.Diag(FirstVD->getLocation(),
2773 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2774 }
2775
2776 if (!oldDecl->hasAttrs())
2777 return;
2778
2779 bool foundAny = newDecl->hasAttrs();
2780
2781 // Ensure that any moving of objects within the allocated map is
2782 // done before we process them.
2783 if (!foundAny) newDecl->setAttrs(AttrVec());
2784
2785 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2786 if (!DeclHasAttr(newDecl, I)) {
2787 InheritableAttr *newAttr =
2788 cast<InheritableParamAttr>(I->clone(S.Context));
2789 newAttr->setInherited(true);
2790 newDecl->addAttr(newAttr);
2791 foundAny = true;
2792 }
2793 }
2794
2795 if (!foundAny) newDecl->dropAttrs();
2796}
2797
2798static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2799 const ParmVarDecl *OldParam,
2800 Sema &S) {
2801 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2802 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2803 if (*Oldnullability != *Newnullability) {
2804 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2805 << DiagNullabilityKind(
2806 *Newnullability,
2807 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2808 != 0))
2809 << DiagNullabilityKind(
2810 *Oldnullability,
2811 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2812 != 0));
2813 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2814 }
2815 } else {
2816 QualType NewT = NewParam->getType();
2817 NewT = S.Context.getAttributedType(
2818 AttributedType::getNullabilityAttrKind(*Oldnullability),
2819 NewT, NewT);
2820 NewParam->setType(NewT);
2821 }
2822 }
2823}
2824
2825namespace {
2826
2827/// Used in MergeFunctionDecl to keep track of function parameters in
2828/// C.
2829struct GNUCompatibleParamWarning {
2830 ParmVarDecl *OldParm;
2831 ParmVarDecl *NewParm;
2832 QualType PromotedType;
2833};
2834
2835} // end anonymous namespace
2836
2837/// getSpecialMember - get the special member enum for a method.
2838Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2839 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2840 if (Ctor->isDefaultConstructor())
2841 return Sema::CXXDefaultConstructor;
2842
2843 if (Ctor->isCopyConstructor())
2844 return Sema::CXXCopyConstructor;
2845
2846 if (Ctor->isMoveConstructor())
2847 return Sema::CXXMoveConstructor;
2848 } else if (isa<CXXDestructorDecl>(MD)) {
2849 return Sema::CXXDestructor;
2850 } else if (MD->isCopyAssignmentOperator()) {
2851 return Sema::CXXCopyAssignment;
2852 } else if (MD->isMoveAssignmentOperator()) {
2853 return Sema::CXXMoveAssignment;
2854 }
2855
2856 return Sema::CXXInvalid;
2857}
2858
2859// Determine whether the previous declaration was a definition, implicit
2860// declaration, or a declaration.
2861template <typename T>
2862static std::pair<diag::kind, SourceLocation>
2863getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2864 diag::kind PrevDiag;
2865 SourceLocation OldLocation = Old->getLocation();
2866 if (Old->isThisDeclarationADefinition())
2867 PrevDiag = diag::note_previous_definition;
2868 else if (Old->isImplicit()) {
2869 PrevDiag = diag::note_previous_implicit_declaration;
2870 if (OldLocation.isInvalid())
2871 OldLocation = New->getLocation();
2872 } else
2873 PrevDiag = diag::note_previous_declaration;
2874 return std::make_pair(PrevDiag, OldLocation);
2875}
2876
2877/// canRedefineFunction - checks if a function can be redefined. Currently,
2878/// only extern inline functions can be redefined, and even then only in
2879/// GNU89 mode.
2880static bool canRedefineFunction(const FunctionDecl *FD,
2881 const LangOptions& LangOpts) {
2882 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2883 !LangOpts.CPlusPlus &&
2884 FD->isInlineSpecified() &&
2885 FD->getStorageClass() == SC_Extern);
2886}
2887
2888const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2889 const AttributedType *AT = T->getAs<AttributedType>();
2890 while (AT && !AT->isCallingConv())
2891 AT = AT->getModifiedType()->getAs<AttributedType>();
2892 return AT;
2893}
2894
2895template <typename T>
2896static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2897 const DeclContext *DC = Old->getDeclContext();
2898 if (DC->isRecord())
2899 return false;
2900
2901 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2902 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2903 return true;
2904 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2905 return true;
2906 return false;
2907}
2908
2909template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2910static bool isExternC(VarTemplateDecl *) { return false; }
2911
2912/// Check whether a redeclaration of an entity introduced by a
2913/// using-declaration is valid, given that we know it's not an overload
2914/// (nor a hidden tag declaration).
2915template<typename ExpectedDecl>
2916static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2917 ExpectedDecl *New) {
2918 // C++11 [basic.scope.declarative]p4:
2919 // Given a set of declarations in a single declarative region, each of
2920 // which specifies the same unqualified name,
2921 // -- they shall all refer to the same entity, or all refer to functions
2922 // and function templates; or
2923 // -- exactly one declaration shall declare a class name or enumeration
2924 // name that is not a typedef name and the other declarations shall all
2925 // refer to the same variable or enumerator, or all refer to functions
2926 // and function templates; in this case the class name or enumeration
2927 // name is hidden (3.3.10).
2928
2929 // C++11 [namespace.udecl]p14:
2930 // If a function declaration in namespace scope or block scope has the
2931 // same name and the same parameter-type-list as a function introduced
2932 // by a using-declaration, and the declarations do not declare the same
2933 // function, the program is ill-formed.
2934
2935 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2936 if (Old &&
2937 !Old->getDeclContext()->getRedeclContext()->Equals(
2938 New->getDeclContext()->getRedeclContext()) &&
2939 !(isExternC(Old) && isExternC(New)))
2940 Old = nullptr;
2941
2942 if (!Old) {
2943 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2944 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2945 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2946 return true;
2947 }
2948 return false;
2949}
2950
2951static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2952 const FunctionDecl *B) {
2953 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 2953, __PRETTY_FUNCTION__))
;
2954
2955 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2956 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2957 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2958 if (AttrA == AttrB)
2959 return true;
2960 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
2961 AttrA->isDynamic() == AttrB->isDynamic();
2962 };
2963
2964 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2965}
2966
2967/// If necessary, adjust the semantic declaration context for a qualified
2968/// declaration to name the correct inline namespace within the qualifier.
2969static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2970 DeclaratorDecl *OldD) {
2971 // The only case where we need to update the DeclContext is when
2972 // redeclaration lookup for a qualified name finds a declaration
2973 // in an inline namespace within the context named by the qualifier:
2974 //
2975 // inline namespace N { int f(); }
2976 // int ::f(); // Sema DC needs adjusting from :: to N::.
2977 //
2978 // For unqualified declarations, the semantic context *can* change
2979 // along the redeclaration chain (for local extern declarations,
2980 // extern "C" declarations, and friend declarations in particular).
2981 if (!NewD->getQualifier())
2982 return;
2983
2984 // NewD is probably already in the right context.
2985 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2986 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2987 if (NamedDC->Equals(SemaDC))
2988 return;
2989
2990 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 2992, __PRETTY_FUNCTION__))
2991 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 2992, __PRETTY_FUNCTION__))
2992 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 2992, __PRETTY_FUNCTION__))
;
2993
2994 auto *LexDC = NewD->getLexicalDeclContext();
2995 auto FixSemaDC = [=](NamedDecl *D) {
2996 if (!D)
2997 return;
2998 D->setDeclContext(SemaDC);
2999 D->setLexicalDeclContext(LexDC);
3000 };
3001
3002 FixSemaDC(NewD);
3003 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3004 FixSemaDC(FD->getDescribedFunctionTemplate());
3005 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3006 FixSemaDC(VD->getDescribedVarTemplate());
3007}
3008
3009/// MergeFunctionDecl - We just parsed a function 'New' from
3010/// declarator D which has the same name and scope as a previous
3011/// declaration 'Old'. Figure out how to resolve this situation,
3012/// merging decls or emitting diagnostics as appropriate.
3013///
3014/// In C++, New and Old must be declarations that are not
3015/// overloaded. Use IsOverload to determine whether New and Old are
3016/// overloaded, and to select the Old declaration that New should be
3017/// merged with.
3018///
3019/// Returns true if there was an error, false otherwise.
3020bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3021 Scope *S, bool MergeTypeWithOld) {
3022 // Verify the old decl was also a function.
3023 FunctionDecl *Old = OldD->getAsFunction();
3024 if (!Old) {
3025 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3026 if (New->getFriendObjectKind()) {
3027 Diag(New->getLocation(), diag::err_using_decl_friend);
3028 Diag(Shadow->getTargetDecl()->getLocation(),
3029 diag::note_using_decl_target);
3030 Diag(Shadow->getUsingDecl()->getLocation(),
3031 diag::note_using_decl) << 0;
3032 return true;
3033 }
3034
3035 // Check whether the two declarations might declare the same function.
3036 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3037 return true;
3038 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3039 } else {
3040 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3041 << New->getDeclName();
3042 notePreviousDefinition(OldD, New->getLocation());
3043 return true;
3044 }
3045 }
3046
3047 // If the old declaration is invalid, just give up here.
3048 if (Old->isInvalidDecl())
3049 return true;
3050
3051 // Disallow redeclaration of some builtins.
3052 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3053 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3054 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3055 << Old << Old->getType();
3056 return true;
3057 }
3058
3059 diag::kind PrevDiag;
3060 SourceLocation OldLocation;
3061 std::tie(PrevDiag, OldLocation) =
3062 getNoteDiagForInvalidRedeclaration(Old, New);
3063
3064 // Don't complain about this if we're in GNU89 mode and the old function
3065 // is an extern inline function.
3066 // Don't complain about specializations. They are not supposed to have
3067 // storage classes.
3068 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3069 New->getStorageClass() == SC_Static &&
3070 Old->hasExternalFormalLinkage() &&
3071 !New->getTemplateSpecializationInfo() &&
3072 !canRedefineFunction(Old, getLangOpts())) {
3073 if (getLangOpts().MicrosoftExt) {
3074 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3075 Diag(OldLocation, PrevDiag);
3076 } else {
3077 Diag(New->getLocation(), diag::err_static_non_static) << New;
3078 Diag(OldLocation, PrevDiag);
3079 return true;
3080 }
3081 }
3082
3083 if (New->hasAttr<InternalLinkageAttr>() &&
3084 !Old->hasAttr<InternalLinkageAttr>()) {
3085 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3086 << New->getDeclName();
3087 notePreviousDefinition(Old, New->getLocation());
3088 New->dropAttr<InternalLinkageAttr>();
3089 }
3090
3091 if (CheckRedeclarationModuleOwnership(New, Old))
3092 return true;
3093
3094 if (!getLangOpts().CPlusPlus) {
3095 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3096 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3097 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3098 << New << OldOvl;
3099
3100 // Try our best to find a decl that actually has the overloadable
3101 // attribute for the note. In most cases (e.g. programs with only one
3102 // broken declaration/definition), this won't matter.
3103 //
3104 // FIXME: We could do this if we juggled some extra state in
3105 // OverloadableAttr, rather than just removing it.
3106 const Decl *DiagOld = Old;
3107 if (OldOvl) {
3108 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3109 const auto *A = D->getAttr<OverloadableAttr>();
3110 return A && !A->isImplicit();
3111 });
3112 // If we've implicitly added *all* of the overloadable attrs to this
3113 // chain, emitting a "previous redecl" note is pointless.
3114 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3115 }
3116
3117 if (DiagOld)
3118 Diag(DiagOld->getLocation(),
3119 diag::note_attribute_overloadable_prev_overload)
3120 << OldOvl;
3121
3122 if (OldOvl)
3123 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3124 else
3125 New->dropAttr<OverloadableAttr>();
3126 }
3127 }
3128
3129 // If a function is first declared with a calling convention, but is later
3130 // declared or defined without one, all following decls assume the calling
3131 // convention of the first.
3132 //
3133 // It's OK if a function is first declared without a calling convention,
3134 // but is later declared or defined with the default calling convention.
3135 //
3136 // To test if either decl has an explicit calling convention, we look for
3137 // AttributedType sugar nodes on the type as written. If they are missing or
3138 // were canonicalized away, we assume the calling convention was implicit.
3139 //
3140 // Note also that we DO NOT return at this point, because we still have
3141 // other tests to run.
3142 QualType OldQType = Context.getCanonicalType(Old->getType());
3143 QualType NewQType = Context.getCanonicalType(New->getType());
3144 const FunctionType *OldType = cast<FunctionType>(OldQType);
3145 const FunctionType *NewType = cast<FunctionType>(NewQType);
3146 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3147 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3148 bool RequiresAdjustment = false;
3149
3150 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3151 FunctionDecl *First = Old->getFirstDecl();
3152 const FunctionType *FT =
3153 First->getType().getCanonicalType()->castAs<FunctionType>();
3154 FunctionType::ExtInfo FI = FT->getExtInfo();
3155 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3156 if (!NewCCExplicit) {
3157 // Inherit the CC from the previous declaration if it was specified
3158 // there but not here.
3159 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3160 RequiresAdjustment = true;
3161 } else if (New->getBuiltinID()) {
3162 // Calling Conventions on a Builtin aren't really useful and setting a
3163 // default calling convention and cdecl'ing some builtin redeclarations is
3164 // common, so warn and ignore the calling convention on the redeclaration.
3165 Diag(New->getLocation(), diag::warn_cconv_ignored)
3166 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3167 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3168 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3169 RequiresAdjustment = true;
3170 } else {
3171 // Calling conventions aren't compatible, so complain.
3172 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3173 Diag(New->getLocation(), diag::err_cconv_change)
3174 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3175 << !FirstCCExplicit
3176 << (!FirstCCExplicit ? "" :
3177 FunctionType::getNameForCallConv(FI.getCC()));
3178
3179 // Put the note on the first decl, since it is the one that matters.
3180 Diag(First->getLocation(), diag::note_previous_declaration);
3181 return true;
3182 }
3183 }
3184
3185 // FIXME: diagnose the other way around?
3186 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3187 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3188 RequiresAdjustment = true;
3189 }
3190
3191 // Merge regparm attribute.
3192 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3193 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3194 if (NewTypeInfo.getHasRegParm()) {
3195 Diag(New->getLocation(), diag::err_regparm_mismatch)
3196 << NewType->getRegParmType()
3197 << OldType->getRegParmType();
3198 Diag(OldLocation, diag::note_previous_declaration);
3199 return true;
3200 }
3201
3202 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3203 RequiresAdjustment = true;
3204 }
3205
3206 // Merge ns_returns_retained attribute.
3207 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3208 if (NewTypeInfo.getProducesResult()) {
3209 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3210 << "'ns_returns_retained'";
3211 Diag(OldLocation, diag::note_previous_declaration);
3212 return true;
3213 }
3214
3215 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3216 RequiresAdjustment = true;
3217 }
3218
3219 if (OldTypeInfo.getNoCallerSavedRegs() !=
3220 NewTypeInfo.getNoCallerSavedRegs()) {
3221 if (NewTypeInfo.getNoCallerSavedRegs()) {
3222 AnyX86NoCallerSavedRegistersAttr *Attr =
3223 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3224 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3225 Diag(OldLocation, diag::note_previous_declaration);
3226 return true;
3227 }
3228
3229 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3230 RequiresAdjustment = true;
3231 }
3232
3233 if (RequiresAdjustment) {
3234 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3235 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3236 New->setType(QualType(AdjustedType, 0));
3237 NewQType = Context.getCanonicalType(New->getType());
3238 NewType = cast<FunctionType>(NewQType);
3239 }
3240
3241 // If this redeclaration makes the function inline, we may need to add it to
3242 // UndefinedButUsed.
3243 if (!Old->isInlined() && New->isInlined() &&
3244 !New->hasAttr<GNUInlineAttr>() &&
3245 !getLangOpts().GNUInline &&
3246 Old->isUsed(false) &&
3247 !Old->isDefined() && !New->isThisDeclarationADefinition())
3248 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3249 SourceLocation()));
3250
3251 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3252 // about it.
3253 if (New->hasAttr<GNUInlineAttr>() &&
3254 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3255 UndefinedButUsed.erase(Old->getCanonicalDecl());
3256 }
3257
3258 // If pass_object_size params don't match up perfectly, this isn't a valid
3259 // redeclaration.
3260 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3261 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3262 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3263 << New->getDeclName();
3264 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3265 return true;
3266 }
3267
3268 if (getLangOpts().CPlusPlus) {
3269 // C++1z [over.load]p2
3270 // Certain function declarations cannot be overloaded:
3271 // -- Function declarations that differ only in the return type,
3272 // the exception specification, or both cannot be overloaded.
3273
3274 // Check the exception specifications match. This may recompute the type of
3275 // both Old and New if it resolved exception specifications, so grab the
3276 // types again after this. Because this updates the type, we do this before
3277 // any of the other checks below, which may update the "de facto" NewQType
3278 // but do not necessarily update the type of New.
3279 if (CheckEquivalentExceptionSpec(Old, New))
3280 return true;
3281 OldQType = Context.getCanonicalType(Old->getType());
3282 NewQType = Context.getCanonicalType(New->getType());
3283
3284 // Go back to the type source info to compare the declared return types,
3285 // per C++1y [dcl.type.auto]p13:
3286 // Redeclarations or specializations of a function or function template
3287 // with a declared return type that uses a placeholder type shall also
3288 // use that placeholder, not a deduced type.
3289 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3290 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3291 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3292 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3293 OldDeclaredReturnType)) {
3294 QualType ResQT;
3295 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3296 OldDeclaredReturnType->isObjCObjectPointerType())
3297 // FIXME: This does the wrong thing for a deduced return type.
3298 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3299 if (ResQT.isNull()) {
3300 if (New->isCXXClassMember() && New->isOutOfLine())
3301 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3302 << New << New->getReturnTypeSourceRange();
3303 else
3304 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3305 << New->getReturnTypeSourceRange();
3306 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3307 << Old->getReturnTypeSourceRange();
3308 return true;
3309 }
3310 else
3311 NewQType = ResQT;
3312 }
3313
3314 QualType OldReturnType = OldType->getReturnType();
3315 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3316 if (OldReturnType != NewReturnType) {
3317 // If this function has a deduced return type and has already been
3318 // defined, copy the deduced value from the old declaration.
3319 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3320 if (OldAT && OldAT->isDeduced()) {
3321 New->setType(
3322 SubstAutoType(New->getType(),
3323 OldAT->isDependentType() ? Context.DependentTy
3324 : OldAT->getDeducedType()));
3325 NewQType = Context.getCanonicalType(
3326 SubstAutoType(NewQType,
3327 OldAT->isDependentType() ? Context.DependentTy
3328 : OldAT->getDeducedType()));
3329 }
3330 }
3331
3332 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3333 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3334 if (OldMethod && NewMethod) {
3335 // Preserve triviality.
3336 NewMethod->setTrivial(OldMethod->isTrivial());
3337
3338 // MSVC allows explicit template specialization at class scope:
3339 // 2 CXXMethodDecls referring to the same function will be injected.
3340 // We don't want a redeclaration error.
3341 bool IsClassScopeExplicitSpecialization =
3342 OldMethod->isFunctionTemplateSpecialization() &&
3343 NewMethod->isFunctionTemplateSpecialization();
3344 bool isFriend = NewMethod->getFriendObjectKind();
3345
3346 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3347 !IsClassScopeExplicitSpecialization) {
3348 // -- Member function declarations with the same name and the
3349 // same parameter types cannot be overloaded if any of them
3350 // is a static member function declaration.
3351 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3352 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3353 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3354 return true;
3355 }
3356
3357 // C++ [class.mem]p1:
3358 // [...] A member shall not be declared twice in the
3359 // member-specification, except that a nested class or member
3360 // class template can be declared and then later defined.
3361 if (!inTemplateInstantiation()) {
3362 unsigned NewDiag;
3363 if (isa<CXXConstructorDecl>(OldMethod))
3364 NewDiag = diag::err_constructor_redeclared;
3365 else if (isa<CXXDestructorDecl>(NewMethod))
3366 NewDiag = diag::err_destructor_redeclared;
3367 else if (isa<CXXConversionDecl>(NewMethod))
3368 NewDiag = diag::err_conv_function_redeclared;
3369 else
3370 NewDiag = diag::err_member_redeclared;
3371
3372 Diag(New->getLocation(), NewDiag);
3373 } else {
3374 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3375 << New << New->getType();
3376 }
3377 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3378 return true;
3379
3380 // Complain if this is an explicit declaration of a special
3381 // member that was initially declared implicitly.
3382 //
3383 // As an exception, it's okay to befriend such methods in order
3384 // to permit the implicit constructor/destructor/operator calls.
3385 } else if (OldMethod->isImplicit()) {
3386 if (isFriend) {
3387 NewMethod->setImplicit();
3388 } else {
3389 Diag(NewMethod->getLocation(),
3390 diag::err_definition_of_implicitly_declared_member)
3391 << New << getSpecialMember(OldMethod);
3392 return true;
3393 }
3394 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3395 Diag(NewMethod->getLocation(),
3396 diag::err_definition_of_explicitly_defaulted_member)
3397 << getSpecialMember(OldMethod);
3398 return true;
3399 }
3400 }
3401
3402 // C++11 [dcl.attr.noreturn]p1:
3403 // The first declaration of a function shall specify the noreturn
3404 // attribute if any declaration of that function specifies the noreturn
3405 // attribute.
3406 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3407 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3408 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3409 Diag(Old->getFirstDecl()->getLocation(),
3410 diag::note_noreturn_missing_first_decl);
3411 }
3412
3413 // C++11 [dcl.attr.depend]p2:
3414 // The first declaration of a function shall specify the
3415 // carries_dependency attribute for its declarator-id if any declaration
3416 // of the function specifies the carries_dependency attribute.
3417 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3418 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3419 Diag(CDA->getLocation(),
3420 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3421 Diag(Old->getFirstDecl()->getLocation(),
3422 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3423 }
3424
3425 // (C++98 8.3.5p3):
3426 // All declarations for a function shall agree exactly in both the
3427 // return type and the parameter-type-list.
3428 // We also want to respect all the extended bits except noreturn.
3429
3430 // noreturn should now match unless the old type info didn't have it.
3431 QualType OldQTypeForComparison = OldQType;
3432 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3433 auto *OldType = OldQType->castAs<FunctionProtoType>();
3434 const FunctionType *OldTypeForComparison
3435 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3436 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3437 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 3437, __PRETTY_FUNCTION__))
;
3438 }
3439
3440 if (haveIncompatibleLanguageLinkages(Old, New)) {
3441 // As a special case, retain the language linkage from previous
3442 // declarations of a friend function as an extension.
3443 //
3444 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3445 // and is useful because there's otherwise no way to specify language
3446 // linkage within class scope.
3447 //
3448 // Check cautiously as the friend object kind isn't yet complete.
3449 if (New->getFriendObjectKind() != Decl::FOK_None) {
3450 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3451 Diag(OldLocation, PrevDiag);
3452 } else {
3453 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3454 Diag(OldLocation, PrevDiag);
3455 return true;
3456 }
3457 }
3458
3459 if (OldQTypeForComparison == NewQType)
3460 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3461
3462 // If the types are imprecise (due to dependent constructs in friends or
3463 // local extern declarations), it's OK if they differ. We'll check again
3464 // during instantiation.
3465 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3466 return false;
3467
3468 // Fall through for conflicting redeclarations and redefinitions.
3469 }
3470
3471 // C: Function types need to be compatible, not identical. This handles
3472 // duplicate function decls like "void f(int); void f(enum X);" properly.
3473 if (!getLangOpts().CPlusPlus &&
3474 Context.typesAreCompatible(OldQType, NewQType)) {
3475 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3476 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3477 const FunctionProtoType *OldProto = nullptr;
3478 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3479 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3480 // The old declaration provided a function prototype, but the
3481 // new declaration does not. Merge in the prototype.
3482 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 3482, __PRETTY_FUNCTION__))
;
3483 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3484 NewQType =
3485 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3486 OldProto->getExtProtoInfo());
3487 New->setType(NewQType);
3488 New->setHasInheritedPrototype();
3489
3490 // Synthesize parameters with the same types.
3491 SmallVector<ParmVarDecl*, 16> Params;
3492 for (const auto &ParamType : OldProto->param_types()) {
3493 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3494 SourceLocation(), nullptr,
3495 ParamType, /*TInfo=*/nullptr,
3496 SC_None, nullptr);
3497 Param->setScopeInfo(0, Params.size());
3498 Param->setImplicit();
3499 Params.push_back(Param);
3500 }
3501
3502 New->setParams(Params);
3503 }
3504
3505 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3506 }
3507
3508 // GNU C permits a K&R definition to follow a prototype declaration
3509 // if the declared types of the parameters in the K&R definition
3510 // match the types in the prototype declaration, even when the
3511 // promoted types of the parameters from the K&R definition differ
3512 // from the types in the prototype. GCC then keeps the types from
3513 // the prototype.
3514 //
3515 // If a variadic prototype is followed by a non-variadic K&R definition,
3516 // the K&R definition becomes variadic. This is sort of an edge case, but
3517 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3518 // C99 6.9.1p8.
3519 if (!getLangOpts().CPlusPlus &&
3520 Old->hasPrototype() && !New->hasPrototype() &&
3521 New->getType()->getAs<FunctionProtoType>() &&
3522 Old->getNumParams() == New->getNumParams()) {
3523 SmallVector<QualType, 16> ArgTypes;
3524 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3525 const FunctionProtoType *OldProto
3526 = Old->getType()->getAs<FunctionProtoType>();
3527 const FunctionProtoType *NewProto
3528 = New->getType()->getAs<FunctionProtoType>();
3529
3530 // Determine whether this is the GNU C extension.
3531 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3532 NewProto->getReturnType());
3533 bool LooseCompatible = !MergedReturn.isNull();
3534 for (unsigned Idx = 0, End = Old->getNumParams();
3535 LooseCompatible && Idx != End; ++Idx) {
3536 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3537 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3538 if (Context.typesAreCompatible(OldParm->getType(),
3539 NewProto->getParamType(Idx))) {
3540 ArgTypes.push_back(NewParm->getType());
3541 } else if (Context.typesAreCompatible(OldParm->getType(),
3542 NewParm->getType(),
3543 /*CompareUnqualified=*/true)) {
3544 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3545 NewProto->getParamType(Idx) };
3546 Warnings.push_back(Warn);
3547 ArgTypes.push_back(NewParm->getType());
3548 } else
3549 LooseCompatible = false;
3550 }
3551
3552 if (LooseCompatible) {
3553 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3554 Diag(Warnings[Warn].NewParm->getLocation(),
3555 diag::ext_param_promoted_not_compatible_with_prototype)
3556 << Warnings[Warn].PromotedType
3557 << Warnings[Warn].OldParm->getType();
3558 if (Warnings[Warn].OldParm->getLocation().isValid())
3559 Diag(Warnings[Warn].OldParm->getLocation(),
3560 diag::note_previous_declaration);
3561 }
3562
3563 if (MergeTypeWithOld)
3564 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3565 OldProto->getExtProtoInfo()));
3566 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3567 }
3568
3569 // Fall through to diagnose conflicting types.
3570 }
3571
3572 // A function that has already been declared has been redeclared or
3573 // defined with a different type; show an appropriate diagnostic.
3574
3575 // If the previous declaration was an implicitly-generated builtin
3576 // declaration, then at the very least we should use a specialized note.
3577 unsigned BuiltinID;
3578 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3579 // If it's actually a library-defined builtin function like 'malloc'
3580 // or 'printf', just warn about the incompatible redeclaration.
3581 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3582 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3583 Diag(OldLocation, diag::note_previous_builtin_declaration)
3584 << Old << Old->getType();
3585
3586 // If this is a global redeclaration, just forget hereafter
3587 // about the "builtin-ness" of the function.
3588 //
3589 // Doing this for local extern declarations is problematic. If
3590 // the builtin declaration remains visible, a second invalid
3591 // local declaration will produce a hard error; if it doesn't
3592 // remain visible, a single bogus local redeclaration (which is
3593 // actually only a warning) could break all the downstream code.
3594 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3595 New->getIdentifier()->revertBuiltin();
3596
3597 return false;
3598 }
3599
3600 PrevDiag = diag::note_previous_builtin_declaration;
3601 }
3602
3603 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3604 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3605 return true;
3606}
3607
3608/// Completes the merge of two function declarations that are
3609/// known to be compatible.
3610///
3611/// This routine handles the merging of attributes and other
3612/// properties of function declarations from the old declaration to
3613/// the new declaration, once we know that New is in fact a
3614/// redeclaration of Old.
3615///
3616/// \returns false
3617bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3618 Scope *S, bool MergeTypeWithOld) {
3619 // Merge the attributes
3620 mergeDeclAttributes(New, Old);
3621
3622 // Merge "pure" flag.
3623 if (Old->isPure())
3624 New->setPure();
3625
3626 // Merge "used" flag.
3627 if (Old->getMostRecentDecl()->isUsed(false))
3628 New->setIsUsed();
3629
3630 // Merge attributes from the parameters. These can mismatch with K&R
3631 // declarations.
3632 if (New->getNumParams() == Old->getNumParams())
3633 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3634 ParmVarDecl *NewParam = New->getParamDecl(i);
3635 ParmVarDecl *OldParam = Old->getParamDecl(i);
3636 mergeParamDeclAttributes(NewParam, OldParam, *this);
3637 mergeParamDeclTypes(NewParam, OldParam, *this);
3638 }
3639
3640 if (getLangOpts().CPlusPlus)
3641 return MergeCXXFunctionDecl(New, Old, S);
3642
3643 // Merge the function types so the we get the composite types for the return
3644 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3645 // was visible.
3646 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3647 if (!Merged.isNull() && MergeTypeWithOld)
3648 New->setType(Merged);
3649
3650 return false;
3651}
3652
3653void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3654 ObjCMethodDecl *oldMethod) {
3655 // Merge the attributes, including deprecated/unavailable
3656 AvailabilityMergeKind MergeKind =
3657 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3658 ? AMK_ProtocolImplementation
3659 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3660 : AMK_Override;
3661
3662 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3663
3664 // Merge attributes from the parameters.
3665 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3666 oe = oldMethod->param_end();
3667 for (ObjCMethodDecl::param_iterator
3668 ni = newMethod->param_begin(), ne = newMethod->param_end();
3669 ni != ne && oi != oe; ++ni, ++oi)
3670 mergeParamDeclAttributes(*ni, *oi, *this);
3671
3672 CheckObjCMethodOverride(newMethod, oldMethod);
3673}
3674
3675static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3676 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 3676, __PRETTY_FUNCTION__))
;
3677
3678 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3679 ? diag::err_redefinition_different_type
3680 : diag::err_redeclaration_different_type)
3681 << New->getDeclName() << New->getType() << Old->getType();
3682
3683 diag::kind PrevDiag;
3684 SourceLocation OldLocation;
3685 std::tie(PrevDiag, OldLocation)
3686 = getNoteDiagForInvalidRedeclaration(Old, New);
3687 S.Diag(OldLocation, PrevDiag);
3688 New->setInvalidDecl();
3689}
3690
3691/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3692/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3693/// emitting diagnostics as appropriate.
3694///
3695/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3696/// to here in AddInitializerToDecl. We can't check them before the initializer
3697/// is attached.
3698void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3699 bool MergeTypeWithOld) {
3700 if (New->isInvalidDecl() || Old->isInvalidDecl())
3701 return;
3702
3703 QualType MergedT;
3704 if (getLangOpts().CPlusPlus) {
3705 if (New->getType()->isUndeducedType()) {
3706 // We don't know what the new type is until the initializer is attached.
3707 return;
3708 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3709 // These could still be something that needs exception specs checked.
3710 return MergeVarDeclExceptionSpecs(New, Old);
3711 }
3712 // C++ [basic.link]p10:
3713 // [...] the types specified by all declarations referring to a given
3714 // object or function shall be identical, except that declarations for an
3715 // array object can specify array types that differ by the presence or
3716 // absence of a major array bound (8.3.4).
3717 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3718 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3719 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3720
3721 // We are merging a variable declaration New into Old. If it has an array
3722 // bound, and that bound differs from Old's bound, we should diagnose the
3723 // mismatch.
3724 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3725 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3726 PrevVD = PrevVD->getPreviousDecl()) {
3727 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3728 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3729 continue;
3730
3731 if (!Context.hasSameType(NewArray, PrevVDTy))
3732 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3733 }
3734 }
3735
3736 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3737 if (Context.hasSameType(OldArray->getElementType(),
3738 NewArray->getElementType()))
3739 MergedT = New->getType();
3740 }
3741 // FIXME: Check visibility. New is hidden but has a complete type. If New
3742 // has no array bound, it should not inherit one from Old, if Old is not
3743 // visible.
3744 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3745 if (Context.hasSameType(OldArray->getElementType(),
3746 NewArray->getElementType()))
3747 MergedT = Old->getType();
3748 }
3749 }
3750 else if (New->getType()->isObjCObjectPointerType() &&
3751 Old->getType()->isObjCObjectPointerType()) {
3752 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3753 Old->getType());
3754 }
3755 } else {
3756 // C 6.2.7p2:
3757 // All declarations that refer to the same object or function shall have
3758 // compatible type.
3759 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3760 }
3761 if (MergedT.isNull()) {
3762 // It's OK if we couldn't merge types if either type is dependent, for a
3763 // block-scope variable. In other cases (static data members of class
3764 // templates, variable templates, ...), we require the types to be
3765 // equivalent.
3766 // FIXME: The C++ standard doesn't say anything about this.
3767 if ((New->getType()->isDependentType() ||
3768 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3769 // If the old type was dependent, we can't merge with it, so the new type
3770 // becomes dependent for now. We'll reproduce the original type when we
3771 // instantiate the TypeSourceInfo for the variable.
3772 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3773 New->setType(Context.DependentTy);
3774 return;
3775 }
3776 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3777 }
3778
3779 // Don't actually update the type on the new declaration if the old
3780 // declaration was an extern declaration in a different scope.
3781 if (MergeTypeWithOld)
3782 New->setType(MergedT);
3783}
3784
3785static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3786 LookupResult &Previous) {
3787 // C11 6.2.7p4:
3788 // For an identifier with internal or external linkage declared
3789 // in a scope in which a prior declaration of that identifier is
3790 // visible, if the prior declaration specifies internal or
3791 // external linkage, the type of the identifier at the later
3792 // declaration becomes the composite type.
3793 //
3794 // If the variable isn't visible, we do not merge with its type.
3795 if (Previous.isShadowed())
3796 return false;
3797
3798 if (S.getLangOpts().CPlusPlus) {
3799 // C++11 [dcl.array]p3:
3800 // If there is a preceding declaration of the entity in the same
3801 // scope in which the bound was specified, an omitted array bound
3802 // is taken to be the same as in that earlier declaration.
3803 return NewVD->isPreviousDeclInSameBlockScope() ||
3804 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3805 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3806 } else {
3807 // If the old declaration was function-local, don't merge with its
3808 // type unless we're in the same function.
3809 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3810 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3811 }
3812}
3813
3814/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3815/// and scope as a previous declaration 'Old'. Figure out how to resolve this
3816/// situation, merging decls or emitting diagnostics as appropriate.
3817///
3818/// Tentative definition rules (C99 6.9.2p2) are checked by
3819/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3820/// definitions here, since the initializer hasn't been attached.
3821///
3822void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3823 // If the new decl is already invalid, don't do any other checking.
3824 if (New->isInvalidDecl())
3825 return;
3826
3827 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3828 return;
3829
3830 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3831
3832 // Verify the old decl was also a variable or variable template.
3833 VarDecl *Old = nullptr;
3834 VarTemplateDecl *OldTemplate = nullptr;
3835 if (Previous.isSingleResult()) {
3836 if (NewTemplate) {
3837 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3838 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3839
3840 if (auto *Shadow =
3841 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3842 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3843 return New->setInvalidDecl();
3844 } else {
3845 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3846
3847 if (auto *Shadow =
3848 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3849 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3850 return New->setInvalidDecl();
3851 }
3852 }
3853 if (!Old) {
3854 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3855 << New->getDeclName();
3856 notePreviousDefinition(Previous.getRepresentativeDecl(),
3857 New->getLocation());
3858 return New->setInvalidDecl();
3859 }
3860
3861 // Ensure the template parameters are compatible.
3862 if (NewTemplate &&
3863 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3864 OldTemplate->getTemplateParameters(),
3865 /*Complain=*/true, TPL_TemplateMatch))
3866 return New->setInvalidDecl();
3867
3868 // C++ [class.mem]p1:
3869 // A member shall not be declared twice in the member-specification [...]
3870 //
3871 // Here, we need only consider static data members.
3872 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3873 Diag(New->getLocation(), diag::err_duplicate_member)
3874 << New->getIdentifier();
3875 Diag(Old->getLocation(), diag::note_previous_declaration);
3876 New->setInvalidDecl();
3877 }
3878
3879 mergeDeclAttributes(New, Old);
3880 // Warn if an already-declared variable is made a weak_import in a subsequent
3881 // declaration
3882 if (New->hasAttr<WeakImportAttr>() &&
3883 Old->getStorageClass() == SC_None &&
3884 !Old->hasAttr<WeakImportAttr>()) {
3885 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3886 notePreviousDefinition(Old, New->getLocation());
3887 // Remove weak_import attribute on new declaration.
3888 New->dropAttr<WeakImportAttr>();
3889 }
3890
3891 if (New->hasAttr<InternalLinkageAttr>() &&
3892 !Old->hasAttr<InternalLinkageAttr>()) {
3893 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3894 << New->getDeclName();
3895 notePreviousDefinition(Old, New->getLocation());
3896 New->dropAttr<InternalLinkageAttr>();
3897 }
3898
3899 // Merge the types.
3900 VarDecl *MostRecent = Old->getMostRecentDecl();
3901 if (MostRecent != Old) {
3902 MergeVarDeclTypes(New, MostRecent,
3903 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3904 if (New->isInvalidDecl())
3905 return;
3906 }
3907
3908 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3909 if (New->isInvalidDecl())
3910 return;
3911
3912 diag::kind PrevDiag;
3913 SourceLocation OldLocation;
3914 std::tie(PrevDiag, OldLocation) =
3915 getNoteDiagForInvalidRedeclaration(Old, New);
3916
3917 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3918 if (New->getStorageClass() == SC_Static &&
3919 !New->isStaticDataMember() &&
3920 Old->hasExternalFormalLinkage()) {
3921 if (getLangOpts().MicrosoftExt) {
3922 Diag(New->getLocation(), diag::ext_static_non_static)
3923 << New->getDeclName();
3924 Diag(OldLocation, PrevDiag);
3925 } else {
3926 Diag(New->getLocation(), diag::err_static_non_static)
3927 << New->getDeclName();
3928 Diag(OldLocation, PrevDiag);
3929 return New->setInvalidDecl();
3930 }
3931 }
3932 // C99 6.2.2p4:
3933 // For an identifier declared with the storage-class specifier
3934 // extern in a scope in which a prior declaration of that
3935 // identifier is visible,23) if the prior declaration specifies
3936 // internal or external linkage, the linkage of the identifier at
3937 // the later declaration is the same as the linkage specified at
3938 // the prior declaration. If no prior declaration is visible, or
3939 // if the prior declaration specifies no linkage, then the
3940 // identifier has external linkage.
3941 if (New->hasExternalStorage() && Old->hasLinkage())
3942 /* Okay */;
3943 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3944 !New->isStaticDataMember() &&
3945 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3946 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3947 Diag(OldLocation, PrevDiag);
3948 return New->setInvalidDecl();
3949 }
3950
3951 // Check if extern is followed by non-extern and vice-versa.
3952 if (New->hasExternalStorage() &&
3953 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3954 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3955 Diag(OldLocation, PrevDiag);
3956 return New->setInvalidDecl();
3957 }
3958 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3959 !New->hasExternalStorage()) {
3960 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3961 Diag(OldLocation, PrevDiag);
3962 return New->setInvalidDecl();
3963 }
3964
3965 if (CheckRedeclarationModuleOwnership(New, Old))
3966 return;
3967
3968 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3969
3970 // FIXME: The test for external storage here seems wrong? We still
3971 // need to check for mismatches.
3972 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3973 // Don't complain about out-of-line definitions of static members.
3974 !(Old->getLexicalDeclContext()->isRecord() &&
3975 !New->getLexicalDeclContext()->isRecord())) {
3976 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3977 Diag(OldLocation, PrevDiag);
3978 return New->setInvalidDecl();
3979 }
3980
3981 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3982 if (VarDecl *Def = Old->getDefinition()) {
3983 // C++1z [dcl.fcn.spec]p4:
3984 // If the definition of a variable appears in a translation unit before
3985 // its first declaration as inline, the program is ill-formed.
3986 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3987 Diag(Def->getLocation(), diag::note_previous_definition);
3988 }
3989 }
3990
3991 // If this redeclaration makes the variable inline, we may need to add it to
3992 // UndefinedButUsed.
3993 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3994 !Old->getDefinition() && !New->isThisDeclarationADefinition())
3995 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3996 SourceLocation()));
3997
3998 if (New->getTLSKind() != Old->getTLSKind()) {
3999 if (!Old->getTLSKind()) {
4000 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4001 Diag(OldLocation, PrevDiag);
4002 } else if (!New->getTLSKind()) {
4003 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4004 Diag(OldLocation, PrevDiag);
4005 } else {
4006 // Do not allow redeclaration to change the variable between requiring
4007 // static and dynamic initialization.
4008 // FIXME: GCC allows this, but uses the TLS keyword on the first
4009 // declaration to determine the kind. Do we need to be compatible here?
4010 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4011 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4012 Diag(OldLocation, PrevDiag);
4013 }
4014 }
4015
4016 // C++ doesn't have tentative definitions, so go right ahead and check here.
4017 if (getLangOpts().CPlusPlus &&
4018 New->isThisDeclarationADefinition() == VarDecl::Definition) {
4019 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4020 Old->getCanonicalDecl()->isConstexpr()) {
4021 // This definition won't be a definition any more once it's been merged.
4022 Diag(New->getLocation(),
4023 diag::warn_deprecated_redundant_constexpr_static_def);
4024 } else if (VarDecl *Def = Old->getDefinition()) {
4025 if (checkVarDeclRedefinition(Def, New))
4026 return;
4027 }
4028 }
4029
4030 if (haveIncompatibleLanguageLinkages(Old, New)) {
4031 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4032 Diag(OldLocation, PrevDiag);
4033 New->setInvalidDecl();
4034 return;
4035 }
4036
4037 // Merge "used" flag.
4038 if (Old->getMostRecentDecl()->isUsed(false))
4039 New->setIsUsed();
4040
4041 // Keep a chain of previous declarations.
4042 New->setPreviousDecl(Old);
4043 if (NewTemplate)
4044 NewTemplate->setPreviousDecl(OldTemplate);
4045 adjustDeclContextForDeclaratorDecl(New, Old);
4046
4047 // Inherit access appropriately.
4048 New->setAccess(Old->getAccess());
4049 if (NewTemplate)
4050 NewTemplate->setAccess(New->getAccess());
4051
4052 if (Old->isInline())
4053 New->setImplicitlyInline();
4054}
4055
4056void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4057 SourceManager &SrcMgr = getSourceManager();
4058 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4059 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4060 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4061 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4062 auto &HSI = PP.getHeaderSearchInfo();
4063 StringRef HdrFilename =
4064 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4065
4066 auto noteFromModuleOrInclude = [&](Module *Mod,
4067 SourceLocation IncLoc) -> bool {
4068 // Redefinition errors with modules are common with non modular mapped
4069 // headers, example: a non-modular header H in module A that also gets
4070 // included directly in a TU. Pointing twice to the same header/definition
4071 // is confusing, try to get better diagnostics when modules is on.
4072 if (IncLoc.isValid()) {
4073 if (Mod) {
4074 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4075 << HdrFilename.str() << Mod->getFullModuleName();
4076 if (!Mod->DefinitionLoc.isInvalid())
4077 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4078 << Mod->getFullModuleName();
4079 } else {
4080 Diag(IncLoc, diag::note_redefinition_include_same_file)
4081 << HdrFilename.str();
4082 }
4083 return true;
4084 }
4085
4086 return false;
4087 };
4088
4089 // Is it the same file and same offset? Provide more information on why
4090 // this leads to a redefinition error.
4091 bool EmittedDiag = false;
4092 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4093 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4094 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4095 EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4096 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4097
4098 // If the header has no guards, emit a note suggesting one.
4099 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4100 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4101
4102 if (EmittedDiag)
4103 return;
4104 }
4105
4106 // Redefinition coming from different files or couldn't do better above.
4107 if (Old->getLocation().isValid())
4108 Diag(Old->getLocation(), diag::note_previous_definition);
4109}
4110
4111/// We've just determined that \p Old and \p New both appear to be definitions
4112/// of the same variable. Either diagnose or fix the problem.
4113bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4114 if (!hasVisibleDefinition(Old) &&
4115 (New->getFormalLinkage() == InternalLinkage ||
4116 New->isInline() ||
4117 New->getDescribedVarTemplate() ||
4118 New->getNumTemplateParameterLists() ||
4119 New->getDeclContext()->isDependentContext())) {
4120 // The previous definition is hidden, and multiple definitions are
4121 // permitted (in separate TUs). Demote this to a declaration.
4122 New->demoteThisDefinitionToDeclaration();
4123
4124 // Make the canonical definition visible.
4125 if (auto *OldTD = Old->getDescribedVarTemplate())
4126 makeMergedDefinitionVisible(OldTD);
4127 makeMergedDefinitionVisible(Old);
4128 return false;
4129 } else {
4130 Diag(New->getLocation(), diag::err_redefinition) << New;
4131 notePreviousDefinition(Old, New->getLocation());
4132 New->setInvalidDecl();
4133 return true;
4134 }
4135}
4136
4137/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4138/// no declarator (e.g. "struct foo;") is parsed.
4139Decl *
4140Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4141 RecordDecl *&AnonRecord) {
4142 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4143 AnonRecord);
4144}
4145
4146// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4147// disambiguate entities defined in different scopes.
4148// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4149// compatibility.
4150// We will pick our mangling number depending on which version of MSVC is being
4151// targeted.
4152static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4153 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4154 ? S->getMSCurManglingNumber()
4155 : S->getMSLastManglingNumber();
4156}
4157
4158void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4159 if (!Context.getLangOpts().CPlusPlus)
4160 return;
4161
4162 if (isa<CXXRecordDecl>(Tag->getParent())) {
4163 // If this tag is the direct child of a class, number it if
4164 // it is anonymous.
4165 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4166 return;
4167 MangleNumberingContext &MCtx =
4168 Context.getManglingNumberContext(Tag->getParent());
4169 Context.setManglingNumber(
4170 Tag, MCtx.getManglingNumber(
4171 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4172 return;
4173 }
4174
4175 // If this tag isn't a direct child of a class, number it if it is local.
4176 Decl *ManglingContextDecl;
4177 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4178 Tag->getDeclContext(), ManglingContextDecl)) {
4179 Context.setManglingNumber(
4180 Tag, MCtx->getManglingNumber(
4181 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4182 }
4183}
4184
4185void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4186 TypedefNameDecl *NewTD) {
4187 if (TagFromDeclSpec->isInvalidDecl())
4188 return;
4189
4190 // Do nothing if the tag already has a name for linkage purposes.
4191 if (TagFromDeclSpec->hasNameForLinkage())
4192 return;
4193
4194 // A well-formed anonymous tag must always be a TUK_Definition.
4195 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4195, __PRETTY_FUNCTION__))
;
4196
4197 // The type must match the tag exactly; no qualifiers allowed.
4198 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4199 Context.getTagDeclType(TagFromDeclSpec))) {
4200 if (getLangOpts().CPlusPlus)
4201 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4202 return;
4203 }
4204
4205 // If we've already computed linkage for the anonymous tag, then
4206 // adding a typedef name for the anonymous decl can change that
4207 // linkage, which might be a serious problem. Diagnose this as
4208 // unsupported and ignore the typedef name. TODO: we should
4209 // pursue this as a language defect and establish a formal rule
4210 // for how to handle it.
4211 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4212 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4213
4214 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4215 tagLoc = getLocForEndOfToken(tagLoc);
4216
4217 llvm::SmallString<40> textToInsert;
4218 textToInsert += ' ';
4219 textToInsert += NewTD->getIdentifier()->getName();
4220 Diag(tagLoc, diag::note_typedef_changes_linkage)
4221 << FixItHint::CreateInsertion(tagLoc, textToInsert);
4222 return;
4223 }
4224
4225 // Otherwise, set this is the anon-decl typedef for the tag.
4226 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4227}
4228
4229static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4230 switch (T) {
4231 case DeclSpec::TST_class:
4232 return 0;
4233 case DeclSpec::TST_struct:
4234 return 1;
4235 case DeclSpec::TST_interface:
4236 return 2;
4237 case DeclSpec::TST_union:
4238 return 3;
4239 case DeclSpec::TST_enum:
4240 return 4;
4241 default:
4242 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4242)
;
4243 }
4244}
4245
4246/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4247/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4248/// parameters to cope with template friend declarations.
4249Decl *
4250Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4251 MultiTemplateParamsArg TemplateParams,
4252 bool IsExplicitInstantiation,
4253 RecordDecl *&AnonRecord) {
4254 Decl *TagD = nullptr;
4255 TagDecl *Tag = nullptr;
4256 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4257 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4258 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4259 DS.getTypeSpecType() == DeclSpec::TST_union ||
4260 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4261 TagD = DS.getRepAsDecl();
4262
4263 if (!TagD) // We probably had an error
4264 return nullptr;
4265
4266 // Note that the above type specs guarantee that the
4267 // type rep is a Decl, whereas in many of the others
4268 // it's a Type.
4269 if (isa<TagDecl>(TagD))
4270 Tag = cast<TagDecl>(TagD);
4271 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4272 Tag = CTD->getTemplatedDecl();
4273 }
4274
4275 if (Tag) {
4276 handleTagNumbering(Tag, S);
4277 Tag->setFreeStanding();
4278 if (Tag->isInvalidDecl())
4279 return Tag;
4280 }
4281
4282 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4283 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4284 // or incomplete types shall not be restrict-qualified."
4285 if (TypeQuals & DeclSpec::TQ_restrict)
4286 Diag(DS.getRestrictSpecLoc(),
4287 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4288 << DS.getSourceRange();
4289 }
4290
4291 if (DS.isInlineSpecified())
4292 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4293 << getLangOpts().CPlusPlus17;
4294
4295 if (DS.isConstexprSpecified()) {
4296 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4297 // and definitions of functions and variables.
4298 if (Tag)
4299 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4300 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4301 else
4302 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4303 // Don't emit warnings after this error.
4304 return TagD;
4305 }
4306
4307 DiagnoseFunctionSpecifiers(DS);
4308
4309 if (DS.isFriendSpecified()) {
4310 // If we're dealing with a decl but not a TagDecl, assume that
4311 // whatever routines created it handled the friendship aspect.
4312 if (TagD && !Tag)
4313 return nullptr;
4314 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4315 }
4316
4317 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4318 bool IsExplicitSpecialization =
4319 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4320 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4321 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4322 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4323 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4324 // nested-name-specifier unless it is an explicit instantiation
4325 // or an explicit specialization.
4326 //
4327 // FIXME: We allow class template partial specializations here too, per the
4328 // obvious intent of DR1819.
4329 //
4330 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4331 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4332 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4333 return nullptr;
4334 }
4335
4336 // Track whether this decl-specifier declares anything.
4337 bool DeclaresAnything = true;
4338
4339 // Handle anonymous struct definitions.
4340 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4341 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4342 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4343 if (getLangOpts().CPlusPlus ||
4344 Record->getDeclContext()->isRecord()) {
4345 // If CurContext is a DeclContext that can contain statements,
4346 // RecursiveASTVisitor won't visit the decls that
4347 // BuildAnonymousStructOrUnion() will put into CurContext.
4348 // Also store them here so that they can be part of the
4349 // DeclStmt that gets created in this case.
4350 // FIXME: Also return the IndirectFieldDecls created by
4351 // BuildAnonymousStructOr union, for the same reason?
4352 if (CurContext->isFunctionOrMethod())
4353 AnonRecord = Record;
4354 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4355 Context.getPrintingPolicy());
4356 }
4357
4358 DeclaresAnything = false;
4359 }
4360 }
4361
4362 // C11 6.7.2.1p2:
4363 // A struct-declaration that does not declare an anonymous structure or
4364 // anonymous union shall contain a struct-declarator-list.
4365 //
4366 // This rule also existed in C89 and C99; the grammar for struct-declaration
4367 // did not permit a struct-declaration without a struct-declarator-list.
4368 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4369 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4370 // Check for Microsoft C extension: anonymous struct/union member.
4371 // Handle 2 kinds of anonymous struct/union:
4372 // struct STRUCT;
4373 // union UNION;
4374 // and
4375 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4376 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4377 if ((Tag && Tag->getDeclName()) ||
4378 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4379 RecordDecl *Record = nullptr;
4380 if (Tag)
4381 Record = dyn_cast<RecordDecl>(Tag);
4382 else if (const RecordType *RT =
4383 DS.getRepAsType().get()->getAsStructureType())
4384 Record = RT->getDecl();
4385 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4386 Record = UT->getDecl();
4387
4388 if (Record && getLangOpts().MicrosoftExt) {
4389 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4390 << Record->isUnion() << DS.getSourceRange();
4391 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4392 }
4393
4394 DeclaresAnything = false;
4395 }
4396 }
4397
4398 // Skip all the checks below if we have a type error.
4399 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4400 (TagD && TagD->isInvalidDecl()))
4401 return TagD;
4402
4403 if (getLangOpts().CPlusPlus &&
4404 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4405 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4406 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4407 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4408 DeclaresAnything = false;
4409
4410 if (!DS.isMissingDeclaratorOk()) {
4411 // Customize diagnostic for a typedef missing a name.
4412 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4413 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4414 << DS.getSourceRange();
4415 else
4416 DeclaresAnything = false;
4417 }
4418
4419 if (DS.isModulePrivateSpecified() &&
4420 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4421 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4422 << Tag->getTagKind()
4423 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4424
4425 ActOnDocumentableDecl(TagD);
4426
4427 // C 6.7/2:
4428 // A declaration [...] shall declare at least a declarator [...], a tag,
4429 // or the members of an enumeration.
4430 // C++ [dcl.dcl]p3:
4431 // [If there are no declarators], and except for the declaration of an
4432 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4433 // names into the program, or shall redeclare a name introduced by a
4434 // previous declaration.
4435 if (!DeclaresAnything) {
4436 // In C, we allow this as a (popular) extension / bug. Don't bother
4437 // producing further diagnostics for redundant qualifiers after this.
4438 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4439 return TagD;
4440 }
4441
4442 // C++ [dcl.stc]p1:
4443 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4444 // init-declarator-list of the declaration shall not be empty.
4445 // C++ [dcl.fct.spec]p1:
4446 // If a cv-qualifier appears in a decl-specifier-seq, the
4447 // init-declarator-list of the declaration shall not be empty.
4448 //
4449 // Spurious qualifiers here appear to be valid in C.
4450 unsigned DiagID = diag::warn_standalone_specifier;
4451 if (getLangOpts().CPlusPlus)
4452 DiagID = diag::ext_standalone_specifier;
4453
4454 // Note that a linkage-specification sets a storage class, but
4455 // 'extern "C" struct foo;' is actually valid and not theoretically
4456 // useless.
4457 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4458 if (SCS == DeclSpec::SCS_mutable)
4459 // Since mutable is not a viable storage class specifier in C, there is
4460 // no reason to treat it as an extension. Instead, diagnose as an error.
4461 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4462 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4463 Diag(DS.getStorageClassSpecLoc(), DiagID)
4464 << DeclSpec::getSpecifierName(SCS);
4465 }
4466
4467 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4468 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4469 << DeclSpec::getSpecifierName(TSCS);
4470 if (DS.getTypeQualifiers()) {
4471 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4472 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4473 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4474 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4475 // Restrict is covered above.
4476 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4477 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4478 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4479 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4480 }
4481
4482 // Warn about ignored type attributes, for example:
4483 // __attribute__((aligned)) struct A;
4484 // Attributes should be placed after tag to apply to type declaration.
4485 if (!DS.getAttributes().empty()) {
4486 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4487 if (TypeSpecType == DeclSpec::TST_class ||
4488 TypeSpecType == DeclSpec::TST_struct ||
4489 TypeSpecType == DeclSpec::TST_interface ||
4490 TypeSpecType == DeclSpec::TST_union ||
4491 TypeSpecType == DeclSpec::TST_enum) {
4492 for (const ParsedAttr &AL : DS.getAttributes())
4493 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4494 << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4495 }
4496 }
4497
4498 return TagD;
4499}
4500
4501/// We are trying to inject an anonymous member into the given scope;
4502/// check if there's an existing declaration that can't be overloaded.
4503///
4504/// \return true if this is a forbidden redeclaration
4505static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4506 Scope *S,
4507 DeclContext *Owner,
4508 DeclarationName Name,
4509 SourceLocation NameLoc,
4510 bool IsUnion) {
4511 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4512 Sema::ForVisibleRedeclaration);
4513 if (!SemaRef.LookupName(R, S)) return false;
4514
4515 // Pick a representative declaration.
4516 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4517 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4517, __PRETTY_FUNCTION__))
;
4518
4519 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4520 return false;
4521
4522 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4523 << IsUnion << Name;
4524 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4525
4526 return true;
4527}
4528
4529/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4530/// anonymous struct or union AnonRecord into the owning context Owner
4531/// and scope S. This routine will be invoked just after we realize
4532/// that an unnamed union or struct is actually an anonymous union or
4533/// struct, e.g.,
4534///
4535/// @code
4536/// union {
4537/// int i;
4538/// float f;
4539/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4540/// // f into the surrounding scope.x
4541/// @endcode
4542///
4543/// This routine is recursive, injecting the names of nested anonymous
4544/// structs/unions into the owning context and scope as well.
4545static bool
4546InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4547 RecordDecl *AnonRecord, AccessSpecifier AS,
4548 SmallVectorImpl<NamedDecl *> &Chaining) {
4549 bool Invalid = false;
4550
4551 // Look every FieldDecl and IndirectFieldDecl with a name.
4552 for (auto *D : AnonRecord->decls()) {
4553 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4554 cast<NamedDecl>(D)->getDeclName()) {
4555 ValueDecl *VD = cast<ValueDecl>(D);
4556 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4557 VD->getLocation(),
4558 AnonRecord->isUnion())) {
4559 // C++ [class.union]p2:
4560 // The names of the members of an anonymous union shall be
4561 // distinct from the names of any other entity in the
4562 // scope in which the anonymous union is declared.
4563 Invalid = true;
4564 } else {
4565 // C++ [class.union]p2:
4566 // For the purpose of name lookup, after the anonymous union
4567 // definition, the members of the anonymous union are
4568 // considered to have been defined in the scope in which the
4569 // anonymous union is declared.
4570 unsigned OldChainingSize = Chaining.size();
4571 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4572 Chaining.append(IF->chain_begin(), IF->chain_end());
4573 else
4574 Chaining.push_back(VD);
4575
4576 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4576, __PRETTY_FUNCTION__))
;
4577 NamedDecl **NamedChain =
4578 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4579 for (unsigned i = 0; i < Chaining.size(); i++)
4580 NamedChain[i] = Chaining[i];
4581
4582 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4583 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4584 VD->getType(), {NamedChain, Chaining.size()});
4585
4586 for (const auto *Attr : VD->attrs())
4587 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4588
4589 IndirectField->setAccess(AS);
4590 IndirectField->setImplicit();
4591 SemaRef.PushOnScopeChains(IndirectField, S);
4592
4593 // That includes picking up the appropriate access specifier.
4594 if (AS != AS_none) IndirectField->setAccess(AS);
4595
4596 Chaining.resize(OldChainingSize);
4597 }
4598 }
4599 }
4600
4601 return Invalid;
4602}
4603
4604/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4605/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4606/// illegal input values are mapped to SC_None.
4607static StorageClass
4608StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4609 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4610 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4611, __PRETTY_FUNCTION__))
4611 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4611, __PRETTY_FUNCTION__))
;
4612 switch (StorageClassSpec) {
4613 case DeclSpec::SCS_unspecified: return SC_None;
4614 case DeclSpec::SCS_extern:
4615 if (DS.isExternInLinkageSpec())
4616 return SC_None;
4617 return SC_Extern;
4618 case DeclSpec::SCS_static: return SC_Static;
4619 case DeclSpec::SCS_auto: return SC_Auto;
4620 case DeclSpec::SCS_register: return SC_Register;
4621 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4622 // Illegal SCSs map to None: error reporting is up to the caller.
4623 case DeclSpec::SCS_mutable: // Fall through.
4624 case DeclSpec::SCS_typedef: return SC_None;
4625 }
4626 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4626)
;
4627}
4628
4629static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4630 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4630, __PRETTY_FUNCTION__))
;
4631
4632 for (const auto *I : Record->decls()) {
4633 const auto *FD = dyn_cast<FieldDecl>(I);
4634 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4635 FD = IFD->getAnonField();
4636 if (FD && FD->hasInClassInitializer())
4637 return FD->getLocation();
4638 }
4639
4640 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4640)
;
4641}
4642
4643static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4644 SourceLocation DefaultInitLoc) {
4645 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4646 return;
4647
4648 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4649 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4650}
4651
4652static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4653 CXXRecordDecl *AnonUnion) {
4654 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4655 return;
4656
4657 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4658}
4659
4660/// BuildAnonymousStructOrUnion - Handle the declaration of an
4661/// anonymous structure or union. Anonymous unions are a C++ feature
4662/// (C++ [class.union]) and a C11 feature; anonymous structures
4663/// are a C11 feature and GNU C++ extension.
4664Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4665 AccessSpecifier AS,
4666 RecordDecl *Record,
4667 const PrintingPolicy &Policy) {
4668 DeclContext *Owner = Record->getDeclContext();
4669
4670 // Diagnose whether this anonymous struct/union is an extension.
4671 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4672 Diag(Record->getLocation(), diag::ext_anonymous_union);
4673 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4674 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4675 else if (!Record->isUnion() && !getLangOpts().C11)
4676 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4677
4678 // C and C++ require different kinds of checks for anonymous
4679 // structs/unions.
4680 bool Invalid = false;
4681 if (getLangOpts().CPlusPlus) {
4682 const char *PrevSpec = nullptr;
4683 unsigned DiagID;
4684 if (Record->isUnion()) {
4685 // C++ [class.union]p6:
4686 // C++17 [class.union.anon]p2:
4687 // Anonymous unions declared in a named namespace or in the
4688 // global namespace shall be declared static.
4689 DeclContext *OwnerScope = Owner->getRedeclContext();
4690 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4691 (OwnerScope->isTranslationUnit() ||
4692 (OwnerScope->isNamespace() &&
4693 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4694 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4695 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4696
4697 // Recover by adding 'static'.
4698 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4699 PrevSpec, DiagID, Policy);
4700 }
4701 // C++ [class.union]p6:
4702 // A storage class is not allowed in a declaration of an
4703 // anonymous union in a class scope.
4704 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4705 isa<RecordDecl>(Owner)) {
4706 Diag(DS.getStorageClassSpecLoc(),
4707 diag::err_anonymous_union_with_storage_spec)
4708 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4709
4710 // Recover by removing the storage specifier.
4711 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4712 SourceLocation(),
4713 PrevSpec, DiagID, Context.getPrintingPolicy());
4714 }
4715 }
4716
4717 // Ignore const/volatile/restrict qualifiers.
4718 if (DS.getTypeQualifiers()) {
4719 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4720 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4721 << Record->isUnion() << "const"
4722 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4723 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4724 Diag(DS.getVolatileSpecLoc(),
4725 diag::ext_anonymous_struct_union_qualified)
4726 << Record->isUnion() << "volatile"
4727 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4728 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4729 Diag(DS.getRestrictSpecLoc(),
4730 diag::ext_anonymous_struct_union_qualified)
4731 << Record->isUnion() << "restrict"
4732 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4733 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4734 Diag(DS.getAtomicSpecLoc(),
4735 diag::ext_anonymous_struct_union_qualified)
4736 << Record->isUnion() << "_Atomic"
4737 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4738 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4739 Diag(DS.getUnalignedSpecLoc(),
4740 diag::ext_anonymous_struct_union_qualified)
4741 << Record->isUnion() << "__unaligned"
4742 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4743
4744 DS.ClearTypeQualifiers();
4745 }
4746
4747 // C++ [class.union]p2:
4748 // The member-specification of an anonymous union shall only
4749 // define non-static data members. [Note: nested types and
4750 // functions cannot be declared within an anonymous union. ]
4751 for (auto *Mem : Record->decls()) {
4752 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4753 // C++ [class.union]p3:
4754 // An anonymous union shall not have private or protected
4755 // members (clause 11).
4756 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4756, __PRETTY_FUNCTION__))
;
4757 if (FD->getAccess() != AS_public) {
4758 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4759 << Record->isUnion() << (FD->getAccess() == AS_protected);
4760 Invalid = true;
4761 }
4762
4763 // C++ [class.union]p1
4764 // An object of a class with a non-trivial constructor, a non-trivial
4765 // copy constructor, a non-trivial destructor, or a non-trivial copy
4766 // assignment operator cannot be a member of a union, nor can an
4767 // array of such objects.
4768 if (CheckNontrivialField(FD))
4769 Invalid = true;
4770 } else if (Mem->isImplicit()) {
4771 // Any implicit members are fine.
4772 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4773 // This is a type that showed up in an
4774 // elaborated-type-specifier inside the anonymous struct or
4775 // union, but which actually declares a type outside of the
4776 // anonymous struct or union. It's okay.
4777 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4778 if (!MemRecord->isAnonymousStructOrUnion() &&
4779 MemRecord->getDeclName()) {
4780 // Visual C++ allows type definition in anonymous struct or union.
4781 if (getLangOpts().MicrosoftExt)
4782 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4783 << Record->isUnion();
4784 else {
4785 // This is a nested type declaration.
4786 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4787 << Record->isUnion();
4788 Invalid = true;
4789 }
4790 } else {
4791 // This is an anonymous type definition within another anonymous type.
4792 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4793 // not part of standard C++.
4794 Diag(MemRecord->getLocation(),
4795 diag::ext_anonymous_record_with_anonymous_type)
4796 << Record->isUnion();
4797 }
4798 } else if (isa<AccessSpecDecl>(Mem)) {
4799 // Any access specifier is fine.
4800 } else if (isa<StaticAssertDecl>(Mem)) {
4801 // In C++1z, static_assert declarations are also fine.
4802 } else {
4803 // We have something that isn't a non-static data
4804 // member. Complain about it.
4805 unsigned DK = diag::err_anonymous_record_bad_member;
4806 if (isa<TypeDecl>(Mem))
4807 DK = diag::err_anonymous_record_with_type;
4808 else if (isa<FunctionDecl>(Mem))
4809 DK = diag::err_anonymous_record_with_function;
4810 else if (isa<VarDecl>(Mem))
4811 DK = diag::err_anonymous_record_with_static;
4812
4813 // Visual C++ allows type definition in anonymous struct or union.
4814 if (getLangOpts().MicrosoftExt &&
4815 DK == diag::err_anonymous_record_with_type)
4816 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4817 << Record->isUnion();
4818 else {
4819 Diag(Mem->getLocation(), DK) << Record->isUnion();
4820 Invalid = true;
4821 }
4822 }
4823 }
4824
4825 // C++11 [class.union]p8 (DR1460):
4826 // At most one variant member of a union may have a
4827 // brace-or-equal-initializer.
4828 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4829 Owner->isRecord())
4830 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4831 cast<CXXRecordDecl>(Record));
4832 }
4833
4834 if (!Record->isUnion() && !Owner->isRecord()) {
4835 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4836 << getLangOpts().CPlusPlus;
4837 Invalid = true;
4838 }
4839
4840 // C++ [dcl.dcl]p3:
4841 // [If there are no declarators], and except for the declaration of an
4842 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4843 // names into the program
4844 // C++ [class.mem]p2:
4845 // each such member-declaration shall either declare at least one member
4846 // name of the class or declare at least one unnamed bit-field
4847 //
4848 // For C this is an error even for a named struct, and is diagnosed elsewhere.
4849 if (getLangOpts().CPlusPlus && Record->field_empty())
4850 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4851
4852 // Mock up a declarator.
4853 Declarator Dc(DS, DeclaratorContext::MemberContext);
4854 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4855 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4855, __PRETTY_FUNCTION__))
;
4856
4857 // Create a declaration for this anonymous struct/union.
4858 NamedDecl *Anon = nullptr;
4859 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4860 Anon = FieldDecl::Create(
4861 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4862 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4863 /*BitWidth=*/nullptr, /*Mutable=*/false,
4864 /*InitStyle=*/ICIS_NoInit);
4865 Anon->setAccess(AS);
4866 if (getLangOpts().CPlusPlus)
4867 FieldCollector->Add(cast<FieldDecl>(Anon));
4868 } else {
4869 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4870 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4871 if (SCSpec == DeclSpec::SCS_mutable) {
4872 // mutable can only appear on non-static class members, so it's always
4873 // an error here
4874 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4875 Invalid = true;
4876 SC = SC_None;
4877 }
4878
4879 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4880 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4881 Context.getTypeDeclType(Record), TInfo, SC);
4882
4883 // Default-initialize the implicit variable. This initialization will be
4884 // trivial in almost all cases, except if a union member has an in-class
4885 // initializer:
4886 // union { int n = 0; };
4887 ActOnUninitializedDecl(Anon);
4888 }
4889 Anon->setImplicit();
4890
4891 // Mark this as an anonymous struct/union type.
4892 Record->setAnonymousStructOrUnion(true);
4893
4894 // Add the anonymous struct/union object to the current
4895 // context. We'll be referencing this object when we refer to one of
4896 // its members.
4897 Owner->addDecl(Anon);
4898
4899 // Inject the members of the anonymous struct/union into the owning
4900 // context and into the identifier resolver chain for name lookup
4901 // purposes.
4902 SmallVector<NamedDecl*, 2> Chain;
4903 Chain.push_back(Anon);
4904
4905 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4906 Invalid = true;
4907
4908 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4909 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4910 Decl *ManglingContextDecl;
4911 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4912 NewVD->getDeclContext(), ManglingContextDecl)) {
4913 Context.setManglingNumber(
4914 NewVD, MCtx->getManglingNumber(
4915 NewVD, getMSManglingNumber(getLangOpts(), S)));
4916 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4917 }
4918 }
4919 }
4920
4921 if (Invalid)
4922 Anon->setInvalidDecl();
4923
4924 return Anon;
4925}
4926
4927/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4928/// Microsoft C anonymous structure.
4929/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4930/// Example:
4931///
4932/// struct A { int a; };
4933/// struct B { struct A; int b; };
4934///
4935/// void foo() {
4936/// B var;
4937/// var.a = 3;
4938/// }
4939///
4940Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4941 RecordDecl *Record) {
4942 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4942, __PRETTY_FUNCTION__))
;
4943
4944 // Mock up a declarator.
4945 Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4946 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4947 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 4947, __PRETTY_FUNCTION__))
;
4948
4949 auto *ParentDecl = cast<RecordDecl>(CurContext);
4950 QualType RecTy = Context.getTypeDeclType(Record);
4951
4952 // Create a declaration for this anonymous struct.
4953 NamedDecl *Anon =
4954 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4955 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4956 /*BitWidth=*/nullptr, /*Mutable=*/false,
4957 /*InitStyle=*/ICIS_NoInit);
4958 Anon->setImplicit();
4959
4960 // Add the anonymous struct object to the current context.
4961 CurContext->addDecl(Anon);
4962
4963 // Inject the members of the anonymous struct into the current
4964 // context and into the identifier resolver chain for name lookup
4965 // purposes.
4966 SmallVector<NamedDecl*, 2> Chain;
4967 Chain.push_back(Anon);
4968
4969 RecordDecl *RecordDef = Record->getDefinition();
4970 if (RequireCompleteType(Anon->getLocation(), RecTy,
4971 diag::err_field_incomplete) ||
4972 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4973 AS_none, Chain)) {
4974 Anon->setInvalidDecl();
4975 ParentDecl->setInvalidDecl();
4976 }
4977
4978 return Anon;
4979}
4980
4981/// GetNameForDeclarator - Determine the full declaration name for the
4982/// given Declarator.
4983DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4984 return GetNameFromUnqualifiedId(D.getName());
4985}
4986
4987/// Retrieves the declaration name from a parsed unqualified-id.
4988DeclarationNameInfo
4989Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4990 DeclarationNameInfo NameInfo;
4991 NameInfo.setLoc(Name.StartLocation);
4992
4993 switch (Name.getKind()) {
4994
4995 case UnqualifiedIdKind::IK_ImplicitSelfParam:
4996 case UnqualifiedIdKind::IK_Identifier:
4997 NameInfo.setName(Name.Identifier);
4998 return NameInfo;
4999
5000 case UnqualifiedIdKind::IK_DeductionGuideName: {
5001 // C++ [temp.deduct.guide]p3:
5002 // The simple-template-id shall name a class template specialization.
5003 // The template-name shall be the same identifier as the template-name
5004 // of the simple-template-id.
5005 // These together intend to imply that the template-name shall name a
5006 // class template.
5007 // FIXME: template<typename T> struct X {};
5008 // template<typename T> using Y = X<T>;
5009 // Y(int) -> Y<int>;
5010 // satisfies these rules but does not name a class template.
5011 TemplateName TN = Name.TemplateName.get().get();
5012 auto *Template = TN.getAsTemplateDecl();
5013 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5014 Diag(Name.StartLocation,
5015 diag::err_deduction_guide_name_not_class_template)
5016 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5017 if (Template)
5018 Diag(Template->getLocation(), diag::note_template_decl_here);
5019 return DeclarationNameInfo();
5020 }
5021
5022 NameInfo.setName(
5023 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5024 return NameInfo;
5025 }
5026
5027 case UnqualifiedIdKind::IK_OperatorFunctionId:
5028 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5029 Name.OperatorFunctionId.Operator));
5030 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5031 = Name.OperatorFunctionId.SymbolLocations[0];
5032 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5033 = Name.EndLocation.getRawEncoding();
5034 return NameInfo;
5035
5036 case UnqualifiedIdKind::IK_LiteralOperatorId:
5037 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5038 Name.Identifier));
5039 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5040 return NameInfo;
5041
5042 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5043 TypeSourceInfo *TInfo;
5044 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5045 if (Ty.isNull())
5046 return DeclarationNameInfo();
5047 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5048 Context.getCanonicalType(Ty)));
5049 NameInfo.setNamedTypeInfo(TInfo);
5050 return NameInfo;
5051 }
5052
5053 case UnqualifiedIdKind::IK_ConstructorName: {
5054 TypeSourceInfo *TInfo;
5055 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5056 if (Ty.isNull())
5057 return DeclarationNameInfo();
5058 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5059 Context.getCanonicalType(Ty)));
5060 NameInfo.setNamedTypeInfo(TInfo);
5061 return NameInfo;
5062 }
5063
5064 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5065 // In well-formed code, we can only have a constructor
5066 // template-id that refers to the current context, so go there
5067 // to find the actual type being constructed.
5068 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5069 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5070 return DeclarationNameInfo();
5071
5072 // Determine the type of the class being constructed.
5073 QualType CurClassType = Context.getTypeDeclType(CurClass);
5074
5075 // FIXME: Check two things: that the template-id names the same type as
5076 // CurClassType, and that the template-id does not occur when the name
5077 // was qualified.
5078
5079 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5080 Context.getCanonicalType(CurClassType)));
5081 // FIXME: should we retrieve TypeSourceInfo?
5082 NameInfo.setNamedTypeInfo(nullptr);
5083 return NameInfo;
5084 }
5085
5086 case UnqualifiedIdKind::IK_DestructorName: {
5087 TypeSourceInfo *TInfo;
5088 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5089 if (Ty.isNull())
5090 return DeclarationNameInfo();
5091 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5092 Context.getCanonicalType(Ty)));
5093 NameInfo.setNamedTypeInfo(TInfo);
5094 return NameInfo;
5095 }
5096
5097 case UnqualifiedIdKind::IK_TemplateId: {
5098 TemplateName TName = Name.TemplateId->Template.get();
5099 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5100 return Context.getNameForTemplate(TName, TNameLoc);
5101 }
5102
5103 } // switch (Name.getKind())
5104
5105 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 5105)
;
5106}
5107
5108static QualType getCoreType(QualType Ty) {
5109 do {
5110 if (Ty->isPointerType() || Ty->isReferenceType())
5111 Ty = Ty->getPointeeType();
5112 else if (Ty->isArrayType())
5113 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5114 else
5115 return Ty.withoutLocalFastQualifiers();
5116 } while (true);
5117}
5118
5119/// hasSimilarParameters - Determine whether the C++ functions Declaration
5120/// and Definition have "nearly" matching parameters. This heuristic is
5121/// used to improve diagnostics in the case where an out-of-line function
5122/// definition doesn't match any declaration within the class or namespace.
5123/// Also sets Params to the list of indices to the parameters that differ
5124/// between the declaration and the definition. If hasSimilarParameters
5125/// returns true and Params is empty, then all of the parameters match.
5126static bool hasSimilarParameters(ASTContext &Context,
5127 FunctionDecl *Declaration,
5128 FunctionDecl *Definition,
5129 SmallVectorImpl<unsigned> &Params) {
5130 Params.clear();
5131 if (Declaration->param_size() != Definition->param_size())
5132 return false;
5133 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5134 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5135 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5136
5137 // The parameter types are identical
5138 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5139 continue;
5140
5141 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5142 QualType DefParamBaseTy = getCoreType(DefParamTy);
5143 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5144 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5145
5146 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5147 (DeclTyName && DeclTyName == DefTyName))
5148 Params.push_back(Idx);
5149 else // The two parameters aren't even close
5150 return false;
5151 }
5152
5153 return true;
5154}
5155
5156/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5157/// declarator needs to be rebuilt in the current instantiation.
5158/// Any bits of declarator which appear before the name are valid for
5159/// consideration here. That's specifically the type in the decl spec
5160/// and the base type in any member-pointer chunks.
5161static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5162 DeclarationName Name) {
5163 // The types we specifically need to rebuild are:
5164 // - typenames, typeofs, and decltypes
5165 // - types which will become injected class names
5166 // Of course, we also need to rebuild any type referencing such a
5167 // type. It's safest to just say "dependent", but we call out a
5168 // few cases here.
5169
5170 DeclSpec &DS = D.getMutableDeclSpec();
5171 switch (DS.getTypeSpecType()) {
5172 case DeclSpec::TST_typename:
5173 case DeclSpec::TST_typeofType:
5174 case DeclSpec::TST_underlyingType:
5175 case DeclSpec::TST_atomic: {
5176 // Grab the type from the parser.
5177 TypeSourceInfo *TSI = nullptr;
5178 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5179 if (T.isNull() || !T->isDependentType()) break;
5180
5181 // Make sure there's a type source info. This isn't really much
5182 // of a waste; most dependent types should have type source info
5183 // attached already.
5184 if (!TSI)
5185 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5186
5187 // Rebuild the type in the current instantiation.
5188 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5189 if (!TSI) return true;
5190
5191 // Store the new type back in the decl spec.
5192 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5193 DS.UpdateTypeRep(LocType);
5194 break;
5195 }
5196
5197 case DeclSpec::TST_decltype:
5198 case DeclSpec::TST_typeofExpr: {
5199 Expr *E = DS.getRepAsExpr();
5200 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5201 if (Result.isInvalid()) return true;
5202 DS.UpdateExprRep(Result.get());
5203 break;
5204 }
5205
5206 default:
5207 // Nothing to do for these decl specs.
5208 break;
5209 }
5210
5211 // It doesn't matter what order we do this in.
5212 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5213 DeclaratorChunk &Chunk = D.getTypeObject(I);
5214
5215 // The only type information in the declarator which can come
5216 // before the declaration name is the base type of a member
5217 // pointer.
5218 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5219 continue;
5220
5221 // Rebuild the scope specifier in-place.
5222 CXXScopeSpec &SS = Chunk.Mem.Scope();
5223 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5224 return true;
5225 }
5226
5227 return false;
5228}
5229
5230Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5231 D.setFunctionDefinitionKind(FDK_Declaration);
5232 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5233
5234 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5235 Dcl && Dcl->getDeclContext()->isFileContext())
5236 Dcl->setTopLevelDeclInObjCContainer();
5237
5238 if (getLangOpts().OpenCL)
5239 setCurrentOpenCLExtensionForDecl(Dcl);
5240
5241 return Dcl;
5242}
5243
5244/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5245/// If T is the name of a class, then each of the following shall have a
5246/// name different from T:
5247/// - every static data member of class T;
5248/// - every member function of class T
5249/// - every member of class T that is itself a type;
5250/// \returns true if the declaration name violates these rules.
5251bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5252 DeclarationNameInfo NameInfo) {
5253 DeclarationName Name = NameInfo.getName();
5254
5255 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5256 while (Record && Record->isAnonymousStructOrUnion())
5257 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5258 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5259 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5260 return true;
5261 }
5262
5263 return false;
5264}
5265
5266/// Diagnose a declaration whose declarator-id has the given
5267/// nested-name-specifier.
5268///
5269/// \param SS The nested-name-specifier of the declarator-id.
5270///
5271/// \param DC The declaration context to which the nested-name-specifier
5272/// resolves.
5273///
5274/// \param Name The name of the entity being declared.
5275///
5276/// \param Loc The location of the name of the entity being declared.
5277///
5278/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5279/// we're declaring an explicit / partial specialization / instantiation.
5280///
5281/// \returns true if we cannot safely recover from this error, false otherwise.
5282bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5283 DeclarationName Name,
5284 SourceLocation Loc, bool IsTemplateId) {
5285 DeclContext *Cur = CurContext;
5286 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5287 Cur = Cur->getParent();
5288
5289 // If the user provided a superfluous scope specifier that refers back to the
5290 // class in which the entity is already declared, diagnose and ignore it.
5291 //
5292 // class X {
5293 // void X::f();
5294 // };
5295 //
5296 // Note, it was once ill-formed to give redundant qualification in all
5297 // contexts, but that rule was removed by DR482.
5298 if (Cur->Equals(DC)) {
5299 if (Cur->isRecord()) {
5300 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5301 : diag::err_member_extra_qualification)
5302 << Name << FixItHint::CreateRemoval(SS.getRange());
5303 SS.clear();
5304 } else {
5305 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5306 }
5307 return false;
5308 }
5309
5310 // Check whether the qualifying scope encloses the scope of the original
5311 // declaration. For a template-id, we perform the checks in
5312 // CheckTemplateSpecializationScope.
5313 if (!Cur->Encloses(DC) && !IsTemplateId) {
5314 if (Cur->isRecord())
5315 Diag(Loc, diag::err_member_qualification)
5316 << Name << SS.getRange();
5317 else if (isa<TranslationUnitDecl>(DC))
5318 Diag(Loc, diag::err_invalid_declarator_global_scope)
5319 << Name << SS.getRange();
5320 else if (isa<FunctionDecl>(Cur))
5321 Diag(Loc, diag::err_invalid_declarator_in_function)
5322 << Name << SS.getRange();
5323 else if (isa<BlockDecl>(Cur))
5324 Diag(Loc, diag::err_invalid_declarator_in_block)
5325 << Name << SS.getRange();
5326 else
5327 Diag(Loc, diag::err_invalid_declarator_scope)
5328 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5329
5330 return true;
5331 }
5332
5333 if (Cur->isRecord()) {
5334 // Cannot qualify members within a class.
5335 Diag(Loc, diag::err_member_qualification)
5336 << Name << SS.getRange();
5337 SS.clear();
5338
5339 // C++ constructors and destructors with incorrect scopes can break
5340 // our AST invariants by having the wrong underlying types. If
5341 // that's the case, then drop this declaration entirely.
5342 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5343 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5344 !Context.hasSameType(Name.getCXXNameType(),
5345 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5346 return true;
5347
5348 return false;
5349 }
5350
5351 // C++11 [dcl.meaning]p1:
5352 // [...] "The nested-name-specifier of the qualified declarator-id shall
5353 // not begin with a decltype-specifer"
5354 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5355 while (SpecLoc.getPrefix())
5356 SpecLoc = SpecLoc.getPrefix();
5357 if (dyn_cast_or_null<DecltypeType>(
5358 SpecLoc.getNestedNameSpecifier()->getAsType()))
5359 Diag(Loc, diag::err_decltype_in_declarator)
5360 << SpecLoc.getTypeLoc().getSourceRange();
5361
5362 return false;
5363}
5364
5365NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5366 MultiTemplateParamsArg TemplateParamLists) {
5367 // TODO: consider using NameInfo for diagnostic.
5368 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5369 DeclarationName Name = NameInfo.getName();
5370
5371 // All of these full declarators require an identifier. If it doesn't have
5372 // one, the ParsedFreeStandingDeclSpec action should be used.
5373 if (D.isDecompositionDeclarator()) {
5374 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5375 } else if (!Name) {
5376 if (!D.isInvalidType()) // Reject this if we think it is valid.
5377 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5378 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5379 return nullptr;
5380 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5381 return nullptr;
5382
5383 // The scope passed in may not be a decl scope. Zip up the scope tree until
5384 // we find one that is.
5385 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5386 (S->getFlags() & Scope::TemplateParamScope) != 0)
5387 S = S->getParent();
5388
5389 DeclContext *DC = CurContext;
5390 if (D.getCXXScopeSpec().isInvalid())
5391 D.setInvalidType();
5392 else if (D.getCXXScopeSpec().isSet()) {
5393 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5394 UPPC_DeclarationQualifier))
5395 return nullptr;
5396
5397 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5398 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5399 if (!DC || isa<EnumDecl>(DC)) {
5400 // If we could not compute the declaration context, it's because the
5401 // declaration context is dependent but does not refer to a class,
5402 // class template, or class template partial specialization. Complain
5403 // and return early, to avoid the coming semantic disaster.
5404 Diag(D.getIdentifierLoc(),
5405 diag::err_template_qualified_declarator_no_match)
5406 << D.getCXXScopeSpec().getScopeRep()
5407 << D.getCXXScopeSpec().getRange();
5408 return nullptr;
5409 }
5410 bool IsDependentContext = DC->isDependentContext();
5411
5412 if (!IsDependentContext &&
5413 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5414 return nullptr;
5415
5416 // If a class is incomplete, do not parse entities inside it.
5417 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5418 Diag(D.getIdentifierLoc(),
5419 diag::err_member_def_undefined_record)
5420 << Name << DC << D.getCXXScopeSpec().getRange();
5421 return nullptr;
5422 }
5423 if (!D.getDeclSpec().isFriendSpecified()) {
5424 if (diagnoseQualifiedDeclaration(
5425 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5426 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5427 if (DC->isRecord())
5428 return nullptr;
5429
5430 D.setInvalidType();
5431 }
5432 }
5433
5434 // Check whether we need to rebuild the type of the given
5435 // declaration in the current instantiation.
5436 if (EnteringContext && IsDependentContext &&
5437 TemplateParamLists.size() != 0) {
5438 ContextRAII SavedContext(*this, DC);
5439 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5440 D.setInvalidType();
5441 }
5442 }
5443
5444 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5445 QualType R = TInfo->getType();
5446
5447 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5448 UPPC_DeclarationType))
5449 D.setInvalidType();
5450
5451 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5452 forRedeclarationInCurContext());
5453
5454 // See if this is a redefinition of a variable in the same scope.
5455 if (!D.getCXXScopeSpec().isSet()) {
5456 bool IsLinkageLookup = false;
5457 bool CreateBuiltins = false;
5458
5459 // If the declaration we're planning to build will be a function
5460 // or object with linkage, then look for another declaration with
5461 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5462 //
5463 // If the declaration we're planning to build will be declared with
5464 // external linkage in the translation unit, create any builtin with
5465 // the same name.
5466 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5467 /* Do nothing*/;
5468 else if (CurContext->isFunctionOrMethod() &&
5469 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5470 R->isFunctionType())) {
5471 IsLinkageLookup = true;
5472 CreateBuiltins =
5473 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5474 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5475 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5476 CreateBuiltins = true;
5477
5478 if (IsLinkageLookup) {
5479 Previous.clear(LookupRedeclarationWithLinkage);
5480 Previous.setRedeclarationKind(ForExternalRedeclaration);
5481 }
5482
5483 LookupName(Previous, S, CreateBuiltins);
5484 } else { // Something like "int foo::x;"
5485 LookupQualifiedName(Previous, DC);
5486
5487 // C++ [dcl.meaning]p1:
5488 // When the declarator-id is qualified, the declaration shall refer to a
5489 // previously declared member of the class or namespace to which the
5490 // qualifier refers (or, in the case of a namespace, of an element of the
5491 // inline namespace set of that namespace (7.3.1)) or to a specialization
5492 // thereof; [...]
5493 //
5494 // Note that we already checked the context above, and that we do not have
5495 // enough information to make sure that Previous contains the declaration
5496 // we want to match. For example, given:
5497 //
5498 // class X {
5499 // void f();
5500 // void f(float);
5501 // };
5502 //
5503 // void X::f(int) { } // ill-formed
5504 //
5505 // In this case, Previous will point to the overload set
5506 // containing the two f's declared in X, but neither of them
5507 // matches.
5508
5509 // C++ [dcl.meaning]p1:
5510 // [...] the member shall not merely have been introduced by a
5511 // using-declaration in the scope of the class or namespace nominated by
5512 // the nested-name-specifier of the declarator-id.
5513 RemoveUsingDecls(Previous);
5514 }
5515
5516 if (Previous.isSingleResult() &&
5517 Previous.getFoundDecl()->isTemplateParameter()) {
5518 // Maybe we will complain about the shadowed template parameter.
5519 if (!D.isInvalidType())
5520 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5521 Previous.getFoundDecl());
5522
5523 // Just pretend that we didn't see the previous declaration.
5524 Previous.clear();
5525 }
5526
5527 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5528 // Forget that the previous declaration is the injected-class-name.
5529 Previous.clear();
5530
5531 // In C++, the previous declaration we find might be a tag type
5532 // (class or enum). In this case, the new declaration will hide the
5533 // tag type. Note that this applies to functions, function templates, and
5534 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5535 if (Previous.isSingleTagDecl() &&
5536 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5537 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5538 Previous.clear();
5539
5540 // Check that there are no default arguments other than in the parameters
5541 // of a function declaration (C++ only).
5542 if (getLangOpts().CPlusPlus)
5543 CheckExtraCXXDefaultArguments(D);
5544
5545 NamedDecl *New;
5546
5547 bool AddToScope = true;
5548 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5549 if (TemplateParamLists.size()) {
5550 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5551 return nullptr;
5552 }
5553
5554 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5555 } else if (R->isFunctionType()) {
5556 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5557 TemplateParamLists,
5558 AddToScope);
5559 } else {
5560 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5561 AddToScope);
5562 }
5563
5564 if (!New)
5565 return nullptr;
5566
5567 // If this has an identifier and is not a function template specialization,
5568 // add it to the scope stack.
5569 if (New->getDeclName() && AddToScope)
5570 PushOnScopeChains(New, S);
5571
5572 if (isInOpenMPDeclareTargetContext())
5573 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5574
5575 return New;
5576}
5577
5578/// Helper method to turn variable array types into constant array
5579/// types in certain situations which would otherwise be errors (for
5580/// GCC compatibility).
5581static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5582 ASTContext &Context,
5583 bool &SizeIsNegative,
5584 llvm::APSInt &Oversized) {
5585 // This method tries to turn a variable array into a constant
5586 // array even when the size isn't an ICE. This is necessary
5587 // for compatibility with code that depends on gcc's buggy
5588 // constant expression folding, like struct {char x[(int)(char*)2];}
5589 SizeIsNegative = false;
5590 Oversized = 0;
5591
5592 if (T->isDependentType())
5593 return QualType();
5594
5595 QualifierCollector Qs;
5596 const Type *Ty = Qs.strip(T);
5597
5598 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5599 QualType Pointee = PTy->getPointeeType();
5600 QualType FixedType =
5601 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5602 Oversized);
5603 if (FixedType.isNull()) return FixedType;
5604 FixedType = Context.getPointerType(FixedType);
5605 return Qs.apply(Context, FixedType);
5606 }
5607 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5608 QualType Inner = PTy->getInnerType();
5609 QualType FixedType =
5610 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5611 Oversized);
5612 if (FixedType.isNull()) return FixedType;
5613 FixedType = Context.getParenType(FixedType);
5614 return Qs.apply(Context, FixedType);
5615 }
5616
5617 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5618 if (!VLATy)
5619 return QualType();
5620 // FIXME: We should probably handle this case
5621 if (VLATy->getElementType()->isVariablyModifiedType())
5622 return QualType();
5623
5624 Expr::EvalResult Result;
5625 if (!VLATy->getSizeExpr() ||
5626 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5627 return QualType();
5628
5629 llvm::APSInt Res = Result.Val.getInt();
5630
5631 // Check whether the array size is negative.
5632 if (Res.isSigned() && Res.isNegative()) {
5633 SizeIsNegative = true;
5634 return QualType();
5635 }
5636
5637 // Check whether the array is too large to be addressed.
5638 unsigned ActiveSizeBits
5639 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5640 Res);
5641 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5642 Oversized = Res;
5643 return QualType();
5644 }
5645
5646 return Context.getConstantArrayType(VLATy->getElementType(),
5647 Res, ArrayType::Normal, 0);
5648}
5649
5650static void
5651FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5652 SrcTL = SrcTL.getUnqualifiedLoc();
5653 DstTL = DstTL.getUnqualifiedLoc();
5654 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5655 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5656 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5657 DstPTL.getPointeeLoc());
5658 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5659 return;
5660 }
5661 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5662 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5663 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5664 DstPTL.getInnerLoc());
5665 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5666 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5667 return;
5668 }
5669 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5670 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5671 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5672 TypeLoc DstElemTL = DstATL.getElementLoc();
5673 DstElemTL.initializeFullCopy(SrcElemTL);
5674 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5675 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5676 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5677}
5678
5679/// Helper method to turn variable array types into constant array
5680/// types in certain situations which would otherwise be errors (for
5681/// GCC compatibility).
5682static TypeSourceInfo*
5683TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5684 ASTContext &Context,
5685 bool &SizeIsNegative,
5686 llvm::APSInt &Oversized) {
5687 QualType FixedTy
5688 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5689 SizeIsNegative, Oversized);
5690 if (FixedTy.isNull())
5691 return nullptr;
5692 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5693 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5694 FixedTInfo->getTypeLoc());
5695 return FixedTInfo;
5696}
5697
5698/// Register the given locally-scoped extern "C" declaration so
5699/// that it can be found later for redeclarations. We include any extern "C"
5700/// declaration that is not visible in the translation unit here, not just
5701/// function-scope declarations.
5702void
5703Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5704 if (!getLangOpts().CPlusPlus &&
5705 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5706 // Don't need to track declarations in the TU in C.
5707 return;
5708
5709 // Note that we have a locally-scoped external with this name.
5710 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5711}
5712
5713NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5714 // FIXME: We can have multiple results via __attribute__((overloadable)).
5715 auto Result = Context.getExternCContextDecl()->lookup(Name);
5716 return Result.empty() ? nullptr : *Result.begin();
5717}
5718
5719/// Diagnose function specifiers on a declaration of an identifier that
5720/// does not identify a function.
5721void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5722 // FIXME: We should probably indicate the identifier in question to avoid
5723 // confusion for constructs like "virtual int a(), b;"
5724 if (DS.isVirtualSpecified())
5725 Diag(DS.getVirtualSpecLoc(),
5726 diag::err_virtual_non_function);
5727
5728 if (DS.hasExplicitSpecifier())
5729 Diag(DS.getExplicitSpecLoc(),
5730 diag::err_explicit_non_function);
5731
5732 if (DS.isNoreturnSpecified())
5733 Diag(DS.getNoreturnSpecLoc(),
5734 diag::err_noreturn_non_function);
5735}
5736
5737NamedDecl*
5738Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5739 TypeSourceInfo *TInfo, LookupResult &Previous) {
5740 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5741 if (D.getCXXScopeSpec().isSet()) {
5742 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5743 << D.getCXXScopeSpec().getRange();
5744 D.setInvalidType();
5745 // Pretend we didn't see the scope specifier.
5746 DC = CurContext;
5747 Previous.clear();
5748 }
5749
5750 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5751
5752 if (D.getDeclSpec().isInlineSpecified())
5753 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5754 << getLangOpts().CPlusPlus17;
5755 if (D.getDeclSpec().isConstexprSpecified())
5756 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5757 << 1;
5758
5759 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5760 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5761 Diag(D.getName().StartLocation,
5762 diag::err_deduction_guide_invalid_specifier)
5763 << "typedef";
5764 else
5765 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5766 << D.getName().getSourceRange();
5767 return nullptr;
5768 }
5769
5770 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5771 if (!NewTD) return nullptr;
5772
5773 // Handle attributes prior to checking for duplicates in MergeVarDecl
5774 ProcessDeclAttributes(S, NewTD, D);
5775
5776 CheckTypedefForVariablyModifiedType(S, NewTD);
5777
5778 bool Redeclaration = D.isRedeclaration();
5779 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5780 D.setRedeclaration(Redeclaration);
5781 return ND;
5782}
5783
5784void
5785Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5786 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5787 // then it shall have block scope.
5788 // Note that variably modified types must be fixed before merging the decl so
5789 // that redeclarations will match.
5790 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5791 QualType T = TInfo->getType();
5792 if (T->isVariablyModifiedType()) {
5793 setFunctionHasBranchProtectedScope();
5794
5795 if (S->getFnParent() == nullptr) {
5796 bool SizeIsNegative;
5797 llvm::APSInt Oversized;
5798 TypeSourceInfo *FixedTInfo =
5799 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5800 SizeIsNegative,
5801 Oversized);
5802 if (FixedTInfo) {
5803 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5804 NewTD->setTypeSourceInfo(FixedTInfo);
5805 } else {
5806 if (SizeIsNegative)
5807 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5808 else if (T->isVariableArrayType())
5809 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5810 else if (Oversized.getBoolValue())
5811 Diag(NewTD->getLocation(), diag::err_array_too_large)
5812 << Oversized.toString(10);
5813 else
5814 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5815 NewTD->setInvalidDecl();
5816 }
5817 }
5818 }
5819}
5820
5821/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5822/// declares a typedef-name, either using the 'typedef' type specifier or via
5823/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5824NamedDecl*
5825Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5826 LookupResult &Previous, bool &Redeclaration) {
5827
5828 // Find the shadowed declaration before filtering for scope.
5829 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5830
5831 // Merge the decl with the existing one if appropriate. If the decl is
5832 // in an outer scope, it isn't the same thing.
5833 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5834 /*AllowInlineNamespace*/false);
5835 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5836 if (!Previous.empty()) {
5837 Redeclaration = true;
5838 MergeTypedefNameDecl(S, NewTD, Previous);
5839 }
5840
5841 if (ShadowedDecl && !Redeclaration)
5842 CheckShadow(NewTD, ShadowedDecl, Previous);
5843
5844 // If this is the C FILE type, notify the AST context.
5845 if (IdentifierInfo *II = NewTD->getIdentifier())
5846 if (!NewTD->isInvalidDecl() &&
5847 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5848 if (II->isStr("FILE"))
5849 Context.setFILEDecl(NewTD);
5850 else if (II->isStr("jmp_buf"))
5851 Context.setjmp_bufDecl(NewTD);
5852 else if (II->isStr("sigjmp_buf"))
5853 Context.setsigjmp_bufDecl(NewTD);
5854 else if (II->isStr("ucontext_t"))
5855 Context.setucontext_tDecl(NewTD);
5856 }
5857
5858 return NewTD;
5859}
5860
5861/// Determines whether the given declaration is an out-of-scope
5862/// previous declaration.
5863///
5864/// This routine should be invoked when name lookup has found a
5865/// previous declaration (PrevDecl) that is not in the scope where a
5866/// new declaration by the same name is being introduced. If the new
5867/// declaration occurs in a local scope, previous declarations with
5868/// linkage may still be considered previous declarations (C99
5869/// 6.2.2p4-5, C++ [basic.link]p6).
5870///
5871/// \param PrevDecl the previous declaration found by name
5872/// lookup
5873///
5874/// \param DC the context in which the new declaration is being
5875/// declared.
5876///
5877/// \returns true if PrevDecl is an out-of-scope previous declaration
5878/// for a new delcaration with the same name.
5879static bool
5880isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5881 ASTContext &Context) {
5882 if (!PrevDecl)
5883 return false;
5884
5885 if (!PrevDecl->hasLinkage())
5886 return false;
5887
5888 if (Context.getLangOpts().CPlusPlus) {
5889 // C++ [basic.link]p6:
5890 // If there is a visible declaration of an entity with linkage
5891 // having the same name and type, ignoring entities declared
5892 // outside the innermost enclosing namespace scope, the block
5893 // scope declaration declares that same entity and receives the
5894 // linkage of the previous declaration.
5895 DeclContext *OuterContext = DC->getRedeclContext();
5896 if (!OuterContext->isFunctionOrMethod())
5897 // This rule only applies to block-scope declarations.
5898 return false;
5899
5900 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5901 if (PrevOuterContext->isRecord())
5902 // We found a member function: ignore it.
5903 return false;
5904
5905 // Find the innermost enclosing namespace for the new and
5906 // previous declarations.
5907 OuterContext = OuterContext->getEnclosingNamespaceContext();
5908 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5909
5910 // The previous declaration is in a different namespace, so it
5911 // isn't the same function.
5912 if (!OuterContext->Equals(PrevOuterContext))
5913 return false;
5914 }
5915
5916 return true;
5917}
5918
5919static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
5920 CXXScopeSpec &SS = D.getCXXScopeSpec();
5921 if (!SS.isSet()) return;
5922 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
5923}
5924
5925bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5926 QualType type = decl->getType();
5927 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5928 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5929 // Various kinds of declaration aren't allowed to be __autoreleasing.
5930 unsigned kind = -1U;
5931 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5932 if (var->hasAttr<BlocksAttr>())
5933 kind = 0; // __block
5934 else if (!var->hasLocalStorage())
5935 kind = 1; // global
5936 } else if (isa<ObjCIvarDecl>(decl)) {
5937 kind = 3; // ivar
5938 } else if (isa<FieldDecl>(decl)) {
5939 kind = 2; // field
5940 }
5941
5942 if (kind != -1U) {
5943 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5944 << kind;
5945 }
5946 } else if (lifetime == Qualifiers::OCL_None) {
5947 // Try to infer lifetime.
5948 if (!type->isObjCLifetimeType())
5949 return false;
5950
5951 lifetime = type->getObjCARCImplicitLifetime();
5952 type = Context.getLifetimeQualifiedType(type, lifetime);
5953 decl->setType(type);
5954 }
5955
5956 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5957 // Thread-local variables cannot have lifetime.
5958 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5959 var->getTLSKind()) {
5960 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5961 << var->getType();
5962 return true;
5963 }
5964 }
5965
5966 return false;
5967}
5968
5969static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5970 // Ensure that an auto decl is deduced otherwise the checks below might cache
5971 // the wrong linkage.
5972 assert(S.ParsingInitForAutoVars.count(&ND) == 0)((S.ParsingInitForAutoVars.count(&ND) == 0) ? static_cast
<void> (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 5972, __PRETTY_FUNCTION__))
;
5973
5974 // 'weak' only applies to declarations with external linkage.
5975 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5976 if (!ND.isExternallyVisible()) {
5977 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5978 ND.dropAttr<WeakAttr>();
5979 }
5980 }
5981 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5982 if (ND.isExternallyVisible()) {
5983 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5984 ND.dropAttr<WeakRefAttr>();
5985 ND.dropAttr<AliasAttr>();
5986 }
5987 }
5988
5989 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5990 if (VD->hasInit()) {
5991 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5992 assert(VD->isThisDeclarationADefinition() &&((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 5993, __PRETTY_FUNCTION__))
5993 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 5993, __PRETTY_FUNCTION__))
;
5994 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5995 VD->dropAttr<AliasAttr>();
5996 }
5997 }
5998 }
5999
6000 // 'selectany' only applies to externally visible variable declarations.
6001 // It does not apply to functions.
6002 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6003 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6004 S.Diag(Attr->getLocation(),
6005 diag::err_attribute_selectany_non_extern_data);
6006 ND.dropAttr<SelectAnyAttr>();
6007 }
6008 }
6009
6010 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6011 auto *VD = dyn_cast<VarDecl>(&ND);
6012 bool IsAnonymousNS = false;
6013 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6014 if (VD) {
6015 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6016 while (NS && !IsAnonymousNS) {
6017 IsAnonymousNS = NS->isAnonymousNamespace();
6018 NS = dyn_cast<NamespaceDecl>(NS->getParent());
6019 }
6020 }
6021 // dll attributes require external linkage. Static locals may have external
6022 // linkage but still cannot be explicitly imported or exported.
6023 // In Microsoft mode, a variable defined in anonymous namespace must have
6024 // external linkage in order to be exported.
6025 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6026 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6027 (!AnonNSInMicrosoftMode &&
6028 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6029 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6030 << &ND << Attr;
6031 ND.setInvalidDecl();
6032 }
6033 }
6034
6035 // Virtual functions cannot be marked as 'notail'.
6036 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6037 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6038 if (MD->isVirtual()) {
6039 S.Diag(ND.getLocation(),
6040 diag::err_invalid_attribute_on_virtual_function)
6041 << Attr;
6042 ND.dropAttr<NotTailCalledAttr>();
6043 }
6044
6045 // Check the attributes on the function type, if any.
6046 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6047 // Don't declare this variable in the second operand of the for-statement;
6048 // GCC miscompiles that by ending its lifetime before evaluating the
6049 // third operand. See gcc.gnu.org/PR86769.
6050 AttributedTypeLoc ATL;
6051 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6052 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6053 TL = ATL.getModifiedLoc()) {
6054 // The [[lifetimebound]] attribute can be applied to the implicit object
6055 // parameter of a non-static member function (other than a ctor or dtor)
6056 // by applying it to the function type.
6057 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6058 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6059 if (!MD || MD->isStatic()) {
6060 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6061 << !MD << A->getRange();
6062 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6063 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6064 << isa<CXXDestructorDecl>(MD) << A->getRange();
6065 }
6066 }
6067 }
6068 }
6069}
6070
6071static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6072 NamedDecl *NewDecl,
6073 bool IsSpecialization,
6074 bool IsDefinition) {
6075 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6076 return;
6077
6078 bool IsTemplate = false;
6079 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6080 OldDecl = OldTD->getTemplatedDecl();
6081 IsTemplate = true;
6082 if (!IsSpecialization)
6083 IsDefinition = false;
6084 }
6085 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6086 NewDecl = NewTD->getTemplatedDecl();
6087 IsTemplate = true;
6088 }
6089
6090 if (!OldDecl || !NewDecl)
6091 return;
6092
6093 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6094 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6095 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6096 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6097
6098 // dllimport and dllexport are inheritable attributes so we have to exclude
6099 // inherited attribute instances.
6100 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6101 (NewExportAttr && !NewExportAttr->isInherited());
6102
6103 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6104 // the only exception being explicit specializations.
6105 // Implicitly generated declarations are also excluded for now because there
6106 // is no other way to switch these to use dllimport or dllexport.
6107 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6108
6109 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6110 // Allow with a warning for free functions and global variables.
6111 bool JustWarn = false;
6112 if (!OldDecl->isCXXClassMember()) {
6113 auto *VD = dyn_cast<VarDecl>(OldDecl);
6114 if (VD && !VD->getDescribedVarTemplate())
6115 JustWarn = true;
6116 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6117 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6118 JustWarn = true;
6119 }
6120
6121 // We cannot change a declaration that's been used because IR has already
6122 // been emitted. Dllimported functions will still work though (modulo
6123 // address equality) as they can use the thunk.
6124 if (OldDecl->isUsed())
6125 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6126 JustWarn = false;
6127
6128 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6129 : diag::err_attribute_dll_redeclaration;
6130 S.Diag(NewDecl->getLocation(), DiagID)
6131 << NewDecl
6132 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6133 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6134 if (!JustWarn) {
6135 NewDecl->setInvalidDecl();
6136 return;
6137 }
6138 }
6139
6140 // A redeclaration is not allowed to drop a dllimport attribute, the only
6141 // exceptions being inline function definitions (except for function
6142 // templates), local extern declarations, qualified friend declarations or
6143 // special MSVC extension: in the last case, the declaration is treated as if
6144 // it were marked dllexport.
6145 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6146 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6147 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6148 // Ignore static data because out-of-line definitions are diagnosed
6149 // separately.
6150 IsStaticDataMember = VD->isStaticDataMember();
6151 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6152 VarDecl::DeclarationOnly;
6153 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6154 IsInline = FD->isInlined();
6155 IsQualifiedFriend = FD->getQualifier() &&
6156 FD->getFriendObjectKind() == Decl::FOK_Declared;
6157 }
6158
6159 if (OldImportAttr && !HasNewAttr &&
6160 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6161 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6162 if (IsMicrosoft && IsDefinition) {
6163 S.Diag(NewDecl->getLocation(),
6164 diag::warn_redeclaration_without_import_attribute)
6165 << NewDecl;
6166 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6167 NewDecl->dropAttr<DLLImportAttr>();
6168 NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6169 NewImportAttr->getRange(), S.Context,
6170 NewImportAttr->getSpellingListIndex()));
6171 } else {
6172 S.Diag(NewDecl->getLocation(),
6173 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6174 << NewDecl << OldImportAttr;
6175 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6176 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6177 OldDecl->dropAttr<DLLImportAttr>();
6178 NewDecl->dropAttr<DLLImportAttr>();
6179 }
6180 } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6181 // In MinGW, seeing a function declared inline drops the dllimport
6182 // attribute.
6183 OldDecl->dropAttr<DLLImportAttr>();
6184 NewDecl->dropAttr<DLLImportAttr>();
6185 S.Diag(NewDecl->getLocation(),
6186 diag::warn_dllimport_dropped_from_inline_function)
6187 << NewDecl << OldImportAttr;
6188 }
6189
6190 // A specialization of a class template member function is processed here
6191 // since it's a redeclaration. If the parent class is dllexport, the
6192 // specialization inherits that attribute. This doesn't happen automatically
6193 // since the parent class isn't instantiated until later.
6194 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6195 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6196 !NewImportAttr && !NewExportAttr) {
6197 if (const DLLExportAttr *ParentExportAttr =
6198 MD->getParent()->getAttr<DLLExportAttr>()) {
6199 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6200 NewAttr->setInherited(true);
6201 NewDecl->addAttr(NewAttr);
6202 }
6203 }
6204 }
6205}
6206
6207/// Given that we are within the definition of the given function,
6208/// will that definition behave like C99's 'inline', where the
6209/// definition is discarded except for optimization purposes?
6210static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6211 // Try to avoid calling GetGVALinkageForFunction.
6212
6213 // All cases of this require the 'inline' keyword.
6214 if (!FD->isInlined()) return false;
6215
6216 // This is only possible in C++ with the gnu_inline attribute.
6217 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6218 return false;
6219
6220 // Okay, go ahead and call the relatively-more-expensive function.
6221 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6222}
6223
6224/// Determine whether a variable is extern "C" prior to attaching
6225/// an initializer. We can't just call isExternC() here, because that
6226/// will also compute and cache whether the declaration is externally
6227/// visible, which might change when we attach the initializer.
6228///
6229/// This can only be used if the declaration is known to not be a
6230/// redeclaration of an internal linkage declaration.
6231///
6232/// For instance:
6233///
6234/// auto x = []{};
6235///
6236/// Attaching the initializer here makes this declaration not externally
6237/// visible, because its type has internal linkage.
6238///
6239/// FIXME: This is a hack.
6240template<typename T>
6241static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6242 if (S.getLangOpts().CPlusPlus) {
6243 // In C++, the overloadable attribute negates the effects of extern "C".
6244 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6245 return false;
6246
6247 // So do CUDA's host/device attributes.
6248 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6249 D->template hasAttr<CUDAHostAttr>()))
6250 return false;
6251 }
6252 return D->isExternC();
6253}
6254
6255static bool shouldConsiderLinkage(const VarDecl *VD) {
6256 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6257 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6258 isa<OMPDeclareMapperDecl>(DC))
6259 return VD->hasExternalStorage();
6260 if (DC->isFileContext())
6261 return true;
6262 if (DC->isRecord())
6263 return false;
6264 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6264)
;
6265}
6266
6267static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6268 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6269 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6270 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6271 return true;
6272 if (DC->isRecord())
6273 return false;
6274 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6274)
;
6275}
6276
6277static bool hasParsedAttr(Scope *S, const Declarator &PD,
6278 ParsedAttr::Kind Kind) {
6279 // Check decl attributes on the DeclSpec.
6280 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6281 return true;
6282
6283 // Walk the declarator structure, checking decl attributes that were in a type
6284 // position to the decl itself.
6285 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6286 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6287 return true;
6288 }
6289
6290 // Finally, check attributes on the decl itself.
6291 return PD.getAttributes().hasAttribute(Kind);
6292}
6293
6294/// Adjust the \c DeclContext for a function or variable that might be a
6295/// function-local external declaration.
6296bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6297 if (!DC->isFunctionOrMethod())
6298 return false;
6299
6300 // If this is a local extern function or variable declared within a function
6301 // template, don't add it into the enclosing namespace scope until it is
6302 // instantiated; it might have a dependent type right now.
6303 if (DC->isDependentContext())
6304 return true;
6305
6306 // C++11 [basic.link]p7:
6307 // When a block scope declaration of an entity with linkage is not found to
6308 // refer to some other declaration, then that entity is a member of the
6309 // innermost enclosing namespace.
6310 //
6311 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6312 // semantically-enclosing namespace, not a lexically-enclosing one.
6313 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6314 DC = DC->getParent();
6315 return true;
6316}
6317
6318/// Returns true if given declaration has external C language linkage.
6319static bool isDeclExternC(const Decl *D) {
6320 if (const auto *FD = dyn_cast<FunctionDecl>(D))
6321 return FD->isExternC();
6322 if (const auto *VD = dyn_cast<VarDecl>(D))
6323 return VD->isExternC();
6324
6325 llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6325)
;
6326}
6327
6328NamedDecl *Sema::ActOnVariableDeclarator(
6329 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6330 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6331 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6332 QualType R = TInfo->getType();
6333 DeclarationName Name = GetNameForDeclarator(D).getName();
6334
6335 IdentifierInfo *II = Name.getAsIdentifierInfo();
6336
6337 if (D.isDecompositionDeclarator()) {
6338 // Take the name of the first declarator as our name for diagnostic
6339 // purposes.
6340 auto &Decomp = D.getDecompositionDeclarator();
6341 if (!Decomp.bindings().empty()) {
6342 II = Decomp.bindings()[0].Name;
6343 Name = II;
6344 }
6345 } else if (!II) {
6346 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6347 return nullptr;
6348 }
6349
6350 if (getLangOpts().OpenCL) {
6351 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6352 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6353 // argument.
6354 if (R->isImageType() || R->isPipeType()) {
6355 Diag(D.getIdentifierLoc(),
6356 diag::err_opencl_type_can_only_be_used_as_function_parameter)
6357 << R;
6358 D.setInvalidType();
6359 return nullptr;
6360 }
6361
6362 // OpenCL v1.2 s6.9.r:
6363 // The event type cannot be used to declare a program scope variable.
6364 // OpenCL v2.0 s6.9.q:
6365 // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6366 if (NULL__null == S->getParent()) {
6367 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6368 Diag(D.getIdentifierLoc(),
6369 diag::err_invalid_type_for_program_scope_var) << R;
6370 D.setInvalidType();
6371 return nullptr;
6372 }
6373 }
6374
6375 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6376 QualType NR = R;
6377 while (NR->isPointerType()) {
6378 if (NR->isFunctionPointerType()) {
6379 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6380 D.setInvalidType();
6381 break;
6382 }
6383 NR = NR->getPointeeType();
6384 }
6385
6386 if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6387 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6388 // half array type (unless the cl_khr_fp16 extension is enabled).
6389 if (Context.getBaseElementType(R)->isHalfType()) {
6390 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6391 D.setInvalidType();
6392 }
6393 }
6394
6395 if (R->isSamplerT()) {
6396 // OpenCL v1.2 s6.9.b p4:
6397 // The sampler type cannot be used with the __local and __global address
6398 // space qualifiers.
6399 if (R.getAddressSpace() == LangAS::opencl_local ||
6400 R.getAddressSpace() == LangAS::opencl_global) {
6401 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6402 }
6403
6404 // OpenCL v1.2 s6.12.14.1:
6405 // A global sampler must be declared with either the constant address
6406 // space qualifier or with the const qualifier.
6407 if (DC->isTranslationUnit() &&
6408 !(R.getAddressSpace() == LangAS::opencl_constant ||
6409 R.isConstQualified())) {
6410 Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6411 D.setInvalidType();
6412 }
6413 }
6414
6415 // OpenCL v1.2 s6.9.r:
6416 // The event type cannot be used with the __local, __constant and __global
6417 // address space qualifiers.
6418 if (R->isEventT()) {
6419 if (R.getAddressSpace() != LangAS::opencl_private) {
6420 Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6421 D.setInvalidType();
6422 }
6423 }
6424
6425 // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6426 // supported. OpenCL C does not support thread_local either, and
6427 // also reject all other thread storage class specifiers.
6428 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6429 if (TSC != TSCS_unspecified) {
6430 bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6431 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6432 diag::err_opencl_unknown_type_specifier)
6433 << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6434 << DeclSpec::getSpecifierName(TSC) << 1;
6435 D.setInvalidType();
6436 return nullptr;
6437 }
6438 }
6439
6440 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6441 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6442
6443 // dllimport globals without explicit storage class are treated as extern. We
6444 // have to change the storage class this early to get the right DeclContext.
6445 if (SC == SC_None && !DC->isRecord() &&
6446 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6447 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6448 SC = SC_Extern;
6449
6450 DeclContext *OriginalDC = DC;
6451 bool IsLocalExternDecl = SC == SC_Extern &&
6452 adjustContextForLocalExternDecl(DC);
6453
6454 if (SCSpec == DeclSpec::SCS_mutable) {
6455 // mutable can only appear on non-static class members, so it's always
6456 // an error here
6457 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6458 D.setInvalidType();
6459 SC = SC_None;
6460 }
6461
6462 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6463 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6464 D.getDeclSpec().getStorageClassSpecLoc())) {
6465 // In C++11, the 'register' storage class specifier is deprecated.
6466 // Suppress the warning in system macros, it's used in macros in some
6467 // popular C system headers, such as in glibc's htonl() macro.
6468 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6469 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6470 : diag::warn_deprecated_register)
6471 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6472 }
6473
6474 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6475
6476 if (!DC->isRecord() && S->getFnParent() == nullptr) {
6477 // C99 6.9p2: The storage-class specifiers auto and register shall not
6478 // appear in the declaration specifiers in an external declaration.
6479 // Global Register+Asm is a GNU extension we support.
6480 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6481 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6482 D.setInvalidType();
6483 }
6484 }
6485
6486 bool IsMemberSpecialization = false;
6487 bool IsVariableTemplateSpecialization = false;
6488 bool IsPartialSpecialization = false;
6489 bool IsVariableTemplate = false;
6490 VarDecl *NewVD = nullptr;
6491 VarTemplateDecl *NewTemplate = nullptr;
6492 TemplateParameterList *TemplateParams = nullptr;
6493 if (!getLangOpts().CPlusPlus) {
6494 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6495 II, R, TInfo, SC);
6496
6497 if (R->getContainedDeducedType())
6498 ParsingInitForAutoVars.insert(NewVD);
6499
6500 if (D.isInvalidType())
6501 NewVD->setInvalidDecl();
6502 } else {
6503 bool Invalid = false;
6504
6505 if (DC->isRecord() && !CurContext->isRecord()) {
6506 // This is an out-of-line definition of a static data member.
6507 switch (SC) {
6508 case SC_None:
6509 break;
6510 case SC_Static:
6511 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6512 diag::err_static_out_of_line)
6513 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6514 break;
6515 case SC_Auto:
6516 case SC_Register:
6517 case SC_Extern:
6518 // [dcl.stc] p2: The auto or register specifiers shall be applied only
6519 // to names of variables declared in a block or to function parameters.
6520 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6521 // of class members
6522
6523 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6524 diag::err_storage_class_for_static_member)
6525 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6526 break;
6527 case SC_PrivateExtern:
6528 llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6528)
;
6529 }
6530 }
6531
6532 if (SC == SC_Static && CurContext->isRecord()) {
6533 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6534 if (RD->isLocalClass())
6535 Diag(D.getIdentifierLoc(),
6536 diag::err_static_data_member_not_allowed_in_local_class)
6537 << Name << RD->getDeclName();
6538
6539 // C++98 [class.union]p1: If a union contains a static data member,
6540 // the program is ill-formed. C++11 drops this restriction.
6541 if (RD->isUnion())
6542 Diag(D.getIdentifierLoc(),
6543 getLangOpts().CPlusPlus11
6544 ? diag::warn_cxx98_compat_static_data_member_in_union
6545 : diag::ext_static_data_member_in_union) << Name;
6546 // We conservatively disallow static data members in anonymous structs.
6547 else if (!RD->getDeclName())
6548 Diag(D.getIdentifierLoc(),
6549 diag::err_static_data_member_not_allowed_in_anon_struct)
6550 << Name << RD->isUnion();
6551 }
6552 }
6553
6554 // Match up the template parameter lists with the scope specifier, then
6555 // determine whether we have a template or a template specialization.
6556 TemplateParams = MatchTemplateParametersToScopeSpecifier(
6557 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6558 D.getCXXScopeSpec(),
6559 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6560 ? D.getName().TemplateId
6561 : nullptr,
6562 TemplateParamLists,
6563 /*never a friend*/ false, IsMemberSpecialization, Invalid);
6564
6565 if (TemplateParams) {
6566 if (!TemplateParams->size() &&
6567 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6568 // There is an extraneous 'template<>' for this variable. Complain
6569 // about it, but allow the declaration of the variable.
6570 Diag(TemplateParams->getTemplateLoc(),
6571 diag::err_template_variable_noparams)
6572 << II
6573 << SourceRange(TemplateParams->getTemplateLoc(),
6574 TemplateParams->getRAngleLoc());
6575 TemplateParams = nullptr;
6576 } else {
6577 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6578 // This is an explicit specialization or a partial specialization.
6579 // FIXME: Check that we can declare a specialization here.
6580 IsVariableTemplateSpecialization = true;
6581 IsPartialSpecialization = TemplateParams->size() > 0;
6582 } else { // if (TemplateParams->size() > 0)
6583 // This is a template declaration.
6584 IsVariableTemplate = true;
6585
6586 // Check that we can declare a template here.
6587 if (CheckTemplateDeclScope(S, TemplateParams))
6588 return nullptr;
6589
6590 // Only C++1y supports variable templates (N3651).
6591 Diag(D.getIdentifierLoc(),
6592 getLangOpts().CPlusPlus14
6593 ? diag::warn_cxx11_compat_variable_template
6594 : diag::ext_variable_template);
6595 }
6596 }
6597 } else {
6598 assert((Invalid ||(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6600, __PRETTY_FUNCTION__))
6599 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6600, __PRETTY_FUNCTION__))
6600 "should have a 'template<>' for this decl")(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6600, __PRETTY_FUNCTION__))
;
6601 }
6602
6603 if (IsVariableTemplateSpecialization) {
6604 SourceLocation TemplateKWLoc =
6605 TemplateParamLists.size() > 0
6606 ? TemplateParamLists[0]->getTemplateLoc()
6607 : SourceLocation();
6608 DeclResult Res = ActOnVarTemplateSpecialization(
6609 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6610 IsPartialSpecialization);
6611 if (Res.isInvalid())
6612 return nullptr;
6613 NewVD = cast<VarDecl>(Res.get());
6614 AddToScope = false;
6615 } else if (D.isDecompositionDeclarator()) {
6616 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6617 D.getIdentifierLoc(), R, TInfo, SC,
6618 Bindings);
6619 } else
6620 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6621 D.getIdentifierLoc(), II, R, TInfo, SC);
6622
6623 // If this is supposed to be a variable template, create it as such.
6624 if (IsVariableTemplate) {
6625 NewTemplate =
6626 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6627 TemplateParams, NewVD);
6628 NewVD->setDescribedVarTemplate(NewTemplate);
6629 }
6630
6631 // If this decl has an auto type in need of deduction, make a note of the
6632 // Decl so we can diagnose uses of it in its own initializer.
6633 if (R->getContainedDeducedType())
6634 ParsingInitForAutoVars.insert(NewVD);
6635
6636 if (D.isInvalidType() || Invalid) {
6637 NewVD->setInvalidDecl();
6638 if (NewTemplate)
6639 NewTemplate->setInvalidDecl();
6640 }
6641
6642 SetNestedNameSpecifier(*this, NewVD, D);
6643
6644 // If we have any template parameter lists that don't directly belong to
6645 // the variable (matching the scope specifier), store them.
6646 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6647 if (TemplateParamLists.size() > VDTemplateParamLists)
6648 NewVD->setTemplateParameterListsInfo(
6649 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6650
6651 if (D.getDeclSpec().isConstexprSpecified()) {
6652 NewVD->setConstexpr(true);
6653 // C++1z [dcl.spec.constexpr]p1:
6654 // A static data member declared with the constexpr specifier is
6655 // implicitly an inline variable.
6656 if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6657 NewVD->setImplicitlyInline();
6658 }
6659 }
6660
6661 if (D.getDeclSpec().isInlineSpecified()) {
6662 if (!getLangOpts().CPlusPlus) {
6663 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6664 << 0;
6665 } else if (CurContext->isFunctionOrMethod()) {
6666 // 'inline' is not allowed on block scope variable declaration.
6667 Diag(D.getDeclSpec().getInlineSpecLoc(),
6668 diag::err_inline_declaration_block_scope) << Name
6669 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6670 } else {
6671 Diag(D.getDeclSpec().getInlineSpecLoc(),
6672 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6673 : diag::ext_inline_variable);
6674 NewVD->setInlineSpecified();
6675 }
6676 }
6677
6678 // Set the lexical context. If the declarator has a C++ scope specifier, the
6679 // lexical context will be different from the semantic context.
6680 NewVD->setLexicalDeclContext(CurContext);
6681 if (NewTemplate)
6682 NewTemplate->setLexicalDeclContext(CurContext);
6683
6684 if (IsLocalExternDecl) {
6685 if (D.isDecompositionDeclarator())
6686 for (auto *B : Bindings)
6687 B->setLocalExternDecl();
6688 else
6689 NewVD->setLocalExternDecl();
6690 }
6691
6692 bool EmitTLSUnsupportedError = false;
6693 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6694 // C++11 [dcl.stc]p4:
6695 // When thread_local is applied to a variable of block scope the
6696 // storage-class-specifier static is implied if it does not appear
6697 // explicitly.
6698 // Core issue: 'static' is not implied if the variable is declared
6699 // 'extern'.
6700 if (NewVD->hasLocalStorage() &&
6701 (SCSpec != DeclSpec::SCS_unspecified ||
6702 TSCS != DeclSpec::TSCS_thread_local ||
6703 !DC->isFunctionOrMethod()))
6704 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6705 diag::err_thread_non_global)
6706 << DeclSpec::getSpecifierName(TSCS);
6707 else if (!Context.getTargetInfo().isTLSSupported()) {
6708 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6709 // Postpone error emission until we've collected attributes required to
6710 // figure out whether it's a host or device variable and whether the
6711 // error should be ignored.
6712 EmitTLSUnsupportedError = true;
6713 // We still need to mark the variable as TLS so it shows up in AST with
6714 // proper storage class for other tools to use even if we're not going
6715 // to emit any code for it.
6716 NewVD->setTSCSpec(TSCS);
6717 } else
6718 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6719 diag::err_thread_unsupported);
6720 } else
6721 NewVD->setTSCSpec(TSCS);
6722 }
6723
6724 // C99 6.7.4p3
6725 // An inline definition of a function with external linkage shall
6726 // not contain a definition of a modifiable object with static or
6727 // thread storage duration...
6728 // We only apply this when the function is required to be defined
6729 // elsewhere, i.e. when the function is not 'extern inline'. Note
6730 // that a local variable with thread storage duration still has to
6731 // be marked 'static'. Also note that it's possible to get these
6732 // semantics in C++ using __attribute__((gnu_inline)).
6733 if (SC == SC_Static && S->getFnParent() != nullptr &&
6734 !NewVD->getType().isConstQualified()) {
6735 FunctionDecl *CurFD = getCurFunctionDecl();
6736 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6737 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6738 diag::warn_static_local_in_extern_inline);
6739 MaybeSuggestAddingStaticToDecl(CurFD);
6740 }
6741 }
6742
6743 if (D.getDeclSpec().isModulePrivateSpecified()) {
6744 if (IsVariableTemplateSpecialization)
6745 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6746 << (IsPartialSpecialization ? 1 : 0)
6747 << FixItHint::CreateRemoval(
6748 D.getDeclSpec().getModulePrivateSpecLoc());
6749 else if (IsMemberSpecialization)
6750 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6751 << 2
6752 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6753 else if (NewVD->hasLocalStorage())
6754 Diag(NewVD->getLocation(), diag::err_module_private_local)
6755 << 0 << NewVD->getDeclName()
6756 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6757 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6758 else {
6759 NewVD->setModulePrivate();
6760 if (NewTemplate)
6761 NewTemplate->setModulePrivate();
6762 for (auto *B : Bindings)
6763 B->setModulePrivate();
6764 }
6765 }
6766
6767 // Handle attributes prior to checking for duplicates in MergeVarDecl
6768 ProcessDeclAttributes(S, NewVD, D);
6769
6770 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6771 if (EmitTLSUnsupportedError &&
6772 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6773 (getLangOpts().OpenMPIsDevice &&
6774 NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6775 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6776 diag::err_thread_unsupported);
6777 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6778 // storage [duration]."
6779 if (SC == SC_None && S->getFnParent() != nullptr &&
6780 (NewVD->hasAttr<CUDASharedAttr>() ||
6781 NewVD->hasAttr<CUDAConstantAttr>())) {
6782 NewVD->setStorageClass(SC_Static);
6783 }
6784 }
6785
6786 // Ensure that dllimport globals without explicit storage class are treated as
6787 // extern. The storage class is set above using parsed attributes. Now we can
6788 // check the VarDecl itself.
6789 assert(!NewVD->hasAttr<DLLImportAttr>() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6791, __PRETTY_FUNCTION__))
6790 NewVD->getAttr<DLLImportAttr>()->isInherited() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6791, __PRETTY_FUNCTION__))
6791 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 6791, __PRETTY_FUNCTION__))
;
6792
6793 // In auto-retain/release, infer strong retension for variables of
6794 // retainable type.
6795 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6796 NewVD->setInvalidDecl();
6797
6798 // Handle GNU asm-label extension (encoded as an attribute).
6799 if (Expr *E = (Expr*)D.getAsmLabel()) {
6800 // The parser guarantees this is a string.
6801 StringLiteral *SE = cast<StringLiteral>(E);
6802 StringRef Label = SE->getString();
6803 if (S->getFnParent() != nullptr) {
6804 switch (SC) {
6805 case SC_None:
6806 case SC_Auto:
6807 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6808 break;
6809 case SC_Register:
6810 // Local Named register
6811 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6812 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6813 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6814 break;
6815 case SC_Static:
6816 case SC_Extern:
6817 case SC_PrivateExtern:
6818 break;
6819 }
6820 } else if (SC == SC_Register) {
6821 // Global Named register
6822 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6823 const auto &TI = Context.getTargetInfo();
6824 bool HasSizeMismatch;
6825
6826 if (!TI.isValidGCCRegisterName(Label))
6827 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6828 else if (!TI.validateGlobalRegisterVariable(Label,
6829 Context.getTypeSize(R),
6830 HasSizeMismatch))
6831 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6832 else if (HasSizeMismatch)
6833 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6834 }
6835
6836 if (!R->isIntegralType(Context) && !R->isPointerType()) {
6837 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6838 NewVD->setInvalidDecl(true);
6839 }
6840 }
6841
6842 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6843 Context, Label, 0));
6844 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6845 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6846 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6847 if (I != ExtnameUndeclaredIdentifiers.end()) {
6848 if (isDeclExternC(NewVD)) {
6849 NewVD->addAttr(I->second);
6850 ExtnameUndeclaredIdentifiers.erase(I);
6851 } else
6852 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6853 << /*Variable*/1 << NewVD;
6854 }
6855 }
6856
6857 // Find the shadowed declaration before filtering for scope.
6858 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6859 ? getShadowedDeclaration(NewVD, Previous)
6860 : nullptr;
6861
6862 // Don't consider existing declarations that are in a different
6863 // scope and are out-of-semantic-context declarations (if the new
6864 // declaration has linkage).
6865 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6866 D.getCXXScopeSpec().isNotEmpty() ||
6867 IsMemberSpecialization ||
6868 IsVariableTemplateSpecialization);
6869
6870 // Check whether the previous declaration is in the same block scope. This
6871 // affects whether we merge types with it, per C++11 [dcl.array]p3.
6872 if (getLangOpts().CPlusPlus &&
6873 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6874 NewVD->setPreviousDeclInSameBlockScope(
6875 Previous.isSingleResult() && !Previous.isShadowed() &&
6876 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6877
6878 if (!getLangOpts().CPlusPlus) {
6879 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6880 } else {
6881 // If this is an explicit specialization of a static data member, check it.
6882 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6883 CheckMemberSpecialization(NewVD, Previous))
6884 NewVD->setInvalidDecl();
6885
6886 // Merge the decl with the existing one if appropriate.
6887 if (!Previous.empty()) {
6888 if (Previous.isSingleResult() &&
6889 isa<FieldDecl>(Previous.getFoundDecl()) &&
6890 D.getCXXScopeSpec().isSet()) {
6891 // The user tried to define a non-static data member
6892 // out-of-line (C++ [dcl.meaning]p1).
6893 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6894 << D.getCXXScopeSpec().getRange();
6895 Previous.clear();
6896 NewVD->setInvalidDecl();
6897 }
6898 } else if (D.getCXXScopeSpec().isSet()) {
6899 // No previous declaration in the qualifying scope.
6900 Diag(D.getIdentifierLoc(), diag::err_no_member)
6901 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6902 << D.getCXXScopeSpec().getRange();
6903 NewVD->setInvalidDecl();
6904 }
6905
6906 if (!IsVariableTemplateSpecialization)
6907 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6908
6909 if (NewTemplate) {
6910 VarTemplateDecl *PrevVarTemplate =
6911 NewVD->getPreviousDecl()
6912 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6913 : nullptr;
6914
6915 // Check the template parameter list of this declaration, possibly
6916 // merging in the template parameter list from the previous variable
6917 // template declaration.
6918 if (CheckTemplateParameterList(
6919 TemplateParams,
6920 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6921 : nullptr,
6922 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6923 DC->isDependentContext())
6924 ? TPC_ClassTemplateMember
6925 : TPC_VarTemplate))
6926 NewVD->setInvalidDecl();
6927
6928 // If we are providing an explicit specialization of a static variable
6929 // template, make a note of that.
6930 if (PrevVarTemplate &&
6931 PrevVarTemplate->getInstantiatedFromMemberTemplate())
6932 PrevVarTemplate->setMemberSpecialization();
6933 }
6934 }
6935
6936 // Diagnose shadowed variables iff this isn't a redeclaration.
6937 if (ShadowedDecl && !D.isRedeclaration())
6938 CheckShadow(NewVD, ShadowedDecl, Previous);
6939
6940 ProcessPragmaWeak(S, NewVD);
6941
6942 // If this is the first declaration of an extern C variable, update
6943 // the map of such variables.
6944 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6945 isIncompleteDeclExternC(*this, NewVD))
6946 RegisterLocallyScopedExternCDecl(NewVD, S);
6947
6948 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6949 Decl *ManglingContextDecl;
6950 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6951 NewVD->getDeclContext(), ManglingContextDecl)) {
6952 Context.setManglingNumber(
6953 NewVD, MCtx->getManglingNumber(
6954 NewVD, getMSManglingNumber(getLangOpts(), S)));
6955 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6956 }
6957 }
6958
6959 // Special handling of variable named 'main'.
6960 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6961 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6962 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6963
6964 // C++ [basic.start.main]p3
6965 // A program that declares a variable main at global scope is ill-formed.
6966 if (getLangOpts().CPlusPlus)
6967 Diag(D.getBeginLoc(), diag::err_main_global_variable);
6968
6969 // In C, and external-linkage variable named main results in undefined
6970 // behavior.
6971 else if (NewVD->hasExternalFormalLinkage())
6972 Diag(D.getBeginLoc(), diag::warn_main_redefined);
6973 }
6974
6975 if (D.isRedeclaration() && !Previous.empty()) {
6976 NamedDecl *Prev = Previous.getRepresentativeDecl();
6977 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6978 D.isFunctionDefinition());
6979 }
6980
6981 if (NewTemplate) {
6982 if (NewVD->isInvalidDecl())
6983 NewTemplate->setInvalidDecl();
6984 ActOnDocumentableDecl(NewTemplate);
6985 return NewTemplate;
6986 }
6987
6988 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6989 CompleteMemberSpecialization(NewVD, Previous);
6990
6991 return NewVD;
6992}
6993
6994/// Enum describing the %select options in diag::warn_decl_shadow.
6995enum ShadowedDeclKind {
6996 SDK_Local,
6997 SDK_Global,
6998 SDK_StaticMember,
6999 SDK_Field,
7000 SDK_Typedef,
7001 SDK_Using
7002};
7003
7004/// Determine what kind of declaration we're shadowing.
7005static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7006 const DeclContext *OldDC) {
7007 if (isa<TypeAliasDecl>(ShadowedDecl))
7008 return SDK_Using;
7009 else if (isa<TypedefDecl>(ShadowedDecl))
7010 return SDK_Typedef;
7011 else if (isa<RecordDecl>(OldDC))
7012 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7013
7014 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7015}
7016
7017/// Return the location of the capture if the given lambda captures the given
7018/// variable \p VD, or an invalid source location otherwise.
7019static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7020 const VarDecl *VD) {
7021 for (const Capture &Capture : LSI->Captures) {
7022 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7023 return Capture.getLocation();
7024 }
7025 return SourceLocation();
7026}
7027
7028static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7029 const LookupResult &R) {
7030 // Only diagnose if we're shadowing an unambiguous field or variable.
7031 if (R.getResultKind() != LookupResult::Found)
7032 return false;
7033
7034 // Return false if warning is ignored.
7035 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7036}
7037
7038/// Return the declaration shadowed by the given variable \p D, or null
7039/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7040NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7041 const LookupResult &R) {
7042 if (!shouldWarnIfShadowedDecl(Diags, R))
7043 return nullptr;
7044
7045 // Don't diagnose declarations at file scope.
7046 if (D->hasGlobalStorage())
7047 return nullptr;
7048
7049 NamedDecl *ShadowedDecl = R.getFoundDecl();
7050 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7051 ? ShadowedDecl
7052 : nullptr;
7053}
7054
7055/// Return the declaration shadowed by the given typedef \p D, or null
7056/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7057NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7058 const LookupResult &R) {
7059 // Don't warn if typedef declaration is part of a class
7060 if (D->getDeclContext()->isRecord())
7061 return nullptr;
7062
7063 if (!shouldWarnIfShadowedDecl(Diags, R))
7064 return nullptr;
7065
7066 NamedDecl *ShadowedDecl = R.getFoundDecl();
7067 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7068}
7069
7070/// Diagnose variable or built-in function shadowing. Implements
7071/// -Wshadow.
7072///
7073/// This method is called whenever a VarDecl is added to a "useful"
7074/// scope.
7075///
7076/// \param ShadowedDecl the declaration that is shadowed by the given variable
7077/// \param R the lookup of the name
7078///
7079void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7080 const LookupResult &R) {
7081 DeclContext *NewDC = D->getDeclContext();
7082
7083 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7084 // Fields are not shadowed by variables in C++ static methods.
7085 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7086 if (MD->isStatic())
7087 return;
7088
7089 // Fields shadowed by constructor parameters are a special case. Usually
7090 // the constructor initializes the field with the parameter.
7091 if (isa<CXXConstructorDecl>(NewDC))
7092 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7093 // Remember that this was shadowed so we can either warn about its
7094 // modification or its existence depending on warning settings.
7095 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7096 return;
7097 }
7098 }
7099
7100 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7101 if (shadowedVar->isExternC()) {
7102 // For shadowing external vars, make sure that we point to the global
7103 // declaration, not a locally scoped extern declaration.
7104 for (auto I : shadowedVar->redecls())
7105 if (I->isFileVarDecl()) {
7106 ShadowedDecl = I;
7107 break;
7108 }
7109 }
7110
7111 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7112
7113 unsigned WarningDiag = diag::warn_decl_shadow;
7114 SourceLocation CaptureLoc;
7115 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7116 isa<CXXMethodDecl>(NewDC)) {
7117 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7118 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7119 if (RD->getLambdaCaptureDefault() == LCD_None) {
7120 // Try to avoid warnings for lambdas with an explicit capture list.
7121 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7122 // Warn only when the lambda captures the shadowed decl explicitly.
7123 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7124 if (CaptureLoc.isInvalid())
7125 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7126 } else {
7127 // Remember that this was shadowed so we can avoid the warning if the
7128 // shadowed decl isn't captured and the warning settings allow it.
7129 cast<LambdaScopeInfo>(getCurFunction())
7130 ->ShadowingDecls.push_back(
7131 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7132 return;
7133 }
7134 }
7135
7136 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7137 // A variable can't shadow a local variable in an enclosing scope, if
7138 // they are separated by a non-capturing declaration context.
7139 for (DeclContext *ParentDC = NewDC;
7140 ParentDC && !ParentDC->Equals(OldDC);
7141 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7142 // Only block literals, captured statements, and lambda expressions
7143 // can capture; other scopes don't.
7144 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7145 !isLambdaCallOperator(ParentDC)) {
7146 return;
7147 }
7148 }
7149 }
7150 }
7151 }
7152
7153 // Only warn about certain kinds of shadowing for class members.
7154 if (NewDC && NewDC->isRecord()) {
7155 // In particular, don't warn about shadowing non-class members.
7156 if (!OldDC->isRecord())
7157 return;
7158
7159 // TODO: should we warn about static data members shadowing
7160 // static data members from base classes?
7161
7162 // TODO: don't diagnose for inaccessible shadowed members.
7163 // This is hard to do perfectly because we might friend the
7164 // shadowing context, but that's just a false negative.
7165 }
7166
7167
7168 DeclarationName Name = R.getLookupName();
7169
7170 // Emit warning and note.
7171 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7172 return;
7173 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7174 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7175 if (!CaptureLoc.isInvalid())
7176 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7177 << Name << /*explicitly*/ 1;
7178 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7179}
7180
7181/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7182/// when these variables are captured by the lambda.
7183void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7184 for (const auto &Shadow : LSI->ShadowingDecls) {
7185 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7186 // Try to avoid the warning when the shadowed decl isn't captured.
7187 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7188 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7189 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7190 ? diag::warn_decl_shadow_uncaptured_local
7191 : diag::warn_decl_shadow)
7192 << Shadow.VD->getDeclName()
7193 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7194 if (!CaptureLoc.isInvalid())
7195 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7196 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7197 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7198 }
7199}
7200
7201/// Check -Wshadow without the advantage of a previous lookup.
7202void Sema::CheckShadow(Scope *S, VarDecl *D) {
7203 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7204 return;
7205
7206 LookupResult R(*this, D->getDeclName(), D->getLocation(),
7207 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7208 LookupName(R, S);
7209 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7210 CheckShadow(D, ShadowedDecl, R);
7211}
7212
7213/// Check if 'E', which is an expression that is about to be modified, refers
7214/// to a constructor parameter that shadows a field.
7215void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7216 // Quickly ignore expressions that can't be shadowing ctor parameters.
7217 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7218 return;
7219 E = E->IgnoreParenImpCasts();
7220 auto *DRE = dyn_cast<DeclRefExpr>(E);
7221 if (!DRE)
7222 return;
7223 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7224 auto I = ShadowingDecls.find(D);
7225 if (I == ShadowingDecls.end())
7226 return;
7227 const NamedDecl *ShadowedDecl = I->second;
7228 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7229 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7230 Diag(D->getLocation(), diag::note_var_declared_here) << D;
7231 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7232
7233 // Avoid issuing multiple warnings about the same decl.
7234 ShadowingDecls.erase(I);
7235}
7236
7237/// Check for conflict between this global or extern "C" declaration and
7238/// previous global or extern "C" declarations. This is only used in C++.
7239template<typename T>
7240static bool checkGlobalOrExternCConflict(
7241 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7242 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")((S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 7242, __PRETTY_FUNCTION__))
;
7243 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7244
7245 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7246 // The common case: this global doesn't conflict with any extern "C"
7247 // declaration.
7248 return false;
7249 }
7250
7251 if (Prev) {
7252 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7253 // Both the old and new declarations have C language linkage. This is a
7254 // redeclaration.
7255 Previous.clear();
7256 Previous.addDecl(Prev);
7257 return true;
7258 }
7259
7260 // This is a global, non-extern "C" declaration, and there is a previous
7261 // non-global extern "C" declaration. Diagnose if this is a variable
7262 // declaration.
7263 if (!isa<VarDecl>(ND))
7264 return false;
7265 } else {
7266 // The declaration is extern "C". Check for any declaration in the
7267 // translation unit which might conflict.
7268 if (IsGlobal) {
7269 // We have already performed the lookup into the translation unit.
7270 IsGlobal = false;
7271 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7272 I != E; ++I) {
7273 if (isa<VarDecl>(*I)) {
7274 Prev = *I;
7275 break;
7276 }
7277 }
7278 } else {
7279 DeclContext::lookup_result R =
7280 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7281 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7282 I != E; ++I) {
7283 if (isa<VarDecl>(*I)) {
7284 Prev = *I;
7285 break;
7286 }
7287 // FIXME: If we have any other entity with this name in global scope,
7288 // the declaration is ill-formed, but that is a defect: it breaks the
7289 // 'stat' hack, for instance. Only variables can have mangled name
7290 // clashes with extern "C" declarations, so only they deserve a
7291 // diagnostic.
7292 }
7293 }
7294
7295 if (!Prev)
7296 return false;
7297 }
7298
7299 // Use the first declaration's location to ensure we point at something which
7300 // is lexically inside an extern "C" linkage-spec.
7301 assert(Prev && "should have found a previous declaration to diagnose")((Prev && "should have found a previous declaration to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 7301, __PRETTY_FUNCTION__))
;
7302 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7303 Prev = FD->getFirstDecl();
7304 else
7305 Prev = cast<VarDecl>(Prev)->getFirstDecl();
7306
7307 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7308 << IsGlobal << ND;
7309 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7310 << IsGlobal;
7311 return false;
7312}
7313
7314/// Apply special rules for handling extern "C" declarations. Returns \c true
7315/// if we have found that this is a redeclaration of some prior entity.
7316///
7317/// Per C++ [dcl.link]p6:
7318/// Two declarations [for a function or variable] with C language linkage
7319/// with the same name that appear in different scopes refer to the same
7320/// [entity]. An entity with C language linkage shall not be declared with
7321/// the same name as an entity in global scope.
7322template<typename T>
7323static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7324 LookupResult &Previous) {
7325 if (!S.getLangOpts().CPlusPlus) {
7326 // In C, when declaring a global variable, look for a corresponding 'extern'
7327 // variable declared in function scope. We don't need this in C++, because
7328 // we find local extern decls in the surrounding file-scope DeclContext.
7329 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7330 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7331 Previous.clear();
7332 Previous.addDecl(Prev);
7333 return true;
7334 }
7335 }
7336 return false;
7337 }
7338
7339 // A declaration in the translation unit can conflict with an extern "C"
7340 // declaration.
7341 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7342 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7343
7344 // An extern "C" declaration can conflict with a declaration in the
7345 // translation unit or can be a redeclaration of an extern "C" declaration
7346 // in another scope.
7347 if (isIncompleteDeclExternC(S,ND))
7348 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7349
7350 // Neither global nor extern "C": nothing to do.
7351 return false;
7352}
7353
7354void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7355 // If the decl is already known invalid, don't check it.
7356 if (NewVD->isInvalidDecl())
7357 return;
7358
7359 QualType T = NewVD->getType();
7360
7361 // Defer checking an 'auto' type until its initializer is attached.
7362 if (T->isUndeducedType())
7363 return;
7364
7365 if (NewVD->hasAttrs())
7366 CheckAlignasUnderalignment(NewVD);
7367
7368 if (T->isObjCObjectType()) {
7369 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7370 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7371 T = Context.getObjCObjectPointerType(T);
7372 NewVD->setType(T);
7373 }
7374
7375 // Emit an error if an address space was applied to decl with local storage.
7376 // This includes arrays of objects with address space qualifiers, but not
7377 // automatic variables that point to other address spaces.
7378 // ISO/IEC TR 18037 S5.1.2
7379 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7380 T.getAddressSpace() != LangAS::Default) {
7381 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7382 NewVD->setInvalidDecl();
7383 return;
7384 }
7385
7386 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7387 // scope.
7388 if (getLangOpts().OpenCLVersion == 120 &&
7389 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7390 NewVD->isStaticLocal()) {
7391 Diag(NewVD->getLocation(), diag::err_static_function_scope);
7392 NewVD->setInvalidDecl();
7393 return;
7394 }
7395
7396 if (getLangOpts().OpenCL) {
7397 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7398 if (NewVD->hasAttr<BlocksAttr>()) {
7399 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7400 return;
7401 }
7402
7403 if (T->isBlockPointerType()) {
7404 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7405 // can't use 'extern' storage class.
7406 if (!T.isConstQualified()) {
7407 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7408 << 0 /*const*/;
7409 NewVD->setInvalidDecl();
7410 return;
7411 }
7412 if (NewVD->hasExternalStorage()) {
7413 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7414 NewVD->setInvalidDecl();
7415 return;
7416 }
7417 }
7418 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7419 // __constant address space.
7420 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7421 // variables inside a function can also be declared in the global
7422 // address space.
7423 // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
7424 // address space additionally.
7425 // FIXME: Add local AS for OpenCL C++.
7426 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7427 NewVD->hasExternalStorage()) {
7428 if (!T->isSamplerT() &&
7429 !(T.getAddressSpace() == LangAS::opencl_constant ||
7430 (T.getAddressSpace() == LangAS::opencl_global &&
7431 (getLangOpts().OpenCLVersion == 200 ||
7432 getLangOpts().OpenCLCPlusPlus)))) {
7433 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7434 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7435 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7436 << Scope << "global or constant";
7437 else
7438 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7439 << Scope << "constant";
7440 NewVD->setInvalidDecl();
7441 return;
7442 }
7443 } else {
7444 if (T.getAddressSpace() == LangAS::opencl_global) {
7445 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7446 << 1 /*is any function*/ << "global";
7447 NewVD->setInvalidDecl();
7448 return;
7449 }
7450 if (T.getAddressSpace() == LangAS::opencl_constant ||
7451 T.getAddressSpace() == LangAS::opencl_local) {
7452 FunctionDecl *FD = getCurFunctionDecl();
7453 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7454 // in functions.
7455 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7456 if (T.getAddressSpace() == LangAS::opencl_constant)
7457 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7458 << 0 /*non-kernel only*/ << "constant";
7459 else
7460 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7461 << 0 /*non-kernel only*/ << "local";
7462 NewVD->setInvalidDecl();
7463 return;
7464 }
7465 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7466 // in the outermost scope of a kernel function.
7467 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7468 if (!getCurScope()->isFunctionScope()) {
7469 if (T.getAddressSpace() == LangAS::opencl_constant)
7470 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7471 << "constant";
7472 else
7473 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7474 << "local";
7475 NewVD->setInvalidDecl();
7476 return;
7477 }
7478 }
7479 } else if (T.getAddressSpace() != LangAS::opencl_private) {
7480 // Do not allow other address spaces on automatic variable.
7481 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7482 NewVD->setInvalidDecl();
7483 return;
7484 }
7485 }
7486 }
7487
7488 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7489 && !NewVD->hasAttr<BlocksAttr>()) {
7490 if (getLangOpts().getGC() != LangOptions::NonGC)
7491 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7492 else {
7493 assert(!getLangOpts().ObjCAutoRefCount)((!getLangOpts().ObjCAutoRefCount) ? static_cast<void> (
0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 7493, __PRETTY_FUNCTION__))
;
7494 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7495 }
7496 }
7497
7498 bool isVM = T->isVariablyModifiedType();
7499 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7500 NewVD->hasAttr<BlocksAttr>())
7501 setFunctionHasBranchProtectedScope();
7502
7503 if ((isVM && NewVD->hasLinkage()) ||
7504 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7505 bool SizeIsNegative;
7506 llvm::APSInt Oversized;
7507 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7508 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7509 QualType FixedT;
7510 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
7511 FixedT = FixedTInfo->getType();
7512 else if (FixedTInfo) {
7513 // Type and type-as-written are canonically different. We need to fix up
7514 // both types separately.
7515 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7516 Oversized);
7517 }
7518 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7519 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7520 // FIXME: This won't give the correct result for
7521 // int a[10][n];
7522 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7523
7524 if (NewVD->isFileVarDecl())
7525 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7526 << SizeRange;
7527 else if (NewVD->isStaticLocal())
7528 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7529 << SizeRange;
7530 else
7531 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7532 << SizeRange;
7533 NewVD->setInvalidDecl();
7534 return;
7535 }
7536
7537 if (!FixedTInfo) {
7538 if (NewVD->isFileVarDecl())
7539 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7540 else
7541 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7542 NewVD->setInvalidDecl();
7543 return;
7544 }
7545
7546 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7547 NewVD->setType(FixedT);
7548 NewVD->setTypeSourceInfo(FixedTInfo);
7549 }
7550
7551 if (T->isVoidType()) {
7552 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7553 // of objects and functions.
7554 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7555 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7556 << T;
7557 NewVD->setInvalidDecl();
7558 return;
7559 }
7560 }
7561
7562 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7563 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7564 NewVD->setInvalidDecl();
7565 return;
7566 }
7567
7568 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7569 Diag(NewVD->getLocation(), diag::err_block_on_vm);
7570 NewVD->setInvalidDecl();
7571 return;
7572 }
7573
7574 if (NewVD->isConstexpr() && !T->isDependentType() &&
7575 RequireLiteralType(NewVD->getLocation(), T,
7576 diag::err_constexpr_var_non_literal)) {
7577 NewVD->setInvalidDecl();
7578 return;
7579 }
7580}
7581
7582/// Perform semantic checking on a newly-created variable
7583/// declaration.
7584///
7585/// This routine performs all of the type-checking required for a
7586/// variable declaration once it has been built. It is used both to
7587/// check variables after they have been parsed and their declarators
7588/// have been translated into a declaration, and to check variables
7589/// that have been instantiated from a template.
7590///
7591/// Sets NewVD->isInvalidDecl() if an error was encountered.
7592///
7593/// Returns true if the variable declaration is a redeclaration.
7594bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7595 CheckVariableDeclarationType(NewVD);
7596
7597 // If the decl is already known invalid, don't check it.
7598 if (NewVD->isInvalidDecl())
7599 return false;
7600
7601 // If we did not find anything by this name, look for a non-visible
7602 // extern "C" declaration with the same name.
7603 if (Previous.empty() &&
7604 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7605 Previous.setShadowed();
7606
7607 if (!Previous.empty()) {
7608 MergeVarDecl(NewVD, Previous);
7609 return true;
7610 }
7611 return false;
7612}
7613
7614namespace {
7615struct FindOverriddenMethod {
7616 Sema *S;
7617 CXXMethodDecl *Method;
7618
7619 /// Member lookup function that determines whether a given C++
7620 /// method overrides a method in a base class, to be used with
7621 /// CXXRecordDecl::lookupInBases().
7622 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7623 RecordDecl *BaseRecord =
7624 Specifier->getType()->getAs<RecordType>()->getDecl();
7625
7626 DeclarationName Name = Method->getDeclName();
7627
7628 // FIXME: Do we care about other names here too?
7629 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7630 // We really want to find the base class destructor here.
7631 QualType T = S->Context.getTypeDeclType(BaseRecord);
7632 CanQualType CT = S->Context.getCanonicalType(T);
7633
7634 Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7635 }
7636
7637 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7638 Path.Decls = Path.Decls.slice(1)) {
7639 NamedDecl *D = Path.Decls.front();
7640 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7641 if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7642 return true;
7643 }
7644 }
7645
7646 return false;
7647 }
7648};
7649
7650enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7651} // end anonymous namespace
7652
7653/// Report an error regarding overriding, along with any relevant
7654/// overridden methods.
7655///
7656/// \param DiagID the primary error to report.
7657/// \param MD the overriding method.
7658/// \param OEK which overrides to include as notes.
7659static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7660 OverrideErrorKind OEK = OEK_All) {
7661 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7662 for (const CXXMethodDecl *O : MD->overridden_methods()) {
7663 // This check (& the OEK parameter) could be replaced by a predicate, but
7664 // without lambdas that would be overkill. This is still nicer than writing
7665 // out the diag loop 3 times.
7666 if ((OEK == OEK_All) ||
7667 (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7668 (OEK == OEK_Deleted && O->isDeleted()))
7669 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7670 }
7671}
7672
7673/// AddOverriddenMethods - See if a method overrides any in the base classes,
7674/// and if so, check that it's a valid override and remember it.
7675bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7676 // Look for methods in base classes that this method might override.
7677 CXXBasePaths Paths;
7678 FindOverriddenMethod FOM;
7679 FOM.Method = MD;
7680 FOM.S = this;
7681 bool hasDeletedOverridenMethods = false;
7682 bool hasNonDeletedOverridenMethods = false;
7683 bool AddedAny = false;
7684 if (DC->lookupInBases(FOM, Paths)) {
7685 for (auto *I : Paths.found_decls()) {
7686 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7687 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7688 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7689 !CheckOverridingFunctionAttributes(MD, OldMD) &&
7690 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7691 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7692 hasDeletedOverridenMethods |= OldMD->isDeleted();
7693 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7694 AddedAny = true;
7695 }
7696 }
7697 }
7698 }
7699
7700 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7701 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7702 }
7703 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7704 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7705 }
7706
7707 return AddedAny;
7708}
7709
7710namespace {
7711 // Struct for holding all of the extra arguments needed by
7712 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7713 struct ActOnFDArgs {
7714 Scope *S;
7715 Declarator &D;
7716 MultiTemplateParamsArg TemplateParamLists;
7717 bool AddToScope;
7718 };
7719} // end anonymous namespace
7720
7721namespace {
7722
7723// Callback to only accept typo corrections that have a non-zero edit distance.
7724// Also only accept corrections that have the same parent decl.
7725class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
7726 public:
7727 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7728 CXXRecordDecl *Parent)
7729 : Context(Context), OriginalFD(TypoFD),
7730 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7731
7732 bool ValidateCandidate(const TypoCorrection &candidate) override {
7733 if (candidate.getEditDistance() == 0)
7734 return false;
7735
7736 SmallVector<unsigned, 1> MismatchedParams;
7737 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7738 CDeclEnd = candidate.end();
7739 CDecl != CDeclEnd; ++CDecl) {
7740 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7741
7742 if (FD && !FD->hasBody() &&
7743 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7744 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7745 CXXRecordDecl *Parent = MD->getParent();
7746 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7747 return true;
7748 } else if (!ExpectedParent) {
7749 return true;
7750 }
7751 }
7752 }
7753
7754 return false;
7755 }
7756
7757 std::unique_ptr<CorrectionCandidateCallback> clone() override {
7758 return llvm::make_unique<DifferentNameValidatorCCC>(*this);
7759 }
7760
7761 private:
7762 ASTContext &Context;
7763 FunctionDecl *OriginalFD;
7764 CXXRecordDecl *ExpectedParent;
7765};
7766
7767} // end anonymous namespace
7768
7769void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7770 TypoCorrectedFunctionDefinitions.insert(F);
7771}
7772
7773/// Generate diagnostics for an invalid function redeclaration.
7774///
7775/// This routine handles generating the diagnostic messages for an invalid
7776/// function redeclaration, including finding possible similar declarations
7777/// or performing typo correction if there are no previous declarations with
7778/// the same name.
7779///
7780/// Returns a NamedDecl iff typo correction was performed and substituting in
7781/// the new declaration name does not cause new errors.
7782static NamedDecl *DiagnoseInvalidRedeclaration(
7783 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7784 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7785 DeclarationName Name = NewFD->getDeclName();
7786 DeclContext *NewDC = NewFD->getDeclContext();
7787 SmallVector<unsigned, 1> MismatchedParams;
7788 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7789 TypoCorrection Correction;
7790 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7791 unsigned DiagMsg =
7792 IsLocalFriend ? diag::err_no_matching_local_friend :
7793 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
7794 diag::err_member_decl_does_not_match;
7795 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7796 IsLocalFriend ? Sema::LookupLocalFriendName
7797 : Sema::LookupOrdinaryName,
7798 Sema::ForVisibleRedeclaration);
7799
7800 NewFD->setInvalidDecl();
7801 if (IsLocalFriend)
7802 SemaRef.LookupName(Prev, S);
7803 else
7804 SemaRef.LookupQualifiedName(Prev, NewDC);
7805 assert(!Prev.isAmbiguous() &&((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 7806, __PRETTY_FUNCTION__))
7806 "Cannot have an ambiguity in previous-declaration lookup")((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 7806, __PRETTY_FUNCTION__))
;
7807 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7808 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
7809 MD ? MD->getParent() : nullptr);
7810 if (!Prev.empty()) {
7811 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7812 Func != FuncEnd; ++Func) {
7813 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7814 if (FD &&
7815 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7816 // Add 1 to the index so that 0 can mean the mismatch didn't
7817 // involve a parameter
7818 unsigned ParamNum =
7819 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7820 NearMatches.push_back(std::make_pair(FD, ParamNum));
7821 }
7822 }
7823 // If the qualified name lookup yielded nothing, try typo correction
7824 } else if ((Correction = SemaRef.CorrectTypo(
7825 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7826 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
7827 IsLocalFriend ? nullptr : NewDC))) {
7828 // Set up everything for the call to ActOnFunctionDeclarator
7829 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7830 ExtraArgs.D.getIdentifierLoc());
7831 Previous.clear();
7832 Previous.setLookupName(Correction.getCorrection());
7833 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7834 CDeclEnd = Correction.end();
7835 CDecl != CDeclEnd; ++CDecl) {
7836 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7837 if (FD && !FD->hasBody() &&
7838 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7839 Previous.addDecl(FD);
7840 }
7841 }
7842 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7843
7844 NamedDecl *Result;
7845 // Retry building the function declaration with the new previous
7846 // declarations, and with errors suppressed.
7847 {
7848 // Trap errors.
7849 Sema::SFINAETrap Trap(SemaRef);
7850
7851 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7852 // pieces need to verify the typo-corrected C++ declaration and hopefully
7853 // eliminate the need for the parameter pack ExtraArgs.
7854 Result = SemaRef.ActOnFunctionDeclarator(
7855 ExtraArgs.S, ExtraArgs.D,
7856 Correction.getCorrectionDecl()->getDeclContext(),
7857 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7858 ExtraArgs.AddToScope);
7859
7860 if (Trap.hasErrorOccurred())
7861 Result = nullptr;
7862 }
7863
7864 if (Result) {
7865 // Determine which correction we picked.
7866 Decl *Canonical = Result->getCanonicalDecl();
7867 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7868 I != E; ++I)
7869 if ((*I)->getCanonicalDecl() == Canonical)
7870 Correction.setCorrectionDecl(*I);
7871
7872 // Let Sema know about the correction.
7873 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7874 SemaRef.diagnoseTypo(
7875 Correction,
7876 SemaRef.PDiag(IsLocalFriend
7877 ? diag::err_no_matching_local_friend_suggest
7878 : diag::err_member_decl_does_not_match_suggest)
7879 << Name << NewDC << IsDefinition);
7880 return Result;
7881 }
7882
7883 // Pretend the typo correction never occurred
7884 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7885 ExtraArgs.D.getIdentifierLoc());
7886 ExtraArgs.D.setRedeclaration(wasRedeclaration);
7887 Previous.clear();
7888 Previous.setLookupName(Name);
7889 }
7890
7891 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7892 << Name << NewDC << IsDefinition << NewFD->getLocation();
7893
7894 bool NewFDisConst = false;
7895 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7896 NewFDisConst = NewMD->isConst();
7897
7898 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7899 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7900 NearMatch != NearMatchEnd; ++NearMatch) {
7901 FunctionDecl *FD = NearMatch->first;
7902 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7903 bool FDisConst = MD && MD->isConst();
7904 bool IsMember = MD || !IsLocalFriend;
7905
7906 // FIXME: These notes are poorly worded for the local friend case.
7907 if (unsigned Idx = NearMatch->second) {
7908 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7909 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7910 if (Loc.isInvalid()) Loc = FD->getLocation();
7911 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7912 : diag::note_local_decl_close_param_match)
7913 << Idx << FDParam->getType()
7914 << NewFD->getParamDecl(Idx - 1)->getType();
7915 } else if (FDisConst != NewFDisConst) {
7916 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7917 << NewFDisConst << FD->getSourceRange().getEnd();
7918 } else
7919 SemaRef.Diag(FD->getLocation(),
7920 IsMember ? diag::note_member_def_close_match
7921 : diag::note_local_decl_close_match);
7922 }
7923 return nullptr;
7924}
7925
7926static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7927 switch (D.getDeclSpec().getStorageClassSpec()) {
7928 default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 7928)
;
7929 case DeclSpec::SCS_auto:
7930 case DeclSpec::SCS_register:
7931 case DeclSpec::SCS_mutable:
7932 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7933 diag::err_typecheck_sclass_func);
7934 D.getMutableDeclSpec().ClearStorageClassSpecs();
7935 D.setInvalidType();
7936 break;
7937 case DeclSpec::SCS_unspecified: break;
7938 case DeclSpec::SCS_extern:
7939 if (D.getDeclSpec().isExternInLinkageSpec())
7940 return SC_None;
7941 return SC_Extern;
7942 case DeclSpec::SCS_static: {
7943 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7944 // C99 6.7.1p5:
7945 // The declaration of an identifier for a function that has
7946 // block scope shall have no explicit storage-class specifier
7947 // other than extern
7948 // See also (C++ [dcl.stc]p4).
7949 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7950 diag::err_static_block_func);
7951 break;
7952 } else
7953 return SC_Static;
7954 }
7955 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7956 }
7957
7958 // No explicit storage class has already been returned
7959 return SC_None;
7960}
7961
7962static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7963 DeclContext *DC, QualType &R,
7964 TypeSourceInfo *TInfo,
7965 StorageClass SC,
7966 bool &IsVirtualOkay) {
7967 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7968 DeclarationName Name = NameInfo.getName();
7969
7970 FunctionDecl *NewFD = nullptr;
7971 bool isInline = D.getDeclSpec().isInlineSpecified();
7972
7973 if (!SemaRef.getLangOpts().CPlusPlus) {
7974 // Determine whether the function was written with a
7975 // prototype. This true when:
7976 // - there is a prototype in the declarator, or
7977 // - the type R of the function is some kind of typedef or other non-
7978 // attributed reference to a type name (which eventually refers to a
7979 // function type).
7980 bool HasPrototype =
7981 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7982 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7983
7984 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
7985 R, TInfo, SC, isInline, HasPrototype, false);
7986 if (D.isInvalidType())
7987 NewFD->setInvalidDecl();
7988
7989 return NewFD;
7990 }
7991
7992 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
7993 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7994
7995 // Check that the return type is not an abstract class type.
7996 // For record types, this is done by the AbstractClassUsageDiagnoser once
7997 // the class has been completely parsed.
7998 if (!DC->isRecord() &&
7999 SemaRef.RequireNonAbstractType(
8000 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
8001 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8002 D.setInvalidType();
8003
8004 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8005 // This is a C++ constructor declaration.
8006 assert(DC->isRecord() &&((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8007, __PRETTY_FUNCTION__))
8007 "Constructors can only be declared in a member context")((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8007, __PRETTY_FUNCTION__))
;
8008
8009 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8010 return CXXConstructorDecl::Create(
8011 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8012 TInfo, ExplicitSpecifier, isInline,
8013 /*isImplicitlyDeclared=*/false, isConstexpr);
8014
8015 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8016 // This is a C++ destructor declaration.
8017 if (DC->isRecord()) {
8018 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8019 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8020 CXXDestructorDecl *NewDD =
8021 CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
8022 NameInfo, R, TInfo, isInline,
8023 /*isImplicitlyDeclared=*/false);
8024
8025 // If the destructor needs an implicit exception specification, set it
8026 // now. FIXME: It'd be nice to be able to create the right type to start
8027 // with, but the type needs to reference the destructor declaration.
8028 if (SemaRef.getLangOpts().CPlusPlus11)
8029 SemaRef.AdjustDestructorExceptionSpec(NewDD);
8030
8031 IsVirtualOkay = true;
8032 return NewDD;
8033
8034 } else {
8035 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8036 D.setInvalidType();
8037
8038 // Create a FunctionDecl to satisfy the function definition parsing
8039 // code path.
8040 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8041 D.getIdentifierLoc(), Name, R, TInfo, SC,
8042 isInline,
8043 /*hasPrototype=*/true, isConstexpr);
8044 }
8045
8046 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8047 if (!DC->isRecord()) {
8048 SemaRef.Diag(D.getIdentifierLoc(),
8049 diag::err_conv_function_not_member);
8050 return nullptr;
8051 }
8052
8053 SemaRef.CheckConversionDeclarator(D, R, SC);
8054 IsVirtualOkay = true;
8055 return CXXConversionDecl::Create(
8056 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8057 TInfo, isInline, ExplicitSpecifier, isConstexpr, SourceLocation());
8058
8059 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8060 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8061
8062 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8063 ExplicitSpecifier, NameInfo, R, TInfo,
8064 D.getEndLoc());
8065 } else if (DC->isRecord()) {
8066 // If the name of the function is the same as the name of the record,
8067 // then this must be an invalid constructor that has a return type.
8068 // (The parser checks for a return type and makes the declarator a
8069 // constructor if it has no return type).
8070 if (Name.getAsIdentifierInfo() &&
8071 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8072 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8073 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8074 << SourceRange(D.getIdentifierLoc());
8075 return nullptr;
8076 }
8077
8078 // This is a C++ method declaration.
8079 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8080 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8081 TInfo, SC, isInline, isConstexpr, SourceLocation());
8082 IsVirtualOkay = !Ret->isStatic();
8083 return Ret;
8084 } else {
8085 bool isFriend =
8086 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8087 if (!isFriend && SemaRef.CurContext->isRecord())
8088 return nullptr;
8089
8090 // Determine whether the function was written with a
8091 // prototype. This true when:
8092 // - we're in C++ (where every function has a prototype),
8093 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8094 R, TInfo, SC, isInline, true /*HasPrototype*/,
8095 isConstexpr);
8096 }
8097}
8098
8099enum OpenCLParamType {
8100 ValidKernelParam,
8101 PtrPtrKernelParam,
8102 PtrKernelParam,
8103 InvalidAddrSpacePtrKernelParam,
8104 InvalidKernelParam,
8105 RecordKernelParam
8106};
8107
8108static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8109 // Size dependent types are just typedefs to normal integer types
8110 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8111 // integers other than by their names.
8112 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8113
8114 // Remove typedefs one by one until we reach a typedef
8115 // for a size dependent type.
8116 QualType DesugaredTy = Ty;
8117 do {
8118 ArrayRef<StringRef> Names(SizeTypeNames);
8119 auto Match = llvm::find(Names, DesugaredTy.getAsString());
8120 if (Names.end() != Match)
8121 return true;
8122
8123 Ty = DesugaredTy;
8124 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8125 } while (DesugaredTy != Ty);
8126
8127 return false;
8128}
8129
8130static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8131 if (PT->isPointerType()) {
8132 QualType PointeeType = PT->getPointeeType();
8133 if (PointeeType->isPointerType())
8134 return PtrPtrKernelParam;
8135 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8136 PointeeType.getAddressSpace() == LangAS::opencl_private ||
8137 PointeeType.getAddressSpace() == LangAS::Default)
8138 return InvalidAddrSpacePtrKernelParam;
8139 return PtrKernelParam;
8140 }
8141
8142 // OpenCL v1.2 s6.9.k:
8143 // Arguments to kernel functions in a program cannot be declared with the
8144 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8145 // uintptr_t or a struct and/or union that contain fields declared to be one
8146 // of these built-in scalar types.
8147 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8148 return InvalidKernelParam;
8149
8150 if (PT->isImageType())
8151 return PtrKernelParam;
8152
8153 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8154 return InvalidKernelParam;
8155
8156 // OpenCL extension spec v1.2 s9.5:
8157 // This extension adds support for half scalar and vector types as built-in
8158 // types that can be used for arithmetic operations, conversions etc.
8159 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8160 return InvalidKernelParam;
8161
8162 if (PT->isRecordType())
8163 return RecordKernelParam;
8164
8165 // Look into an array argument to check if it has a forbidden type.
8166 if (PT->isArrayType()) {
8167 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8168 // Call ourself to check an underlying type of an array. Since the
8169 // getPointeeOrArrayElementType returns an innermost type which is not an
8170 // array, this recursive call only happens once.
8171 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8172 }
8173
8174 return ValidKernelParam;
8175}
8176
8177static void checkIsValidOpenCLKernelParameter(
8178 Sema &S,
8179 Declarator &D,
8180 ParmVarDecl *Param,
8181 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8182 QualType PT = Param->getType();
8183
8184 // Cache the valid types we encounter to avoid rechecking structs that are
8185 // used again
8186 if (ValidTypes.count(PT.getTypePtr()))
8187 return;
8188
8189 switch (getOpenCLKernelParameterType(S, PT)) {
8190 case PtrPtrKernelParam:
8191 // OpenCL v1.2 s6.9.a:
8192 // A kernel function argument cannot be declared as a
8193 // pointer to a pointer type.
8194 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8195 D.setInvalidType();
8196 return;
8197
8198 case InvalidAddrSpacePtrKernelParam:
8199 // OpenCL v1.0 s6.5:
8200 // __kernel function arguments declared to be a pointer of a type can point
8201 // to one of the following address spaces only : __global, __local or
8202 // __constant.
8203 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8204 D.setInvalidType();
8205 return;
8206
8207 // OpenCL v1.2 s6.9.k:
8208 // Arguments to kernel functions in a program cannot be declared with the
8209 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8210 // uintptr_t or a struct and/or union that contain fields declared to be
8211 // one of these built-in scalar types.
8212
8213 case InvalidKernelParam:
8214 // OpenCL v1.2 s6.8 n:
8215 // A kernel function argument cannot be declared
8216 // of event_t type.
8217 // Do not diagnose half type since it is diagnosed as invalid argument
8218 // type for any function elsewhere.
8219 if (!PT->isHalfType()) {
8220 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8221
8222 // Explain what typedefs are involved.
8223 const TypedefType *Typedef = nullptr;
8224 while ((Typedef = PT->getAs<TypedefType>())) {
8225 SourceLocation Loc = Typedef->getDecl()->getLocation();
8226 // SourceLocation may be invalid for a built-in type.
8227 if (Loc.isValid())
8228 S.Diag(Loc, diag::note_entity_declared_at) << PT;
8229 PT = Typedef->desugar();
8230 }
8231 }
8232
8233 D.setInvalidType();
8234 return;
8235
8236 case PtrKernelParam:
8237 case ValidKernelParam:
8238 ValidTypes.insert(PT.getTypePtr());
8239 return;
8240
8241 case RecordKernelParam:
8242 break;
8243 }
8244
8245 // Track nested structs we will inspect
8246 SmallVector<const Decl *, 4> VisitStack;
8247
8248 // Track where we are in the nested structs. Items will migrate from
8249 // VisitStack to HistoryStack as we do the DFS for bad field.
8250 SmallVector<const FieldDecl *, 4> HistoryStack;
8251 HistoryStack.push_back(nullptr);
8252
8253 // At this point we already handled everything except of a RecordType or
8254 // an ArrayType of a RecordType.
8255 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."
) ? static_cast<void> (0) : __assert_fail ("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8255, __PRETTY_FUNCTION__))
;
8256 const RecordType *RecTy =
8257 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8258 const RecordDecl *OrigRecDecl = RecTy->getDecl();
8259
8260 VisitStack.push_back(RecTy->getDecl());
8261 assert(VisitStack.back() && "First decl null?")((VisitStack.back() && "First decl null?") ? static_cast
<void> (0) : __assert_fail ("VisitStack.back() && \"First decl null?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8261, __PRETTY_FUNCTION__))
;
8262
8263 do {
8264 const Decl *Next = VisitStack.pop_back_val();
8265 if (!Next) {
8266 assert(!HistoryStack.empty())((!HistoryStack.empty()) ? static_cast<void> (0) : __assert_fail
("!HistoryStack.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8266, __PRETTY_FUNCTION__))
;
8267 // Found a marker, we have gone up a level
8268 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8269 ValidTypes.insert(Hist->getType().getTypePtr());
8270
8271 continue;
8272 }
8273
8274 // Adds everything except the original parameter declaration (which is not a
8275 // field itself) to the history stack.
8276 const RecordDecl *RD;
8277 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8278 HistoryStack.push_back(Field);
8279
8280 QualType FieldTy = Field->getType();
8281 // Other field types (known to be valid or invalid) are handled while we
8282 // walk around RecordDecl::fields().
8283 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8284, __PRETTY_FUNCTION__))
8284 "Unexpected type.")(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8284, __PRETTY_FUNCTION__))
;
8285 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8286
8287 RD = FieldRecTy->castAs<RecordType>()->getDecl();
8288 } else {
8289 RD = cast<RecordDecl>(Next);
8290 }
8291
8292 // Add a null marker so we know when we've gone back up a level
8293 VisitStack.push_back(nullptr);
8294
8295 for (const auto *FD : RD->fields()) {
8296 QualType QT = FD->getType();
8297
8298 if (ValidTypes.count(QT.getTypePtr()))
8299 continue;
8300
8301 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8302 if (ParamType == ValidKernelParam)
8303 continue;
8304
8305 if (ParamType == RecordKernelParam) {
8306 VisitStack.push_back(FD);
8307 continue;
8308 }
8309
8310 // OpenCL v1.2 s6.9.p:
8311 // Arguments to kernel functions that are declared to be a struct or union
8312 // do not allow OpenCL objects to be passed as elements of the struct or
8313 // union.
8314 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8315 ParamType == InvalidAddrSpacePtrKernelParam) {
8316 S.Diag(Param->getLocation(),
8317 diag::err_record_with_pointers_kernel_param)
8318 << PT->isUnionType()
8319 << PT;
8320 } else {
8321 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8322 }
8323
8324 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8325 << OrigRecDecl->getDeclName();
8326
8327 // We have an error, now let's go back up through history and show where
8328 // the offending field came from
8329 for (ArrayRef<const FieldDecl *>::const_iterator
8330 I = HistoryStack.begin() + 1,
8331 E = HistoryStack.end();
8332 I != E; ++I) {
8333 const FieldDecl *OuterField = *I;
8334 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8335 << OuterField->getType();
8336 }
8337
8338 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8339 << QT->isPointerType()
8340 << QT;
8341 D.setInvalidType();
8342 return;
8343 }
8344 } while (!VisitStack.empty());
8345}
8346
8347/// Find the DeclContext in which a tag is implicitly declared if we see an
8348/// elaborated type specifier in the specified context, and lookup finds
8349/// nothing.
8350static DeclContext *getTagInjectionContext(DeclContext *DC) {
8351 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8352 DC = DC->getParent();
8353 return DC;
8354}
8355
8356/// Find the Scope in which a tag is implicitly declared if we see an
8357/// elaborated type specifier in the specified context, and lookup finds
8358/// nothing.
8359static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8360 while (S->isClassScope() ||
8361 (LangOpts.CPlusPlus &&
8362 S->isFunctionPrototypeScope()) ||
8363 ((S->getFlags() & Scope::DeclScope) == 0) ||
8364 (S->getEntity() && S->getEntity()->isTransparentContext()))
8365 S = S->getParent();
8366 return S;
8367}
8368
8369NamedDecl*
8370Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8371 TypeSourceInfo *TInfo, LookupResult &Previous,
8372 MultiTemplateParamsArg TemplateParamLists,
8373 bool &AddToScope) {
8374 QualType R = TInfo->getType();
8375
8376 assert(R->isFunctionType())((R->isFunctionType()) ? static_cast<void> (0) : __assert_fail
("R->isFunctionType()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8376, __PRETTY_FUNCTION__))
;
8377
8378 // TODO: consider using NameInfo for diagnostic.
8379 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8380 DeclarationName Name = NameInfo.getName();
8381 StorageClass SC = getFunctionStorageClass(*this, D);
8382
8383 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8384 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8385 diag::err_invalid_thread)
8386 << DeclSpec::getSpecifierName(TSCS);
8387
8388 if (D.isFirstDeclarationOfMember())
8389 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8390 D.getIdentifierLoc());
8391
8392 bool isFriend = false;
8393 FunctionTemplateDecl *FunctionTemplate = nullptr;
8394 bool isMemberSpecialization = false;
8395 bool isFunctionTemplateSpecialization = false;
8396
8397 bool isDependentClassScopeExplicitSpecialization = false;
8398 bool HasExplicitTemplateArgs = false;
8399 TemplateArgumentListInfo TemplateArgs;
8400
8401 bool isVirtualOkay = false;
8402
8403 DeclContext *OriginalDC = DC;
8404 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8405
8406 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8407 isVirtualOkay);
8408 if (!NewFD) return nullptr;
8409
8410 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8411 NewFD->setTopLevelDeclInObjCContainer();
8412
8413 // Set the lexical context. If this is a function-scope declaration, or has a
8414 // C++ scope specifier, or is the object of a friend declaration, the lexical
8415 // context will be different from the semantic context.
8416 NewFD->setLexicalDeclContext(CurContext);
8417
8418 if (IsLocalExternDecl)
8419 NewFD->setLocalExternDecl();
8420
8421 if (getLangOpts().CPlusPlus) {
8422 bool isInline = D.getDeclSpec().isInlineSpecified();
8423 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8424 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8425 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8426 isFriend = D.getDeclSpec().isFriendSpecified();
8427 if (isFriend && !isInline && D.isFunctionDefinition()) {
8428 // C++ [class.friend]p5
8429 // A function can be defined in a friend declaration of a
8430 // class . . . . Such a function is implicitly inline.
8431 NewFD->setImplicitlyInline();
8432 }
8433
8434 // If this is a method defined in an __interface, and is not a constructor
8435 // or an overloaded operator, then set the pure flag (isVirtual will already
8436 // return true).
8437 if (const CXXRecordDecl *Parent =
8438 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8439 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8440 NewFD->setPure(true);
8441
8442 // C++ [class.union]p2
8443 // A union can have member functions, but not virtual functions.
8444 if (isVirtual && Parent->isUnion())
8445 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8446 }
8447
8448 SetNestedNameSpecifier(*this, NewFD, D);
8449 isMemberSpecialization = false;
8450 isFunctionTemplateSpecialization = false;
8451 if (D.isInvalidType())
8452 NewFD->setInvalidDecl();
8453
8454 // Match up the template parameter lists with the scope specifier, then
8455 // determine whether we have a template or a template specialization.
8456 bool Invalid = false;
8457 if (TemplateParameterList *TemplateParams =
8458 MatchTemplateParametersToScopeSpecifier(
8459 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8460 D.getCXXScopeSpec(),
8461 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8462 ? D.getName().TemplateId
8463 : nullptr,
8464 TemplateParamLists, isFriend, isMemberSpecialization,
8465 Invalid)) {
8466 if (TemplateParams->size() > 0) {
8467 // This is a function template
8468
8469 // Check that we can declare a template here.
8470 if (CheckTemplateDeclScope(S, TemplateParams))
8471 NewFD->setInvalidDecl();
8472
8473 // A destructor cannot be a template.
8474 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8475 Diag(NewFD->getLocation(), diag::err_destructor_template);
8476 NewFD->setInvalidDecl();
8477 }
8478
8479 // If we're adding a template to a dependent context, we may need to
8480 // rebuilding some of the types used within the template parameter list,
8481 // now that we know what the current instantiation is.
8482 if (DC->isDependentContext()) {
8483 ContextRAII SavedContext(*this, DC);
8484 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8485 Invalid = true;
8486 }
8487
8488 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8489 NewFD->getLocation(),
8490 Name, TemplateParams,
8491 NewFD);
8492 FunctionTemplate->setLexicalDeclContext(CurContext);
8493 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8494
8495 // For source fidelity, store the other template param lists.
8496 if (TemplateParamLists.size() > 1) {
8497 NewFD->setTemplateParameterListsInfo(Context,
8498 TemplateParamLists.drop_back(1));
8499 }
8500 } else {
8501 // This is a function template specialization.
8502 isFunctionTemplateSpecialization = true;
8503 // For source fidelity, store all the template param lists.
8504 if (TemplateParamLists.size() > 0)
8505 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8506
8507 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8508 if (isFriend) {
8509 // We want to remove the "template<>", found here.
8510 SourceRange RemoveRange = TemplateParams->getSourceRange();
8511
8512 // If we remove the template<> and the name is not a
8513 // template-id, we're actually silently creating a problem:
8514 // the friend declaration will refer to an untemplated decl,
8515 // and clearly the user wants a template specialization. So
8516 // we need to insert '<>' after the name.
8517 SourceLocation InsertLoc;
8518 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8519 InsertLoc = D.getName().getSourceRange().getEnd();
8520 InsertLoc = getLocForEndOfToken(InsertLoc);
8521 }
8522
8523 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8524 << Name << RemoveRange
8525 << FixItHint::CreateRemoval(RemoveRange)
8526 << FixItHint::CreateInsertion(InsertLoc, "<>");
8527 }
8528 }
8529 } else {
8530 // All template param lists were matched against the scope specifier:
8531 // this is NOT (an explicit specialization of) a template.
8532 if (TemplateParamLists.size() > 0)
8533 // For source fidelity, store all the template param lists.
8534 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8535 }
8536
8537 if (Invalid) {
8538 NewFD->setInvalidDecl();
8539 if (FunctionTemplate)
8540 FunctionTemplate->setInvalidDecl();
8541 }
8542
8543 // C++ [dcl.fct.spec]p5:
8544 // The virtual specifier shall only be used in declarations of
8545 // nonstatic class member functions that appear within a
8546 // member-specification of a class declaration; see 10.3.
8547 //
8548 if (isVirtual && !NewFD->isInvalidDecl()) {
8549 if (!isVirtualOkay) {
8550 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8551 diag::err_virtual_non_function);
8552 } else if (!CurContext->isRecord()) {
8553 // 'virtual' was specified outside of the class.
8554 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8555 diag::err_virtual_out_of_class)
8556 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8557 } else if (NewFD->getDescribedFunctionTemplate()) {
8558 // C++ [temp.mem]p3:
8559 // A member function template shall not be virtual.
8560 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8561 diag::err_virtual_member_function_template)
8562 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8563 } else {
8564 // Okay: Add virtual to the method.
8565 NewFD->setVirtualAsWritten(true);
8566 }
8567
8568 if (getLangOpts().CPlusPlus14 &&
8569 NewFD->getReturnType()->isUndeducedType())
8570 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8571 }
8572
8573 if (getLangOpts().CPlusPlus14 &&
8574 (NewFD->isDependentContext() ||
8575 (isFriend && CurContext->isDependentContext())) &&
8576 NewFD->getReturnType()->isUndeducedType()) {
8577 // If the function template is referenced directly (for instance, as a
8578 // member of the current instantiation), pretend it has a dependent type.
8579 // This is not really justified by the standard, but is the only sane
8580 // thing to do.
8581 // FIXME: For a friend function, we have not marked the function as being
8582 // a friend yet, so 'isDependentContext' on the FD doesn't work.
8583 const FunctionProtoType *FPT =
8584 NewFD->getType()->castAs<FunctionProtoType>();
8585 QualType Result =
8586 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8587 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8588 FPT->getExtProtoInfo()));
8589 }
8590
8591 // C++ [dcl.fct.spec]p3:
8592 // The inline specifier shall not appear on a block scope function
8593 // declaration.
8594 if (isInline && !NewFD->isInvalidDecl()) {
8595 if (CurContext->isFunctionOrMethod()) {
8596 // 'inline' is not allowed on block scope function declaration.
8597 Diag(D.getDeclSpec().getInlineSpecLoc(),
8598 diag::err_inline_declaration_block_scope) << Name
8599 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8600 }
8601 }
8602
8603 // C++ [dcl.fct.spec]p6:
8604 // The explicit specifier shall be used only in the declaration of a
8605 // constructor or conversion function within its class definition;
8606 // see 12.3.1 and 12.3.2.
8607 if (hasExplicit && !NewFD->isInvalidDecl() &&
8608 !isa<CXXDeductionGuideDecl>(NewFD)) {
8609 if (!CurContext->isRecord()) {
8610 // 'explicit' was specified outside of the class.
8611 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8612 diag::err_explicit_out_of_class)
8613 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8614 } else if (!isa<CXXConstructorDecl>(NewFD) &&
8615 !isa<CXXConversionDecl>(NewFD)) {
8616 // 'explicit' was specified on a function that wasn't a constructor
8617 // or conversion function.
8618 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8619 diag::err_explicit_non_ctor_or_conv_function)
8620 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8621 }
8622 }
8623
8624 if (isConstexpr) {
8625 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8626 // are implicitly inline.
8627 NewFD->setImplicitlyInline();
8628
8629 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8630 // be either constructors or to return a literal type. Therefore,
8631 // destructors cannot be declared constexpr.
8632 if (isa<CXXDestructorDecl>(NewFD))
8633 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8634 }
8635
8636 // If __module_private__ was specified, mark the function accordingly.
8637 if (D.getDeclSpec().isModulePrivateSpecified()) {
8638 if (isFunctionTemplateSpecialization) {
8639 SourceLocation ModulePrivateLoc
8640 = D.getDeclSpec().getModulePrivateSpecLoc();
8641 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8642 << 0
8643 << FixItHint::CreateRemoval(ModulePrivateLoc);
8644 } else {
8645 NewFD->setModulePrivate();
8646 if (FunctionTemplate)
8647 FunctionTemplate->setModulePrivate();
8648 }
8649 }
8650
8651 if (isFriend) {
8652 if (FunctionTemplate) {
8653 FunctionTemplate->setObjectOfFriendDecl();
8654 FunctionTemplate->setAccess(AS_public);
8655 }
8656 NewFD->setObjectOfFriendDecl();
8657 NewFD->setAccess(AS_public);
8658 }
8659
8660 // If a function is defined as defaulted or deleted, mark it as such now.
8661 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8662 // definition kind to FDK_Definition.
8663 switch (D.getFunctionDefinitionKind()) {
8664 case FDK_Declaration:
8665 case FDK_Definition:
8666 break;
8667
8668 case FDK_Defaulted:
8669 NewFD->setDefaulted();
8670 break;
8671
8672 case FDK_Deleted:
8673 NewFD->setDeletedAsWritten();
8674 break;
8675 }
8676
8677 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8678 D.isFunctionDefinition()) {
8679 // C++ [class.mfct]p2:
8680 // A member function may be defined (8.4) in its class definition, in
8681 // which case it is an inline member function (7.1.2)
8682 NewFD->setImplicitlyInline();
8683 }
8684
8685 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8686 !CurContext->isRecord()) {
8687 // C++ [class.static]p1:
8688 // A data or function member of a class may be declared static
8689 // in a class definition, in which case it is a static member of
8690 // the class.
8691
8692 // Complain about the 'static' specifier if it's on an out-of-line
8693 // member function definition.
8694
8695 // MSVC permits the use of a 'static' storage specifier on an out-of-line
8696 // member function template declaration and class member template
8697 // declaration (MSVC versions before 2015), warn about this.
8698 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8699 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
8700 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
8701 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
8702 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
8703 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8704 }
8705
8706 // C++11 [except.spec]p15:
8707 // A deallocation function with no exception-specification is treated
8708 // as if it were specified with noexcept(true).
8709 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8710 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8711 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8712 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8713 NewFD->setType(Context.getFunctionType(
8714 FPT->getReturnType(), FPT->getParamTypes(),
8715 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8716 }
8717
8718 // Filter out previous declarations that don't match the scope.
8719 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8720 D.getCXXScopeSpec().isNotEmpty() ||
8721 isMemberSpecialization ||
8722 isFunctionTemplateSpecialization);
8723
8724 // Handle GNU asm-label extension (encoded as an attribute).
8725 if (Expr *E = (Expr*) D.getAsmLabel()) {
8726 // The parser guarantees this is a string.
8727 StringLiteral *SE = cast<StringLiteral>(E);
8728 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8729 SE->getString(), 0));
8730 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8731 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8732 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8733 if (I != ExtnameUndeclaredIdentifiers.end()) {
8734 if (isDeclExternC(NewFD)) {
8735 NewFD->addAttr(I->second);
8736 ExtnameUndeclaredIdentifiers.erase(I);
8737 } else
8738 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8739 << /*Variable*/0 << NewFD;
8740 }
8741 }
8742
8743 // Copy the parameter declarations from the declarator D to the function
8744 // declaration NewFD, if they are available. First scavenge them into Params.
8745 SmallVector<ParmVarDecl*, 16> Params;
8746 unsigned FTIIdx;
8747 if (D.isFunctionDeclarator(FTIIdx)) {
8748 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8749
8750 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8751 // function that takes no arguments, not a function that takes a
8752 // single void argument.
8753 // We let through "const void" here because Sema::GetTypeForDeclarator
8754 // already checks for that case.
8755 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8756 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8757 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8758 assert(Param->getDeclContext() != NewFD && "Was set before ?")((Param->getDeclContext() != NewFD && "Was set before ?"
) ? static_cast<void> (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8758, __PRETTY_FUNCTION__))
;
8759 Param->setDeclContext(NewFD);
8760 Params.push_back(Param);
8761
8762 if (Param->isInvalidDecl())
8763 NewFD->setInvalidDecl();
8764 }
8765 }
8766
8767 if (!getLangOpts().CPlusPlus) {
8768 // In C, find all the tag declarations from the prototype and move them
8769 // into the function DeclContext. Remove them from the surrounding tag
8770 // injection context of the function, which is typically but not always
8771 // the TU.
8772 DeclContext *PrototypeTagContext =
8773 getTagInjectionContext(NewFD->getLexicalDeclContext());
8774 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8775 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8776
8777 // We don't want to reparent enumerators. Look at their parent enum
8778 // instead.
8779 if (!TD) {
8780 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8781 TD = cast<EnumDecl>(ECD->getDeclContext());
8782 }
8783 if (!TD)
8784 continue;
8785 DeclContext *TagDC = TD->getLexicalDeclContext();
8786 if (!TagDC->containsDecl(TD))
8787 continue;
8788 TagDC->removeDecl(TD);
8789 TD->setDeclContext(NewFD);
8790 NewFD->addDecl(TD);
8791
8792 // Preserve the lexical DeclContext if it is not the surrounding tag
8793 // injection context of the FD. In this example, the semantic context of
8794 // E will be f and the lexical context will be S, while both the
8795 // semantic and lexical contexts of S will be f:
8796 // void f(struct S { enum E { a } f; } s);
8797 if (TagDC != PrototypeTagContext)
8798 TD->setLexicalDeclContext(TagDC);
8799 }
8800 }
8801 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8802 // When we're declaring a function with a typedef, typeof, etc as in the
8803 // following example, we'll need to synthesize (unnamed)
8804 // parameters for use in the declaration.
8805 //
8806 // @code
8807 // typedef void fn(int);
8808 // fn f;
8809 // @endcode
8810
8811 // Synthesize a parameter for each argument type.
8812 for (const auto &AI : FT->param_types()) {
8813 ParmVarDecl *Param =
8814 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8815 Param->setScopeInfo(0, Params.size());
8816 Params.push_back(Param);
8817 }
8818 } else {
8819 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8820, __PRETTY_FUNCTION__))
8820 "Should not need args for typedef of non-prototype fn")((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8820, __PRETTY_FUNCTION__))
;
8821 }
8822
8823 // Finally, we know we have the right number of parameters, install them.
8824 NewFD->setParams(Params);
8825
8826 if (D.getDeclSpec().isNoreturnSpecified())
8827 NewFD->addAttr(
8828 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8829 Context, 0));
8830
8831 // Functions returning a variably modified type violate C99 6.7.5.2p2
8832 // because all functions have linkage.
8833 if (!NewFD->isInvalidDecl() &&
8834 NewFD->getReturnType()->isVariablyModifiedType()) {
8835 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8836 NewFD->setInvalidDecl();
8837 }
8838
8839 // Apply an implicit SectionAttr if '#pragma clang section text' is active
8840 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8841 !NewFD->hasAttr<SectionAttr>()) {
8842 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8843 PragmaClangTextSection.SectionName,
8844 PragmaClangTextSection.PragmaLocation));
8845 }
8846
8847 // Apply an implicit SectionAttr if #pragma code_seg is active.
8848 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8849 !NewFD->hasAttr<SectionAttr>()) {
8850 NewFD->addAttr(
8851 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8852 CodeSegStack.CurrentValue->getString(),
8853 CodeSegStack.CurrentPragmaLocation));
8854 if (UnifySection(CodeSegStack.CurrentValue->getString(),
8855 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8856 ASTContext::PSF_Read,
8857 NewFD))
8858 NewFD->dropAttr<SectionAttr>();
8859 }
8860
8861 // Apply an implicit CodeSegAttr from class declspec or
8862 // apply an implicit SectionAttr from #pragma code_seg if active.
8863 if (!NewFD->hasAttr<CodeSegAttr>()) {
8864 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8865 D.isFunctionDefinition())) {
8866 NewFD->addAttr(SAttr);
8867 }
8868 }
8869
8870 // Handle attributes.
8871 ProcessDeclAttributes(S, NewFD, D);
8872
8873 if (getLangOpts().OpenCL) {
8874 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8875 // type declaration will generate a compilation error.
8876 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8877 if (AddressSpace != LangAS::Default) {
8878 Diag(NewFD->getLocation(),
8879 diag::err_opencl_return_value_with_address_space);
8880 NewFD->setInvalidDecl();
8881 }
8882 }
8883
8884 if (!getLangOpts().CPlusPlus) {
8885 // Perform semantic checking on the function declaration.
8886 if (!NewFD->isInvalidDecl() && NewFD->isMain())
8887 CheckMain(NewFD, D.getDeclSpec());
8888
8889 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8890 CheckMSVCRTEntryPoint(NewFD);
8891
8892 if (!NewFD->isInvalidDecl())
8893 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8894 isMemberSpecialization));
8895 else if (!Previous.empty())
8896 // Recover gracefully from an invalid redeclaration.
8897 D.setRedeclaration(true);
8898 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8900, __PRETTY_FUNCTION__))
8899 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8900, __PRETTY_FUNCTION__))
8900 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8900, __PRETTY_FUNCTION__))
;
8901
8902 // Diagnose no-prototype function declarations with calling conventions that
8903 // don't support variadic calls. Only do this in C and do it after merging
8904 // possibly prototyped redeclarations.
8905 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8906 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8907 CallingConv CC = FT->getExtInfo().getCC();
8908 if (!supportsVariadicCall(CC)) {
8909 // Windows system headers sometimes accidentally use stdcall without
8910 // (void) parameters, so we relax this to a warning.
8911 int DiagID =
8912 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8913 Diag(NewFD->getLocation(), DiagID)
8914 << FunctionType::getNameForCallConv(CC);
8915 }
8916 }
8917 } else {
8918 // C++11 [replacement.functions]p3:
8919 // The program's definitions shall not be specified as inline.
8920 //
8921 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8922 //
8923 // Suppress the diagnostic if the function is __attribute__((used)), since
8924 // that forces an external definition to be emitted.
8925 if (D.getDeclSpec().isInlineSpecified() &&
8926 NewFD->isReplaceableGlobalAllocationFunction() &&
8927 !NewFD->hasAttr<UsedAttr>())
8928 Diag(D.getDeclSpec().getInlineSpecLoc(),
8929 diag::ext_operator_new_delete_declared_inline)
8930 << NewFD->getDeclName();
8931
8932 // If the declarator is a template-id, translate the parser's template
8933 // argument list into our AST format.
8934 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8935 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8936 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8937 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8938 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8939 TemplateId->NumArgs);
8940 translateTemplateArguments(TemplateArgsPtr,
8941 TemplateArgs);
8942
8943 HasExplicitTemplateArgs = true;
8944
8945 if (NewFD->isInvalidDecl()) {
8946 HasExplicitTemplateArgs = false;
8947 } else if (FunctionTemplate) {
8948 // Function template with explicit template arguments.
8949 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8950 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8951
8952 HasExplicitTemplateArgs = false;
8953 } else {
8954 assert((isFunctionTemplateSpecialization ||(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8956, __PRETTY_FUNCTION__))
8955 D.getDeclSpec().isFriendSpecified()) &&(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8956, __PRETTY_FUNCTION__))
8956 "should have a 'template<>' for this decl")(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8956, __PRETTY_FUNCTION__))
;
8957 // "friend void foo<>(int);" is an implicit specialization decl.
8958 isFunctionTemplateSpecialization = true;
8959 }
8960 } else if (isFriend && isFunctionTemplateSpecialization) {
8961 // This combination is only possible in a recovery case; the user
8962 // wrote something like:
8963 // template <> friend void foo(int);
8964 // which we're recovering from as if the user had written:
8965 // friend void foo<>(int);
8966 // Go ahead and fake up a template id.
8967 HasExplicitTemplateArgs = true;
8968 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8969 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8970 }
8971
8972 // We do not add HD attributes to specializations here because
8973 // they may have different constexpr-ness compared to their
8974 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8975 // may end up with different effective targets. Instead, a
8976 // specialization inherits its target attributes from its template
8977 // in the CheckFunctionTemplateSpecialization() call below.
8978 if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8979 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8980
8981 // If it's a friend (and only if it's a friend), it's possible
8982 // that either the specialized function type or the specialized
8983 // template is dependent, and therefore matching will fail. In
8984 // this case, don't check the specialization yet.
8985 bool InstantiationDependent = false;
8986 if (isFunctionTemplateSpecialization && isFriend &&
8987 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8988 TemplateSpecializationType::anyDependentTemplateArguments(
8989 TemplateArgs,
8990 InstantiationDependent))) {
8991 assert(HasExplicitTemplateArgs &&((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8992, __PRETTY_FUNCTION__))
8992 "friend function specialization without template args")((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 8992, __PRETTY_FUNCTION__))
;
8993 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8994 Previous))
8995 NewFD->setInvalidDecl();
8996 } else if (isFunctionTemplateSpecialization) {
8997 if (CurContext->isDependentContext() && CurContext->isRecord()
8998 && !isFriend) {
8999 isDependentClassScopeExplicitSpecialization = true;
9000 } else if (!NewFD->isInvalidDecl() &&
9001 CheckFunctionTemplateSpecialization(
9002 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9003 Previous))
9004 NewFD->setInvalidDecl();
9005
9006 // C++ [dcl.stc]p1:
9007 // A storage-class-specifier shall not be specified in an explicit
9008 // specialization (14.7.3)
9009 FunctionTemplateSpecializationInfo *Info =
9010 NewFD->getTemplateSpecializationInfo();
9011 if (Info && SC != SC_None) {
9012 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9013 Diag(NewFD->getLocation(),
9014 diag::err_explicit_specialization_inconsistent_storage_class)
9015 << SC
9016 << FixItHint::CreateRemoval(
9017 D.getDeclSpec().getStorageClassSpecLoc());
9018
9019 else
9020 Diag(NewFD->getLocation(),
9021 diag::ext_explicit_specialization_storage_class)
9022 << FixItHint::CreateRemoval(
9023 D.getDeclSpec().getStorageClassSpecLoc());
9024 }
9025 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9026 if (CheckMemberSpecialization(NewFD, Previous))
9027 NewFD->setInvalidDecl();
9028 }
9029
9030 // Perform semantic checking on the function declaration.
9031 if (!isDependentClassScopeExplicitSpecialization) {
9032 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9033 CheckMain(NewFD, D.getDeclSpec());
9034
9035 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9036 CheckMSVCRTEntryPoint(NewFD);
9037
9038 if (!NewFD->isInvalidDecl())
9039 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9040 isMemberSpecialization));
9041 else if (!Previous.empty())
9042 // Recover gracefully from an invalid redeclaration.
9043 D.setRedeclaration(true);
9044 }
9045
9046 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 9048, __PRETTY_FUNCTION__))
9047 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 9048, __PRETTY_FUNCTION__))
9048 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 9048, __PRETTY_FUNCTION__))
;
9049
9050 NamedDecl *PrincipalDecl = (FunctionTemplate
9051 ? cast<NamedDecl>(FunctionTemplate)
9052 : NewFD);
9053
9054 if (isFriend && NewFD->getPreviousDecl()) {
9055 AccessSpecifier Access = AS_public;
9056 if (!NewFD->isInvalidDecl())
9057 Access = NewFD->getPreviousDecl()->getAccess();
9058
9059 NewFD->setAccess(Access);
9060 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9061 }
9062
9063 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9064 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9065 PrincipalDecl->setNonMemberOperator();
9066
9067 // If we have a function template, check the template parameter
9068 // list. This will check and merge default template arguments.
9069 if (FunctionTemplate) {
9070 FunctionTemplateDecl *PrevTemplate =
9071 FunctionTemplate->getPreviousDecl();
9072 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9073 PrevTemplate ? PrevTemplate->getTemplateParameters()
9074 : nullptr,
9075 D.getDeclSpec().isFriendSpecified()
9076 ? (D.isFunctionDefinition()
9077 ? TPC_FriendFunctionTemplateDefinition
9078 : TPC_FriendFunctionTemplate)
9079 : (D.getCXXScopeSpec().isSet() &&
9080 DC && DC->isRecord() &&
9081 DC->isDependentContext())
9082 ? TPC_ClassTemplateMember
9083 : TPC_FunctionTemplate);
9084 }
9085
9086 if (NewFD->isInvalidDecl()) {
9087 // Ignore all the rest of this.
9088 } else if (!D.isRedeclaration()) {
9089 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9090 AddToScope };
9091 // Fake up an access specifier if it's supposed to be a class member.
9092 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9093 NewFD->setAccess(AS_public);
9094
9095 // Qualified decls generally require a previous declaration.
9096 if (D.getCXXScopeSpec().isSet()) {
9097 // ...with the major exception of templated-scope or
9098 // dependent-scope friend declarations.
9099
9100 // TODO: we currently also suppress this check in dependent
9101 // contexts because (1) the parameter depth will be off when
9102 // matching friend templates and (2) we might actually be
9103 // selecting a friend based on a dependent factor. But there
9104 // are situations where these conditions don't apply and we
9105 // can actually do this check immediately.
9106 //
9107 // Unless the scope is dependent, it's always an error if qualified
9108 // redeclaration lookup found nothing at all. Diagnose that now;
9109 // nothing will diagnose that error later.
9110 if (isFriend &&
9111 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9112 (!Previous.empty() && CurContext->isDependentContext()))) {
9113 // ignore these
9114 } else {
9115 // The user tried to provide an out-of-line definition for a
9116 // function that is a member of a class or namespace, but there
9117 // was no such member function declared (C++ [class.mfct]p2,
9118 // C++ [namespace.memdef]p2). For example:
9119 //
9120 // class X {
9121 // void f() const;
9122 // };
9123 //
9124 // void X::f() { } // ill-formed
9125 //
9126 // Complain about this problem, and attempt to suggest close
9127 // matches (e.g., those that differ only in cv-qualifiers and
9128 // whether the parameter types are references).
9129
9130 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9131 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9132 AddToScope = ExtraArgs.AddToScope;
9133 return Result;
9134 }
9135 }
9136
9137 // Unqualified local friend declarations are required to resolve
9138 // to something.
9139 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9140 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9141 *this, Previous, NewFD, ExtraArgs, true, S)) {
9142 AddToScope = ExtraArgs.AddToScope;
9143 return Result;
9144 }
9145 }
9146 } else if (!D.isFunctionDefinition() &&
9147 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9148 !isFriend && !isFunctionTemplateSpecialization &&
9149 !isMemberSpecialization) {
9150 // An out-of-line member function declaration must also be a
9151 // definition (C++ [class.mfct]p2).
9152 // Note that this is not the case for explicit specializations of
9153 // function templates or member functions of class templates, per
9154 // C++ [temp.expl.spec]p2. We also allow these declarations as an
9155 // extension for compatibility with old SWIG code which likes to
9156 // generate them.
9157 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9158 << D.getCXXScopeSpec().getRange();
9159 }
9160 }
9161
9162 ProcessPragmaWeak(S, NewFD);
9163 checkAttributesAfterMerging(*this, *NewFD);
9164
9165 AddKnownFunctionAttributes(NewFD);
9166
9167 if (NewFD->hasAttr<OverloadableAttr>() &&
9168 !NewFD->getType()->getAs<FunctionProtoType>()) {
9169 Diag(NewFD->getLocation(),
9170 diag::err_attribute_overloadable_no_prototype)
9171 << NewFD;
9172
9173 // Turn this into a variadic function with no parameters.
9174 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9175 FunctionProtoType::ExtProtoInfo EPI(
9176 Context.getDefaultCallingConvention(true, false));
9177 EPI.Variadic = true;
9178 EPI.ExtInfo = FT->getExtInfo();
9179
9180 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9181 NewFD->setType(R);
9182 }
9183
9184 // If there's a #pragma GCC visibility in scope, and this isn't a class
9185 // member, set the visibility of this function.
9186 if (!DC->isRecord() && NewFD->isExternallyVisible())
9187 AddPushedVisibilityAttribute(NewFD);
9188
9189 // If there's a #pragma clang arc_cf_code_audited in scope, consider
9190 // marking the function.
9191 AddCFAuditedAttribute(NewFD);
9192
9193 // If this is a function definition, check if we have to apply optnone due to
9194 // a pragma.
9195 if(D.isFunctionDefinition())
9196 AddRangeBasedOptnone(NewFD);
9197
9198 // If this is the first declaration of an extern C variable, update
9199 // the map of such variables.
9200 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9201 isIncompleteDeclExternC(*this, NewFD))
9202 RegisterLocallyScopedExternCDecl(NewFD, S);
9203
9204 // Set this FunctionDecl's range up to the right paren.
9205 NewFD->setRangeEnd(D.getSourceRange().getEnd());
9206
9207 if (D.isRedeclaration() && !Previous.empty()) {
9208 NamedDecl *Prev = Previous.getRepresentativeDecl();
9209 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9210 isMemberSpecialization ||
9211 isFunctionTemplateSpecialization,
9212 D.isFunctionDefinition());
9213 }
9214
9215 if (getLangOpts().CUDA) {
9216 IdentifierInfo *II = NewFD->getIdentifier();
9217 if (II && II->isStr(getCudaConfigureFuncName()) &&
9218 !NewFD->isInvalidDecl() &&
9219 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9220 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9221 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9222 << getCudaConfigureFuncName();
9223 Context.setcudaConfigureCallDecl(NewFD);
9224 }
9225
9226 // Variadic functions, other than a *declaration* of printf, are not allowed
9227 // in device-side CUDA code, unless someone passed
9228 // -fcuda-allow-variadic-functions.
9229 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9230 (NewFD->hasAttr<CUDADeviceAttr>() ||
9231 NewFD->hasAttr<CUDAGlobalAttr>()) &&
9232 !(II && II->isStr("printf") && NewFD->isExternC() &&
9233 !D.isFunctionDefinition())) {
9234 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9235 }
9236 }
9237
9238 MarkUnusedFileScopedDecl(NewFD);
9239
9240
9241
9242 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9243 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9244 if ((getLangOpts().OpenCLVersion >= 120)
9245 && (SC == SC_Static)) {
9246 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9247 D.setInvalidType();
9248 }
9249
9250 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9251 if (!NewFD->getReturnType()->isVoidType()) {
9252 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9253 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9254 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9255 : FixItHint());
9256 D.setInvalidType();
9257 }
9258
9259 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9260 for (auto Param : NewFD->parameters())
9261 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9262
9263 if (getLangOpts().OpenCLCPlusPlus) {
9264 if (DC->isRecord()) {
9265 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9266 D.setInvalidType();
9267 }
9268 if (FunctionTemplate) {
9269 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9270 D.setInvalidType();
9271 }
9272 }
9273 }
9274
9275 if (getLangOpts().CPlusPlus) {
9276 if (FunctionTemplate) {
9277 if (NewFD->isInvalidDecl())
9278 FunctionTemplate->setInvalidDecl();
9279 return FunctionTemplate;
9280 }
9281
9282 if (isMemberSpecialization && !NewFD->isInvalidDecl())
9283 CompleteMemberSpecialization(NewFD, Previous);
9284 }
9285
9286 for (const ParmVarDecl *Param : NewFD->parameters()) {
9287 QualType PT = Param->getType();
9288
9289 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9290 // types.
9291 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9292 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9293 QualType ElemTy = PipeTy->getElementType();
9294 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9295 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9296 D.setInvalidType();
9297 }
9298 }
9299 }
9300 }
9301
9302 // Here we have an function template explicit specialization at class scope.
9303 // The actual specialization will be postponed to template instatiation
9304 // time via the ClassScopeFunctionSpecializationDecl node.
9305 if (isDependentClassScopeExplicitSpecialization) {
9306 ClassScopeFunctionSpecializationDecl *NewSpec =
9307 ClassScopeFunctionSpecializationDecl::Create(
9308 Context, CurContext, NewFD->getLocation(),
9309 cast<CXXMethodDecl>(NewFD),
9310 HasExplicitTemplateArgs, TemplateArgs);
9311 CurContext->addDecl(NewSpec);
9312 AddToScope = false;
9313 }
9314
9315 // Diagnose availability attributes. Availability cannot be used on functions
9316 // that are run during load/unload.
9317 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9318 if (NewFD->hasAttr<ConstructorAttr>()) {
9319 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9320 << 1;
9321 NewFD->dropAttr<AvailabilityAttr>();
9322 }
9323 if (NewFD->hasAttr<DestructorAttr>()) {
9324 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9325 << 2;
9326 NewFD->dropAttr<AvailabilityAttr>();
9327 }
9328 }
9329
9330 return NewFD;
9331}
9332
9333/// Return a CodeSegAttr from a containing class. The Microsoft docs say
9334/// when __declspec(code_seg) "is applied to a class, all member functions of
9335/// the class and nested classes -- this includes compiler-generated special
9336/// member functions -- are put in the specified segment."
9337/// The actual behavior is a little more complicated. The Microsoft compiler
9338/// won't check outer classes if there is an active value from #pragma code_seg.
9339/// The CodeSeg is always applied from the direct parent but only from outer
9340/// classes when the #pragma code_seg stack is empty. See:
9341/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9342/// available since MS has removed the page.
9343static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9344 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9345 if (!Method)
9346 return nullptr;
9347 const CXXRecordDecl *Parent = Method->getParent();
9348 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9349 Attr *NewAttr = SAttr->clone(S.getASTContext());
9350 NewAttr->setImplicit(true);
9351 return NewAttr;
9352 }
9353
9354 // The Microsoft compiler won't check outer classes for the CodeSeg
9355 // when the #pragma code_seg stack is active.
9356 if (S.CodeSegStack.CurrentValue)
9357 return nullptr;
9358
9359 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9360 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9361 Attr *NewAttr = SAttr->clone(S.getASTContext());
9362 NewAttr->setImplicit(true);
9363 return NewAttr;
9364 }
9365 }
9366 return nullptr;
9367}
9368
9369/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9370/// containing class. Otherwise it will return implicit SectionAttr if the
9371/// function is a definition and there is an active value on CodeSegStack
9372/// (from the current #pragma code-seg value).
9373///
9374/// \param FD Function being declared.
9375/// \param IsDefinition Whether it is a definition or just a declarartion.
9376/// \returns A CodeSegAttr or SectionAttr to apply to the function or
9377/// nullptr if no attribute should be added.
9378Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9379 bool IsDefinition) {
9380 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9381 return A;
9382 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9383 CodeSegStack.CurrentValue) {
9384 return SectionAttr::CreateImplicit(getASTContext(),
9385 SectionAttr::Declspec_allocate,
9386 CodeSegStack.CurrentValue->getString(),
9387 CodeSegStack.CurrentPragmaLocation);
9388 }
9389 return nullptr;
9390}
9391
9392/// Determines if we can perform a correct type check for \p D as a
9393/// redeclaration of \p PrevDecl. If not, we can generally still perform a
9394/// best-effort check.
9395///
9396/// \param NewD The new declaration.
9397/// \param OldD The old declaration.
9398/// \param NewT The portion of the type of the new declaration to check.
9399/// \param OldT The portion of the type of the old declaration to check.
9400bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9401 QualType NewT, QualType OldT) {
9402 if (!NewD->getLexicalDeclContext()->isDependentContext())
9403 return true;
9404
9405 // For dependently-typed local extern declarations and friends, we can't
9406 // perform a correct type check in general until instantiation:
9407 //
9408 // int f();
9409 // template<typename T> void g() { T f(); }
9410 //
9411 // (valid if g() is only instantiated with T = int).
9412 if (NewT->isDependentType() &&
9413 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9414 return false;
9415
9416 // Similarly, if the previous declaration was a dependent local extern
9417 // declaration, we don't really know its type yet.
9418 if (OldT->isDependentType() && OldD->isLocalExternDecl())
9419 return false;
9420
9421 return true;
9422}
9423
9424/// Checks if the new declaration declared in dependent context must be
9425/// put in the same redeclaration chain as the specified declaration.
9426///
9427/// \param D Declaration that is checked.
9428/// \param PrevDecl Previous declaration found with proper lookup method for the
9429/// same declaration name.
9430/// \returns True if D must be added to the redeclaration chain which PrevDecl
9431/// belongs to.
9432///
9433bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9434 if (!D->getLexicalDeclContext()->isDependentContext())
9435 return true;
9436
9437 // Don't chain dependent friend function definitions until instantiation, to
9438 // permit cases like
9439 //
9440 // void func();
9441 // template<typename T> class C1 { friend void func() {} };
9442 // template<typename T> class C2 { friend void func() {} };
9443 //
9444 // ... which is valid if only one of C1 and C2 is ever instantiated.
9445 //
9446 // FIXME: This need only apply to function definitions. For now, we proxy
9447 // this by checking for a file-scope function. We do not want this to apply
9448 // to friend declarations nominating member functions, because that gets in
9449 // the way of access checks.
9450 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9451 return false;
9452
9453 auto *VD = dyn_cast<ValueDecl>(D);
9454 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9455 return !VD || !PrevVD ||
9456 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9457 PrevVD->getType());
9458}
9459
9460/// Check the target attribute of the function for MultiVersion
9461/// validity.
9462///
9463/// Returns true if there was an error, false otherwise.
9464static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9465 const auto *TA = FD->getAttr<TargetAttr>();
9466 assert(TA && "MultiVersion Candidate requires a target attribute")((TA && "MultiVersion Candidate requires a target attribute"
) ? static_cast<void> (0) : __assert_fail ("TA && \"MultiVersion Candidate requires a target attribute\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 9466, __PRETTY_FUNCTION__))
;
9467 TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9468 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9469 enum ErrType { Feature = 0, Architecture = 1 };
9470
9471 if (!ParseInfo.Architecture.empty() &&
9472 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9473 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9474 << Architecture << ParseInfo.Architecture;
9475 return true;
9476 }
9477
9478 for (const auto &Feat : ParseInfo.Features) {
9479 auto BareFeat = StringRef{Feat}.substr(1);
9480 if (Feat[0] == '-') {
9481 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9482 << Feature << ("no-" + BareFeat).str();
9483 return true;
9484 }
9485
9486 if (!TargetInfo.validateCpuSupports(BareFeat) ||
9487 !TargetInfo.isValidFeatureName(BareFeat)) {
9488 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9489 << Feature << BareFeat;
9490 return true;
9491 }
9492 }
9493 return false;
9494}
9495
9496static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9497 MultiVersionKind MVType) {
9498 for (const Attr *A : FD->attrs()) {
9499 switch (A->getKind()) {
9500 case attr::CPUDispatch:
9501 case attr::CPUSpecific:
9502 if (MVType != MultiVersionKind::CPUDispatch &&
9503 MVType != MultiVersionKind::CPUSpecific)
9504 return true;
9505 break;
9506 case attr::Target:
9507 if (MVType != MultiVersionKind::Target)
9508 return true;
9509 break;
9510 default:
9511 return true;
9512 }
9513 }
9514 return false;
9515}
9516
9517static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9518 const FunctionDecl *NewFD,
9519 bool CausesMV,
9520 MultiVersionKind MVType) {
9521 enum DoesntSupport {
9522 FuncTemplates = 0,
9523 VirtFuncs = 1,
9524 DeducedReturn = 2,
9525 Constructors = 3,
9526 Destructors = 4,
9527 DeletedFuncs = 5,
9528 DefaultedFuncs = 6,
9529 ConstexprFuncs = 7,
9530 };
9531 enum Different {
9532 CallingConv = 0,
9533 ReturnType = 1,
9534 ConstexprSpec = 2,
9535 InlineSpec = 3,
9536 StorageClass = 4,
9537 Linkage = 5
9538 };
9539
9540 bool IsCPUSpecificCPUDispatchMVType =
9541 MVType == MultiVersionKind::CPUDispatch ||
9542 MVType == MultiVersionKind::CPUSpecific;
9543
9544 if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9545 S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9546 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9547 return true;
9548 }
9549
9550 if (!NewFD->getType()->getAs<FunctionProtoType>())
9551 return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9552
9553 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9554 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9555 if (OldFD)
9556 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9557 return true;
9558 }
9559
9560 // For now, disallow all other attributes. These should be opt-in, but
9561 // an analysis of all of them is a future FIXME.
9562 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9563 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9564 << IsCPUSpecificCPUDispatchMVType;
9565 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9566 return true;
9567 }
9568
9569 if (HasNonMultiVersionAttributes(NewFD, MVType))
9570 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9571 << IsCPUSpecificCPUDispatchMVType;
9572
9573 if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9574 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9575 << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9576
9577 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9578 if (NewCXXFD->isVirtual())
9579 return S.Diag(NewCXXFD->getLocation(),
9580 diag::err_multiversion_doesnt_support)
9581 << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9582
9583 if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9584 return S.Diag(NewCXXCtor->getLocation(),
9585 diag::err_multiversion_doesnt_support)
9586 << IsCPUSpecificCPUDispatchMVType << Constructors;
9587
9588 if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9589 return S.Diag(NewCXXDtor->getLocation(),
9590 diag::err_multiversion_doesnt_support)
9591 << IsCPUSpecificCPUDispatchMVType << Destructors;
9592 }
9593
9594 if (NewFD->isDeleted())
9595 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9596 << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9597
9598 if (NewFD->isDefaulted())
9599 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9600 << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9601
9602 if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9603 MVType == MultiVersionKind::CPUSpecific))
9604 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9605 << IsCPUSpecificCPUDispatchMVType << ConstexprFuncs;
9606
9607 QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9608 const auto *NewType = cast<FunctionType>(NewQType);
9609 QualType NewReturnType = NewType->getReturnType();
9610
9611 if (NewReturnType->isUndeducedType())
9612 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9613 << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9614
9615 // Only allow transition to MultiVersion if it hasn't been used.
9616 if (OldFD && CausesMV && OldFD->isUsed(false))
9617 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9618
9619 // Ensure the return type is identical.
9620 if (OldFD) {
9621 QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9622 const auto *OldType = cast<FunctionType>(OldQType);
9623 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9624 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9625
9626 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9627 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9628 << CallingConv;
9629
9630 QualType OldReturnType = OldType->getReturnType();
9631
9632 if (OldReturnType != NewReturnType)
9633 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9634 << ReturnType;
9635
9636 if (OldFD->isConstexpr() != NewFD->isConstexpr())
9637 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9638 << ConstexprSpec;
9639
9640 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9641 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9642 << InlineSpec;
9643
9644 if (OldFD->getStorageClass() != NewFD->getStorageClass())
9645 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9646 << StorageClass;
9647
9648 if (OldFD->isExternC() != NewFD->isExternC())
9649 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9650 << Linkage;
9651
9652 if (S.CheckEquivalentExceptionSpec(
9653 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9654 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9655 return true;
9656 }
9657 return false;
9658}
9659
9660/// Check the validity of a multiversion function declaration that is the
9661/// first of its kind. Also sets the multiversion'ness' of the function itself.
9662///
9663/// This sets NewFD->isInvalidDecl() to true if there was an error.
9664///
9665/// Returns true if there was an error, false otherwise.
9666static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9667 MultiVersionKind MVType,
9668 const TargetAttr *TA) {
9669 assert(MVType != MultiVersionKind::None &&((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 9670, __PRETTY_FUNCTION__))
9670 "Function lacks multiversion attribute")((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 9670, __PRETTY_FUNCTION__))
;
9671
9672 // Target only causes MV if it is default, otherwise this is a normal
9673 // function.
9674 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9675 return false;
9676
9677 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9678 FD->setInvalidDecl();
9679 return true;
9680 }
9681
9682 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9683 FD->setInvalidDecl();
9684 return true;
9685 }
9686
9687 FD->setIsMultiVersion();
9688 return false;
9689}
9690
9691static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9692 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9693 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9694 return true;
9695 }
9696
9697 return false;
9698}
9699
9700static bool CheckTargetCausesMultiVersioning(
9701 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9702 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9703 LookupResult &Previous) {
9704 const auto *OldTA = OldFD->getAttr<TargetAttr>();
9705 TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9706 // Sort order doesn't matter, it just needs to be consistent.
9707 llvm::sort(NewParsed.Features);
9708
9709 // If the old decl is NOT MultiVersioned yet, and we don't cause that
9710 // to change, this is a simple redeclaration.
9711 if (!NewTA->isDefaultVersion() &&
9712 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9713 return false;
9714
9715 // Otherwise, this decl causes MultiVersioning.
9716 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9717 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9718 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9719 NewFD->setInvalidDecl();
9720 return true;
9721 }
9722
9723 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9724 MultiVersionKind::Target)) {
9725 NewFD->setInvalidDecl();
9726 return true;
9727 }
9728
9729 if (CheckMultiVersionValue(S, NewFD)) {
9730 NewFD->setInvalidDecl();
9731 return true;
9732 }
9733
9734 // If this is 'default', permit the forward declaration.
9735 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9736 Redeclaration = true;
9737 OldDecl = OldFD;
9738 OldFD->setIsMultiVersion();
9739 NewFD->setIsMultiVersion();
9740 return false;
9741 }
9742
9743 if (CheckMultiVersionValue(S, OldFD)) {
9744 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9745 NewFD->setInvalidDecl();
9746 return true;
9747 }
9748
9749 TargetAttr::ParsedTargetAttr OldParsed =
9750 OldTA->parse(std::less<std::string>());
9751
9752 if (OldParsed == NewParsed) {
9753 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9754 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9755 NewFD->setInvalidDecl();
9756 return true;
9757 }
9758
9759 for (const auto *FD : OldFD->redecls()) {
9760 const auto *CurTA = FD->getAttr<TargetAttr>();
9761 // We allow forward declarations before ANY multiversioning attributes, but
9762 // nothing after the fact.
9763 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9764 (!CurTA || CurTA->isInherited())) {
9765 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9766 << 0;
9767 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9768 NewFD->setInvalidDecl();
9769 return true;
9770 }
9771 }
9772
9773 OldFD->setIsMultiVersion();
9774 NewFD->setIsMultiVersion();
9775 Redeclaration = false;
9776 MergeTypeWithPrevious = false;
9777 OldDecl = nullptr;
9778 Previous.clear();
9779 return false;
9780}
9781
9782/// Check the validity of a new function declaration being added to an existing
9783/// multiversioned declaration collection.
9784static bool CheckMultiVersionAdditionalDecl(
9785 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9786 MultiVersionKind NewMVType, const TargetAttr *NewTA,
9787 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9788 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9789 LookupResult &Previous) {
9790
9791 MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9792 // Disallow mixing of multiversioning types.
9793 if ((OldMVType == MultiVersionKind::Target &&
9794 NewMVType != MultiVersionKind::Target) ||
9795 (NewMVType == MultiVersionKind::Target &&
9796 OldMVType != MultiVersionKind::Target)) {
9797 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9798 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9799 NewFD->setInvalidDecl();
9800 return true;
9801 }
9802
9803 TargetAttr::ParsedTargetAttr NewParsed;
9804 if (NewTA) {
9805 NewParsed = NewTA->parse();
9806 llvm::sort(NewParsed.Features);
9807 }
9808
9809 bool UseMemberUsingDeclRules =
9810 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9811
9812 // Next, check ALL non-overloads to see if this is a redeclaration of a
9813 // previous member of the MultiVersion set.
9814 for (NamedDecl *ND : Previous) {
9815 FunctionDecl *CurFD = ND->getAsFunction();
9816 if (!CurFD)
9817 continue;
9818 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9819 continue;
9820
9821 if (NewMVType == MultiVersionKind::Target) {
9822 const auto *CurTA = CurFD->getAttr<TargetAttr>();
9823 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9824 NewFD->setIsMultiVersion();
9825 Redeclaration = true;
9826 OldDecl = ND;
9827 return false;
9828 }
9829
9830 TargetAttr::ParsedTargetAttr CurParsed =
9831 CurTA->parse(std::less<std::string>());
9832 if (CurParsed == NewParsed) {
9833 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9834 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9835 NewFD->setInvalidDecl();
9836 return true;
9837 }
9838 } else {
9839 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9840 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9841 // Handle CPUDispatch/CPUSpecific versions.
9842 // Only 1 CPUDispatch function is allowed, this will make it go through
9843 // the redeclaration errors.
9844 if (NewMVType == MultiVersionKind::CPUDispatch &&
9845 CurFD->hasAttr<CPUDispatchAttr>()) {
9846 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9847 std::equal(
9848 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9849 NewCPUDisp->cpus_begin(),
9850 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9851 return Cur->getName() == New->getName();
9852 })) {
9853 NewFD->setIsMultiVersion();
9854 Redeclaration = true;
9855 OldDecl = ND;
9856 return false;
9857 }
9858
9859 // If the declarations don't match, this is an error condition.
9860 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9861 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9862 NewFD->setInvalidDecl();
9863 return true;
9864 }
9865 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9866
9867 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9868 std::equal(
9869 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9870 NewCPUSpec->cpus_begin(),
9871 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9872 return Cur->getName() == New->getName();
9873 })) {
9874 NewFD->setIsMultiVersion();
9875 Redeclaration = true;
9876 OldDecl = ND;
9877 return false;
9878 }
9879
9880 // Only 1 version of CPUSpecific is allowed for each CPU.
9881 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9882 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9883 if (CurII == NewII) {
9884 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9885 << NewII;
9886 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9887 NewFD->setInvalidDecl();
9888 return true;
9889 }
9890 }
9891 }
9892 }
9893 // If the two decls aren't the same MVType, there is no possible error
9894 // condition.
9895 }
9896 }
9897
9898 // Else, this is simply a non-redecl case. Checking the 'value' is only
9899 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9900 // handled in the attribute adding step.
9901 if (NewMVType == MultiVersionKind::Target &&
9902 CheckMultiVersionValue(S, NewFD)) {
9903 NewFD->setInvalidDecl();
9904 return true;
9905 }
9906
9907 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
9908 !OldFD->isMultiVersion(), NewMVType)) {
9909 NewFD->setInvalidDecl();
9910 return true;
9911 }
9912
9913 // Permit forward declarations in the case where these two are compatible.
9914 if (!OldFD->isMultiVersion()) {
9915 OldFD->setIsMultiVersion();
9916 NewFD->setIsMultiVersion();
9917 Redeclaration = true;
9918 OldDecl = OldFD;
9919 return false;
9920 }
9921
9922 NewFD->setIsMultiVersion();
9923 Redeclaration = false;
9924 MergeTypeWithPrevious = false;
9925 OldDecl = nullptr;
9926 Previous.clear();
9927 return false;
9928}
9929
9930
9931/// Check the validity of a mulitversion function declaration.
9932/// Also sets the multiversion'ness' of the function itself.
9933///
9934/// This sets NewFD->isInvalidDecl() to true if there was an error.
9935///
9936/// Returns true if there was an error, false otherwise.
9937static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9938 bool &Redeclaration, NamedDecl *&OldDecl,
9939 bool &MergeTypeWithPrevious,
9940 LookupResult &Previous) {
9941 const auto *NewTA = NewFD->getAttr<TargetAttr>();
9942 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9943 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9944
9945 // Mixing Multiversioning types is prohibited.
9946 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9947 (NewCPUDisp && NewCPUSpec)) {
9948 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9949 NewFD->setInvalidDecl();
9950 return true;
9951 }
9952
9953 MultiVersionKind MVType = NewFD->getMultiVersionKind();
9954
9955 // Main isn't allowed to become a multiversion function, however it IS
9956 // permitted to have 'main' be marked with the 'target' optimization hint.
9957 if (NewFD->isMain()) {
9958 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
9959 MVType == MultiVersionKind::CPUDispatch ||
9960 MVType == MultiVersionKind::CPUSpecific) {
9961 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9962 NewFD->setInvalidDecl();
9963 return true;
9964 }
9965 return false;
9966 }
9967
9968 if (!OldDecl || !OldDecl->getAsFunction() ||
9969 OldDecl->getDeclContext()->getRedeclContext() !=
9970 NewFD->getDeclContext()->getRedeclContext()) {
9971 // If there's no previous declaration, AND this isn't attempting to cause
9972 // multiversioning, this isn't an error condition.
9973 if (MVType == MultiVersionKind::None)
9974 return false;
9975 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
9976 }
9977
9978 FunctionDecl *OldFD = OldDecl->getAsFunction();
9979
9980 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
9981 return false;
9982
9983 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
9984 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
9985 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
9986 NewFD->setInvalidDecl();
9987 return true;
9988 }
9989
9990 // Handle the target potentially causes multiversioning case.
9991 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
9992 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
9993 Redeclaration, OldDecl,
9994 MergeTypeWithPrevious, Previous);
9995
9996 // At this point, we have a multiversion function decl (in OldFD) AND an
9997 // appropriate attribute in the current function decl. Resolve that these are
9998 // still compatible with previous declarations.
9999 return CheckMultiVersionAdditionalDecl(
10000 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10001 OldDecl, MergeTypeWithPrevious, Previous);
10002}
10003
10004/// Perform semantic checking of a new function declaration.
10005///
10006/// Performs semantic analysis of the new function declaration
10007/// NewFD. This routine performs all semantic checking that does not
10008/// require the actual declarator involved in the declaration, and is
10009/// used both for the declaration of functions as they are parsed
10010/// (called via ActOnDeclarator) and for the declaration of functions
10011/// that have been instantiated via C++ template instantiation (called
10012/// via InstantiateDecl).
10013///
10014/// \param IsMemberSpecialization whether this new function declaration is
10015/// a member specialization (that replaces any definition provided by the
10016/// previous declaration).
10017///
10018/// This sets NewFD->isInvalidDecl() to true if there was an error.
10019///
10020/// \returns true if the function declaration is a redeclaration.
10021bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10022 LookupResult &Previous,
10023 bool IsMemberSpecialization) {
10024 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10025, __PRETTY_FUNCTION__))
10025 "Variably modified return types are not handled here")((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10025, __PRETTY_FUNCTION__))
;
10026
10027 // Determine whether the type of this function should be merged with
10028 // a previous visible declaration. This never happens for functions in C++,
10029 // and always happens in C if the previous declaration was visible.
10030 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10031 !Previous.isShadowed();
10032
10033 bool Redeclaration = false;
10034 NamedDecl *OldDecl = nullptr;
10035 bool MayNeedOverloadableChecks = false;
10036
10037 // Merge or overload the declaration with an existing declaration of
10038 // the same name, if appropriate.
10039 if (!Previous.empty()) {
10040 // Determine whether NewFD is an overload of PrevDecl or
10041 // a declaration that requires merging. If it's an overload,
10042 // there's no more work to do here; we'll just add the new
10043 // function to the scope.
10044 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10045 NamedDecl *Candidate = Previous.getRepresentativeDecl();
10046 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10047 Redeclaration = true;
10048 OldDecl = Candidate;
10049 }
10050 } else {
10051 MayNeedOverloadableChecks = true;
10052 switch (CheckOverload(S, NewFD, Previous, OldDecl,
10053 /*NewIsUsingDecl*/ false)) {
10054 case Ovl_Match:
10055 Redeclaration = true;
10056 break;
10057
10058 case Ovl_NonFunction:
10059 Redeclaration = true;
10060 break;
10061
10062 case Ovl_Overload:
10063 Redeclaration = false;
10064 break;
10065 }
10066 }
10067 }
10068
10069 // Check for a previous extern "C" declaration with this name.
10070 if (!Redeclaration &&
10071 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10072 if (!Previous.empty()) {
10073 // This is an extern "C" declaration with the same name as a previous
10074 // declaration, and thus redeclares that entity...
10075 Redeclaration = true;
10076 OldDecl = Previous.getFoundDecl();
10077 MergeTypeWithPrevious = false;
10078
10079 // ... except in the presence of __attribute__((overloadable)).
10080 if (OldDecl->hasAttr<OverloadableAttr>() ||
10081 NewFD->hasAttr<OverloadableAttr>()) {
10082 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10083 MayNeedOverloadableChecks = true;
10084 Redeclaration = false;
10085 OldDecl = nullptr;
10086 }
10087 }
10088 }
10089 }
10090
10091 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10092 MergeTypeWithPrevious, Previous))
10093 return Redeclaration;
10094
10095 // C++11 [dcl.constexpr]p8:
10096 // A constexpr specifier for a non-static member function that is not
10097 // a constructor declares that member function to be const.
10098 //
10099 // This needs to be delayed until we know whether this is an out-of-line
10100 // definition of a static member function.
10101 //
10102 // This rule is not present in C++1y, so we produce a backwards
10103 // compatibility warning whenever it happens in C++11.
10104 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10105 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10106 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10107 !MD->getMethodQualifiers().hasConst()) {
10108 CXXMethodDecl *OldMD = nullptr;
10109 if (OldDecl)
10110 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10111 if (!OldMD || !OldMD->isStatic()) {
10112 const FunctionProtoType *FPT =
10113 MD->getType()->castAs<FunctionProtoType>();
10114 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10115 EPI.TypeQuals.addConst();
10116 MD->setType(Context.getFunctionType(FPT->getReturnType(),
10117 FPT->getParamTypes(), EPI));
10118
10119 // Warn that we did this, if we're not performing template instantiation.
10120 // In that case, we'll have warned already when the template was defined.
10121 if (!inTemplateInstantiation()) {
10122 SourceLocation AddConstLoc;
10123 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10124 .IgnoreParens().getAs<FunctionTypeLoc>())
10125 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10126
10127 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10128 << FixItHint::CreateInsertion(AddConstLoc, " const");
10129 }
10130 }
10131 }
10132
10133 if (Redeclaration) {
10134 // NewFD and OldDecl represent declarations that need to be
10135 // merged.
10136 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10137 NewFD->setInvalidDecl();
10138 return Redeclaration;
10139 }
10140
10141 Previous.clear();
10142 Previous.addDecl(OldDecl);
10143
10144 if (FunctionTemplateDecl *OldTemplateDecl =
10145 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10146 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10147 FunctionTemplateDecl *NewTemplateDecl
10148 = NewFD->getDescribedFunctionTemplate();
10149 assert(NewTemplateDecl && "Template/non-template mismatch")((NewTemplateDecl && "Template/non-template mismatch"
) ? static_cast<void> (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10149, __PRETTY_FUNCTION__))
;
10150
10151 // The call to MergeFunctionDecl above may have created some state in
10152 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10153 // can add it as a redeclaration.
10154 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10155
10156 NewFD->setPreviousDeclaration(OldFD);
10157 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10158 if (NewFD->isCXXClassMember()) {
10159 NewFD->setAccess(OldTemplateDecl->getAccess());
10160 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10161 }
10162
10163 // If this is an explicit specialization of a member that is a function
10164 // template, mark it as a member specialization.
10165 if (IsMemberSpecialization &&
10166 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10167 NewTemplateDecl->setMemberSpecialization();
10168 assert(OldTemplateDecl->isMemberSpecialization())((OldTemplateDecl->isMemberSpecialization()) ? static_cast
<void> (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10168, __PRETTY_FUNCTION__))
;
10169 // Explicit specializations of a member template do not inherit deleted
10170 // status from the parent member template that they are specializing.
10171 if (OldFD->isDeleted()) {
10172 // FIXME: This assert will not hold in the presence of modules.
10173 assert(OldFD->getCanonicalDecl() == OldFD)((OldFD->getCanonicalDecl() == OldFD) ? static_cast<void
> (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10173, __PRETTY_FUNCTION__))
;
10174 // FIXME: We need an update record for this AST mutation.
10175 OldFD->setDeletedAsWritten(false);
10176 }
10177 }
10178
10179 } else {
10180 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10181 auto *OldFD = cast<FunctionDecl>(OldDecl);
10182 // This needs to happen first so that 'inline' propagates.
10183 NewFD->setPreviousDeclaration(OldFD);
10184 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10185 if (NewFD->isCXXClassMember())
10186 NewFD->setAccess(OldFD->getAccess());
10187 }
10188 }
10189 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10190 !NewFD->getAttr<OverloadableAttr>()) {
10191 assert((Previous.empty() ||(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10196, __PRETTY_FUNCTION__))
10192 llvm::any_of(Previous,(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10196, __PRETTY_FUNCTION__))
10193 [](const NamedDecl *ND) {(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10196, __PRETTY_FUNCTION__))
10194 return ND->hasAttr<OverloadableAttr>();(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10196, __PRETTY_FUNCTION__))
10195 })) &&(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10196, __PRETTY_FUNCTION__))
10196 "Non-redecls shouldn't happen without overloadable present")(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10196, __PRETTY_FUNCTION__))
;
10197
10198 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10199 const auto *FD = dyn_cast<FunctionDecl>(ND);
10200 return FD && !FD->hasAttr<OverloadableAttr>();
10201 });
10202
10203 if (OtherUnmarkedIter != Previous.end()) {
10204 Diag(NewFD->getLocation(),
10205 diag::err_attribute_overloadable_multiple_unmarked_overloads);
10206 Diag((*OtherUnmarkedIter)->getLocation(),
10207 diag::note_attribute_overloadable_prev_overload)
10208 << false;
10209
10210 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10211 }
10212 }
10213
10214 // Semantic checking for this function declaration (in isolation).
10215
10216 if (getLangOpts().CPlusPlus) {
10217 // C++-specific checks.
10218 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10219 CheckConstructor(Constructor);
10220 } else if (CXXDestructorDecl *Destructor =
10221 dyn_cast<CXXDestructorDecl>(NewFD)) {
10222 CXXRecordDecl *Record = Destructor->getParent();
10223 QualType ClassType = Context.getTypeDeclType(Record);
10224
10225 // FIXME: Shouldn't we be able to perform this check even when the class
10226 // type is dependent? Both gcc and edg can handle that.
10227 if (!ClassType->isDependentType()) {
10228 DeclarationName Name
10229 = Context.DeclarationNames.getCXXDestructorName(
10230 Context.getCanonicalType(ClassType));
10231 if (NewFD->getDeclName() != Name) {
10232 Diag(NewFD->getLocation(), diag::err_destructor_name);
10233 NewFD->setInvalidDecl();
10234 return Redeclaration;
10235 }
10236 }
10237 } else if (CXXConversionDecl *Conversion
10238 = dyn_cast<CXXConversionDecl>(NewFD)) {
10239 ActOnConversionDeclarator(Conversion);
10240 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10241 if (auto *TD = Guide->getDescribedFunctionTemplate())
10242 CheckDeductionGuideTemplate(TD);
10243
10244 // A deduction guide is not on the list of entities that can be
10245 // explicitly specialized.
10246 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10247 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10248 << /*explicit specialization*/ 1;
10249 }
10250
10251 // Find any virtual functions that this function overrides.
10252 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10253 if (!Method->isFunctionTemplateSpecialization() &&
10254 !Method->getDescribedFunctionTemplate() &&
10255 Method->isCanonicalDecl()) {
10256 if (AddOverriddenMethods(Method->getParent(), Method)) {
10257 // If the function was marked as "static", we have a problem.
10258 if (NewFD->getStorageClass() == SC_Static) {
10259 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10260 }
10261 }
10262 }
10263
10264 if (Method->isStatic())
10265 checkThisInStaticMemberFunctionType(Method);
10266 }
10267
10268 // Extra checking for C++ overloaded operators (C++ [over.oper]).
10269 if (NewFD->isOverloadedOperator() &&
10270 CheckOverloadedOperatorDeclaration(NewFD)) {
10271 NewFD->setInvalidDecl();
10272 return Redeclaration;
10273 }
10274
10275 // Extra checking for C++0x literal operators (C++0x [over.literal]).
10276 if (NewFD->getLiteralIdentifier() &&
10277 CheckLiteralOperatorDeclaration(NewFD)) {
10278 NewFD->setInvalidDecl();
10279 return Redeclaration;
10280 }
10281
10282 // In C++, check default arguments now that we have merged decls. Unless
10283 // the lexical context is the class, because in this case this is done
10284 // during delayed parsing anyway.
10285 if (!CurContext->isRecord())
10286 CheckCXXDefaultArguments(NewFD);
10287
10288 // If this function declares a builtin function, check the type of this
10289 // declaration against the expected type for the builtin.
10290 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10291 ASTContext::GetBuiltinTypeError Error;
10292 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10293 QualType T = Context.GetBuiltinType(BuiltinID, Error);
10294 // If the type of the builtin differs only in its exception
10295 // specification, that's OK.
10296 // FIXME: If the types do differ in this way, it would be better to
10297 // retain the 'noexcept' form of the type.
10298 if (!T.isNull() &&
10299 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10300 NewFD->getType()))
10301 // The type of this function differs from the type of the builtin,
10302 // so forget about the builtin entirely.
10303 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10304 }
10305
10306 // If this function is declared as being extern "C", then check to see if
10307 // the function returns a UDT (class, struct, or union type) that is not C
10308 // compatible, and if it does, warn the user.
10309 // But, issue any diagnostic on the first declaration only.
10310 if (Previous.empty() && NewFD->isExternC()) {
10311 QualType R = NewFD->getReturnType();
10312 if (R->isIncompleteType() && !R->isVoidType())
10313 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10314 << NewFD << R;
10315 else if (!R.isPODType(Context) && !R->isVoidType() &&
10316 !R->isObjCObjectPointerType())
10317 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10318 }
10319
10320 // C++1z [dcl.fct]p6:
10321 // [...] whether the function has a non-throwing exception-specification
10322 // [is] part of the function type
10323 //
10324 // This results in an ABI break between C++14 and C++17 for functions whose
10325 // declared type includes an exception-specification in a parameter or
10326 // return type. (Exception specifications on the function itself are OK in
10327 // most cases, and exception specifications are not permitted in most other
10328 // contexts where they could make it into a mangling.)
10329 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10330 auto HasNoexcept = [&](QualType T) -> bool {
10331 // Strip off declarator chunks that could be between us and a function
10332 // type. We don't need to look far, exception specifications are very
10333 // restricted prior to C++17.
10334 if (auto *RT = T->getAs<ReferenceType>())
10335 T = RT->getPointeeType();
10336 else if (T->isAnyPointerType())
10337 T = T->getPointeeType();
10338 else if (auto *MPT = T->getAs<MemberPointerType>())
10339 T = MPT->getPointeeType();
10340 if (auto *FPT = T->getAs<FunctionProtoType>())
10341 if (FPT->isNothrow())
10342 return true;
10343 return false;
10344 };
10345
10346 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10347 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10348 for (QualType T : FPT->param_types())
10349 AnyNoexcept |= HasNoexcept(T);
10350 if (AnyNoexcept)
10351 Diag(NewFD->getLocation(),
10352 diag::warn_cxx17_compat_exception_spec_in_signature)
10353 << NewFD;
10354 }
10355
10356 if (!Redeclaration && LangOpts.CUDA)
10357 checkCUDATargetOverload(NewFD, Previous);
10358 }
10359 return Redeclaration;
10360}
10361
10362void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10363 // C++11 [basic.start.main]p3:
10364 // A program that [...] declares main to be inline, static or
10365 // constexpr is ill-formed.
10366 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
10367 // appear in a declaration of main.
10368 // static main is not an error under C99, but we should warn about it.
10369 // We accept _Noreturn main as an extension.
10370 if (FD->getStorageClass() == SC_Static)
10371 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10372 ? diag::err_static_main : diag::warn_static_main)
10373 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10374 if (FD->isInlineSpecified())
10375 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10376 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10377 if (DS.isNoreturnSpecified()) {
10378 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10379 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10380 Diag(NoreturnLoc, diag::ext_noreturn_main);
10381 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10382 << FixItHint::CreateRemoval(NoreturnRange);
10383 }
10384 if (FD->isConstexpr()) {
10385 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10386 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10387 FD->setConstexpr(false);
10388 }
10389
10390 if (getLangOpts().OpenCL) {
10391 Diag(FD->getLocation(), diag::err_opencl_no_main)
10392 << FD->hasAttr<OpenCLKernelAttr>();
10393 FD->setInvalidDecl();
10394 return;
10395 }
10396
10397 QualType T = FD->getType();
10398 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10398, __PRETTY_FUNCTION__))
;
10399 const FunctionType* FT = T->castAs<FunctionType>();
10400
10401 // Set default calling convention for main()
10402 if (FT->getCallConv() != CC_C) {
10403 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10404 FD->setType(QualType(FT, 0));
10405 T = Context.getCanonicalType(FD->getType());
10406 }
10407
10408 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10409 // In C with GNU extensions we allow main() to have non-integer return
10410 // type, but we should warn about the extension, and we disable the
10411 // implicit-return-zero rule.
10412
10413 // GCC in C mode accepts qualified 'int'.
10414 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10415 FD->setHasImplicitReturnZero(true);
10416 else {
10417 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10418 SourceRange RTRange = FD->getReturnTypeSourceRange();
10419 if (RTRange.isValid())
10420 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10421 << FixItHint::CreateReplacement(RTRange, "int");
10422 }
10423 } else {
10424 // In C and C++, main magically returns 0 if you fall off the end;
10425 // set the flag which tells us that.
10426 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10427
10428 // All the standards say that main() should return 'int'.
10429 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10430 FD->setHasImplicitReturnZero(true);
10431 else {
10432 // Otherwise, this is just a flat-out error.
10433 SourceRange RTRange = FD->getReturnTypeSourceRange();
10434 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10435 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10436 : FixItHint());
10437 FD->setInvalidDecl(true);
10438 }
10439 }
10440
10441 // Treat protoless main() as nullary.
10442 if (isa<FunctionNoProtoType>(FT)) return;
10443
10444 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10445 unsigned nparams = FTP->getNumParams();
10446 assert(FD->getNumParams() == nparams)((FD->getNumParams() == nparams) ? static_cast<void>
(0) : __assert_fail ("FD->getNumParams() == nparams", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10446, __PRETTY_FUNCTION__))
;
10447
10448 bool HasExtraParameters = (nparams > 3);
10449
10450 if (FTP->isVariadic()) {
10451 Diag(FD->getLocation(), diag::ext_variadic_main);
10452 // FIXME: if we had information about the location of the ellipsis, we
10453 // could add a FixIt hint to remove it as a parameter.
10454 }
10455
10456 // Darwin passes an undocumented fourth argument of type char**. If
10457 // other platforms start sprouting these, the logic below will start
10458 // getting shifty.
10459 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10460 HasExtraParameters = false;
10461
10462 if (HasExtraParameters) {
10463 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10464 FD->setInvalidDecl(true);
10465 nparams = 3;
10466 }
10467
10468 // FIXME: a lot of the following diagnostics would be improved
10469 // if we had some location information about types.
10470
10471 QualType CharPP =
10472 Context.getPointerType(Context.getPointerType(Context.CharTy));
10473 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10474
10475 for (unsigned i = 0; i < nparams; ++i) {
10476 QualType AT = FTP->getParamType(i);
10477
10478 bool mismatch = true;
10479
10480 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10481 mismatch = false;
10482 else if (Expected[i] == CharPP) {
10483 // As an extension, the following forms are okay:
10484 // char const **
10485 // char const * const *
10486 // char * const *
10487
10488 QualifierCollector qs;
10489 const PointerType* PT;
10490 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10491 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10492 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10493 Context.CharTy)) {
10494 qs.removeConst();
10495 mismatch = !qs.empty();
10496 }
10497 }
10498
10499 if (mismatch) {
10500 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10501 // TODO: suggest replacing given type with expected type
10502 FD->setInvalidDecl(true);
10503 }
10504 }
10505
10506 if (nparams == 1 && !FD->isInvalidDecl()) {
10507 Diag(FD->getLocation(), diag::warn_main_one_arg);
10508 }
10509
10510 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10511 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10512 FD->setInvalidDecl();
10513 }
10514}
10515
10516void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10517 QualType T = FD->getType();
10518 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10518, __PRETTY_FUNCTION__))
;
10519 const FunctionType *FT = T->castAs<FunctionType>();
10520
10521 // Set an implicit return of 'zero' if the function can return some integral,
10522 // enumeration, pointer or nullptr type.
10523 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10524 FT->getReturnType()->isAnyPointerType() ||
10525 FT->getReturnType()->isNullPtrType())
10526 // DllMain is exempt because a return value of zero means it failed.
10527 if (FD->getName() != "DllMain")
10528 FD->setHasImplicitReturnZero(true);
10529
10530 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10531 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10532 FD->setInvalidDecl();
10533 }
10534}
10535
10536bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10537 // FIXME: Need strict checking. In C89, we need to check for
10538 // any assignment, increment, decrement, function-calls, or
10539 // commas outside of a sizeof. In C99, it's the same list,
10540 // except that the aforementioned are allowed in unevaluated
10541 // expressions. Everything else falls under the
10542 // "may accept other forms of constant expressions" exception.
10543 // (We never end up here for C++, so the constant expression
10544 // rules there don't matter.)
10545 const Expr *Culprit;
10546 if (Init->isConstantInitializer(Context, false, &Culprit))
10547 return false;
10548 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10549 << Culprit->getSourceRange();
10550 return true;
10551}
10552
10553namespace {
10554 // Visits an initialization expression to see if OrigDecl is evaluated in
10555 // its own initialization and throws a warning if it does.
10556 class SelfReferenceChecker
10557 : public EvaluatedExprVisitor<SelfReferenceChecker> {
10558 Sema &S;
10559 Decl *OrigDecl;
10560 bool isRecordType;
10561 bool isPODType;
10562 bool isReferenceType;
10563
10564 bool isInitList;
10565 llvm::SmallVector<unsigned, 4> InitFieldIndex;
10566
10567 public:
10568 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10569
10570 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10571 S(S), OrigDecl(OrigDecl) {
10572 isPODType = false;
10573 isRecordType = false;
10574 isReferenceType = false;
10575 isInitList = false;
10576 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10577 isPODType = VD->getType().isPODType(S.Context);
10578 isRecordType = VD->getType()->isRecordType();
10579 isReferenceType = VD->getType()->isReferenceType();
10580 }
10581 }
10582
10583 // For most expressions, just call the visitor. For initializer lists,
10584 // track the index of the field being initialized since fields are
10585 // initialized in order allowing use of previously initialized fields.
10586 void CheckExpr(Expr *E) {
10587 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10588 if (!InitList) {
10589 Visit(E);
10590 return;
10591 }
10592
10593 // Track and increment the index here.
10594 isInitList = true;
10595 InitFieldIndex.push_back(0);
10596 for (auto Child : InitList->children()) {
10597 CheckExpr(cast<Expr>(Child));
10598 ++InitFieldIndex.back();
10599 }
10600 InitFieldIndex.pop_back();
10601 }
10602
10603 // Returns true if MemberExpr is checked and no further checking is needed.
10604 // Returns false if additional checking is required.
10605 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10606 llvm::SmallVector<FieldDecl*, 4> Fields;
10607 Expr *Base = E;
10608 bool ReferenceField = false;
10609
10610 // Get the field members used.
10611 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10612 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10613 if (!FD)
10614 return false;
10615 Fields.push_back(FD);
10616 if (FD->getType()->isReferenceType())
10617 ReferenceField = true;
10618 Base = ME->getBase()->IgnoreParenImpCasts();
10619 }
10620
10621 // Keep checking only if the base Decl is the same.
10622 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10623 if (!DRE || DRE->getDecl() != OrigDecl)
10624 return false;
10625
10626 // A reference field can be bound to an unininitialized field.
10627 if (CheckReference && !ReferenceField)
10628 return true;
10629
10630 // Convert FieldDecls to their index number.
10631 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10632 for (const FieldDecl *I : llvm::reverse(Fields))
10633 UsedFieldIndex.push_back(I->getFieldIndex());
10634
10635 // See if a warning is needed by checking the first difference in index
10636 // numbers. If field being used has index less than the field being
10637 // initialized, then the use is safe.
10638 for (auto UsedIter = UsedFieldIndex.begin(),
10639 UsedEnd = UsedFieldIndex.end(),
10640 OrigIter = InitFieldIndex.begin(),
10641 OrigEnd = InitFieldIndex.end();
10642 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10643 if (*UsedIter < *OrigIter)
10644 return true;
10645 if (*UsedIter > *OrigIter)
10646 break;
10647 }
10648
10649 // TODO: Add a different warning which will print the field names.
10650 HandleDeclRefExpr(DRE);
10651 return true;
10652 }
10653
10654 // For most expressions, the cast is directly above the DeclRefExpr.
10655 // For conditional operators, the cast can be outside the conditional
10656 // operator if both expressions are DeclRefExpr's.
10657 void HandleValue(Expr *E) {
10658 E = E->IgnoreParens();
10659 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10660 HandleDeclRefExpr(DRE);
10661 return;
10662 }
10663
10664 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10665 Visit(CO->getCond());
10666 HandleValue(CO->getTrueExpr());
10667 HandleValue(CO->getFalseExpr());
10668 return;
10669 }
10670
10671 if (BinaryConditionalOperator *BCO =
10672 dyn_cast<BinaryConditionalOperator>(E)) {
10673 Visit(BCO->getCond());
10674 HandleValue(BCO->getFalseExpr());
10675 return;
10676 }
10677
10678 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10679 HandleValue(OVE->getSourceExpr());
10680 return;
10681 }
10682
10683 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10684 if (BO->getOpcode() == BO_Comma) {
10685 Visit(BO->getLHS());
10686 HandleValue(BO->getRHS());
10687 return;
10688 }
10689 }
10690
10691 if (isa<MemberExpr>(E)) {
10692 if (isInitList) {
10693 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10694 false /*CheckReference*/))
10695 return;
10696 }
10697
10698 Expr *Base = E->IgnoreParenImpCasts();
10699 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10700 // Check for static member variables and don't warn on them.
10701 if (!isa<FieldDecl>(ME->getMemberDecl()))
10702 return;
10703 Base = ME->getBase()->IgnoreParenImpCasts();
10704 }
10705 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10706 HandleDeclRefExpr(DRE);
10707 return;
10708 }
10709
10710 Visit(E);
10711 }
10712
10713 // Reference types not handled in HandleValue are handled here since all
10714 // uses of references are bad, not just r-value uses.
10715 void VisitDeclRefExpr(DeclRefExpr *E) {
10716 if (isReferenceType)
10717 HandleDeclRefExpr(E);
10718 }
10719
10720 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10721 if (E->getCastKind() == CK_LValueToRValue) {
10722 HandleValue(E->getSubExpr());
10723 return;
10724 }
10725
10726 Inherited::VisitImplicitCastExpr(E);
10727 }
10728
10729 void VisitMemberExpr(MemberExpr *E) {
10730 if (isInitList) {
10731 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10732 return;
10733 }
10734
10735 // Don't warn on arrays since they can be treated as pointers.
10736 if (E->getType()->canDecayToPointerType()) return;
10737
10738 // Warn when a non-static method call is followed by non-static member
10739 // field accesses, which is followed by a DeclRefExpr.
10740 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10741 bool Warn = (MD && !MD->isStatic());
10742 Expr *Base = E->getBase()->IgnoreParenImpCasts();
10743 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10744 if (!isa<FieldDecl>(ME->getMemberDecl()))
10745 Warn = false;
10746 Base = ME->getBase()->IgnoreParenImpCasts();
10747 }
10748
10749 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10750 if (Warn)
10751 HandleDeclRefExpr(DRE);
10752 return;
10753 }
10754
10755 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10756 // Visit that expression.
10757 Visit(Base);
10758 }
10759
10760 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10761 Expr *Callee = E->getCallee();
10762
10763 if (isa<UnresolvedLookupExpr>(Callee))
10764 return Inherited::VisitCXXOperatorCallExpr(E);
10765
10766 Visit(Callee);
10767 for (auto Arg: E->arguments())
10768 HandleValue(Arg->IgnoreParenImpCasts());
10769 }
10770
10771 void VisitUnaryOperator(UnaryOperator *E) {
10772 // For POD record types, addresses of its own members are well-defined.
10773 if (E->getOpcode() == UO_AddrOf && isRecordType &&
10774 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10775 if (!isPODType)
10776 HandleValue(E->getSubExpr());
10777 return;
10778 }
10779
10780 if (E->isIncrementDecrementOp()) {
10781 HandleValue(E->getSubExpr());
10782 return;
10783 }
10784
10785 Inherited::VisitUnaryOperator(E);
10786 }
10787
10788 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10789
10790 void VisitCXXConstructExpr(CXXConstructExpr *E) {
10791 if (E->getConstructor()->isCopyConstructor()) {
10792 Expr *ArgExpr = E->getArg(0);
10793 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10794 if (ILE->getNumInits() == 1)
10795 ArgExpr = ILE->getInit(0);
10796 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10797 if (ICE->getCastKind() == CK_NoOp)
10798 ArgExpr = ICE->getSubExpr();
10799 HandleValue(ArgExpr);
10800 return;
10801 }
10802 Inherited::VisitCXXConstructExpr(E);
10803 }
10804
10805 void VisitCallExpr(CallExpr *E) {
10806 // Treat std::move as a use.
10807 if (E->isCallToStdMove()) {
10808 HandleValue(E->getArg(0));
10809 return;
10810 }
10811
10812 Inherited::VisitCallExpr(E);
10813 }
10814
10815 void VisitBinaryOperator(BinaryOperator *E) {
10816 if (E->isCompoundAssignmentOp()) {
10817 HandleValue(E->getLHS());
10818 Visit(E->getRHS());
10819 return;
10820 }
10821
10822 Inherited::VisitBinaryOperator(E);
10823 }
10824
10825 // A custom visitor for BinaryConditionalOperator is needed because the
10826 // regular visitor would check the condition and true expression separately
10827 // but both point to the same place giving duplicate diagnostics.
10828 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10829 Visit(E->getCond());
10830 Visit(E->getFalseExpr());
10831 }
10832
10833 void HandleDeclRefExpr(DeclRefExpr *DRE) {
10834 Decl* ReferenceDecl = DRE->getDecl();
10835 if (OrigDecl != ReferenceDecl) return;
10836 unsigned diag;
10837 if (isReferenceType) {
10838 diag = diag::warn_uninit_self_reference_in_reference_init;
10839 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10840 diag = diag::warn_static_self_reference_in_init;
10841 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10842 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10843 DRE->getDecl()->getType()->isRecordType()) {
10844 diag = diag::warn_uninit_self_reference_in_init;
10845 } else {
10846 // Local variables will be handled by the CFG analysis.
10847 return;
10848 }
10849
10850 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10851 S.PDiag(diag)
10852 << DRE->getDecl() << OrigDecl->getLocation()
10853 << DRE->getSourceRange());
10854 }
10855 };
10856
10857 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10858 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10859 bool DirectInit) {
10860 // Parameters arguments are occassionially constructed with itself,
10861 // for instance, in recursive functions. Skip them.
10862 if (isa<ParmVarDecl>(OrigDecl))
10863 return;
10864
10865 E = E->IgnoreParens();
10866
10867 // Skip checking T a = a where T is not a record or reference type.
10868 // Doing so is a way to silence uninitialized warnings.
10869 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10870 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10871 if (ICE->getCastKind() == CK_LValueToRValue)
10872 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10873 if (DRE->getDecl() == OrigDecl)
10874 return;
10875
10876 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10877 }
10878} // end anonymous namespace
10879
10880namespace {
10881 // Simple wrapper to add the name of a variable or (if no variable is
10882 // available) a DeclarationName into a diagnostic.
10883 struct VarDeclOrName {
10884 VarDecl *VDecl;
10885 DeclarationName Name;
10886
10887 friend const Sema::SemaDiagnosticBuilder &
10888 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10889 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10890 }
10891 };
10892} // end anonymous namespace
10893
10894QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10895 DeclarationName Name, QualType Type,
10896 TypeSourceInfo *TSI,
10897 SourceRange Range, bool DirectInit,
10898 Expr *Init) {
10899 bool IsInitCapture = !VDecl;
10900 assert((!VDecl || !VDecl->isInitCapture()) &&(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10901, __PRETTY_FUNCTION__))
10901 "init captures are expected to be deduced prior to initialization")(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10901, __PRETTY_FUNCTION__))
;
10902
10903 VarDeclOrName VN{VDecl, Name};
10904
10905 DeducedType *Deduced = Type->getContainedDeducedType();
10906 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")((Deduced && "deduceVarTypeFromInitializer for non-deduced type"
) ? static_cast<void> (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10906, __PRETTY_FUNCTION__))
;
10907
10908 // C++11 [dcl.spec.auto]p3
10909 if (!Init) {
10910 assert(VDecl && "no init for init capture deduction?")((VDecl && "no init for init capture deduction?") ? static_cast
<void> (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10910, __PRETTY_FUNCTION__))
;
10911
10912 // Except for class argument deduction, and then for an initializing
10913 // declaration only, i.e. no static at class scope or extern.
10914 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10915 VDecl->hasExternalStorage() ||
10916 VDecl->isStaticDataMember()) {
10917 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10918 << VDecl->getDeclName() << Type;
10919 return QualType();
10920 }
10921 }
10922
10923 ArrayRef<Expr*> DeduceInits;
10924 if (Init)
10925 DeduceInits = Init;
10926
10927 if (DirectInit) {
10928 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10929 DeduceInits = PL->exprs();
10930 }
10931
10932 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10933 assert(VDecl && "non-auto type for init capture deduction?")((VDecl && "non-auto type for init capture deduction?"
) ? static_cast<void> (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 10933, __PRETTY_FUNCTION__))
;
10934 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10935 InitializationKind Kind = InitializationKind::CreateForInit(
10936 VDecl->getLocation(), DirectInit, Init);
10937 // FIXME: Initialization should not be taking a mutable list of inits.
10938 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10939 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10940 InitsCopy);
10941 }
10942
10943 if (DirectInit) {
10944 if (auto *IL = dyn_cast<InitListExpr>(Init))
10945 DeduceInits = IL->inits();
10946 }
10947
10948 // Deduction only works if we have exactly one source expression.
10949 if (DeduceInits.empty()) {
10950 // It isn't possible to write this directly, but it is possible to
10951 // end up in this situation with "auto x(some_pack...);"
10952 Diag(Init->getBeginLoc(), IsInitCapture
10953 ? diag::err_init_capture_no_expression
10954 : diag::err_auto_var_init_no_expression)
10955 << VN << Type << Range;
10956 return QualType();
10957 }
10958
10959 if (DeduceInits.size() > 1) {
10960 Diag(DeduceInits[1]->getBeginLoc(),
10961 IsInitCapture ? diag::err_init_capture_multiple_expressions
10962 : diag::err_auto_var_init_multiple_expressions)
10963 << VN << Type << Range;
10964 return QualType();
10965 }
10966
10967 Expr *DeduceInit = DeduceInits[0];
10968 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10969 Diag(Init->getBeginLoc(), IsInitCapture
10970 ? diag::err_init_capture_paren_braces
10971 : diag::err_auto_var_init_paren_braces)
10972 << isa<InitListExpr>(Init) << VN << Type << Range;
10973 return QualType();
10974 }
10975
10976 // Expressions default to 'id' when we're in a debugger.
10977 bool DefaultedAnyToId = false;
10978 if (getLangOpts().DebuggerCastResultToId &&
10979 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10980 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10981 if (Result.isInvalid()) {
10982 return QualType();
10983 }
10984 Init = Result.get();
10985 DefaultedAnyToId = true;
10986 }
10987
10988 // C++ [dcl.decomp]p1:
10989 // If the assignment-expression [...] has array type A and no ref-qualifier
10990 // is present, e has type cv A
10991 if (VDecl && isa<DecompositionDecl>(VDecl) &&
10992 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10993 DeduceInit->getType()->isConstantArrayType())
10994 return Context.getQualifiedType(DeduceInit->getType(),
10995 Type.getQualifiers());
10996
10997 QualType DeducedType;
10998 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10999 if (!IsInitCapture)
11000 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11001 else if (isa<InitListExpr>(Init))
11002 Diag(Range.getBegin(),
11003 diag::err_init_capture_deduction_failure_from_init_list)
11004 << VN
11005 << (DeduceInit->getType().isNull() ? TSI->getType()
11006 : DeduceInit->getType())
11007 << DeduceInit->getSourceRange();
11008 else
11009 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11010 << VN << TSI->getType()
11011 << (DeduceInit->getType().isNull() ? TSI->getType()
11012 : DeduceInit->getType())
11013 << DeduceInit->getSourceRange();
11014 }
11015
11016 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11017 // 'id' instead of a specific object type prevents most of our usual
11018 // checks.
11019 // We only want to warn outside of template instantiations, though:
11020 // inside a template, the 'id' could have come from a parameter.
11021 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11022 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11023 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11024 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11025 }
11026
11027 return DeducedType;
11028}
11029
11030bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11031 Expr *Init) {
11032 QualType DeducedType = deduceVarTypeFromInitializer(
11033 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11034 VDecl->getSourceRange(), DirectInit, Init);
11035 if (DeducedType.isNull()) {
11036 VDecl->setInvalidDecl();
11037 return true;
11038 }
11039
11040 VDecl->setType(DeducedType);
11041 assert(VDecl->isLinkageValid())((VDecl->isLinkageValid()) ? static_cast<void> (0) :
__assert_fail ("VDecl->isLinkageValid()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 11041, __PRETTY_FUNCTION__))
;
11042
11043 // In ARC, infer lifetime.
11044 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11045 VDecl->setInvalidDecl();
11046
11047 // If this is a redeclaration, check that the type we just deduced matches
11048 // the previously declared type.
11049 if (VarDecl *Old = VDecl->getPreviousDecl()) {
11050 // We never need to merge the type, because we cannot form an incomplete
11051 // array of auto, nor deduce such a type.
11052 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11053 }
11054
11055 // Check the deduced type is valid for a variable declaration.
11056 CheckVariableDeclarationType(VDecl);
11057 return VDecl->isInvalidDecl();
11058}
11059
11060/// AddInitializerToDecl - Adds the initializer Init to the
11061/// declaration dcl. If DirectInit is true, this is C++ direct
11062/// initialization rather than copy initialization.
11063void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11064 // If there is no declaration, there was an error parsing it. Just ignore
11065 // the initializer.
11066 if (!RealDecl || RealDecl->isInvalidDecl()) {
11067 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11068 return;
11069 }
11070
11071 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11072 // Pure-specifiers are handled in ActOnPureSpecifier.
11073 Diag(Method->getLocation(), diag::err_member_function_initialization)
11074 << Method->getDeclName() << Init->getSourceRange();
11075 Method->setInvalidDecl();
11076 return;
11077 }
11078
11079 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11080 if (!VDecl) {
11081 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")((!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 11081, __PRETTY_FUNCTION__))
;
11082 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11083 RealDecl->setInvalidDecl();
11084 return;
11085 }
11086
11087 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11088 if (VDecl->getType()->isUndeducedType()) {
11089 // Attempt typo correction early so that the type of the init expression can
11090 // be deduced based on the chosen correction if the original init contains a
11091 // TypoExpr.
11092 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11093 if (!Res.isUsable()) {
11094 RealDecl->setInvalidDecl();
11095 return;
11096 }
11097 Init = Res.get();
11098
11099 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11100 return;
11101 }
11102
11103 // dllimport cannot be used on variable definitions.
11104 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11105 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11106 VDecl->setInvalidDecl();
11107 return;
11108 }
11109
11110 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11111 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11112 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11113 VDecl->setInvalidDecl();
11114 return;
11115 }
11116
11117 if (!VDecl->getType()->isDependentType()) {
11118 // A definition must end up with a complete type, which means it must be
11119 // complete with the restriction that an array type might be completed by
11120 // the initializer; note that later code assumes this restriction.
11121 QualType BaseDeclType = VDecl->getType();
11122 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11123 BaseDeclType = Array->getElementType();
11124 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11125 diag::err_typecheck_decl_incomplete_type)) {
11126 RealDecl->setInvalidDecl();
11127 return;
11128 }
11129
11130 // The variable can not have an abstract class type.
11131 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11132 diag::err_abstract_type_in_decl,
11133 AbstractVariableType))
11134 VDecl->setInvalidDecl();
11135 }
11136
11137 // If adding the initializer will turn this declaration into a definition,
11138 // and we already have a definition for this variable, diagnose or otherwise
11139 // handle the situation.
11140 VarDecl *Def;
11141 if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11142 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11143 !VDecl->isThisDeclarationADemotedDefinition() &&
11144 checkVarDeclRedefinition(Def, VDecl))
11145 return;
11146
11147 if (getLangOpts().CPlusPlus) {
11148 // C++ [class.static.data]p4
11149 // If a static data member is of const integral or const
11150 // enumeration type, its declaration in the class definition can
11151 // specify a constant-initializer which shall be an integral
11152 // constant expression (5.19). In that case, the member can appear
11153 // in integral constant expressions. The member shall still be
11154 // defined in a namespace scope if it is used in the program and the
11155 // namespace scope definition shall not contain an initializer.
11156 //
11157 // We already performed a redefinition check above, but for static
11158 // data members we also need to check whether there was an in-class
11159 // declaration with an initializer.
11160 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11161 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11162 << VDecl->getDeclName();
11163 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11164 diag::note_previous_initializer)
11165 << 0;
11166 return;
11167 }
11168
11169 if (VDecl->hasLocalStorage())
11170 setFunctionHasBranchProtectedScope();
11171
11172 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11173 VDecl->setInvalidDecl();
11174 return;
11175 }
11176 }
11177
11178 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11179 // a kernel function cannot be initialized."
11180 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11181 Diag(VDecl->getLocation(), diag::err_local_cant_init);
11182 VDecl->setInvalidDecl();
11183 return;
11184 }
11185
11186 // Get the decls type and save a reference for later, since
11187 // CheckInitializerTypes may change it.
11188 QualType DclT = VDecl->getType(), SavT = DclT;
11189
11190 // Expressions default to 'id' when we're in a debugger
11191 // and we are assigning it to a variable of Objective-C pointer type.
11192 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11193 Init->getType() == Context.UnknownAnyTy) {
11194 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11195 if (Result.isInvalid()) {
11196 VDecl->setInvalidDecl();
11197 return;
11198 }
11199 Init = Result.get();
11200 }
11201
11202 // Perform the initialization.
11203 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11204 if (!VDecl->isInvalidDecl()) {
11205 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11206 InitializationKind Kind = InitializationKind::CreateForInit(
11207 VDecl->getLocation(), DirectInit, Init);
11208
11209 MultiExprArg Args = Init;
11210 if (CXXDirectInit)
11211 Args = MultiExprArg(CXXDirectInit->getExprs(),
11212 CXXDirectInit->getNumExprs());
11213
11214 // Try to correct any TypoExprs in the initialization arguments.
11215 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11216 ExprResult Res = CorrectDelayedTyposInExpr(
11217 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11218 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11219 return Init.Failed() ? ExprError() : E;
11220 });
11221 if (Res.isInvalid()) {
11222 VDecl->setInvalidDecl();
11223 } else if (Res.get() != Args[Idx]) {
11224 Args[Idx] = Res.get();
11225 }
11226 }
11227 if (VDecl->isInvalidDecl())
11228 return;
11229
11230 InitializationSequence InitSeq(*this, Entity, Kind, Args,
11231 /*TopLevelOfInitList=*/false,
11232 /*TreatUnavailableAsInvalid=*/false);
11233 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11234 if (Result.isInvalid()) {
11235 VDecl->setInvalidDecl();
11236 return;
11237 }
11238
11239 Init = Result.getAs<Expr>();
11240 }
11241
11242 // Check for self-references within variable initializers.
11243 // Variables declared within a function/method body (except for references)
11244 // are handled by a dataflow analysis.
11245 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11246 VDecl->getType()->isReferenceType()) {
11247 CheckSelfReference(*this, RealDecl, Init, DirectInit);
11248 }
11249
11250 // If the type changed, it means we had an incomplete type that was
11251 // completed by the initializer. For example:
11252 // int ary[] = { 1, 3, 5 };
11253 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11254 if (!VDecl->isInvalidDecl() && (DclT != SavT))
11255 VDecl->setType(DclT);
11256
11257 if (!VDecl->isInvalidDecl()) {
11258 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11259
11260 if (VDecl->hasAttr<BlocksAttr>())
11261 checkRetainCycles(VDecl, Init);
11262
11263 // It is safe to assign a weak reference into a strong variable.
11264 // Although this code can still have problems:
11265 // id x = self.weakProp;
11266 // id y = self.weakProp;
11267 // we do not warn to warn spuriously when 'x' and 'y' are on separate
11268 // paths through the function. This should be revisited if
11269 // -Wrepeated-use-of-weak is made flow-sensitive.
11270 if (FunctionScopeInfo *FSI = getCurFunction())
11271 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11272 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11273 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11274 Init->getBeginLoc()))
11275 FSI->markSafeWeakUse(Init);
11276 }
11277
11278 // The initialization is usually a full-expression.
11279 //
11280 // FIXME: If this is a braced initialization of an aggregate, it is not
11281 // an expression, and each individual field initializer is a separate
11282 // full-expression. For instance, in:
11283 //
11284 // struct Temp { ~Temp(); };
11285 // struct S { S(Temp); };
11286 // struct T { S a, b; } t = { Temp(), Temp() }
11287 //
11288 // we should destroy the first Temp before constructing the second.
11289 ExprResult Result =
11290 ActOnFinishFullExpr(Init, VDecl->getLocation(),
11291 /*DiscardedValue*/ false, VDecl->isConstexpr());
11292 if (Result.isInvalid()) {
11293 VDecl->setInvalidDecl();
11294 return;
11295 }
11296 Init = Result.get();
11297
11298 // Attach the initializer to the decl.
11299 VDecl->setInit(Init);
11300
11301 if (VDecl->isLocalVarDecl()) {
11302 // Don't check the initializer if the declaration is malformed.
11303 if (VDecl->isInvalidDecl()) {
11304 // do nothing
11305
11306 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11307 // This is true even in OpenCL C++.
11308 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11309 CheckForConstantInitializer(Init, DclT);
11310
11311 // Otherwise, C++ does not restrict the initializer.
11312 } else if (getLangOpts().CPlusPlus) {
11313 // do nothing
11314
11315 // C99 6.7.8p4: All the expressions in an initializer for an object that has
11316 // static storage duration shall be constant expressions or string literals.
11317 } else if (VDecl->getStorageClass() == SC_Static) {
11318 CheckForConstantInitializer(Init, DclT);
11319
11320 // C89 is stricter than C99 for aggregate initializers.
11321 // C89 6.5.7p3: All the expressions [...] in an initializer list
11322 // for an object that has aggregate or union type shall be
11323 // constant expressions.
11324 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11325 isa<InitListExpr>(Init)) {
11326 const Expr *Culprit;
11327 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11328 Diag(Culprit->getExprLoc(),
11329 diag::ext_aggregate_init_not_constant)
11330 << Culprit->getSourceRange();
11331 }
11332 }
11333
11334 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
11335 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
11336 if (VDecl->hasLocalStorage())
11337 BE->getBlockDecl()->setCanAvoidCopyToHeap();
11338 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11339 VDecl->getLexicalDeclContext()->isRecord()) {
11340 // This is an in-class initialization for a static data member, e.g.,
11341 //
11342 // struct S {
11343 // static const int value = 17;
11344 // };
11345
11346 // C++ [class.mem]p4:
11347 // A member-declarator can contain a constant-initializer only
11348 // if it declares a static member (9.4) of const integral or
11349 // const enumeration type, see 9.4.2.
11350 //
11351 // C++11 [class.static.data]p3:
11352 // If a non-volatile non-inline const static data member is of integral
11353 // or enumeration type, its declaration in the class definition can
11354 // specify a brace-or-equal-initializer in which every initializer-clause
11355 // that is an assignment-expression is a constant expression. A static
11356 // data member of literal type can be declared in the class definition
11357 // with the constexpr specifier; if so, its declaration shall specify a
11358 // brace-or-equal-initializer in which every initializer-clause that is
11359 // an assignment-expression is a constant expression.
11360
11361 // Do nothing on dependent types.
11362 if (DclT->isDependentType()) {
11363
11364 // Allow any 'static constexpr' members, whether or not they are of literal
11365 // type. We separately check that every constexpr variable is of literal
11366 // type.
11367 } else if (VDecl->isConstexpr()) {
11368
11369 // Require constness.
11370 } else if (!DclT.isConstQualified()) {
11371 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11372 << Init->getSourceRange();
11373 VDecl->setInvalidDecl();
11374
11375 // We allow integer constant expressions in all cases.
11376 } else if (DclT->isIntegralOrEnumerationType()) {
11377 // Check whether the expression is a constant expression.
11378 SourceLocation Loc;
11379 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11380 // In C++11, a non-constexpr const static data member with an
11381 // in-class initializer cannot be volatile.
11382 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11383 else if (Init->isValueDependent())
11384 ; // Nothing to check.
11385 else if (Init->isIntegerConstantExpr(Context, &Loc))
11386 ; // Ok, it's an ICE!
11387 else if (Init->getType()->isScopedEnumeralType() &&
11388 Init->isCXX11ConstantExpr(Context))
11389 ; // Ok, it is a scoped-enum constant expression.
11390 else if (Init->isEvaluatable(Context)) {
11391 // If we can constant fold the initializer through heroics, accept it,
11392 // but report this as a use of an extension for -pedantic.
11393 Diag(Loc, diag::ext_in_class_initializer_non_constant)
11394 << Init->getSourceRange();
11395 } else {
11396 // Otherwise, this is some crazy unknown case. Report the issue at the
11397 // location provided by the isIntegerConstantExpr failed check.
11398 Diag(Loc, diag::err_in_class_initializer_non_constant)
11399 << Init->getSourceRange();
11400 VDecl->setInvalidDecl();
11401 }
11402
11403 // We allow foldable floating-point constants as an extension.
11404 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11405 // In C++98, this is a GNU extension. In C++11, it is not, but we support
11406 // it anyway and provide a fixit to add the 'constexpr'.
11407 if (getLangOpts().CPlusPlus11) {
11408 Diag(VDecl->getLocation(),
11409 diag::ext_in_class_initializer_float_type_cxx11)
11410 << DclT << Init->getSourceRange();
11411 Diag(VDecl->getBeginLoc(),
11412 diag::note_in_class_initializer_float_type_cxx11)
11413 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11414 } else {
11415 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11416 << DclT << Init->getSourceRange();
11417
11418 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11419 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11420 << Init->getSourceRange();
11421 VDecl->setInvalidDecl();
11422 }
11423 }
11424
11425 // Suggest adding 'constexpr' in C++11 for literal types.
11426 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11427 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11428 << DclT << Init->getSourceRange()
11429 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11430 VDecl->setConstexpr(true);
11431
11432 } else {
11433 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11434 << DclT << Init->getSourceRange();
11435 VDecl->setInvalidDecl();
11436 }
11437 } else if (VDecl->isFileVarDecl()) {
11438 // In C, extern is typically used to avoid tentative definitions when
11439 // declaring variables in headers, but adding an intializer makes it a
11440 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11441 // In C++, extern is often used to give implictly static const variables
11442 // external linkage, so don't warn in that case. If selectany is present,
11443 // this might be header code intended for C and C++ inclusion, so apply the
11444 // C++ rules.
11445 if (VDecl->getStorageClass() == SC_Extern &&
11446 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11447 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11448 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11449 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11450 Diag(VDecl->getLocation(), diag::warn_extern_init);
11451
11452 // In Microsoft C++ mode, a const variable defined in namespace scope has
11453 // external linkage by default if the variable is declared with
11454 // __declspec(dllexport).
11455 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11456 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
11457 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
11458 VDecl->setStorageClass(SC_Extern);
11459
11460 // C99 6.7.8p4. All file scoped initializers need to be constant.
11461 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11462 CheckForConstantInitializer(Init, DclT);
11463 }
11464
11465 // We will represent direct-initialization similarly to copy-initialization:
11466 // int x(1); -as-> int x = 1;
11467 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11468 //
11469 // Clients that want to distinguish between the two forms, can check for
11470 // direct initializer using VarDecl::getInitStyle().
11471 // A major benefit is that clients that don't particularly care about which
11472 // exactly form was it (like the CodeGen) can handle both cases without
11473 // special case code.
11474
11475 // C++ 8.5p11:
11476 // The form of initialization (using parentheses or '=') is generally
11477 // insignificant, but does matter when the entity being initialized has a
11478 // class type.
11479 if (CXXDirectInit) {
11480 assert(DirectInit && "Call-style initializer must be direct init.")((DirectInit && "Call-style initializer must be direct init."
) ? static_cast<void> (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 11480, __PRETTY_FUNCTION__))
;
11481 VDecl->setInitStyle(VarDecl::CallInit);
11482 } else if (DirectInit) {
11483 // This must be list-initialization. No other way is direct-initialization.
11484 VDecl->setInitStyle(VarDecl::ListInit);
11485 }
11486
11487 CheckCompleteVariableDeclaration(VDecl);
11488}
11489
11490/// ActOnInitializerError - Given that there was an error parsing an
11491/// initializer for the given declaration, try to return to some form
11492/// of sanity.
11493void Sema::ActOnInitializerError(Decl *D) {
11494 // Our main concern here is re-establishing invariants like "a
11495 // variable's type is either dependent or complete".
11496 if (!D || D->isInvalidDecl()) return;
11497
11498 VarDecl *VD = dyn_cast<VarDecl>(D);
11499 if (!VD) return;
11500
11501 // Bindings are not usable if we can't make sense of the initializer.
11502 if (auto *DD = dyn_cast<DecompositionDecl>(D))
11503 for (auto *BD : DD->bindings())
11504 BD->setInvalidDecl();
11505
11506 // Auto types are meaningless if we can't make sense of the initializer.
11507 if (ParsingInitForAutoVars.count(D)) {
11508 D->setInvalidDecl();
11509 return;
11510 }
11511
11512 QualType Ty = VD->getType();
11513 if (Ty->isDependentType()) return;
11514
11515 // Require a complete type.
11516 if (RequireCompleteType(VD->getLocation(),
11517 Context.getBaseElementType(Ty),
11518 diag::err_typecheck_decl_incomplete_type)) {
11519 VD->setInvalidDecl();
11520 return;
11521 }
11522
11523 // Require a non-abstract type.
11524 if (RequireNonAbstractType(VD->getLocation(), Ty,
11525 diag::err_abstract_type_in_decl,
11526 AbstractVariableType)) {
11527 VD->setInvalidDecl();
11528 return;
11529 }
11530
11531 // Don't bother complaining about constructors or destructors,
11532 // though.
11533}
11534
11535void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11536 // If there is no declaration, there was an error parsing it. Just ignore it.
11537 if (!RealDecl)
11538 return;
11539
11540 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11541 QualType Type = Var->getType();
11542
11543 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11544 if (isa<DecompositionDecl>(RealDecl)) {
11545 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11546 Var->setInvalidDecl();
11547 return;
11548 }
11549
11550 if (Type->isUndeducedType() &&
11551 DeduceVariableDeclarationType(Var, false, nullptr))
11552 return;
11553
11554 // C++11 [class.static.data]p3: A static data member can be declared with
11555 // the constexpr specifier; if so, its declaration shall specify
11556 // a brace-or-equal-initializer.
11557 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11558 // the definition of a variable [...] or the declaration of a static data
11559 // member.
11560 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11561 !Var->isThisDeclarationADemotedDefinition()) {
11562 if (Var->isStaticDataMember()) {
11563 // C++1z removes the relevant rule; the in-class declaration is always
11564 // a definition there.
11565 if (!getLangOpts().CPlusPlus17) {
11566 Diag(Var->getLocation(),
11567 diag::err_constexpr_static_mem_var_requires_init)
11568 << Var->getDeclName();
11569 Var->setInvalidDecl();
11570 return;
11571 }
11572 } else {
11573 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11574 Var->setInvalidDecl();
11575 return;
11576 }
11577 }
11578
11579 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11580 // be initialized.
11581 if (!Var->isInvalidDecl() &&
11582 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11583 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11584 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11585 Var->setInvalidDecl();
11586 return;
11587 }
11588
11589 switch (Var->isThisDeclarationADefinition()) {
11590 case VarDecl::Definition:
11591 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11592 break;
11593
11594 // We have an out-of-line definition of a static data member
11595 // that has an in-class initializer, so we type-check this like
11596 // a declaration.
11597 //
11598 LLVM_FALLTHROUGH[[clang::fallthrough]];
11599
11600 case VarDecl::DeclarationOnly:
11601 // It's only a declaration.
11602
11603 // Block scope. C99 6.7p7: If an identifier for an object is
11604 // declared with no linkage (C99 6.2.2p6), the type for the
11605 // object shall be complete.
11606 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11607 !Var->hasLinkage() && !Var->isInvalidDecl() &&
11608 RequireCompleteType(Var->getLocation(), Type,
11609 diag::err_typecheck_decl_incomplete_type))
11610 Var->setInvalidDecl();
11611
11612 // Make sure that the type is not abstract.
11613 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11614 RequireNonAbstractType(Var->getLocation(), Type,
11615 diag::err_abstract_type_in_decl,
11616 AbstractVariableType))
11617 Var->setInvalidDecl();
11618 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11619 Var->getStorageClass() == SC_PrivateExtern) {
11620 Diag(Var->getLocation(), diag::warn_private_extern);
11621 Diag(Var->getLocation(), diag::note_private_extern);
11622 }
11623
11624 return;
11625
11626 case VarDecl::TentativeDefinition:
11627 // File scope. C99 6.9.2p2: A declaration of an identifier for an
11628 // object that has file scope without an initializer, and without a
11629 // storage-class specifier or with the storage-class specifier "static",
11630 // constitutes a tentative definition. Note: A tentative definition with
11631 // external linkage is valid (C99 6.2.2p5).
11632 if (!Var->isInvalidDecl()) {
11633 if (const IncompleteArrayType *ArrayT
11634 = Context.getAsIncompleteArrayType(Type)) {
11635 if (RequireCompleteType(Var->getLocation(),
11636 ArrayT->getElementType(),
11637 diag::err_illegal_decl_array_incomplete_type))
11638 Var->setInvalidDecl();
11639 } else if (Var->getStorageClass() == SC_Static) {
11640 // C99 6.9.2p3: If the declaration of an identifier for an object is
11641 // a tentative definition and has internal linkage (C99 6.2.2p3), the
11642 // declared type shall not be an incomplete type.
11643 // NOTE: code such as the following
11644 // static struct s;
11645 // struct s { int a; };
11646 // is accepted by gcc. Hence here we issue a warning instead of
11647 // an error and we do not invalidate the static declaration.
11648 // NOTE: to avoid multiple warnings, only check the first declaration.
11649 if (Var->isFirstDecl())
11650 RequireCompleteType(Var->getLocation(), Type,
11651 diag::ext_typecheck_decl_incomplete_type);
11652 }
11653 }
11654
11655 // Record the tentative definition; we're done.
11656 if (!Var->isInvalidDecl())
11657 TentativeDefinitions.push_back(Var);
11658 return;
11659 }
11660
11661 // Provide a specific diagnostic for uninitialized variable
11662 // definitions with incomplete array type.
11663 if (Type->isIncompleteArrayType()) {
11664 Diag(Var->getLocation(),
11665 diag::err_typecheck_incomplete_array_needs_initializer);
11666 Var->setInvalidDecl();
11667 return;
11668 }
11669
11670 // Provide a specific diagnostic for uninitialized variable
11671 // definitions with reference type.
11672 if (Type->isReferenceType()) {
11673 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11674 << Var->getDeclName()
11675 << SourceRange(Var->getLocation(), Var->getLocation());
11676 Var->setInvalidDecl();
11677 return;
11678 }
11679
11680 // Do not attempt to type-check the default initializer for a
11681 // variable with dependent type.
11682 if (Type->isDependentType())
11683 return;
11684
11685 if (Var->isInvalidDecl())
11686 return;
11687
11688 if (!Var->hasAttr<AliasAttr>()) {
11689 if (RequireCompleteType(Var->getLocation(),
11690 Context.getBaseElementType(Type),
11691 diag::err_typecheck_decl_incomplete_type)) {
11692 Var->setInvalidDecl();
11693 return;
11694 }
11695 } else {
11696 return;
11697 }
11698
11699 // The variable can not have an abstract class type.
11700 if (RequireNonAbstractType(Var->getLocation(), Type,
11701 diag::err_abstract_type_in_decl,
11702 AbstractVariableType)) {
11703 Var->setInvalidDecl();
11704 return;
11705 }
11706
11707 // Check for jumps past the implicit initializer. C++0x
11708 // clarifies that this applies to a "variable with automatic
11709 // storage duration", not a "local variable".
11710 // C++11 [stmt.dcl]p3
11711 // A program that jumps from a point where a variable with automatic
11712 // storage duration is not in scope to a point where it is in scope is
11713 // ill-formed unless the variable has scalar type, class type with a
11714 // trivial default constructor and a trivial destructor, a cv-qualified
11715 // version of one of these types, or an array of one of the preceding
11716 // types and is declared without an initializer.
11717 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11718 if (const RecordType *Record
11719 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11720 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11721 // Mark the function (if we're in one) for further checking even if the
11722 // looser rules of C++11 do not require such checks, so that we can
11723 // diagnose incompatibilities with C++98.
11724 if (!CXXRecord->isPOD())
11725 setFunctionHasBranchProtectedScope();
11726 }
11727 }
11728 // In OpenCL, we can't initialize objects in the __local address space,
11729 // even implicitly, so don't synthesize an implicit initializer.
11730 if (getLangOpts().OpenCL &&
11731 Var->getType().getAddressSpace() == LangAS::opencl_local)
11732 return;
11733 // C++03 [dcl.init]p9:
11734 // If no initializer is specified for an object, and the
11735 // object is of (possibly cv-qualified) non-POD class type (or
11736 // array thereof), the object shall be default-initialized; if
11737 // the object is of const-qualified type, the underlying class
11738 // type shall have a user-declared default
11739 // constructor. Otherwise, if no initializer is specified for
11740 // a non- static object, the object and its subobjects, if
11741 // any, have an indeterminate initial value); if the object
11742 // or any of its subobjects are of const-qualified type, the
11743 // program is ill-formed.
11744 // C++0x [dcl.init]p11:
11745 // If no initializer is specified for an object, the object is
11746 // default-initialized; [...].
11747 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11748 InitializationKind Kind
11749 = InitializationKind::CreateDefault(Var->getLocation());
11750
11751 InitializationSequence InitSeq(*this, Entity, Kind, None);
11752 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11753 if (Init.isInvalid())
11754 Var->setInvalidDecl();
11755 else if (Init.get()) {
11756 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11757 // This is important for template substitution.
11758 Var->setInitStyle(VarDecl::CallInit);
11759 }
11760
11761 CheckCompleteVariableDeclaration(Var);
11762 }
11763}
11764
11765void Sema::ActOnCXXForRangeDecl(Decl *D) {
11766 // If there is no declaration, there was an error parsing it. Ignore it.
11767 if (!D)
11768 return;
11769
11770 VarDecl *VD = dyn_cast<VarDecl>(D);
11771 if (!VD) {
11772 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11773 D->setInvalidDecl();
11774 return;
11775 }
11776
11777 VD->setCXXForRangeDecl(true);
11778
11779 // for-range-declaration cannot be given a storage class specifier.
11780 int Error = -1;
11781 switch (VD->getStorageClass()) {
11782 case SC_None:
11783 break;
11784 case SC_Extern:
11785 Error = 0;
11786 break;
11787 case SC_Static:
11788 Error = 1;
11789 break;
11790 case SC_PrivateExtern:
11791 Error = 2;
11792 break;
11793 case SC_Auto:
11794 Error = 3;
11795 break;
11796 case SC_Register:
11797 Error = 4;
11798 break;
11799 }
11800 if (Error != -1) {
11801 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11802 << VD->getDeclName() << Error;
11803 D->setInvalidDecl();
11804 }
11805}
11806
11807StmtResult
11808Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11809 IdentifierInfo *Ident,
11810 ParsedAttributes &Attrs,
11811 SourceLocation AttrEnd) {
11812 // C++1y [stmt.iter]p1:
11813 // A range-based for statement of the form
11814 // for ( for-range-identifier : for-range-initializer ) statement
11815 // is equivalent to
11816 // for ( auto&& for-range-identifier : for-range-initializer ) statement
11817 DeclSpec DS(Attrs.getPool().getFactory());
11818
11819 const char *PrevSpec;
11820 unsigned DiagID;
11821 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11822 getPrintingPolicy());
11823
11824 Declarator D(DS, DeclaratorContext::ForContext);
11825 D.SetIdentifier(Ident, IdentLoc);
11826 D.takeAttributes(Attrs, AttrEnd);
11827
11828 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
11829 IdentLoc);
11830 Decl *Var = ActOnDeclarator(S, D);
11831 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11832 FinalizeDeclaration(Var);
11833 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11834 AttrEnd.isValid() ? AttrEnd : IdentLoc);
11835}
11836
11837void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11838 if (var->isInvalidDecl()) return;
1
Assuming the condition is false
2
Taking false branch
11839
11840 if (getLangOpts().OpenCL) {
3
Assuming the condition is false
4
Taking false branch
11841 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11842 // initialiser
11843 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11844 !var->hasInit()) {
11845 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11846 << 1 /*Init*/;
11847 var->setInvalidDecl();
11848 return;
11849 }
11850 }
11851
11852 // In Objective-C, don't allow jumps past the implicit initialization of a
11853 // local retaining variable.
11854 if (getLangOpts().ObjC &&
5
Assuming the condition is false
11855 var->hasLocalStorage()) {
11856 switch (var->getType().getObjCLifetime()) {
11857 case Qualifiers::OCL_None:
11858 case Qualifiers::OCL_ExplicitNone:
11859 case Qualifiers::OCL_Autoreleasing:
11860 break;
11861
11862 case Qualifiers::OCL_Weak:
11863 case Qualifiers::OCL_Strong:
11864 setFunctionHasBranchProtectedScope();
11865 break;
11866 }
11867 }
11868
11869 if (var->hasLocalStorage() &&
6
Taking false branch
11870 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11871 setFunctionHasBranchProtectedScope();
11872
11873 // Warn about externally-visible variables being defined without a
11874 // prior declaration. We only want to do this for global
11875 // declarations, but we also specifically need to avoid doing it for
11876 // class members because the linkage of an anonymous class can
11877 // change if it's later given a typedef name.
11878 if (var->isThisDeclarationADefinition() &&
7
Assuming the condition is false
8
Taking false branch
11879 var->getDeclContext()->getRedeclContext()->isFileContext() &&
11880 var->isExternallyVisible() && var->hasLinkage() &&
11881 !var->isInline() && !var->getDescribedVarTemplate() &&
11882 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11883 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11884 var->getLocation())) {
11885 // Find a previous declaration that's not a definition.
11886 VarDecl *prev = var->getPreviousDecl();
11887 while (prev && prev->isThisDeclarationADefinition())
11888 prev = prev->getPreviousDecl();
11889
11890 if (!prev)
11891 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11892 }
11893
11894 // Cache the result of checking for constant initialization.
11895 Optional<bool> CacheHasConstInit;
11896 const Expr *CacheCulprit;
9
'CacheCulprit' declared without an initial value
11897 auto checkConstInit = [&]() mutable {
11898 if (!CacheHasConstInit)
11899 CacheHasConstInit = var->getInit()->isConstantInitializer(
11900 Context, var->getType()->isReferenceType(), &CacheCulprit);
11901 return *CacheHasConstInit;
11902 };
11903
11904 if (var->getTLSKind() == VarDecl::TLS_Static) {
10
Assuming the condition is false
11
Taking false branch
11905 if (var->getType().isDestructedType()) {
11906 // GNU C++98 edits for __thread, [basic.start.term]p3:
11907 // The type of an object with thread storage duration shall not
11908 // have a non-trivial destructor.
11909 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11910 if (getLangOpts().CPlusPlus11)
11911 Diag(var->getLocation(), diag::note_use_thread_local);
11912 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11913 if (!checkConstInit()) {
11914 // GNU C++98 edits for __thread, [basic.start.init]p4:
11915 // An object of thread storage duration shall not require dynamic
11916 // initialization.
11917 // FIXME: Need strict checking here.
11918 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11919 << CacheCulprit->getSourceRange();
11920 if (getLangOpts().CPlusPlus11)
11921 Diag(var->getLocation(), diag::note_use_thread_local);
11922 }
11923 }
11924 }
11925
11926 // Apply section attributes and pragmas to global variables.
11927 bool GlobalStorage = var->hasGlobalStorage();
11928 if (GlobalStorage && var->isThisDeclarationADefinition() &&
12
Assuming the condition is false
11929 !inTemplateInstantiation()) {
11930 PragmaStack<StringLiteral *> *Stack = nullptr;
11931 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11932 if (var->getType().isConstQualified())
11933 Stack = &ConstSegStack;
11934 else if (!var->getInit()) {
11935 Stack = &BSSSegStack;
11936 SectionFlags |= ASTContext::PSF_Write;
11937 } else {
11938 Stack = &DataSegStack;
11939 SectionFlags |= ASTContext::PSF_Write;
11940 }
11941 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11942 var->addAttr(SectionAttr::CreateImplicit(
11943 Context, SectionAttr::Declspec_allocate,
11944 Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11945 }
11946 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11947 if (UnifySection(SA->getName(), SectionFlags, var))
11948 var->dropAttr<SectionAttr>();
11949
11950 // Apply the init_seg attribute if this has an initializer. If the
11951 // initializer turns out to not be dynamic, we'll end up ignoring this
11952 // attribute.
11953 if (CurInitSeg && var->getInit())
11954 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11955 CurInitSegLoc));
11956 }
11957
11958 // All the following checks are C++ only.
11959 if (!getLangOpts().CPlusPlus) {
13
Assuming the condition is false
14
Taking false branch
11960 // If this variable must be emitted, add it as an initializer for the
11961 // current module.
11962 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11963 Context.addModuleInitializer(ModuleScopes.back().Module, var);
11964 return;
11965 }
11966
11967 if (auto *DD = dyn_cast<DecompositionDecl>(var))
15
Taking false branch
11968 CheckCompleteDecompositionDeclaration(DD);
11969
11970 QualType type = var->getType();
11971 if (type->isDependentType()) return;
16
Assuming the condition is false
17
Taking false branch
11972
11973 if (var->hasAttr<BlocksAttr>())
18
Taking false branch
11974 getCurFunction()->addByrefBlockVar(var);
11975
11976 Expr *Init = var->getInit();
11977 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11978 QualType baseType = Context.getBaseElementType(type);
11979
11980 if (Init && !Init->isValueDependent()) {
19
Assuming 'Init' is non-null
20
Assuming the condition is true
21
Taking true branch
11981 if (var->isConstexpr()) {
22
Taking false branch
11982 SmallVector<PartialDiagnosticAt, 8> Notes;
11983 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11984 SourceLocation DiagLoc = var->getLocation();
11985 // If the note doesn't add any useful information other than a source
11986 // location, fold it into the primary diagnostic.
11987 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11988 diag::note_invalid_subexpr_in_const_expr) {
11989 DiagLoc = Notes[0].first;
11990 Notes.clear();
11991 }
11992 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11993 << var << Init->getSourceRange();
11994 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11995 Diag(Notes[I].first, Notes[I].second);
11996 }
11997 } else if (var->isUsableInConstantExpressions(Context)) {
23
Assuming the condition is false
24
Taking false branch
11998 // Check whether the initializer of a const variable of integral or
11999 // enumeration type is an ICE now, since we can't tell whether it was
12000 // initialized by a constant expression if we check later.
12001 var->checkInitIsICE();
12002 }
12003
12004 // Don't emit further diagnostics about constexpr globals since they
12005 // were just diagnosed.
12006 if (!var->isConstexpr() && GlobalStorage &&
25
Taking true branch
12007 var->hasAttr<RequireConstantInitAttr>()) {
12008 // FIXME: Need strict checking in C++03 here.
12009 bool DiagErr = getLangOpts().CPlusPlus11
26
Assuming the condition is true
27
'?' condition is true
12010 ? !var->checkInitIsICE() : !checkConstInit();
28
Assuming the condition is true
12011 if (DiagErr) {
29
Taking true branch
12012 auto attr = var->getAttr<RequireConstantInitAttr>();
12013 Diag(var->getLocation(), diag::err_require_constant_init_failed)
12014 << Init->getSourceRange();
12015 Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
12016 << attr->getRange();
12017 if (getLangOpts().CPlusPlus11) {
30
Assuming the condition is false
31
Taking false branch
12018 APValue Value;
12019 SmallVector<PartialDiagnosticAt, 8> Notes;
12020 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12021 for (auto &it : Notes)
12022 Diag(it.first, it.second);
12023 } else {
12024 Diag(CacheCulprit->getExprLoc(),
32
Called C++ object pointer is uninitialized
12025 diag::note_invalid_subexpr_in_const_expr)
12026 << CacheCulprit->getSourceRange();
12027 }
12028 }
12029 }
12030 else if (!var->isConstexpr() && IsGlobal &&
12031 !getDiagnostics().isIgnored(diag::warn_global_constructor,
12032 var->getLocation())) {
12033 // Warn about globals which don't have a constant initializer. Don't
12034 // warn about globals with a non-trivial destructor because we already
12035 // warned about them.
12036 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12037 if (!(RD && !RD->hasTrivialDestructor())) {
12038 if (!checkConstInit())
12039 Diag(var->getLocation(), diag::warn_global_constructor)
12040 << Init->getSourceRange();
12041 }
12042 }
12043 }
12044
12045 // Require the destructor.
12046 if (const RecordType *recordType = baseType->getAs<RecordType>())
12047 FinalizeVarWithDestructor(var, recordType);
12048
12049 // If this variable must be emitted, add it as an initializer for the current
12050 // module.
12051 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12052 Context.addModuleInitializer(ModuleScopes.back().Module, var);
12053}
12054
12055/// Determines if a variable's alignment is dependent.
12056static bool hasDependentAlignment(VarDecl *VD) {
12057 if (VD->getType()->isDependentType())
12058 return true;
12059 for (auto *I : VD->specific_attrs<AlignedAttr>())
12060 if (I->isAlignmentDependent())
12061 return true;
12062 return false;
12063}
12064
12065/// Check if VD needs to be dllexport/dllimport due to being in a
12066/// dllexport/import function.
12067void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
12068 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12068, __PRETTY_FUNCTION__))
;
12069
12070 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12071
12072 // Find outermost function when VD is in lambda function.
12073 while (FD && !getDLLAttr(FD) &&
12074 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12075 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12076 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12077 }
12078
12079 if (!FD)
12080 return;
12081
12082 // Static locals inherit dll attributes from their function.
12083 if (Attr *A = getDLLAttr(FD)) {
12084 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12085 NewAttr->setInherited(true);
12086 VD->addAttr(NewAttr);
12087 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12088 auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
12089 getASTContext(),
12090 A->getSpellingListIndex());
12091 NewAttr->setInherited(true);
12092 VD->addAttr(NewAttr);
12093
12094 // Export this function to enforce exporting this static variable even
12095 // if it is not used in this compilation unit.
12096 if (!FD->hasAttr<DLLExportAttr>())
12097 FD->addAttr(NewAttr);
12098
12099 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12100 auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
12101 getASTContext(),
12102 A->getSpellingListIndex());
12103 NewAttr->setInherited(true);
12104 VD->addAttr(NewAttr);
12105 }
12106}
12107
12108/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12109/// any semantic actions necessary after any initializer has been attached.
12110void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12111 // Note that we are no longer parsing the initializer for this declaration.
12112 ParsingInitForAutoVars.erase(ThisDecl);
12113
12114 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12115 if (!VD)
12116 return;
12117
12118 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12119 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12120 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12121 if (PragmaClangBSSSection.Valid)
12122 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12123 PragmaClangBSSSection.SectionName,
12124 PragmaClangBSSSection.PragmaLocation));
12125 if (PragmaClangDataSection.Valid)
12126 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12127 PragmaClangDataSection.SectionName,
12128 PragmaClangDataSection.PragmaLocation));
12129 if (PragmaClangRodataSection.Valid)
12130 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12131 PragmaClangRodataSection.SectionName,
12132 PragmaClangRodataSection.PragmaLocation));
12133 }
12134
12135 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12136 for (auto *BD : DD->bindings()) {
12137 FinalizeDeclaration(BD);
12138 }
12139 }
12140
12141 checkAttributesAfterMerging(*this, *VD);
12142
12143 // Perform TLS alignment check here after attributes attached to the variable
12144 // which may affect the alignment have been processed. Only perform the check
12145 // if the target has a maximum TLS alignment (zero means no constraints).
12146 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12147 // Protect the check so that it's not performed on dependent types and
12148 // dependent alignments (we can't determine the alignment in that case).
12149 if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12150 !VD->isInvalidDecl()) {
12151 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12152 if (Context.getDeclAlign(VD) > MaxAlignChars) {
12153 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12154 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12155 << (unsigned)MaxAlignChars.getQuantity();
12156 }
12157 }
12158 }
12159
12160 if (VD->isStaticLocal()) {
12161 CheckStaticLocalForDllExport(VD);
12162
12163 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12164 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12165 // function, only __shared__ variables or variables without any device
12166 // memory qualifiers may be declared with static storage class.
12167 // Note: It is unclear how a function-scope non-const static variable
12168 // without device memory qualifier is implemented, therefore only static
12169 // const variable without device memory qualifier is allowed.
12170 [&]() {
12171 if (!getLangOpts().CUDA)
12172 return;
12173 if (VD->hasAttr<CUDASharedAttr>())
12174 return;
12175 if (VD->getType().isConstQualified() &&
12176 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12177 return;
12178 if (CUDADiagIfDeviceCode(VD->getLocation(),
12179 diag::err_device_static_local_var)
12180 << CurrentCUDATarget())
12181 VD->setInvalidDecl();
12182 }();
12183 }
12184 }
12185
12186 // Perform check for initializers of device-side global variables.
12187 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12188 // 7.5). We must also apply the same checks to all __shared__
12189 // variables whether they are local or not. CUDA also allows
12190 // constant initializers for __constant__ and __device__ variables.
12191 if (getLangOpts().CUDA)
12192 checkAllowedCUDAInitializer(VD);
12193
12194 // Grab the dllimport or dllexport attribute off of the VarDecl.
12195 const InheritableAttr *DLLAttr = getDLLAttr(VD);
12196
12197 // Imported static data members cannot be defined out-of-line.
12198 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12199 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12200 VD->isThisDeclarationADefinition()) {
12201 // We allow definitions of dllimport class template static data members
12202 // with a warning.
12203 CXXRecordDecl *Context =
12204 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12205 bool IsClassTemplateMember =
12206 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12207 Context->getDescribedClassTemplate();
12208
12209 Diag(VD->getLocation(),
12210 IsClassTemplateMember
12211 ? diag::warn_attribute_dllimport_static_field_definition
12212 : diag::err_attribute_dllimport_static_field_definition);
12213 Diag(IA->getLocation(), diag::note_attribute);
12214 if (!IsClassTemplateMember)
12215 VD->setInvalidDecl();
12216 }
12217 }
12218
12219 // dllimport/dllexport variables cannot be thread local, their TLS index
12220 // isn't exported with the variable.
12221 if (DLLAttr && VD->getTLSKind()) {
12222 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12223 if (F && getDLLAttr(F)) {
12224 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12224, __PRETTY_FUNCTION__))
;
12225 // But if this is a static local in a dlimport/dllexport function, the
12226 // function will never be inlined, which means the var would never be
12227 // imported, so having it marked import/export is safe.
12228 } else {
12229 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12230 << DLLAttr;
12231 VD->setInvalidDecl();
12232 }
12233 }
12234
12235 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12236 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12237 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12238 VD->dropAttr<UsedAttr>();
12239 }
12240 }
12241
12242 const DeclContext *DC = VD->getDeclContext();
12243 // If there's a #pragma GCC visibility in scope, and this isn't a class
12244 // member, set the visibility of this variable.
12245 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12246 AddPushedVisibilityAttribute(VD);
12247
12248 // FIXME: Warn on unused var template partial specializations.
12249 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12250 MarkUnusedFileScopedDecl(VD);
12251
12252 // Now we have parsed the initializer and can update the table of magic
12253 // tag values.
12254 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12255 !VD->getType()->isIntegralOrEnumerationType())
12256 return;
12257
12258 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12259 const Expr *MagicValueExpr = VD->getInit();
12260 if (!MagicValueExpr) {
12261 continue;
12262 }
12263 llvm::APSInt MagicValueInt;
12264 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12265 Diag(I->getRange().getBegin(),
12266 diag::err_type_tag_for_datatype_not_ice)
12267 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12268 continue;
12269 }
12270 if (MagicValueInt.getActiveBits() > 64) {
12271 Diag(I->getRange().getBegin(),
12272 diag::err_type_tag_for_datatype_too_large)
12273 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12274 continue;
12275 }
12276 uint64_t MagicValue = MagicValueInt.getZExtValue();
12277 RegisterTypeTagForDatatype(I->getArgumentKind(),
12278 MagicValue,
12279 I->getMatchingCType(),
12280 I->getLayoutCompatible(),
12281 I->getMustBeNull());
12282 }
12283}
12284
12285static bool hasDeducedAuto(DeclaratorDecl *DD) {
12286 auto *VD = dyn_cast<VarDecl>(DD);
12287 return VD && !VD->getType()->hasAutoForTrailingReturnType();
12288}
12289
12290Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12291 ArrayRef<Decl *> Group) {
12292 SmallVector<Decl*, 8> Decls;
12293
12294 if (DS.isTypeSpecOwned())
12295 Decls.push_back(DS.getRepAsDecl());
12296
12297 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12298 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12299 bool DiagnosedMultipleDecomps = false;
12300 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12301 bool DiagnosedNonDeducedAuto = false;
12302
12303 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12304 if (Decl *D = Group[i]) {
12305 // For declarators, there are some additional syntactic-ish checks we need
12306 // to perform.
12307 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12308 if (!FirstDeclaratorInGroup)
12309 FirstDeclaratorInGroup = DD;
12310 if (!FirstDecompDeclaratorInGroup)
12311 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12312 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12313 !hasDeducedAuto(DD))
12314 FirstNonDeducedAutoInGroup = DD;
12315
12316 if (FirstDeclaratorInGroup != DD) {
12317 // A decomposition declaration cannot be combined with any other
12318 // declaration in the same group.
12319 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12320 Diag(FirstDecompDeclaratorInGroup->getLocation(),
12321 diag::err_decomp_decl_not_alone)
12322 << FirstDeclaratorInGroup->getSourceRange()
12323 << DD->getSourceRange();
12324 DiagnosedMultipleDecomps = true;
12325 }
12326
12327 // A declarator that uses 'auto' in any way other than to declare a
12328 // variable with a deduced type cannot be combined with any other
12329 // declarator in the same group.
12330 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12331 Diag(FirstNonDeducedAutoInGroup->getLocation(),
12332 diag::err_auto_non_deduced_not_alone)
12333 << FirstNonDeducedAutoInGroup->getType()
12334 ->hasAutoForTrailingReturnType()
12335 << FirstDeclaratorInGroup->getSourceRange()
12336 << DD->getSourceRange();
12337 DiagnosedNonDeducedAuto = true;
12338 }
12339 }
12340 }
12341
12342 Decls.push_back(D);
12343 }
12344 }
12345
12346 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12347 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12348 handleTagNumbering(Tag, S);
12349 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12350 getLangOpts().CPlusPlus)
12351 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12352 }
12353 }
12354
12355 return BuildDeclaratorGroup(Decls);
12356}
12357
12358/// BuildDeclaratorGroup - convert a list of declarations into a declaration
12359/// group, performing any necessary semantic checking.
12360Sema::DeclGroupPtrTy
12361Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12362 // C++14 [dcl.spec.auto]p7: (DR1347)
12363 // If the type that replaces the placeholder type is not the same in each
12364 // deduction, the program is ill-formed.
12365 if (Group.size() > 1) {
12366 QualType Deduced;
12367 VarDecl *DeducedDecl = nullptr;
12368 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12369 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12370 if (!D || D->isInvalidDecl())
12371 break;
12372 DeducedType *DT = D->getType()->getContainedDeducedType();
12373 if (!DT || DT->getDeducedType().isNull())
12374 continue;
12375 if (Deduced.isNull()) {
12376 Deduced = DT->getDeducedType();
12377 DeducedDecl = D;
12378 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12379 auto *AT = dyn_cast<AutoType>(DT);
12380 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12381 diag::err_auto_different_deductions)
12382 << (AT ? (unsigned)AT->getKeyword() : 3)
12383 << Deduced << DeducedDecl->getDeclName()
12384 << DT->getDeducedType() << D->getDeclName()
12385 << DeducedDecl->getInit()->getSourceRange()
12386 << D->getInit()->getSourceRange();
12387 D->setInvalidDecl();
12388 break;
12389 }
12390 }
12391 }
12392
12393 ActOnDocumentableDecls(Group);
12394
12395 return DeclGroupPtrTy::make(
12396 DeclGroupRef::Create(Context, Group.data(), Group.size()));
12397}
12398
12399void Sema::ActOnDocumentableDecl(Decl *D) {
12400 ActOnDocumentableDecls(D);
12401}
12402
12403void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12404 // Don't parse the comment if Doxygen diagnostics are ignored.
12405 if (Group.empty() || !Group[0])
12406 return;
12407
12408 if (Diags.isIgnored(diag::warn_doc_param_not_found,
12409 Group[0]->getLocation()) &&
12410 Diags.isIgnored(diag::warn_unknown_comment_command_name,
12411 Group[0]->getLocation()))
12412 return;
12413
12414 if (Group.size() >= 2) {
12415 // This is a decl group. Normally it will contain only declarations
12416 // produced from declarator list. But in case we have any definitions or
12417 // additional declaration references:
12418 // 'typedef struct S {} S;'
12419 // 'typedef struct S *S;'
12420 // 'struct S *pS;'
12421 // FinalizeDeclaratorGroup adds these as separate declarations.
12422 Decl *MaybeTagDecl = Group[0];
12423 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12424 Group = Group.slice(1);
12425 }
12426 }
12427
12428 // See if there are any new comments that are not attached to a decl.
12429 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12430 if (!Comments.empty() &&
12431 !Comments.back()->isAttached()) {
12432 // There is at least one comment that not attached to a decl.
12433 // Maybe it should be attached to one of these decls?
12434 //
12435 // Note that this way we pick up not only comments that precede the
12436 // declaration, but also comments that *follow* the declaration -- thanks to
12437 // the lookahead in the lexer: we've consumed the semicolon and looked
12438 // ahead through comments.
12439 for (unsigned i = 0, e = Group.size(); i != e; ++i)
12440 Context.getCommentForDecl(Group[i], &PP);
12441 }
12442}
12443
12444/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12445/// to introduce parameters into function prototype scope.
12446Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12447 const DeclSpec &DS = D.getDeclSpec();
12448
12449 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12450
12451 // C++03 [dcl.stc]p2 also permits 'auto'.
12452 StorageClass SC = SC_None;
12453 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12454 SC = SC_Register;
12455 // In C++11, the 'register' storage class specifier is deprecated.
12456 // In C++17, it is not allowed, but we tolerate it as an extension.
12457 if (getLangOpts().CPlusPlus11) {
12458 Diag(DS.getStorageClassSpecLoc(),
12459 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12460 : diag::warn_deprecated_register)
12461 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12462 }
12463 } else if (getLangOpts().CPlusPlus &&
12464 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12465 SC = SC_Auto;
12466 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12467 Diag(DS.getStorageClassSpecLoc(),
12468 diag::err_invalid_storage_class_in_func_decl);
12469 D.getMutableDeclSpec().ClearStorageClassSpecs();
12470 }
12471
12472 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12473 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12474 << DeclSpec::getSpecifierName(TSCS);
12475 if (DS.isInlineSpecified())
12476 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12477 << getLangOpts().CPlusPlus17;
12478 if (DS.isConstexprSpecified())
12479 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12480 << 0;
12481
12482 DiagnoseFunctionSpecifiers(DS);
12483
12484 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12485 QualType parmDeclType = TInfo->getType();
12486
12487 if (getLangOpts().CPlusPlus) {
12488 // Check that there are no default arguments inside the type of this
12489 // parameter.
12490 CheckExtraCXXDefaultArguments(D);
12491
12492 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12493 if (D.getCXXScopeSpec().isSet()) {
12494 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12495 << D.getCXXScopeSpec().getRange();
12496 D.getCXXScopeSpec().clear();
12497 }
12498 }
12499
12500 // Ensure we have a valid name
12501 IdentifierInfo *II = nullptr;
12502 if (D.hasName()) {
12503 II = D.getIdentifier();
12504 if (!II) {
12505 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12506 << GetNameForDeclarator(D).getName();
12507 D.setInvalidType(true);
12508 }
12509 }
12510
12511 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12512 if (II) {
12513 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12514 ForVisibleRedeclaration);
12515 LookupName(R, S);
12516 if (R.isSingleResult()) {
12517 NamedDecl *PrevDecl = R.getFoundDecl();
12518 if (PrevDecl->isTemplateParameter()) {
12519 // Maybe we will complain about the shadowed template parameter.
12520 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12521 // Just pretend that we didn't see the previous declaration.
12522 PrevDecl = nullptr;
12523 } else if (S->isDeclScope(PrevDecl)) {
12524 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12525 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12526
12527 // Recover by removing the name
12528 II = nullptr;
12529 D.SetIdentifier(nullptr, D.getIdentifierLoc());
12530 D.setInvalidType(true);
12531 }
12532 }
12533 }
12534
12535 // Temporarily put parameter variables in the translation unit, not
12536 // the enclosing context. This prevents them from accidentally
12537 // looking like class members in C++.
12538 ParmVarDecl *New =
12539 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12540 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12541
12542 if (D.isInvalidType())
12543 New->setInvalidDecl();
12544
12545 assert(S->isFunctionPrototypeScope())((S->isFunctionPrototypeScope()) ? static_cast<void>
(0) : __assert_fail ("S->isFunctionPrototypeScope()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12545, __PRETTY_FUNCTION__))
;
12546 assert(S->getFunctionPrototypeDepth() >= 1)((S->getFunctionPrototypeDepth() >= 1) ? static_cast<
void> (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12546, __PRETTY_FUNCTION__))
;
12547 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12548 S->getNextFunctionPrototypeIndex());
12549
12550 // Add the parameter declaration into this scope.
12551 S->AddDecl(New);
12552 if (II)
12553 IdResolver.AddDecl(New);
12554
12555 ProcessDeclAttributes(S, New, D);
12556
12557 if (D.getDeclSpec().isModulePrivateSpecified())
12558 Diag(New->getLocation(), diag::err_module_private_local)
12559 << 1 << New->getDeclName()
12560 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12561 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12562
12563 if (New->hasAttr<BlocksAttr>()) {
12564 Diag(New->getLocation(), diag::err_block_on_nonlocal);
12565 }
12566 return New;
12567}
12568
12569/// Synthesizes a variable for a parameter arising from a
12570/// typedef.
12571ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12572 SourceLocation Loc,
12573 QualType T) {
12574 /* FIXME: setting StartLoc == Loc.
12575 Would it be worth to modify callers so as to provide proper source
12576 location for the unnamed parameters, embedding the parameter's type? */
12577 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12578 T, Context.getTrivialTypeSourceInfo(T, Loc),
12579 SC_None, nullptr);
12580 Param->setImplicit();
12581 return Param;
12582}
12583
12584void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12585 // Don't diagnose unused-parameter errors in template instantiations; we
12586 // will already have done so in the template itself.
12587 if (inTemplateInstantiation())
12588 return;
12589
12590 for (const ParmVarDecl *Parameter : Parameters) {
12591 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12592 !Parameter->hasAttr<UnusedAttr>()) {
12593 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12594 << Parameter->getDeclName();
12595 }
12596 }
12597}
12598
12599void Sema::DiagnoseSizeOfParametersAndReturnValue(
12600 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12601 if (LangOpts.NumLargeByValueCopy == 0) // No check.
12602 return;
12603
12604 // Warn if the return value is pass-by-value and larger than the specified
12605 // threshold.
12606 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12607 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12608 if (Size > LangOpts.NumLargeByValueCopy)
12609 Diag(D->getLocation(), diag::warn_return_value_size)
12610 << D->getDeclName() << Size;
12611 }
12612
12613 // Warn if any parameter is pass-by-value and larger than the specified
12614 // threshold.
12615 for (const ParmVarDecl *Parameter : Parameters) {
12616 QualType T = Parameter->getType();
12617 if (T->isDependentType() || !T.isPODType(Context))
12618 continue;
12619 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12620 if (Size > LangOpts.NumLargeByValueCopy)
12621 Diag(Parameter->getLocation(), diag::warn_parameter_size)
12622 << Parameter->getDeclName() << Size;
12623 }
12624}
12625
12626ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12627 SourceLocation NameLoc, IdentifierInfo *Name,
12628 QualType T, TypeSourceInfo *TSInfo,
12629 StorageClass SC) {
12630 // In ARC, infer a lifetime qualifier for appropriate parameter types.
12631 if (getLangOpts().ObjCAutoRefCount &&
12632 T.getObjCLifetime() == Qualifiers::OCL_None &&
12633 T->isObjCLifetimeType()) {
12634
12635 Qualifiers::ObjCLifetime lifetime;
12636
12637 // Special cases for arrays:
12638 // - if it's const, use __unsafe_unretained
12639 // - otherwise, it's an error
12640 if (T->isArrayType()) {
12641 if (!T.isConstQualified()) {
12642 if (DelayedDiagnostics.shouldDelayDiagnostics())
12643 DelayedDiagnostics.add(
12644 sema::DelayedDiagnostic::makeForbiddenType(
12645 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12646 else
12647 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
12648 << TSInfo->getTypeLoc().getSourceRange();
12649 }
12650 lifetime = Qualifiers::OCL_ExplicitNone;
12651 } else {
12652 lifetime = T->getObjCARCImplicitLifetime();
12653 }
12654 T = Context.getLifetimeQualifiedType(T, lifetime);
12655 }
12656
12657 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12658 Context.getAdjustedParameterType(T),
12659 TSInfo, SC, nullptr);
12660
12661 // Parameters can not be abstract class types.
12662 // For record types, this is done by the AbstractClassUsageDiagnoser once
12663 // the class has been completely parsed.
12664 if (!CurContext->isRecord() &&
12665 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12666 AbstractParamType))
12667 New->setInvalidDecl();
12668
12669 // Parameter declarators cannot be interface types. All ObjC objects are
12670 // passed by reference.
12671 if (T->isObjCObjectType()) {
12672 SourceLocation TypeEndLoc =
12673 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
12674 Diag(NameLoc,
12675 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12676 << FixItHint::CreateInsertion(TypeEndLoc, "*");
12677 T = Context.getObjCObjectPointerType(T);
12678 New->setType(T);
12679 }
12680
12681 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12682 // duration shall not be qualified by an address-space qualifier."
12683 // Since all parameters have automatic store duration, they can not have
12684 // an address space.
12685 if (T.getAddressSpace() != LangAS::Default &&
12686 // OpenCL allows function arguments declared to be an array of a type
12687 // to be qualified with an address space.
12688 !(getLangOpts().OpenCL &&
12689 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12690 Diag(NameLoc, diag::err_arg_with_address_space);
12691 New->setInvalidDecl();
12692 }
12693
12694 return New;
12695}
12696
12697void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12698 SourceLocation LocAfterDecls) {
12699 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12700
12701 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12702 // for a K&R function.
12703 if (!FTI.hasPrototype) {
12704 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12705 --i;
12706 if (FTI.Params[i].Param == nullptr) {
12707 SmallString<256> Code;
12708 llvm::raw_svector_ostream(Code)
12709 << " int " << FTI.Params[i].Ident->getName() << ";\n";
12710 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12711 << FTI.Params[i].Ident
12712 << FixItHint::CreateInsertion(LocAfterDecls, Code);
12713
12714 // Implicitly declare the argument as type 'int' for lack of a better
12715 // type.
12716 AttributeFactory attrs;
12717 DeclSpec DS(attrs);
12718 const char* PrevSpec; // unused
12719 unsigned DiagID; // unused
12720 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12721 DiagID, Context.getPrintingPolicy());
12722 // Use the identifier location for the type source range.
12723 DS.SetRangeStart(FTI.Params[i].IdentLoc);
12724 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12725 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12726 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12727 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12728 }
12729 }
12730 }
12731}
12732
12733Decl *
12734Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12735 MultiTemplateParamsArg TemplateParameterLists,
12736 SkipBodyInfo *SkipBody) {
12737 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")((getCurFunctionDecl() == nullptr && "Function parsing confused"
) ? static_cast<void> (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12737, __PRETTY_FUNCTION__))
;
12738 assert(D.isFunctionDeclarator() && "Not a function declarator!")((D.isFunctionDeclarator() && "Not a function declarator!"
) ? static_cast<void> (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12738, __PRETTY_FUNCTION__))
;
12739 Scope *ParentScope = FnBodyScope->getParent();
12740
12741 D.setFunctionDefinitionKind(FDK_Definition);
12742 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12743 return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12744}
12745
12746void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12747 Consumer.HandleInlineFunctionDefinition(D);
12748}
12749
12750static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12751 const FunctionDecl*& PossibleZeroParamPrototype) {
12752 // Don't warn about invalid declarations.
12753 if (FD->isInvalidDecl())
12754 return false;
12755
12756 // Or declarations that aren't global.
12757 if (!FD->isGlobal())
12758 return false;
12759
12760 // Don't warn about C++ member functions.
12761 if (isa<CXXMethodDecl>(FD))
12762 return false;
12763
12764 // Don't warn about 'main'.
12765 if (FD->isMain())
12766 return false;
12767
12768 // Don't warn about inline functions.
12769 if (FD->isInlined())
12770 return false;
12771
12772 // Don't warn about function templates.
12773 if (FD->getDescribedFunctionTemplate())
12774 return false;
12775
12776 // Don't warn about function template specializations.
12777 if (FD->isFunctionTemplateSpecialization())
12778 return false;
12779
12780 // Don't warn for OpenCL kernels.
12781 if (FD->hasAttr<OpenCLKernelAttr>())
12782 return false;
12783
12784 // Don't warn on explicitly deleted functions.
12785 if (FD->isDeleted())
12786 return false;
12787
12788 bool MissingPrototype = true;
12789 for (const FunctionDecl *Prev = FD->getPreviousDecl();
12790 Prev; Prev = Prev->getPreviousDecl()) {
12791 // Ignore any declarations that occur in function or method
12792 // scope, because they aren't visible from the header.
12793 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12794 continue;
12795
12796 MissingPrototype = !Prev->getType()->isFunctionProtoType();
12797 if (FD->getNumParams() == 0)
12798 PossibleZeroParamPrototype = Prev;
12799 break;
12800 }
12801
12802 return MissingPrototype;
12803}
12804
12805void
12806Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12807 const FunctionDecl *EffectiveDefinition,
12808 SkipBodyInfo *SkipBody) {
12809 const FunctionDecl *Definition = EffectiveDefinition;
12810 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12811 // If this is a friend function defined in a class template, it does not
12812 // have a body until it is used, nevertheless it is a definition, see
12813 // [temp.inst]p2:
12814 //
12815 // ... for the purpose of determining whether an instantiated redeclaration
12816 // is valid according to [basic.def.odr] and [class.mem], a declaration that
12817 // corresponds to a definition in the template is considered to be a
12818 // definition.
12819 //
12820 // The following code must produce redefinition error:
12821 //
12822 // template<typename T> struct C20 { friend void func_20() {} };
12823 // C20<int> c20i;
12824 // void func_20() {}
12825 //
12826 for (auto I : FD->redecls()) {
12827 if (I != FD && !I->isInvalidDecl() &&
12828 I->getFriendObjectKind() != Decl::FOK_None) {
12829 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12830 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12831 // A merged copy of the same function, instantiated as a member of
12832 // the same class, is OK.
12833 if (declaresSameEntity(OrigFD, Original) &&
12834 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12835 cast<Decl>(FD->getLexicalDeclContext())))
12836 continue;
12837 }
12838
12839 if (Original->isThisDeclarationADefinition()) {
12840 Definition = I;
12841 break;
12842 }
12843 }
12844 }
12845 }
12846 }
12847
12848 if (!Definition)
12849 // Similar to friend functions a friend function template may be a
12850 // definition and do not have a body if it is instantiated in a class
12851 // template.
12852 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
12853 for (auto I : FTD->redecls()) {
12854 auto D = cast<FunctionTemplateDecl>(I);
12855 if (D != FTD) {
12856 assert(!D->isThisDeclarationADefinition() &&((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12857, __PRETTY_FUNCTION__))
12857 "More than one definition in redeclaration chain")((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 12857, __PRETTY_FUNCTION__))
;
12858 if (D->getFriendObjectKind() != Decl::FOK_None)
12859 if (FunctionTemplateDecl *FT =
12860 D->getInstantiatedFromMemberTemplate()) {
12861 if (FT->isThisDeclarationADefinition()) {
12862 Definition = D->getTemplatedDecl();
12863 break;
12864 }
12865 }
12866 }
12867 }
12868 }
12869
12870 if (!Definition)
12871 return;
12872
12873 if (canRedefineFunction(Definition, getLangOpts()))
12874 return;
12875
12876 // Don't emit an error when this is redefinition of a typo-corrected
12877 // definition.
12878 if (TypoCorrectedFunctionDefinitions.count(Definition))
12879 return;
12880
12881 // If we don't have a visible definition of the function, and it's inline or
12882 // a template, skip the new definition.
12883 if (SkipBody && !hasVisibleDefinition(Definition) &&
12884 (Definition->getFormalLinkage() == InternalLinkage ||
12885 Definition->isInlined() ||
12886 Definition->getDescribedFunctionTemplate() ||
12887 Definition->getNumTemplateParameterLists())) {
12888 SkipBody->ShouldSkip = true;
12889 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
12890 if (auto *TD = Definition->getDescribedFunctionTemplate())
12891 makeMergedDefinitionVisible(TD);
12892 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12893 return;
12894 }
12895
12896 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12897 Definition->getStorageClass() == SC_Extern)
12898 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12899 << FD->getDeclName() << getLangOpts().CPlusPlus;
12900 else
12901 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12902
12903 Diag(Definition->getLocation(), diag::note_previous_definition);
12904 FD->setInvalidDecl();
12905}
12906
12907static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12908 Sema &S) {
12909 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12910
12911 LambdaScopeInfo *LSI = S.PushLambdaScope();
12912 LSI->CallOperator = CallOperator;
12913 LSI->Lambda = LambdaClass;
12914 LSI->ReturnType = CallOperator->getReturnType();
12915 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12916
12917 if (LCD == LCD_None)
12918 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12919 else if (LCD == LCD_ByCopy)
12920 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12921 else if (LCD == LCD_ByRef)
12922 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12923 DeclarationNameInfo DNI = CallOperator->getNameInfo();
12924
12925 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12926 LSI->Mutable = !CallOperator->isConst();
12927
12928 // Add the captures to the LSI so they can be noted as already
12929 // captured within tryCaptureVar.
12930 auto I = LambdaClass->field_begin();
12931 for (const auto &C : LambdaClass->captures()) {
12932 if (C.capturesVariable()) {
12933 VarDecl *VD = C.getCapturedVar();
12934 if (VD->isInitCapture())
12935 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12936 QualType CaptureType = VD->getType();
12937 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12938 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12939 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12940 /*EllipsisLoc*/C.isPackExpansion()
12941 ? C.getEllipsisLoc() : SourceLocation(),
12942 CaptureType, /*Invalid*/false);
12943
12944 } else if (C.capturesThis()) {
12945 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
12946 C.getCaptureKind() == LCK_StarThis);
12947 } else {
12948 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
12949 I->getType());
12950 }
12951 ++I;
12952 }
12953}
12954
12955Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12956 SkipBodyInfo *SkipBody) {
12957 if (!D) {
12958 // Parsing the function declaration failed in some way. Push on a fake scope
12959 // anyway so we can try to parse the function body.
12960 PushFunctionScope();
12961 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12962 return D;
12963 }
12964
12965 FunctionDecl *FD = nullptr;
12966
12967 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12968 FD = FunTmpl->getTemplatedDecl();
12969 else
12970 FD = cast<FunctionDecl>(D);
12971
12972 // Do not push if it is a lambda because one is already pushed when building
12973 // the lambda in ActOnStartOfLambdaDefinition().
12974 if (!isLambdaCallOperator(FD))
12975 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12976
12977 // Check for defining attributes before the check for redefinition.
12978 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12979 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12980 FD->dropAttr<AliasAttr>();
12981 FD->setInvalidDecl();
12982 }
12983 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12984 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12985 FD->dropAttr<IFuncAttr>();
12986 FD->setInvalidDecl();
12987 }
12988
12989 // See if this is a redefinition. If 'will have body' is already set, then
12990 // these checks were already performed when it was set.
12991 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12992 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12993
12994 // If we're skipping the body, we're done. Don't enter the scope.
12995 if (SkipBody && SkipBody->ShouldSkip)
12996 return D;
12997 }
12998
12999 // Mark this function as "will have a body eventually". This lets users to
13000 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13001 // this function.
13002 FD->setWillHaveBody();
13003
13004 // If we are instantiating a generic lambda call operator, push
13005 // a LambdaScopeInfo onto the function stack. But use the information
13006 // that's already been calculated (ActOnLambdaExpr) to prime the current
13007 // LambdaScopeInfo.
13008 // When the template operator is being specialized, the LambdaScopeInfo,
13009 // has to be properly restored so that tryCaptureVariable doesn't try
13010 // and capture any new variables. In addition when calculating potential
13011 // captures during transformation of nested lambdas, it is necessary to
13012 // have the LSI properly restored.
13013 if (isGenericLambdaCallOperatorSpecialization(FD)) {
13014 assert(inTemplateInstantiation() &&((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13016, __PRETTY_FUNCTION__))
13015 "There should be an active template instantiation on the stack "((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13016, __PRETTY_FUNCTION__))
13016 "when instantiating a generic lambda!")((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13016, __PRETTY_FUNCTION__))
;
13017 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13018 } else {
13019 // Enter a new function scope
13020 PushFunctionScope();
13021 }
13022
13023 // Builtin functions cannot be defined.
13024 if (unsigned BuiltinID = FD->getBuiltinID()) {
13025 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13026 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13027 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13028 FD->setInvalidDecl();
13029 }
13030 }
13031
13032 // The return type of a function definition must be complete
13033 // (C99 6.9.1p3, C++ [dcl.fct]p6).
13034 QualType ResultType = FD->getReturnType();
13035 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13036 !FD->isInvalidDecl() &&
13037 RequireCompleteType(FD->getLocation(), ResultType,
13038 diag::err_func_def_incomplete_result))
13039 FD->setInvalidDecl();
13040
13041 if (FnBodyScope)
13042 PushDeclContext(FnBodyScope, FD);
13043
13044 // Check the validity of our function parameters
13045 CheckParmsForFunctionDef(FD->parameters(),
13046 /*CheckParameterNames=*/true);
13047
13048 // Add non-parameter declarations already in the function to the current
13049 // scope.
13050 if (FnBodyScope) {
13051 for (Decl *NPD : FD->decls()) {
13052 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13053 if (!NonParmDecl)
13054 continue;
13055 assert(!isa<ParmVarDecl>(NonParmDecl) &&((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13056, __PRETTY_FUNCTION__))
13056 "parameters should not be in newly created FD yet")((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13056, __PRETTY_FUNCTION__))
;
13057
13058 // If the decl has a name, make it accessible in the current scope.
13059 if (NonParmDecl->getDeclName())
13060 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13061
13062 // Similarly, dive into enums and fish their constants out, making them
13063 // accessible in this scope.
13064 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13065 for (auto *EI : ED->enumerators())
13066 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13067 }
13068 }
13069 }
13070
13071 // Introduce our parameters into the function scope
13072 for (auto Param : FD->parameters()) {
13073 Param->setOwningFunction(FD);
13074
13075 // If this has an identifier, add it to the scope stack.
13076 if (Param->getIdentifier() && FnBodyScope) {
13077 CheckShadow(FnBodyScope, Param);
13078
13079 PushOnScopeChains(Param, FnBodyScope);
13080 }
13081 }
13082
13083 // Ensure that the function's exception specification is instantiated.
13084 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13085 ResolveExceptionSpec(D->getLocation(), FPT);
13086
13087 // dllimport cannot be applied to non-inline function definitions.
13088 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13089 !FD->isTemplateInstantiation()) {
13090 assert(!FD->hasAttr<DLLExportAttr>())((!FD->hasAttr<DLLExportAttr>()) ? static_cast<void
> (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13090, __PRETTY_FUNCTION__))
;
13091 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13092 FD->setInvalidDecl();
13093 return D;
13094 }
13095 // We want to attach documentation to original Decl (which might be
13096 // a function template).
13097 ActOnDocumentableDecl(D);
13098 if (getCurLexicalContext()->isObjCContainer() &&
13099 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
13100 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
13101 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13102
13103 return D;
13104}
13105
13106/// Given the set of return statements within a function body,
13107/// compute the variables that are subject to the named return value
13108/// optimization.
13109///
13110/// Each of the variables that is subject to the named return value
13111/// optimization will be marked as NRVO variables in the AST, and any
13112/// return statement that has a marked NRVO variable as its NRVO candidate can
13113/// use the named return value optimization.
13114///
13115/// This function applies a very simplistic algorithm for NRVO: if every return
13116/// statement in the scope of a variable has the same NRVO candidate, that
13117/// candidate is an NRVO variable.
13118void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13119 ReturnStmt **Returns = Scope->Returns.data();
13120
13121 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13122 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13123 if (!NRVOCandidate->isNRVOVariable())
13124 Returns[I]->setNRVOCandidate(nullptr);
13125 }
13126 }
13127}
13128
13129bool Sema::canDelayFunctionBody(const Declarator &D) {
13130 // We can't delay parsing the body of a constexpr function template (yet).
13131 if (D.getDeclSpec().isConstexprSpecified())
13132 return false;
13133
13134 // We can't delay parsing the body of a function template with a deduced
13135 // return type (yet).
13136 if (D.getDeclSpec().hasAutoTypeSpec()) {
13137 // If the placeholder introduces a non-deduced trailing return type,
13138 // we can still delay parsing it.
13139 if (D.getNumTypeObjects()) {
13140 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13141 if (Outer.Kind == DeclaratorChunk::Function &&
13142 Outer.Fun.hasTrailingReturnType()) {
13143 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13144 return Ty.isNull() || !Ty->isUndeducedType();
13145 }
13146 }
13147 return false;
13148 }
13149
13150 return true;
13151}
13152
13153bool Sema::canSkipFunctionBody(Decl *D) {
13154 // We cannot skip the body of a function (or function template) which is
13155 // constexpr, since we may need to evaluate its body in order to parse the
13156 // rest of the file.
13157 // We cannot skip the body of a function with an undeduced return type,
13158 // because any callers of that function need to know the type.
13159 if (const FunctionDecl *FD = D->getAsFunction()) {
13160 if (FD->isConstexpr())
13161 return false;
13162 // We can't simply call Type::isUndeducedType here, because inside template
13163 // auto can be deduced to a dependent type, which is not considered
13164 // "undeduced".
13165 if (FD->getReturnType()->getContainedDeducedType())
13166 return false;
13167 }
13168 return Consumer.shouldSkipFunctionBody(D);
13169}
13170
13171Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13172 if (!Decl)
13173 return nullptr;
13174 if (FunctionDecl *FD = Decl->getAsFunction())
13175 FD->setHasSkippedBody();
13176 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13177 MD->setHasSkippedBody();
13178 return Decl;
13179}
13180
13181Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13182 return ActOnFinishFunctionBody(D, BodyArg, false);
13183}
13184
13185/// RAII object that pops an ExpressionEvaluationContext when exiting a function
13186/// body.
13187class ExitFunctionBodyRAII {
13188public:
13189 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13190 ~ExitFunctionBodyRAII() {
13191 if (!IsLambda)
13192 S.PopExpressionEvaluationContext();
13193 }
13194
13195private:
13196 Sema &S;
13197 bool IsLambda = false;
13198};
13199
13200static void diagnoseImplicitlyRetainedSelf(Sema &S) {
13201 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
13202
13203 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
13204 if (EscapeInfo.count(BD))
13205 return EscapeInfo[BD];
13206
13207 bool R = false;
13208 const BlockDecl *CurBD = BD;
13209
13210 do {
13211 R = !CurBD->doesNotEscape();
13212 if (R)
13213 break;
13214 CurBD = CurBD->getParent()->getInnermostBlockDecl();
13215 } while (CurBD);
13216
13217 return EscapeInfo[BD] = R;
13218 };
13219
13220 // If the location where 'self' is implicitly retained is inside a escaping
13221 // block, emit a diagnostic.
13222 for (const std::pair<SourceLocation, const BlockDecl *> &P :
13223 S.ImplicitlyRetainedSelfLocs)
13224 if (IsOrNestedInEscapingBlock(P.second))
13225 S.Diag(P.first, diag::warn_implicitly_retains_self)
13226 << FixItHint::CreateInsertion(P.first, "self->");
13227}
13228
13229Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13230 bool IsInstantiation) {
13231 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13232
13233 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13234 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13235
13236 if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
13237 CheckCompletedCoroutineBody(FD, Body);
13238
13239 // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13240 // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13241 // meant to pop the context added in ActOnStartOfFunctionDef().
13242 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13243
13244 if (FD) {
13245 FD->setBody(Body);
13246 FD->setWillHaveBody(false);
13247
13248 if (getLangOpts().CPlusPlus14) {
13249 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13250 FD->getReturnType()->isUndeducedType()) {
13251 // If the function has a deduced result type but contains no 'return'
13252 // statements, the result type as written must be exactly 'auto', and
13253 // the deduced result type is 'void'.
13254 if (!FD->getReturnType()->getAs<AutoType>()) {
13255 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13256 << FD->getReturnType();
13257 FD->setInvalidDecl();
13258 } else {
13259 // Substitute 'void' for the 'auto' in the type.
13260 TypeLoc ResultType = getReturnTypeLoc(FD);
13261 Context.adjustDeducedFunctionResultType(
13262 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13263 }
13264 }
13265 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13266 // In C++11, we don't use 'auto' deduction rules for lambda call
13267 // operators because we don't support return type deduction.
13268 auto *LSI = getCurLambda();
13269 if (LSI->HasImplicitReturnType) {
13270 deduceClosureReturnType(*LSI);
13271
13272 // C++11 [expr.prim.lambda]p4:
13273 // [...] if there are no return statements in the compound-statement
13274 // [the deduced type is] the type void
13275 QualType RetType =
13276 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13277
13278 // Update the return type to the deduced type.
13279 const FunctionProtoType *Proto =
13280 FD->getType()->getAs<FunctionProtoType>();
13281 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13282 Proto->getExtProtoInfo()));
13283 }
13284 }
13285
13286 // If the function implicitly returns zero (like 'main') or is naked,
13287 // don't complain about missing return statements.
13288 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13289 WP.disableCheckFallThrough();
13290
13291 // MSVC permits the use of pure specifier (=0) on function definition,
13292 // defined at class scope, warn about this non-standard construct.
13293 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
13294 Diag(FD->getLocation(), diag::ext_pure_function_definition);
13295
13296 if (!FD->isInvalidDecl()) {
13297 // Don't diagnose unused parameters of defaulted or deleted functions.
13298 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13299 DiagnoseUnusedParameters(FD->parameters());
13300 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13301 FD->getReturnType(), FD);
13302
13303 // If this is a structor, we need a vtable.
13304 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13305 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13306 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13307 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13308
13309 // Try to apply the named return value optimization. We have to check
13310 // if we can do this here because lambdas keep return statements around
13311 // to deduce an implicit return type.
13312 if (FD->getReturnType()->isRecordType() &&
13313 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13314 computeNRVO(Body, getCurFunction());
13315 }
13316
13317 // GNU warning -Wmissing-prototypes:
13318 // Warn if a global function is defined without a previous
13319 // prototype declaration. This warning is issued even if the
13320 // definition itself provides a prototype. The aim is to detect
13321 // global functions that fail to be declared in header files.
13322 const FunctionDecl *PossibleZeroParamPrototype = nullptr;
13323 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
13324 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13325
13326 if (PossibleZeroParamPrototype) {
13327 // We found a declaration that is not a prototype,
13328 // but that could be a zero-parameter prototype
13329 if (TypeSourceInfo *TI =
13330 PossibleZeroParamPrototype->getTypeSourceInfo()) {
13331 TypeLoc TL = TI->getTypeLoc();
13332 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13333 Diag(PossibleZeroParamPrototype->getLocation(),
13334 diag::note_declaration_not_a_prototype)
13335 << PossibleZeroParamPrototype
13336 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
13337 }
13338 }
13339
13340 // GNU warning -Wstrict-prototypes
13341 // Warn if K&R function is defined without a previous declaration.
13342 // This warning is issued only if the definition itself does not provide
13343 // a prototype. Only K&R definitions do not provide a prototype.
13344 // An empty list in a function declarator that is part of a definition
13345 // of that function specifies that the function has no parameters
13346 // (C99 6.7.5.3p14)
13347 if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13348 !LangOpts.CPlusPlus) {
13349 TypeSourceInfo *TI = FD->getTypeSourceInfo();
13350 TypeLoc TL = TI->getTypeLoc();
13351 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13352 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13353 }
13354 }
13355
13356 // Warn on CPUDispatch with an actual body.
13357 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13358 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13359 if (!CmpndBody->body_empty())
13360 Diag(CmpndBody->body_front()->getBeginLoc(),
13361 diag::warn_dispatch_body_ignored);
13362
13363 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13364 const CXXMethodDecl *KeyFunction;
13365 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13366 MD->isVirtual() &&
13367 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13368 MD == KeyFunction->getCanonicalDecl()) {
13369 // Update the key-function state if necessary for this ABI.
13370 if (FD->isInlined() &&
13371 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13372 Context.setNonKeyFunction(MD);
13373
13374 // If the newly-chosen key function is already defined, then we
13375 // need to mark the vtable as used retroactively.
13376 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13377 const FunctionDecl *Definition;
13378 if (KeyFunction && KeyFunction->isDefined(Definition))
13379 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13380 } else {
13381 // We just defined they key function; mark the vtable as used.
13382 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13383 }
13384 }
13385 }
13386
13387 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13388, __PRETTY_FUNCTION__))
13388 "Function parsing confused")(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13388, __PRETTY_FUNCTION__))
;
13389 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13390 assert(MD == getCurMethodDecl() && "Method parsing confused")((MD == getCurMethodDecl() && "Method parsing confused"
) ? static_cast<void> (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13390, __PRETTY_FUNCTION__))
;
13391 MD->setBody(Body);
13392 if (!MD->isInvalidDecl()) {
13393 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13394 MD->getReturnType(), MD);
13395
13396 if (Body)
13397 computeNRVO(Body, getCurFunction());
13398 }
13399 if (getCurFunction()->ObjCShouldCallSuper) {
13400 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13401 << MD->getSelector().getAsString();
13402 getCurFunction()->ObjCShouldCallSuper = false;
13403 }
13404 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13405 const ObjCMethodDecl *InitMethod = nullptr;
13406 bool isDesignated =
13407 MD->isDesignatedInitializerForTheInterface(&InitMethod);
13408 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13408, __PRETTY_FUNCTION__))
;
13409 (void)isDesignated;
13410
13411 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13412 auto IFace = MD->getClassInterface();
13413 if (!IFace)
13414 return false;
13415 auto SuperD = IFace->getSuperClass();
13416 if (!SuperD)
13417 return false;
13418 return SuperD->getIdentifier() ==
13419 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13420 };
13421 // Don't issue this warning for unavailable inits or direct subclasses
13422 // of NSObject.
13423 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13424 Diag(MD->getLocation(),
13425 diag::warn_objc_designated_init_missing_super_call);
13426 Diag(InitMethod->getLocation(),
13427 diag::note_objc_designated_init_marked_here);
13428 }
13429 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13430 }
13431 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13432 // Don't issue this warning for unavaialable inits.
13433 if (!MD->isUnavailable())
13434 Diag(MD->getLocation(),
13435 diag::warn_objc_secondary_init_missing_init_call);
13436 getCurFunction()->ObjCWarnForNoInitDelegation = false;
13437 }
13438
13439 diagnoseImplicitlyRetainedSelf(*this);
13440 } else {
13441 // Parsing the function declaration failed in some way. Pop the fake scope
13442 // we pushed on.
13443 PopFunctionScopeInfo(ActivePolicy, dcl);
13444 return nullptr;
13445 }
13446
13447 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13448 DiagnoseUnguardedAvailabilityViolations(dcl);
13449
13450 assert(!getCurFunction()->ObjCShouldCallSuper &&((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13452, __PRETTY_FUNCTION__))
13451 "This should only be set for ObjC methods, which should have been "((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13452, __PRETTY_FUNCTION__))
13452 "handled in the block above.")((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13452, __PRETTY_FUNCTION__))
;
13453
13454 // Verify and clean out per-function state.
13455 if (Body && (!FD || !FD->isDefaulted())) {
13456 // C++ constructors that have function-try-blocks can't have return
13457 // statements in the handlers of that block. (C++ [except.handle]p14)
13458 // Verify this.
13459 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13460 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13461
13462 // Verify that gotos and switch cases don't jump into scopes illegally.
13463 if (getCurFunction()->NeedsScopeChecking() &&
13464 !PP.isCodeCompletionEnabled())
13465 DiagnoseInvalidJumps(Body);
13466
13467 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13468 if (!Destructor->getParent()->isDependentType())
13469 CheckDestructor(Destructor);
13470
13471 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13472 Destructor->getParent());
13473 }
13474
13475 // If any errors have occurred, clear out any temporaries that may have
13476 // been leftover. This ensures that these temporaries won't be picked up for
13477 // deletion in some later function.
13478 if (getDiagnostics().hasErrorOccurred() ||
13479 getDiagnostics().getSuppressAllDiagnostics()) {
13480 DiscardCleanupsInEvaluationContext();
13481 }
13482 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13483 !isa<FunctionTemplateDecl>(dcl)) {
13484 // Since the body is valid, issue any analysis-based warnings that are
13485 // enabled.
13486 ActivePolicy = &WP;
13487 }
13488
13489 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13490 (!CheckConstexprFunctionDecl(FD) ||
13491 !CheckConstexprFunctionBody(FD, Body)))
13492 FD->setInvalidDecl();
13493
13494 if (FD && FD->hasAttr<NakedAttr>()) {
13495 for (const Stmt *S : Body->children()) {
13496 // Allow local register variables without initializer as they don't
13497 // require prologue.
13498 bool RegisterVariables = false;
13499 if (auto *DS = dyn_cast<DeclStmt>(S)) {
13500 for (const auto *Decl : DS->decls()) {
13501 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13502 RegisterVariables =
13503 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13504 if (!RegisterVariables)
13505 break;
13506 }
13507 }
13508 }
13509 if (RegisterVariables)
13510 continue;
13511 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13512 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13513 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13514 FD->setInvalidDecl();
13515 break;
13516 }
13517 }
13518 }
13519
13520 assert(ExprCleanupObjects.size() ==((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13522, __PRETTY_FUNCTION__))
13521 ExprEvalContexts.back().NumCleanupObjects &&((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13522, __PRETTY_FUNCTION__))
13522 "Leftover temporaries in function")((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13522, __PRETTY_FUNCTION__))
;
13523 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function")((!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13523, __PRETTY_FUNCTION__))
;
13524 assert(MaybeODRUseExprs.empty() &&((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13525, __PRETTY_FUNCTION__))
13525 "Leftover expressions for odr-use checking")((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13525, __PRETTY_FUNCTION__))
;
13526 }
13527
13528 if (!IsInstantiation)
13529 PopDeclContext();
13530
13531 PopFunctionScopeInfo(ActivePolicy, dcl);
13532 // If any errors have occurred, clear out any temporaries that may have
13533 // been leftover. This ensures that these temporaries won't be picked up for
13534 // deletion in some later function.
13535 if (getDiagnostics().hasErrorOccurred()) {
13536 DiscardCleanupsInEvaluationContext();
13537 }
13538
13539 return dcl;
13540}
13541
13542/// When we finish delayed parsing of an attribute, we must attach it to the
13543/// relevant Decl.
13544void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
13545 ParsedAttributes &Attrs) {
13546 // Always attach attributes to the underlying decl.
13547 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13548 D = TD->getTemplatedDecl();
13549 ProcessDeclAttributeList(S, D, Attrs);
13550
13551 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13552 if (Method->isStatic())
13553 checkThisInStaticMemberFunctionAttributes(Method);
13554}
13555
13556/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13557/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
13558NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
13559 IdentifierInfo &II, Scope *S) {
13560 // Find the scope in which the identifier is injected and the corresponding
13561 // DeclContext.
13562 // FIXME: C89 does not say what happens if there is no enclosing block scope.
13563 // In that case, we inject the declaration into the translation unit scope
13564 // instead.
13565 Scope *BlockScope = S;
13566 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13567 BlockScope = BlockScope->getParent();
13568
13569 Scope *ContextScope = BlockScope;
13570 while (!ContextScope->getEntity())
13571 ContextScope = ContextScope->getParent();
13572 ContextRAII SavedContext(*this, ContextScope->getEntity());
13573
13574 // Before we produce a declaration for an implicitly defined
13575 // function, see whether there was a locally-scoped declaration of
13576 // this name as a function or variable. If so, use that
13577 // (non-visible) declaration, and complain about it.
13578 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13579 if (ExternCPrev) {
13580 // We still need to inject the function into the enclosing block scope so
13581 // that later (non-call) uses can see it.
13582 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13583
13584 // C89 footnote 38:
13585 // If in fact it is not defined as having type "function returning int",
13586 // the behavior is undefined.
13587 if (!isa<FunctionDecl>(ExternCPrev) ||
13588 !Context.typesAreCompatible(
13589 cast<FunctionDecl>(ExternCPrev)->getType(),
13590 Context.getFunctionNoProtoType(Context.IntTy))) {
13591 Diag(Loc, diag::ext_use_out_of_scope_declaration)
13592 << ExternCPrev << !getLangOpts().C99;
13593 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13594 return ExternCPrev;
13595 }
13596 }
13597
13598 // Extension in C99. Legal in C90, but warn about it.
13599 unsigned diag_id;
13600 if (II.getName().startswith("__builtin_"))
13601 diag_id = diag::warn_builtin_unknown;
13602 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13603 else if (getLangOpts().OpenCL)
13604 diag_id = diag::err_opencl_implicit_function_decl;
13605 else if (getLangOpts().C99)
13606 diag_id = diag::ext_implicit_function_decl;
13607 else
13608 diag_id = diag::warn_implicit_function_decl;
13609 Diag(Loc, diag_id) << &II;
13610
13611 // If we found a prior declaration of this function, don't bother building
13612 // another one. We've already pushed that one into scope, so there's nothing
13613 // more to do.
13614 if (ExternCPrev)
13615 return ExternCPrev;
13616
13617 // Because typo correction is expensive, only do it if the implicit
13618 // function declaration is going to be treated as an error.
13619 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13620 TypoCorrection Corrected;
13621 DeclFilterCCC<FunctionDecl> CCC{};
13622 if (S && (Corrected =
13623 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
13624 S, nullptr, CCC, CTK_NonError)))
13625 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13626 /*ErrorRecovery*/false);
13627 }
13628
13629 // Set a Declarator for the implicit definition: int foo();
13630 const char *Dummy;
13631 AttributeFactory attrFactory;
13632 DeclSpec DS(attrFactory);
13633 unsigned DiagID;
13634 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13635 Context.getPrintingPolicy());
13636 (void)Error; // Silence warning.
13637 assert(!Error && "Error setting up implicit decl!")((!Error && "Error setting up implicit decl!") ? static_cast
<void> (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13637, __PRETTY_FUNCTION__))
;
13638 SourceLocation NoLoc;
13639 Declarator D(DS, DeclaratorContext::BlockContext);
13640 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13641 /*IsAmbiguous=*/false,
13642 /*LParenLoc=*/NoLoc,
13643 /*Params=*/nullptr,
13644 /*NumParams=*/0,
13645 /*EllipsisLoc=*/NoLoc,
13646 /*RParenLoc=*/NoLoc,
13647 /*RefQualifierIsLvalueRef=*/true,
13648 /*RefQualifierLoc=*/NoLoc,
13649 /*MutableLoc=*/NoLoc, EST_None,
13650 /*ESpecRange=*/SourceRange(),
13651 /*Exceptions=*/nullptr,
13652 /*ExceptionRanges=*/nullptr,
13653 /*NumExceptions=*/0,
13654 /*NoexceptExpr=*/nullptr,
13655 /*ExceptionSpecTokens=*/nullptr,
13656 /*DeclsInPrototype=*/None, Loc,
13657 Loc, D),
13658 std::move(DS.getAttributes()), SourceLocation());
13659 D.SetIdentifier(&II, Loc);
13660
13661 // Insert this function into the enclosing block scope.
13662 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13663 FD->setImplicit();
13664
13665 AddKnownFunctionAttributes(FD);
13666
13667 return FD;
13668}
13669
13670/// Adds any function attributes that we know a priori based on
13671/// the declaration of this function.
13672///
13673/// These attributes can apply both to implicitly-declared builtins
13674/// (like __builtin___printf_chk) or to library-declared functions
13675/// like NSLog or printf.
13676///
13677/// We need to check for duplicate attributes both here and where user-written
13678/// attributes are applied to declarations.
13679void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13680 if (FD->isInvalidDecl())
13681 return;
13682
13683 // If this is a built-in function, map its builtin attributes to
13684 // actual attributes.
13685 if (unsigned BuiltinID = FD->getBuiltinID()) {
13686 // Handle printf-formatting attributes.
13687 unsigned FormatIdx;
13688 bool HasVAListArg;
13689 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13690 if (!FD->hasAttr<FormatAttr>()) {
13691 const char *fmt = "printf";
13692 unsigned int NumParams = FD->getNumParams();
13693 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13694 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13695 fmt = "NSString";
13696 FD->addAttr(FormatAttr::CreateImplicit(Context,
13697 &Context.Idents.get(fmt),
13698 FormatIdx+1,
13699 HasVAListArg ? 0 : FormatIdx+2,
13700 FD->getLocation()));
13701 }
13702 }
13703 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13704 HasVAListArg)) {
13705 if (!FD->hasAttr<FormatAttr>())
13706 FD->addAttr(FormatAttr::CreateImplicit(Context,
13707 &Context.Idents.get("scanf"),
13708 FormatIdx+1,
13709 HasVAListArg ? 0 : FormatIdx+2,
13710 FD->getLocation()));
13711 }
13712
13713 // Handle automatically recognized callbacks.
13714 SmallVector<int, 4> Encoding;
13715 if (!FD->hasAttr<CallbackAttr>() &&
13716 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
13717 FD->addAttr(CallbackAttr::CreateImplicit(
13718 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
13719
13720 // Mark const if we don't care about errno and that is the only thing
13721 // preventing the function from being const. This allows IRgen to use LLVM
13722 // intrinsics for such functions.
13723 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13724 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13725 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13726
13727 // We make "fma" on some platforms const because we know it does not set
13728 // errno in those environments even though it could set errno based on the
13729 // C standard.
13730 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13731 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13732 !FD->hasAttr<ConstAttr>()) {
13733 switch (BuiltinID) {
13734 case Builtin::BI__builtin_fma:
13735 case Builtin::BI__builtin_fmaf:
13736 case Builtin::BI__builtin_fmal:
13737 case Builtin::BIfma:
13738 case Builtin::BIfmaf:
13739 case Builtin::BIfmal:
13740 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13741 break;
13742 default:
13743 break;
13744 }
13745 }
13746
13747 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13748 !FD->hasAttr<ReturnsTwiceAttr>())
13749 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13750 FD->getLocation()));
13751 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13752 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13753 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13754 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13755 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13756 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13757 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13758 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13759 // Add the appropriate attribute, depending on the CUDA compilation mode
13760 // and which target the builtin belongs to. For example, during host
13761 // compilation, aux builtins are __device__, while the rest are __host__.
13762 if (getLangOpts().CUDAIsDevice !=
13763 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13764 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13765 else
13766 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13767 }
13768 }
13769
13770 // If C++ exceptions are enabled but we are told extern "C" functions cannot
13771 // throw, add an implicit nothrow attribute to any extern "C" function we come
13772 // across.
13773 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13774 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13775 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13776 if (!FPT || FPT->getExceptionSpecType() == EST_None)
13777 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13778 }
13779
13780 IdentifierInfo *Name = FD->getIdentifier();
13781 if (!Name)
13782 return;
13783 if ((!getLangOpts().CPlusPlus &&
13784 FD->getDeclContext()->isTranslationUnit()) ||
13785 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13786 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13787 LinkageSpecDecl::lang_c)) {
13788 // Okay: this could be a libc/libm/Objective-C function we know
13789 // about.
13790 } else
13791 return;
13792
13793 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13794 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13795 // target-specific builtins, perhaps?
13796 if (!FD->hasAttr<FormatAttr>())
13797 FD->addAttr(FormatAttr::CreateImplicit(Context,
13798 &Context.Idents.get("printf"), 2,
13799 Name->isStr("vasprintf") ? 0 : 3,
13800 FD->getLocation()));
13801 }
13802
13803 if (Name->isStr("__CFStringMakeConstantString")) {
13804 // We already have a __builtin___CFStringMakeConstantString,
13805 // but builds that use -fno-constant-cfstrings don't go through that.
13806 if (!FD->hasAttr<FormatArgAttr>())
13807 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13808 FD->getLocation()));
13809 }
13810}
13811
13812TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13813 TypeSourceInfo *TInfo) {
13814 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")((D.getIdentifier() && "Wrong callback for declspec without declarator"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13814, __PRETTY_FUNCTION__))
;
13815 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")((!T.isNull() && "GetTypeForDeclarator() returned null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13815, __PRETTY_FUNCTION__))
;
13816
13817 if (!TInfo) {
13818 assert(D.isInvalidType() && "no declarator info for valid type")((D.isInvalidType() && "no declarator info for valid type"
) ? static_cast<void> (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13818, __PRETTY_FUNCTION__))
;
13819 TInfo = Context.getTrivialTypeSourceInfo(T);
13820 }
13821
13822 // Scope manipulation handled by caller.
13823 TypedefDecl *NewTD =
13824 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
13825 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
13826
13827 // Bail out immediately if we have an invalid declaration.
13828 if (D.isInvalidType()) {
13829 NewTD->setInvalidDecl();
13830 return NewTD;
13831 }
13832
13833 if (D.getDeclSpec().isModulePrivateSpecified()) {
13834 if (CurContext->isFunctionOrMethod())
13835 Diag(NewTD->getLocation(), diag::err_module_private_local)
13836 << 2 << NewTD->getDeclName()
13837 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13838 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13839 else
13840 NewTD->setModulePrivate();
13841 }
13842
13843 // C++ [dcl.typedef]p8:
13844 // If the typedef declaration defines an unnamed class (or
13845 // enum), the first typedef-name declared by the declaration
13846 // to be that class type (or enum type) is used to denote the
13847 // class type (or enum type) for linkage purposes only.
13848 // We need to check whether the type was declared in the declaration.
13849 switch (D.getDeclSpec().getTypeSpecType()) {
13850 case TST_enum:
13851 case TST_struct:
13852 case TST_interface:
13853 case TST_union:
13854 case TST_class: {
13855 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13856 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13857 break;
13858 }
13859
13860 default:
13861 break;
13862 }
13863
13864 return NewTD;
13865}
13866
13867/// Check that this is a valid underlying type for an enum declaration.
13868bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13869 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13870 QualType T = TI->getType();
13871
13872 if (T->isDependentType())
13873 return false;
13874
13875 if (const BuiltinType *BT = T->getAs<BuiltinType>())
13876 if (BT->isInteger())
13877 return false;
13878
13879 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13880 return true;
13881}
13882
13883/// Check whether this is a valid redeclaration of a previous enumeration.
13884/// \return true if the redeclaration was invalid.
13885bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13886 QualType EnumUnderlyingTy, bool IsFixed,
13887 const EnumDecl *Prev) {
13888 if (IsScoped != Prev->isScoped()) {
13889 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13890 << Prev->isScoped();
13891 Diag(Prev->getLocation(), diag::note_previous_declaration);
13892 return true;
13893 }
13894
13895 if (IsFixed && Prev->isFixed()) {
13896 if (!EnumUnderlyingTy->isDependentType() &&
13897 !Prev->getIntegerType()->isDependentType() &&
13898 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13899 Prev->getIntegerType())) {
13900 // TODO: Highlight the underlying type of the redeclaration.
13901 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13902 << EnumUnderlyingTy << Prev->getIntegerType();
13903 Diag(Prev->getLocation(), diag::note_previous_declaration)
13904 << Prev->getIntegerTypeRange();
13905 return true;
13906 }
13907 } else if (IsFixed != Prev->isFixed()) {
13908 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13909 << Prev->isFixed();
13910 Diag(Prev->getLocation(), diag::note_previous_declaration);
13911 return true;
13912 }
13913
13914 return false;
13915}
13916
13917/// Get diagnostic %select index for tag kind for
13918/// redeclaration diagnostic message.
13919/// WARNING: Indexes apply to particular diagnostics only!
13920///
13921/// \returns diagnostic %select index.
13922static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13923 switch (Tag) {
13924 case TTK_Struct: return 0;
13925 case TTK_Interface: return 1;
13926 case TTK_Class: return 2;
13927 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13927)
;
13928 }
13929}
13930
13931/// Determine if tag kind is a class-key compatible with
13932/// class for redeclaration (class, struct, or __interface).
13933///
13934/// \returns true iff the tag kind is compatible.
13935static bool isClassCompatTagKind(TagTypeKind Tag)
13936{
13937 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13938}
13939
13940Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13941 TagTypeKind TTK) {
13942 if (isa<TypedefDecl>(PrevDecl))
13943 return NTK_Typedef;
13944 else if (isa<TypeAliasDecl>(PrevDecl))
13945 return NTK_TypeAlias;
13946 else if (isa<ClassTemplateDecl>(PrevDecl))
13947 return NTK_Template;
13948 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13949 return NTK_TypeAliasTemplate;
13950 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13951 return NTK_TemplateTemplateArgument;
13952 switch (TTK) {
13953 case TTK_Struct:
13954 case TTK_Interface:
13955 case TTK_Class:
13956 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13957 case TTK_Union:
13958 return NTK_NonUnion;
13959 case TTK_Enum:
13960 return NTK_NonEnum;
13961 }
13962 llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 13962)
;
13963}
13964
13965/// Determine whether a tag with a given kind is acceptable
13966/// as a redeclaration of the given tag declaration.
13967///
13968/// \returns true if the new tag kind is acceptable, false otherwise.
13969bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13970 TagTypeKind NewTag, bool isDefinition,
13971 SourceLocation NewTagLoc,
13972 const IdentifierInfo *Name) {
13973 // C++ [dcl.type.elab]p3:
13974 // The class-key or enum keyword present in the
13975 // elaborated-type-specifier shall agree in kind with the
13976 // declaration to which the name in the elaborated-type-specifier
13977 // refers. This rule also applies to the form of
13978 // elaborated-type-specifier that declares a class-name or
13979 // friend class since it can be construed as referring to the
13980 // definition of the class. Thus, in any
13981 // elaborated-type-specifier, the enum keyword shall be used to
13982 // refer to an enumeration (7.2), the union class-key shall be
13983 // used to refer to a union (clause 9), and either the class or
13984 // struct class-key shall be used to refer to a class (clause 9)
13985 // declared using the class or struct class-key.
13986 TagTypeKind OldTag = Previous->getTagKind();
13987 if (OldTag != NewTag &&
13988 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
13989 return false;
13990
13991 // Tags are compatible, but we might still want to warn on mismatched tags.
13992 // Non-class tags can't be mismatched at this point.
13993 if (!isClassCompatTagKind(NewTag))
13994 return true;
13995
13996 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
13997 // by our warning analysis. We don't want to warn about mismatches with (eg)
13998 // declarations in system headers that are designed to be specialized, but if
13999 // a user asks us to warn, we should warn if their code contains mismatched
14000 // declarations.
14001 auto IsIgnoredLoc = [&](SourceLocation Loc) {
14002 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14003 Loc);
14004 };
14005 if (IsIgnoredLoc(NewTagLoc))
14006 return true;
14007
14008 auto IsIgnored = [&](const TagDecl *Tag) {
14009 return IsIgnoredLoc(Tag->getLocation());
14010 };
14011 while (IsIgnored(Previous)) {
14012 Previous = Previous->getPreviousDecl();
14013 if (!Previous)
14014 return true;
14015 OldTag = Previous->getTagKind();
14016 }
14017
14018 bool isTemplate = false;
14019 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
14020 isTemplate = Record->getDescribedClassTemplate();
14021
14022 if (inTemplateInstantiation()) {
14023 if (OldTag != NewTag) {
14024 // In a template instantiation, do not offer fix-its for tag mismatches
14025 // since they usually mess up the template instead of fixing the problem.
14026 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14027 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14028 << getRedeclDiagFromTagKind(OldTag);
14029 // FIXME: Note previous location?
14030 }
14031 return true;
14032 }
14033
14034 if (isDefinition) {
14035 // On definitions, check all previous tags and issue a fix-it for each
14036 // one that doesn't match the current tag.
14037 if (Previous->getDefinition()) {
14038 // Don't suggest fix-its for redefinitions.
14039 return true;
14040 }
14041
14042 bool previousMismatch = false;
14043 for (const TagDecl *I : Previous->redecls()) {
14044 if (I->getTagKind() != NewTag) {
14045 // Ignore previous declarations for which the warning was disabled.
14046 if (IsIgnored(I))
14047 continue;
14048
14049 if (!previousMismatch) {
14050 previousMismatch = true;
14051 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
14052 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14053 << getRedeclDiagFromTagKind(I->getTagKind());
14054 }
14055 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
14056 << getRedeclDiagFromTagKind(NewTag)
14057 << FixItHint::CreateReplacement(I->getInnerLocStart(),
14058 TypeWithKeyword::getTagTypeKindName(NewTag));
14059 }
14060 }
14061 return true;
14062 }
14063
14064 // Identify the prevailing tag kind: this is the kind of the definition (if
14065 // there is a non-ignored definition), or otherwise the kind of the prior
14066 // (non-ignored) declaration.
14067 const TagDecl *PrevDef = Previous->getDefinition();
14068 if (PrevDef && IsIgnored(PrevDef))
14069 PrevDef = nullptr;
14070 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
14071 if (Redecl->getTagKind() != NewTag) {
14072 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14073 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14074 << getRedeclDiagFromTagKind(OldTag);
14075 Diag(Redecl->getLocation(), diag::note_previous_use);
14076
14077 // If there is a previous definition, suggest a fix-it.
14078 if (PrevDef) {
14079 Diag(NewTagLoc, diag::note_struct_class_suggestion)
14080 << getRedeclDiagFromTagKind(Redecl->getTagKind())
14081 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
14082 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
14083 }
14084 }
14085
14086 return true;
14087}
14088
14089/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
14090/// from an outer enclosing namespace or file scope inside a friend declaration.
14091/// This should provide the commented out code in the following snippet:
14092/// namespace N {
14093/// struct X;
14094/// namespace M {
14095/// struct Y { friend struct /*N::*/ X; };
14096/// }
14097/// }
14098static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
14099 SourceLocation NameLoc) {
14100 // While the decl is in a namespace, do repeated lookup of that name and see
14101 // if we get the same namespace back. If we do not, continue until
14102 // translation unit scope, at which point we have a fully qualified NNS.
14103 SmallVector<IdentifierInfo *, 4> Namespaces;
14104 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14105 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
14106 // This tag should be declared in a namespace, which can only be enclosed by
14107 // other namespaces. Bail if there's an anonymous namespace in the chain.
14108 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
14109 if (!Namespace || Namespace->isAnonymousNamespace())
14110 return FixItHint();
14111 IdentifierInfo *II = Namespace->getIdentifier();
14112 Namespaces.push_back(II);
14113 NamedDecl *Lookup = SemaRef.LookupSingleName(
14114 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
14115 if (Lookup == Namespace)
14116 break;
14117 }
14118
14119 // Once we have all the namespaces, reverse them to go outermost first, and
14120 // build an NNS.
14121 SmallString<64> Insertion;
14122 llvm::raw_svector_ostream OS(Insertion);
14123 if (DC->isTranslationUnit())
14124 OS << "::";
14125 std::reverse(Namespaces.begin(), Namespaces.end());
14126 for (auto *II : Namespaces)
14127 OS << II->getName() << "::";
14128 return FixItHint::CreateInsertion(NameLoc, Insertion);
14129}
14130
14131/// Determine whether a tag originally declared in context \p OldDC can
14132/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
14133/// found a declaration in \p OldDC as a previous decl, perhaps through a
14134/// using-declaration).
14135static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
14136 DeclContext *NewDC) {
14137 OldDC = OldDC->getRedeclContext();
14138 NewDC = NewDC->getRedeclContext();
14139
14140 if (OldDC->Equals(NewDC))
14141 return true;
14142
14143 // In MSVC mode, we allow a redeclaration if the contexts are related (either
14144 // encloses the other).
14145 if (S.getLangOpts().MSVCCompat &&
14146 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14147 return true;
14148
14149 return false;
14150}
14151
14152/// This is invoked when we see 'struct foo' or 'struct {'. In the
14153/// former case, Name will be non-null. In the later case, Name will be null.
14154/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14155/// reference/declaration/definition of a tag.
14156///
14157/// \param IsTypeSpecifier \c true if this is a type-specifier (or
14158/// trailing-type-specifier) other than one in an alias-declaration.
14159///
14160/// \param SkipBody If non-null, will be set to indicate if the caller should
14161/// skip the definition of this tag and treat it as if it were a declaration.
14162Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14163 SourceLocation KWLoc, CXXScopeSpec &SS,
14164 IdentifierInfo *Name, SourceLocation NameLoc,
14165 const ParsedAttributesView &Attrs, AccessSpecifier AS,
14166 SourceLocation ModulePrivateLoc,
14167 MultiTemplateParamsArg TemplateParameterLists,
14168 bool &OwnedDecl, bool &IsDependent,
14169 SourceLocation ScopedEnumKWLoc,
14170 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14171 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14172 SkipBodyInfo *SkipBody) {
14173 // If this is not a definition, it must have a name.
14174 IdentifierInfo *OrigName = Name;
14175 assert((Name != nullptr || TUK == TUK_Definition) &&(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14176, __PRETTY_FUNCTION__))
14176 "Nameless record must be a definition!")(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14176, __PRETTY_FUNCTION__))
;
14177 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)((TemplateParameterLists.size() == 0 || TUK != TUK_Reference)
? static_cast<void> (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14177, __PRETTY_FUNCTION__))
;
14178
14179 OwnedDecl = false;
14180 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14181 bool ScopedEnum = ScopedEnumKWLoc.isValid();
14182
14183 // FIXME: Check member specializations more carefully.
14184 bool isMemberSpecialization = false;
14185 bool Invalid = false;
14186
14187 // We only need to do this matching if we have template parameters
14188 // or a scope specifier, which also conveniently avoids this work
14189 // for non-C++ cases.
14190 if (TemplateParameterLists.size() > 0 ||
14191 (SS.isNotEmpty() && TUK != TUK_Reference)) {
14192 if (TemplateParameterList *TemplateParams =
14193 MatchTemplateParametersToScopeSpecifier(
14194 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14195 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14196 if (Kind == TTK_Enum) {
14197 Diag(KWLoc, diag::err_enum_template);
14198 return nullptr;
14199 }
14200
14201 if (TemplateParams->size() > 0) {
14202 // This is a declaration or definition of a class template (which may
14203 // be a member of another template).
14204
14205 if (Invalid)
14206 return nullptr;
14207
14208 OwnedDecl = false;
14209 DeclResult Result = CheckClassTemplate(
14210 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14211 AS, ModulePrivateLoc,
14212 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14213 TemplateParameterLists.data(), SkipBody);
14214 return Result.get();
14215 } else {
14216 // The "template<>" header is extraneous.
14217 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14218 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14219 isMemberSpecialization = true;
14220 }
14221 }
14222 }
14223
14224 // Figure out the underlying type if this a enum declaration. We need to do
14225 // this early, because it's needed to detect if this is an incompatible
14226 // redeclaration.
14227 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14228 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14229
14230 if (Kind == TTK_Enum) {
14231 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14232 // No underlying type explicitly specified, or we failed to parse the
14233 // type, default to int.
14234 EnumUnderlying = Context.IntTy.getTypePtr();
14235 } else if (UnderlyingType.get()) {
14236 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14237 // integral type; any cv-qualification is ignored.
14238 TypeSourceInfo *TI = nullptr;
14239 GetTypeFromParser(UnderlyingType.get(), &TI);
14240 EnumUnderlying = TI;
14241
14242 if (CheckEnumUnderlyingType(TI))
14243 // Recover by falling back to int.
14244 EnumUnderlying = Context.IntTy.getTypePtr();
14245
14246 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14247 UPPC_FixedUnderlyingType))
14248 EnumUnderlying = Context.IntTy.getTypePtr();
14249
14250 } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14251 // For MSVC ABI compatibility, unfixed enums must use an underlying type
14252 // of 'int'. However, if this is an unfixed forward declaration, don't set
14253 // the underlying type unless the user enables -fms-compatibility. This
14254 // makes unfixed forward declared enums incomplete and is more conforming.
14255 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14256 EnumUnderlying = Context.IntTy.getTypePtr();
14257 }
14258 }
14259
14260 DeclContext *SearchDC = CurContext;
14261 DeclContext *DC = CurContext;
14262 bool isStdBadAlloc = false;
14263 bool isStdAlignValT = false;
14264
14265 RedeclarationKind Redecl = forRedeclarationInCurContext();
14266 if (TUK == TUK_Friend || TUK == TUK_Reference)
14267 Redecl = NotForRedeclaration;
14268
14269 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14270 /// implemented asks for structural equivalence checking, the returned decl
14271 /// here is passed back to the parser, allowing the tag body to be parsed.
14272 auto createTagFromNewDecl = [&]() -> TagDecl * {
14273 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")((!getLangOpts().CPlusPlus && "not meant for C++ usage"
) ? static_cast<void> (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14273, __PRETTY_FUNCTION__))
;
14274 // If there is an identifier, use the location of the identifier as the
14275 // location of the decl, otherwise use the location of the struct/union
14276 // keyword.
14277 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14278 TagDecl *New = nullptr;
14279
14280 if (Kind == TTK_Enum) {
14281 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14282 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14283 // If this is an undefined enum, bail.
14284 if (TUK != TUK_Definition && !Invalid)
14285 return nullptr;
14286 if (EnumUnderlying) {
14287 EnumDecl *ED = cast<EnumDecl>(New);
14288 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14289 ED->setIntegerTypeSourceInfo(TI);
14290 else
14291 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14292 ED->setPromotionType(ED->getIntegerType());
14293 }
14294 } else { // struct/union
14295 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14296 nullptr);
14297 }
14298
14299 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14300 // Add alignment attributes if necessary; these attributes are checked
14301 // when the ASTContext lays out the structure.
14302 //
14303 // It is important for implementing the correct semantics that this
14304 // happen here (in ActOnTag). The #pragma pack stack is
14305 // maintained as a result of parser callbacks which can occur at
14306 // many points during the parsing of a struct declaration (because
14307 // the #pragma tokens are effectively skipped over during the
14308 // parsing of the struct).
14309 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14310 AddAlignmentAttributesForRecord(RD);
14311 AddMsStructLayoutForRecord(RD);
14312 }
14313 }
14314 New->setLexicalDeclContext(CurContext);
14315 return New;
14316 };
14317
14318 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14319 if (Name && SS.isNotEmpty()) {
14320 // We have a nested-name tag ('struct foo::bar').
14321
14322 // Check for invalid 'foo::'.
14323 if (SS.isInvalid()) {
14324 Name = nullptr;
14325 goto CreateNewDecl;
14326 }
14327
14328 // If this is a friend or a reference to a class in a dependent
14329 // context, don't try to make a decl for it.
14330 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14331 DC = computeDeclContext(SS, false);
14332 if (!DC) {
14333 IsDependent = true;
14334 return nullptr;
14335 }
14336 } else {
14337 DC = computeDeclContext(SS, true);
14338 if (!DC) {
14339 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14340 << SS.getRange();
14341 return nullptr;
14342 }
14343 }
14344
14345 if (RequireCompleteDeclContext(SS, DC))
14346 return nullptr;
14347
14348 SearchDC = DC;
14349 // Look-up name inside 'foo::'.
14350 LookupQualifiedName(Previous, DC);
14351
14352 if (Previous.isAmbiguous())
14353 return nullptr;
14354
14355 if (Previous.empty()) {
14356 // Name lookup did not find anything. However, if the
14357 // nested-name-specifier refers to the current instantiation,
14358 // and that current instantiation has any dependent base
14359 // classes, we might find something at instantiation time: treat
14360 // this as a dependent elaborated-type-specifier.
14361 // But this only makes any sense for reference-like lookups.
14362 if (Previous.wasNotFoundInCurrentInstantiation() &&
14363 (TUK == TUK_Reference || TUK == TUK_Friend)) {
14364 IsDependent = true;
14365 return nullptr;
14366 }
14367
14368 // A tag 'foo::bar' must already exist.
14369 Diag(NameLoc, diag::err_not_tag_in_scope)
14370 << Kind << Name << DC << SS.getRange();
14371 Name = nullptr;
14372 Invalid = true;
14373 goto CreateNewDecl;
14374 }
14375 } else if (Name) {
14376 // C++14 [class.mem]p14:
14377 // If T is the name of a class, then each of the following shall have a
14378 // name different from T:
14379 // -- every member of class T that is itself a type
14380 if (TUK != TUK_Reference && TUK != TUK_Friend &&
14381 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14382 return nullptr;
14383
14384 // If this is a named struct, check to see if there was a previous forward
14385 // declaration or definition.
14386 // FIXME: We're looking into outer scopes here, even when we
14387 // shouldn't be. Doing so can result in ambiguities that we
14388 // shouldn't be diagnosing.
14389 LookupName(Previous, S);
14390
14391 // When declaring or defining a tag, ignore ambiguities introduced
14392 // by types using'ed into this scope.
14393 if (Previous.isAmbiguous() &&
14394 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14395 LookupResult::Filter F = Previous.makeFilter();
14396 while (F.hasNext()) {
14397 NamedDecl *ND = F.next();
14398 if (!ND->getDeclContext()->getRedeclContext()->Equals(
14399 SearchDC->getRedeclContext()))
14400 F.erase();
14401 }
14402 F.done();
14403 }
14404
14405 // C++11 [namespace.memdef]p3:
14406 // If the name in a friend declaration is neither qualified nor
14407 // a template-id and the declaration is a function or an
14408 // elaborated-type-specifier, the lookup to determine whether
14409 // the entity has been previously declared shall not consider
14410 // any scopes outside the innermost enclosing namespace.
14411 //
14412 // MSVC doesn't implement the above rule for types, so a friend tag
14413 // declaration may be a redeclaration of a type declared in an enclosing
14414 // scope. They do implement this rule for friend functions.
14415 //
14416 // Does it matter that this should be by scope instead of by
14417 // semantic context?
14418 if (!Previous.empty() && TUK == TUK_Friend) {
14419 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14420 LookupResult::Filter F = Previous.makeFilter();
14421 bool FriendSawTagOutsideEnclosingNamespace = false;
14422 while (F.hasNext()) {
14423 NamedDecl *ND = F.next();
14424 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14425 if (DC->isFileContext() &&
14426 !EnclosingNS->Encloses(ND->getDeclContext())) {
14427 if (getLangOpts().MSVCCompat)
14428 FriendSawTagOutsideEnclosingNamespace = true;
14429 else
14430 F.erase();
14431 }
14432 }
14433 F.done();
14434
14435 // Diagnose this MSVC extension in the easy case where lookup would have
14436 // unambiguously found something outside the enclosing namespace.
14437 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14438 NamedDecl *ND = Previous.getFoundDecl();
14439 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14440 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14441 }
14442 }
14443
14444 // Note: there used to be some attempt at recovery here.
14445 if (Previous.isAmbiguous())
14446 return nullptr;
14447
14448 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14449 // FIXME: This makes sure that we ignore the contexts associated
14450 // with C structs, unions, and enums when looking for a matching
14451 // tag declaration or definition. See the similar lookup tweak
14452 // in Sema::LookupName; is there a better way to deal with this?
14453 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14454 SearchDC = SearchDC->getParent();
14455 }
14456 }
14457
14458 if (Previous.isSingleResult() &&
14459 Previous.getFoundDecl()->isTemplateParameter()) {
14460 // Maybe we will complain about the shadowed template parameter.
14461 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14462 // Just pretend that we didn't see the previous declaration.
14463 Previous.clear();
14464 }
14465
14466 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14467 DC->Equals(getStdNamespace())) {
14468 if (Name->isStr("bad_alloc")) {
14469 // This is a declaration of or a reference to "std::bad_alloc".
14470 isStdBadAlloc = true;
14471
14472 // If std::bad_alloc has been implicitly declared (but made invisible to
14473 // name lookup), fill in this implicit declaration as the previous
14474 // declaration, so that the declarations get chained appropriately.
14475 if (Previous.empty() && StdBadAlloc)
14476 Previous.addDecl(getStdBadAlloc());
14477 } else if (Name->isStr("align_val_t")) {
14478 isStdAlignValT = true;
14479 if (Previous.empty() && StdAlignValT)
14480 Previous.addDecl(getStdAlignValT());
14481 }
14482 }
14483
14484 // If we didn't find a previous declaration, and this is a reference
14485 // (or friend reference), move to the correct scope. In C++, we
14486 // also need to do a redeclaration lookup there, just in case
14487 // there's a shadow friend decl.
14488 if (Name && Previous.empty() &&
14489 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14490 if (Invalid) goto CreateNewDecl;
14491 assert(SS.isEmpty())((SS.isEmpty()) ? static_cast<void> (0) : __assert_fail
("SS.isEmpty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14491, __PRETTY_FUNCTION__))
;
14492
14493 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14494 // C++ [basic.scope.pdecl]p5:
14495 // -- for an elaborated-type-specifier of the form
14496 //
14497 // class-key identifier
14498 //
14499 // if the elaborated-type-specifier is used in the
14500 // decl-specifier-seq or parameter-declaration-clause of a
14501 // function defined in namespace scope, the identifier is
14502 // declared as a class-name in the namespace that contains
14503 // the declaration; otherwise, except as a friend
14504 // declaration, the identifier is declared in the smallest
14505 // non-class, non-function-prototype scope that contains the
14506 // declaration.
14507 //
14508 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14509 // C structs and unions.
14510 //
14511 // It is an error in C++ to declare (rather than define) an enum
14512 // type, including via an elaborated type specifier. We'll
14513 // diagnose that later; for now, declare the enum in the same
14514 // scope as we would have picked for any other tag type.
14515 //
14516 // GNU C also supports this behavior as part of its incomplete
14517 // enum types extension, while GNU C++ does not.
14518 //
14519 // Find the context where we'll be declaring the tag.
14520 // FIXME: We would like to maintain the current DeclContext as the
14521 // lexical context,
14522 SearchDC = getTagInjectionContext(SearchDC);
14523
14524 // Find the scope where we'll be declaring the tag.
14525 S = getTagInjectionScope(S, getLangOpts());
14526 } else {
14527 assert(TUK == TUK_Friend)((TUK == TUK_Friend) ? static_cast<void> (0) : __assert_fail
("TUK == TUK_Friend", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14527, __PRETTY_FUNCTION__))
;
14528 // C++ [namespace.memdef]p3:
14529 // If a friend declaration in a non-local class first declares a
14530 // class or function, the friend class or function is a member of
14531 // the innermost enclosing namespace.
14532 SearchDC = SearchDC->getEnclosingNamespaceContext();
14533 }
14534
14535 // In C++, we need to do a redeclaration lookup to properly
14536 // diagnose some problems.
14537 // FIXME: redeclaration lookup is also used (with and without C++) to find a
14538 // hidden declaration so that we don't get ambiguity errors when using a
14539 // type declared by an elaborated-type-specifier. In C that is not correct
14540 // and we should instead merge compatible types found by lookup.
14541 if (getLangOpts().CPlusPlus) {
14542 Previous.setRedeclarationKind(forRedeclarationInCurContext());
14543 LookupQualifiedName(Previous, SearchDC);
14544 } else {
14545 Previous.setRedeclarationKind(forRedeclarationInCurContext());
14546 LookupName(Previous, S);
14547 }
14548 }
14549
14550 // If we have a known previous declaration to use, then use it.
14551 if (Previous.empty() && SkipBody && SkipBody->Previous)
14552 Previous.addDecl(SkipBody->Previous);
14553
14554 if (!Previous.empty()) {
14555 NamedDecl *PrevDecl = Previous.getFoundDecl();
14556 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14557
14558 // It's okay to have a tag decl in the same scope as a typedef
14559 // which hides a tag decl in the same scope. Finding this
14560 // insanity with a redeclaration lookup can only actually happen
14561 // in C++.
14562 //
14563 // This is also okay for elaborated-type-specifiers, which is
14564 // technically forbidden by the current standard but which is
14565 // okay according to the likely resolution of an open issue;
14566 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14567 if (getLangOpts().CPlusPlus) {
14568 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14569 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14570 TagDecl *Tag = TT->getDecl();
14571 if (Tag->getDeclName() == Name &&
14572 Tag->getDeclContext()->getRedeclContext()
14573 ->Equals(TD->getDeclContext()->getRedeclContext())) {
14574 PrevDecl = Tag;
14575 Previous.clear();
14576 Previous.addDecl(Tag);
14577 Previous.resolveKind();
14578 }
14579 }
14580 }
14581 }
14582
14583 // If this is a redeclaration of a using shadow declaration, it must
14584 // declare a tag in the same context. In MSVC mode, we allow a
14585 // redefinition if either context is within the other.
14586 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14587 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14588 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14589 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14590 !(OldTag && isAcceptableTagRedeclContext(
14591 *this, OldTag->getDeclContext(), SearchDC))) {
14592 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14593 Diag(Shadow->getTargetDecl()->getLocation(),
14594 diag::note_using_decl_target);
14595 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14596 << 0;
14597 // Recover by ignoring the old declaration.
14598 Previous.clear();
14599 goto CreateNewDecl;
14600 }
14601 }
14602
14603 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14604 // If this is a use of a previous tag, or if the tag is already declared
14605 // in the same scope (so that the definition/declaration completes or
14606 // rementions the tag), reuse the decl.
14607 if (TUK == TUK_Reference || TUK == TUK_Friend ||
14608 isDeclInScope(DirectPrevDecl, SearchDC, S,
14609 SS.isNotEmpty() || isMemberSpecialization)) {
14610 // Make sure that this wasn't declared as an enum and now used as a
14611 // struct or something similar.
14612 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14613 TUK == TUK_Definition, KWLoc,
14614 Name)) {
14615 bool SafeToContinue
14616 = (PrevTagDecl->getTagKind() != TTK_Enum &&
14617 Kind != TTK_Enum);
14618 if (SafeToContinue)
14619 Diag(KWLoc, diag::err_use_with_wrong_tag)
14620 << Name
14621 << FixItHint::CreateReplacement(SourceRange(KWLoc),
14622 PrevTagDecl->getKindName());
14623 else
14624 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14625 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14626
14627 if (SafeToContinue)
14628 Kind = PrevTagDecl->getTagKind();
14629 else {
14630 // Recover by making this an anonymous redefinition.
14631 Name = nullptr;
14632 Previous.clear();
14633 Invalid = true;
14634 }
14635 }
14636
14637 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14638 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14639
14640 // If this is an elaborated-type-specifier for a scoped enumeration,
14641 // the 'class' keyword is not necessary and not permitted.
14642 if (TUK == TUK_Reference || TUK == TUK_Friend) {
14643 if (ScopedEnum)
14644 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14645 << PrevEnum->isScoped()
14646 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14647 return PrevTagDecl;
14648 }
14649
14650 QualType EnumUnderlyingTy;
14651 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14652 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14653 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14654 EnumUnderlyingTy = QualType(T, 0);
14655
14656 // All conflicts with previous declarations are recovered by
14657 // returning the previous declaration, unless this is a definition,
14658 // in which case we want the caller to bail out.
14659 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14660 ScopedEnum, EnumUnderlyingTy,
14661 IsFixed, PrevEnum))
14662 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14663 }
14664
14665 // C++11 [class.mem]p1:
14666 // A member shall not be declared twice in the member-specification,
14667 // except that a nested class or member class template can be declared
14668 // and then later defined.
14669 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14670 S->isDeclScope(PrevDecl)) {
14671 Diag(NameLoc, diag::ext_member_redeclared);
14672 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14673 }
14674
14675 if (!Invalid) {
14676 // If this is a use, just return the declaration we found, unless
14677 // we have attributes.
14678 if (TUK == TUK_Reference || TUK == TUK_Friend) {
14679 if (!Attrs.empty()) {
14680 // FIXME: Diagnose these attributes. For now, we create a new
14681 // declaration to hold them.
14682 } else if (TUK == TUK_Reference &&
14683 (PrevTagDecl->getFriendObjectKind() ==
14684 Decl::FOK_Undeclared ||
14685 PrevDecl->getOwningModule() != getCurrentModule()) &&
14686 SS.isEmpty()) {
14687 // This declaration is a reference to an existing entity, but
14688 // has different visibility from that entity: it either makes
14689 // a friend visible or it makes a type visible in a new module.
14690 // In either case, create a new declaration. We only do this if
14691 // the declaration would have meant the same thing if no prior
14692 // declaration were found, that is, if it was found in the same
14693 // scope where we would have injected a declaration.
14694 if (!getTagInjectionContext(CurContext)->getRedeclContext()
14695 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14696 return PrevTagDecl;
14697 // This is in the injected scope, create a new declaration in
14698 // that scope.
14699 S = getTagInjectionScope(S, getLangOpts());
14700 } else {
14701 return PrevTagDecl;
14702 }
14703 }
14704
14705 // Diagnose attempts to redefine a tag.
14706 if (TUK == TUK_Definition) {
14707 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14708 // If we're defining a specialization and the previous definition
14709 // is from an implicit instantiation, don't emit an error
14710 // here; we'll catch this in the general case below.
14711 bool IsExplicitSpecializationAfterInstantiation = false;
14712 if (isMemberSpecialization) {
14713 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14714 IsExplicitSpecializationAfterInstantiation =
14715 RD->getTemplateSpecializationKind() !=
14716 TSK_ExplicitSpecialization;
14717 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14718 IsExplicitSpecializationAfterInstantiation =
14719 ED->getTemplateSpecializationKind() !=
14720 TSK_ExplicitSpecialization;
14721 }
14722
14723 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14724 // not keep more that one definition around (merge them). However,
14725 // ensure the decl passes the structural compatibility check in
14726 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14727 NamedDecl *Hidden = nullptr;
14728 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14729 // There is a definition of this tag, but it is not visible. We
14730 // explicitly make use of C++'s one definition rule here, and
14731 // assume that this definition is identical to the hidden one
14732 // we already have. Make the existing definition visible and
14733 // use it in place of this one.
14734 if (!getLangOpts().CPlusPlus) {
14735 // Postpone making the old definition visible until after we
14736 // complete parsing the new one and do the structural
14737 // comparison.
14738 SkipBody->CheckSameAsPrevious = true;
14739 SkipBody->New = createTagFromNewDecl();
14740 SkipBody->Previous = Def;
14741 return Def;
14742 } else {
14743 SkipBody->ShouldSkip = true;
14744 SkipBody->Previous = Def;
14745 makeMergedDefinitionVisible(Hidden);
14746 // Carry on and handle it like a normal definition. We'll
14747 // skip starting the definitiion later.
14748 }
14749 } else if (!IsExplicitSpecializationAfterInstantiation) {
14750 // A redeclaration in function prototype scope in C isn't
14751 // visible elsewhere, so merely issue a warning.
14752 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14753 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14754 else
14755 Diag(NameLoc, diag::err_redefinition) << Name;
14756 notePreviousDefinition(Def,
14757 NameLoc.isValid() ? NameLoc : KWLoc);
14758 // If this is a redefinition, recover by making this
14759 // struct be anonymous, which will make any later
14760 // references get the previous definition.
14761 Name = nullptr;
14762 Previous.clear();
14763 Invalid = true;
14764 }
14765 } else {
14766 // If the type is currently being defined, complain
14767 // about a nested redefinition.
14768 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14769 if (TD->isBeingDefined()) {
14770 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14771 Diag(PrevTagDecl->getLocation(),
14772 diag::note_previous_definition);
14773 Name = nullptr;
14774 Previous.clear();
14775 Invalid = true;
14776 }
14777 }
14778
14779 // Okay, this is definition of a previously declared or referenced
14780 // tag. We're going to create a new Decl for it.
14781 }
14782
14783 // Okay, we're going to make a redeclaration. If this is some kind
14784 // of reference, make sure we build the redeclaration in the same DC
14785 // as the original, and ignore the current access specifier.
14786 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14787 SearchDC = PrevTagDecl->getDeclContext();
14788 AS = AS_none;
14789 }
14790 }
14791 // If we get here we have (another) forward declaration or we
14792 // have a definition. Just create a new decl.
14793
14794 } else {
14795 // If we get here, this is a definition of a new tag type in a nested
14796 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14797 // new decl/type. We set PrevDecl to NULL so that the entities
14798 // have distinct types.
14799 Previous.clear();
14800 }
14801 // If we get here, we're going to create a new Decl. If PrevDecl
14802 // is non-NULL, it's a definition of the tag declared by
14803 // PrevDecl. If it's NULL, we have a new definition.
14804
14805 // Otherwise, PrevDecl is not a tag, but was found with tag
14806 // lookup. This is only actually possible in C++, where a few
14807 // things like templates still live in the tag namespace.
14808 } else {
14809 // Use a better diagnostic if an elaborated-type-specifier
14810 // found the wrong kind of type on the first
14811 // (non-redeclaration) lookup.
14812 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14813 !Previous.isForRedeclaration()) {
14814 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14815 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14816 << Kind;
14817 Diag(PrevDecl->getLocation(), diag::note_declared_at);
14818 Invalid = true;
14819
14820 // Otherwise, only diagnose if the declaration is in scope.
14821 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14822 SS.isNotEmpty() || isMemberSpecialization)) {
14823 // do nothing
14824
14825 // Diagnose implicit declarations introduced by elaborated types.
14826 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14827 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14828 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14829 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14830 Invalid = true;
14831
14832 // Otherwise it's a declaration. Call out a particularly common
14833 // case here.
14834 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14835 unsigned Kind = 0;
14836 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14837 Diag(NameLoc, diag::err_tag_definition_of_typedef)
14838 << Name << Kind << TND->getUnderlyingType();
14839 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14840 Invalid = true;
14841
14842 // Otherwise, diagnose.
14843 } else {
14844 // The tag name clashes with something else in the target scope,
14845 // issue an error and recover by making this tag be anonymous.
14846 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14847 notePreviousDefinition(PrevDecl, NameLoc);
14848 Name = nullptr;
14849 Invalid = true;
14850 }
14851
14852 // The existing declaration isn't relevant to us; we're in a
14853 // new scope, so clear out the previous declaration.
14854 Previous.clear();
14855 }
14856 }
14857
14858CreateNewDecl:
14859
14860 TagDecl *PrevDecl = nullptr;
14861 if (Previous.isSingleResult())
14862 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14863
14864 // If there is an identifier, use the location of the identifier as the
14865 // location of the decl, otherwise use the location of the struct/union
14866 // keyword.
14867 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14868
14869 // Otherwise, create a new declaration. If there is a previous
14870 // declaration of the same entity, the two will be linked via
14871 // PrevDecl.
14872 TagDecl *New;
14873
14874 if (Kind == TTK_Enum) {
14875 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14876 // enum X { A, B, C } D; D should chain to X.
14877 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14878 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14879 ScopedEnumUsesClassTag, IsFixed);
14880
14881 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14882 StdAlignValT = cast<EnumDecl>(New);
14883
14884 // If this is an undefined enum, warn.
14885 if (TUK != TUK_Definition && !Invalid) {
14886 TagDecl *Def;
14887 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
14888 // C++0x: 7.2p2: opaque-enum-declaration.
14889 // Conflicts are diagnosed above. Do nothing.
14890 }
14891 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14892 Diag(Loc, diag::ext_forward_ref_enum_def)
14893 << New;
14894 Diag(Def->getLocation(), diag::note_previous_definition);
14895 } else {
14896 unsigned DiagID = diag::ext_forward_ref_enum;
14897 if (getLangOpts().MSVCCompat)
14898 DiagID = diag::ext_ms_forward_ref_enum;
14899 else if (getLangOpts().CPlusPlus)
14900 DiagID = diag::err_forward_ref_enum;
14901 Diag(Loc, DiagID);
14902 }
14903 }
14904
14905 if (EnumUnderlying) {
14906 EnumDecl *ED = cast<EnumDecl>(New);
14907 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14908 ED->setIntegerTypeSourceInfo(TI);
14909 else
14910 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14911 ED->setPromotionType(ED->getIntegerType());
14912 assert(ED->isComplete() && "enum with type should be complete")((ED->isComplete() && "enum with type should be complete"
) ? static_cast<void> (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 14912, __PRETTY_FUNCTION__))
;
14913 }
14914 } else {
14915 // struct/union/class
14916
14917 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14918 // struct X { int A; } D; D should chain to X.
14919 if (getLangOpts().CPlusPlus) {
14920 // FIXME: Look for a way to use RecordDecl for simple structs.
14921 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14922 cast_or_null<CXXRecordDecl>(PrevDecl));
14923
14924 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14925 StdBadAlloc = cast<CXXRecordDecl>(New);
14926 } else
14927 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14928 cast_or_null<RecordDecl>(PrevDecl));
14929 }
14930
14931 // C++11 [dcl.type]p3:
14932 // A type-specifier-seq shall not define a class or enumeration [...].
14933 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14934 TUK == TUK_Definition) {
14935 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14936 << Context.getTagDeclType(New);
14937 Invalid = true;
14938 }
14939
14940 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14941 DC->getDeclKind() == Decl::Enum) {
14942 Diag(New->getLocation(), diag::err_type_defined_in_enum)
14943 << Context.getTagDeclType(New);
14944 Invalid = true;
14945 }
14946
14947 // Maybe add qualifier info.
14948 if (SS.isNotEmpty()) {
14949 if (SS.isSet()) {
14950 // If this is either a declaration or a definition, check the
14951 // nested-name-specifier against the current context.
14952 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14953 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14954 isMemberSpecialization))
14955 Invalid = true;
14956
14957 New->setQualifierInfo(SS.getWithLocInContext(Context));
14958 if (TemplateParameterLists.size() > 0) {
14959 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14960 }
14961 }
14962 else
14963 Invalid = true;
14964 }
14965
14966 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14967 // Add alignment attributes if necessary; these attributes are checked when
14968 // the ASTContext lays out the structure.
14969 //
14970 // It is important for implementing the correct semantics that this
14971 // happen here (in ActOnTag). The #pragma pack stack is
14972 // maintained as a result of parser callbacks which can occur at
14973 // many points during the parsing of a struct declaration (because
14974 // the #pragma tokens are effectively skipped over during the
14975 // parsing of the struct).
14976 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14977 AddAlignmentAttributesForRecord(RD);
14978 AddMsStructLayoutForRecord(RD);
14979 }
14980 }
14981
14982 if (ModulePrivateLoc.isValid()) {
14983 if (isMemberSpecialization)
14984 Diag(New->getLocation(), diag::err_module_private_specialization)
14985 << 2
14986 << FixItHint::CreateRemoval(ModulePrivateLoc);
14987 // __module_private__ does not apply to local classes. However, we only
14988 // diagnose this as an error when the declaration specifiers are
14989 // freestanding. Here, we just ignore the __module_private__.
14990 else if (!SearchDC->isFunctionOrMethod())
14991 New->setModulePrivate();
14992 }
14993
14994 // If this is a specialization of a member class (of a class template),
14995 // check the specialization.
14996 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14997 Invalid = true;
14998
14999 // If we're declaring or defining a tag in function prototype scope in C,
15000 // note that this type can only be used within the function and add it to
15001 // the list of decls to inject into the function definition scope.
15002 if ((Name || Kind == TTK_Enum) &&
15003 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15004 if (getLangOpts().CPlusPlus) {
15005 // C++ [dcl.fct]p6:
15006 // Types shall not be defined in return or parameter types.
15007 if (TUK == TUK_Definition && !IsTypeSpecifier) {
15008 Diag(Loc, diag::err_type_defined_in_param_type)
15009 << Name;
15010 Invalid = true;
15011 }
15012 } else if (!PrevDecl) {
15013 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15014 }
15015 }
15016
15017 if (Invalid)
15018 New->setInvalidDecl();
15019
15020 // Set the lexical context. If the tag has a C++ scope specifier, the
15021 // lexical context will be different from the semantic context.
15022 New->setLexicalDeclContext(CurContext);
15023
15024 // Mark this as a friend decl if applicable.
15025 // In Microsoft mode, a friend declaration also acts as a forward
15026 // declaration so we always pass true to setObjectOfFriendDecl to make
15027 // the tag name visible.
15028 if (TUK == TUK_Friend)
15029 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
15030
15031 // Set the access specifier.
15032 if (!Invalid && SearchDC->isRecord())
15033 SetMemberAccessSpecifier(New, PrevDecl, AS);
15034
15035 if (PrevDecl)
15036 CheckRedeclarationModuleOwnership(New, PrevDecl);
15037
15038 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
15039 New->startDefinition();
15040
15041 ProcessDeclAttributeList(S, New, Attrs);
15042 AddPragmaAttributes(S, New);
15043
15044 // If this has an identifier, add it to the scope stack.
15045 if (TUK == TUK_Friend) {
15046 // We might be replacing an existing declaration in the lookup tables;
15047 // if so, borrow its access specifier.
15048 if (PrevDecl)
15049 New->setAccess(PrevDecl->getAccess());
15050
15051 DeclContext *DC = New->getDeclContext()->getRedeclContext();
15052 DC->makeDeclVisibleInContext(New);
15053 if (Name) // can be null along some error paths
15054 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
15055 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
15056 } else if (Name) {
15057 S = getNonFieldDeclScope(S);
15058 PushOnScopeChains(New, S, true);
15059 } else {
15060 CurContext->addDecl(New);
15061 }
15062
15063 // If this is the C FILE type, notify the AST context.
15064 if (IdentifierInfo *II = New->getIdentifier())
15065 if (!New->isInvalidDecl() &&
15066 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
15067 II->isStr("FILE"))
15068 Context.setFILEDecl(New);
15069
15070 if (PrevDecl)
15071 mergeDeclAttributes(New, PrevDecl);
15072
15073 // If there's a #pragma GCC visibility in scope, set the visibility of this
15074 // record.
15075 AddPushedVisibilityAttribute(New);
15076
15077 if (isMemberSpecialization && !New->isInvalidDecl())
15078 CompleteMemberSpecialization(New, Previous);
15079
15080 OwnedDecl = true;
15081 // In C++, don't return an invalid declaration. We can't recover well from
15082 // the cases where we make the type anonymous.
15083 if (Invalid && getLangOpts().CPlusPlus) {
15084 if (New->isBeingDefined())
15085 if (auto RD = dyn_cast<RecordDecl>(New))
15086 RD->completeDefinition();
15087 return nullptr;
15088 } else if (SkipBody && SkipBody->ShouldSkip) {
15089 return SkipBody->Previous;
15090 } else {
15091 return New;
15092 }
15093}
15094
15095void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
15096 AdjustDeclIfTemplate(TagD);
15097 TagDecl *Tag = cast<TagDecl>(TagD);
15098
15099 // Enter the tag context.
15100 PushDeclContext(S, Tag);
15101
15102 ActOnDocumentableDecl(TagD);
15103
15104 // If there's a #pragma GCC visibility in scope, set the visibility of this
15105 // record.
15106 AddPushedVisibilityAttribute(Tag);
15107}
15108
15109bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
15110 SkipBodyInfo &SkipBody) {
15111 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
15112 return false;
15113
15114 // Make the previous decl visible.
15115 makeMergedDefinitionVisible(SkipBody.Previous);
15116 return true;
15117}
15118
15119Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
15120 assert(isa<ObjCContainerDecl>(IDecl) &&((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15121, __PRETTY_FUNCTION__))
15121 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15121, __PRETTY_FUNCTION__))
;
15122 DeclContext *OCD = cast<DeclContext>(IDecl);
15123 assert(getContainingDC(OCD) == CurContext &&((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15124, __PRETTY_FUNCTION__))
15124 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15124, __PRETTY_FUNCTION__))
;
15125 CurContext = OCD;
15126 return IDecl;
15127}
15128
15129void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
15130 SourceLocation FinalLoc,
15131 bool IsFinalSpelledSealed,
15132 SourceLocation LBraceLoc) {
15133 AdjustDeclIfTemplate(TagD);
15134 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15135
15136 FieldCollector->StartClass();
15137
15138 if (!Record->getIdentifier())
15139 return;
15140
15141 if (FinalLoc.isValid())
15142 Record->addAttr(new (Context)
15143 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15144
15145 // C++ [class]p2:
15146 // [...] The class-name is also inserted into the scope of the
15147 // class itself; this is known as the injected-class-name. For
15148 // purposes of access checking, the injected-class-name is treated
15149 // as if it were a public member name.
15150 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15151 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15152 Record->getLocation(), Record->getIdentifier(),
15153 /*PrevDecl=*/nullptr,
15154 /*DelayTypeCreation=*/true);
15155 Context.getTypeDeclType(InjectedClassName, Record);
15156 InjectedClassName->setImplicit();
15157 InjectedClassName->setAccess(AS_public);
15158 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15159 InjectedClassName->setDescribedClassTemplate(Template);
15160 PushOnScopeChains(InjectedClassName, S);
15161 assert(InjectedClassName->isInjectedClassName() &&((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15162, __PRETTY_FUNCTION__))
15162 "Broken injected-class-name")((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15162, __PRETTY_FUNCTION__))
;
15163}
15164
15165void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15166 SourceRange BraceRange) {
15167 AdjustDeclIfTemplate(TagD);
15168 TagDecl *Tag = cast<TagDecl>(TagD);
15169 Tag->setBraceRange(BraceRange);
15170
15171 // Make sure we "complete" the definition even it is invalid.
15172 if (Tag->isBeingDefined()) {
15173 assert(Tag->isInvalidDecl() && "We should already have completed it")((Tag->isInvalidDecl() && "We should already have completed it"
) ? static_cast<void> (0) : __assert_fail ("Tag->isInvalidDecl() && \"We should already have completed it\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15173, __PRETTY_FUNCTION__))
;
15174 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15175 RD->completeDefinition();
15176 }
15177
15178 if (isa<CXXRecordDecl>(Tag)) {
15179 FieldCollector->FinishClass();
15180 }
15181
15182 // Exit this scope of this tag's definition.
15183 PopDeclContext();
15184
15185 if (getCurLexicalContext()->isObjCContainer() &&
15186 Tag->getDeclContext()->isFileContext())
15187 Tag->setTopLevelDeclInObjCContainer();
15188
15189 // Notify the consumer that we've defined a tag.
15190 if (!Tag->isInvalidDecl())
15191 Consumer.HandleTagDeclDefinition(Tag);
15192}
15193
15194void Sema::ActOnObjCContainerFinishDefinition() {
15195 // Exit this scope of this interface definition.
15196 PopDeclContext();
15197}
15198
15199void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15200 assert(DC == CurContext && "Mismatch of container contexts")((DC == CurContext && "Mismatch of container contexts"
) ? static_cast<void> (0) : __assert_fail ("DC == CurContext && \"Mismatch of container contexts\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15200, __PRETTY_FUNCTION__))
;
15201 OriginalLexicalContext = DC;
15202 ActOnObjCContainerFinishDefinition();
15203}
15204
15205void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15206 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15207 OriginalLexicalContext = nullptr;
15208}
15209
15210void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15211 AdjustDeclIfTemplate(TagD);
15212 TagDecl *Tag = cast<TagDecl>(TagD);
15213 Tag->setInvalidDecl();
15214
15215 // Make sure we "complete" the definition even it is invalid.
15216 if (Tag->isBeingDefined()) {
15217 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15218 RD->completeDefinition();
15219 }
15220
15221 // We're undoing ActOnTagStartDefinition here, not
15222 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15223 // the FieldCollector.
15224
15225 PopDeclContext();
15226}
15227
15228// Note that FieldName may be null for anonymous bitfields.
15229ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15230 IdentifierInfo *FieldName,
15231 QualType FieldTy, bool IsMsStruct,
15232 Expr *BitWidth, bool *ZeroWidth) {
15233 // Default to true; that shouldn't confuse checks for emptiness
15234 if (ZeroWidth)
15235 *ZeroWidth = true;
15236
15237 // C99 6.7.2.1p4 - verify the field type.
15238 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15239 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15240 // Handle incomplete types with specific error.
15241 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15242 return ExprError();
15243 if (FieldName)
15244 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15245 << FieldName << FieldTy << BitWidth->getSourceRange();
15246 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15247 << FieldTy << BitWidth->getSourceRange();
15248 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15249 UPPC_BitFieldWidth))
15250 return ExprError();
15251
15252 // If the bit-width is type- or value-dependent, don't try to check
15253 // it now.
15254 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15255 return BitWidth;
15256
15257 llvm::APSInt Value;
15258 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15259 if (ICE.isInvalid())
15260 return ICE;
15261 BitWidth = ICE.get();
15262
15263 if (Value != 0 && ZeroWidth)
15264 *ZeroWidth = false;
15265
15266 // Zero-width bitfield is ok for anonymous field.
15267 if (Value == 0 && FieldName)
15268 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15269
15270 if (Value.isSigned() && Value.isNegative()) {
15271 if (FieldName)
15272 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15273 << FieldName << Value.toString(10);
15274 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15275 << Value.toString(10);
15276 }
15277
15278 if (!FieldTy->isDependentType()) {
15279 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15280 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15281 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15282
15283 // Over-wide bitfields are an error in C or when using the MSVC bitfield
15284 // ABI.
15285 bool CStdConstraintViolation =
15286 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15287 bool MSBitfieldViolation =
15288 Value.ugt(TypeStorageSize) &&
15289 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15290 if (CStdConstraintViolation || MSBitfieldViolation) {
15291 unsigned DiagWidth =
15292 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15293 if (FieldName)
15294 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15295 << FieldName << (unsigned)Value.getZExtValue()
15296 << !CStdConstraintViolation << DiagWidth;
15297
15298 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15299 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15300 << DiagWidth;
15301 }
15302
15303 // Warn on types where the user might conceivably expect to get all
15304 // specified bits as value bits: that's all integral types other than
15305 // 'bool'.
15306 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15307 if (FieldName)
15308 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15309 << FieldName << (unsigned)Value.getZExtValue()
15310 << (unsigned)TypeWidth;
15311 else
15312 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15313 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15314 }
15315 }
15316
15317 return BitWidth;
15318}
15319
15320/// ActOnField - Each field of a C struct/union is passed into this in order
15321/// to create a FieldDecl object for it.
15322Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15323 Declarator &D, Expr *BitfieldWidth) {
15324 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15325 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15326 /*InitStyle=*/ICIS_NoInit, AS_public);
15327 return Res;
15328}
15329
15330/// HandleField - Analyze a field of a C struct or a C++ data member.
15331///
15332FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15333 SourceLocation DeclStart,
15334 Declarator &D, Expr *BitWidth,
15335 InClassInitStyle InitStyle,
15336 AccessSpecifier AS) {
15337 if (D.isDecompositionDeclarator()) {
15338 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15339 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15340 << Decomp.getSourceRange();
15341 return nullptr;
15342 }
15343
15344 IdentifierInfo *II = D.getIdentifier();
15345 SourceLocation Loc = DeclStart;
15346 if (II) Loc = D.getIdentifierLoc();
15347
15348 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15349 QualType T = TInfo->getType();
15350 if (getLangOpts().CPlusPlus) {
15351 CheckExtraCXXDefaultArguments(D);
15352
15353 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15354 UPPC_DataMemberType)) {
15355 D.setInvalidType();
15356 T = Context.IntTy;
15357 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15358 }
15359 }
15360
15361 DiagnoseFunctionSpecifiers(D.getDeclSpec());
15362
15363 if (D.getDeclSpec().isInlineSpecified())
15364 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15365 << getLangOpts().CPlusPlus17;
15366 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15367 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15368 diag::err_invalid_thread)
15369 << DeclSpec::getSpecifierName(TSCS);
15370
15371 // Check to see if this name was declared as a member previously
15372 NamedDecl *PrevDecl = nullptr;
15373 LookupResult Previous(*this, II, Loc, LookupMemberName,
15374 ForVisibleRedeclaration);
15375 LookupName(Previous, S);
15376 switch (Previous.getResultKind()) {
15377 case LookupResult::Found:
15378 case LookupResult::FoundUnresolvedValue:
15379 PrevDecl = Previous.getAsSingle<NamedDecl>();
15380 break;
15381
15382 case LookupResult::FoundOverloaded:
15383 PrevDecl = Previous.getRepresentativeDecl();
15384 break;
15385
15386 case LookupResult::NotFound:
15387 case LookupResult::NotFoundInCurrentInstantiation:
15388 case LookupResult::Ambiguous:
15389 break;
15390 }
15391 Previous.suppressDiagnostics();
15392
15393 if (PrevDecl && PrevDecl->isTemplateParameter()) {
15394 // Maybe we will complain about the shadowed template parameter.
15395 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15396 // Just pretend that we didn't see the previous declaration.
15397 PrevDecl = nullptr;
15398 }
15399
15400 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15401 PrevDecl = nullptr;
15402
15403 bool Mutable
15404 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15405 SourceLocation TSSL = D.getBeginLoc();
15406 FieldDecl *NewFD
15407 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15408 TSSL, AS, PrevDecl, &D);
15409
15410 if (NewFD->isInvalidDecl())
15411 Record->setInvalidDecl();
15412
15413 if (D.getDeclSpec().isModulePrivateSpecified())
15414 NewFD->setModulePrivate();
15415
15416 if (NewFD->isInvalidDecl() && PrevDecl) {
15417 // Don't introduce NewFD into scope; there's already something
15418 // with the same name in the same scope.
15419 } else if (II) {
15420 PushOnScopeChains(NewFD, S);
15421 } else
15422 Record->addDecl(NewFD);
15423
15424 return NewFD;
15425}
15426
15427/// Build a new FieldDecl and check its well-formedness.
15428///
15429/// This routine builds a new FieldDecl given the fields name, type,
15430/// record, etc. \p PrevDecl should refer to any previous declaration
15431/// with the same name and in the same scope as the field to be
15432/// created.
15433///
15434/// \returns a new FieldDecl.
15435///
15436/// \todo The Declarator argument is a hack. It will be removed once
15437FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15438 TypeSourceInfo *TInfo,
15439 RecordDecl *Record, SourceLocation Loc,
15440 bool Mutable, Expr *BitWidth,
15441 InClassInitStyle InitStyle,
15442 SourceLocation TSSL,
15443 AccessSpecifier AS, NamedDecl *PrevDecl,
15444 Declarator *D) {
15445 IdentifierInfo *II = Name.getAsIdentifierInfo();
15446 bool InvalidDecl = false;
15447 if (D) InvalidDecl = D->isInvalidType();
15448
15449 // If we receive a broken type, recover by assuming 'int' and
15450 // marking this declaration as invalid.
15451 if (T.isNull()) {
15452 InvalidDecl = true;
15453 T = Context.IntTy;
15454 }
15455
15456 QualType EltTy = Context.getBaseElementType(T);
15457 if (!EltTy->isDependentType()) {
15458 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15459 // Fields of incomplete type force their record to be invalid.
15460 Record->setInvalidDecl();
15461 InvalidDecl = true;
15462 } else {
15463 NamedDecl *Def;
15464 EltTy->isIncompleteType(&Def);
15465 if (Def && Def->isInvalidDecl()) {
15466 Record->setInvalidDecl();
15467 InvalidDecl = true;
15468 }
15469 }
15470 }
15471
15472 // TR 18037 does not allow fields to be declared with address space
15473 if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15474 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15475 Diag(Loc, diag::err_field_with_address_space);
15476 Record->setInvalidDecl();
15477 InvalidDecl = true;
15478 }
15479
15480 if (LangOpts.OpenCL) {
15481 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15482 // used as structure or union field: image, sampler, event or block types.
15483 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15484 T->isBlockPointerType()) {
15485 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15486 Record->setInvalidDecl();
15487 InvalidDecl = true;
15488 }
15489 // OpenCL v1.2 s6.9.c: bitfields are not supported.
15490 if (BitWidth) {
15491 Diag(Loc, diag::err_opencl_bitfields);
15492 InvalidDecl = true;
15493 }
15494 }
15495
15496 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15497 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15498 T.hasQualifiers()) {
15499 InvalidDecl = true;
15500 Diag(Loc, diag::err_anon_bitfield_qualifiers);
15501 }
15502
15503 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15504 // than a variably modified type.
15505 if (!InvalidDecl && T->isVariablyModifiedType()) {
15506 bool SizeIsNegative;
15507 llvm::APSInt Oversized;
15508
15509 TypeSourceInfo *FixedTInfo =
15510 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
15511 SizeIsNegative,
15512 Oversized);
15513 if (FixedTInfo) {
15514 Diag(Loc, diag::warn_illegal_constant_array_size);
15515 TInfo = FixedTInfo;
15516 T = FixedTInfo->getType();
15517 } else {
15518 if (SizeIsNegative)
15519 Diag(Loc, diag::err_typecheck_negative_array_size);
15520 else if (Oversized.getBoolValue())
15521 Diag(Loc, diag::err_array_too_large)
15522 << Oversized.toString(10);
15523 else
15524 Diag(Loc, diag::err_typecheck_field_variable_size);
15525 InvalidDecl = true;
15526 }
15527 }
15528
15529 // Fields can not have abstract class types
15530 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15531 diag::err_abstract_type_in_decl,
15532 AbstractFieldType))
15533 InvalidDecl = true;
15534
15535 bool ZeroWidth = false;
15536 if (InvalidDecl)
15537 BitWidth = nullptr;
15538 // If this is declared as a bit-field, check the bit-field.
15539 if (BitWidth) {
15540 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15541 &ZeroWidth).get();
15542 if (!BitWidth) {
15543 InvalidDecl = true;
15544 BitWidth = nullptr;
15545 ZeroWidth = false;
15546 }
15547 }
15548
15549 // Check that 'mutable' is consistent with the type of the declaration.
15550 if (!InvalidDecl && Mutable) {
15551 unsigned DiagID = 0;
15552 if (T->isReferenceType())
15553 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15554 : diag::err_mutable_reference;
15555 else if (T.isConstQualified())
15556 DiagID = diag::err_mutable_const;
15557
15558 if (DiagID) {
15559 SourceLocation ErrLoc = Loc;
15560 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15561 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15562 Diag(ErrLoc, DiagID);
15563 if (DiagID != diag::ext_mutable_reference) {
15564 Mutable = false;
15565 InvalidDecl = true;
15566 }
15567 }
15568 }
15569
15570 // C++11 [class.union]p8 (DR1460):
15571 // At most one variant member of a union may have a
15572 // brace-or-equal-initializer.
15573 if (InitStyle != ICIS_NoInit)
15574 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15575
15576 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15577 BitWidth, Mutable, InitStyle);
15578 if (InvalidDecl)
15579 NewFD->setInvalidDecl();
15580
15581 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15582 Diag(Loc, diag::err_duplicate_member) << II;
15583 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15584 NewFD->setInvalidDecl();
15585 }
15586
15587 if (!InvalidDecl && getLangOpts().CPlusPlus) {
15588 if (Record->isUnion()) {
15589 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15590 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15591 if (RDecl->getDefinition()) {
15592 // C++ [class.union]p1: An object of a class with a non-trivial
15593 // constructor, a non-trivial copy constructor, a non-trivial
15594 // destructor, or a non-trivial copy assignment operator
15595 // cannot be a member of a union, nor can an array of such
15596 // objects.
15597 if (CheckNontrivialField(NewFD))
15598 NewFD->setInvalidDecl();
15599 }
15600 }
15601
15602 // C++ [class.union]p1: If a union contains a member of reference type,
15603 // the program is ill-formed, except when compiling with MSVC extensions
15604 // enabled.
15605 if (EltTy->isReferenceType()) {
15606 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15607 diag::ext_union_member_of_reference_type :
15608 diag::err_union_member_of_reference_type)
15609 << NewFD->getDeclName() << EltTy;
15610 if (!getLangOpts().MicrosoftExt)
15611 NewFD->setInvalidDecl();
15612 }
15613 }
15614 }
15615
15616 // FIXME: We need to pass in the attributes given an AST
15617 // representation, not a parser representation.
15618 if (D) {
15619 // FIXME: The current scope is almost... but not entirely... correct here.
15620 ProcessDeclAttributes(getCurScope(), NewFD, *D);
15621
15622 if (NewFD->hasAttrs())
15623 CheckAlignasUnderalignment(NewFD);
15624 }
15625
15626 // In auto-retain/release, infer strong retension for fields of
15627 // retainable type.
15628 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15629 NewFD->setInvalidDecl();
15630
15631 if (T.isObjCGCWeak())
15632 Diag(Loc, diag::warn_attribute_weak_on_field);
15633
15634 NewFD->setAccess(AS);
15635 return NewFD;
15636}
15637
15638bool Sema::CheckNontrivialField(FieldDecl *FD) {
15639 assert(FD)((FD) ? static_cast<void> (0) : __assert_fail ("FD", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15639, __PRETTY_FUNCTION__))
;
15640 assert(getLangOpts().CPlusPlus && "valid check only for C++")((getLangOpts().CPlusPlus && "valid check only for C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15640, __PRETTY_FUNCTION__))
;
15641
15642 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15643 return false;
15644
15645 QualType EltTy = Context.getBaseElementType(FD->getType());
15646 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15647 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15648 if (RDecl->getDefinition()) {
15649 // We check for copy constructors before constructors
15650 // because otherwise we'll never get complaints about
15651 // copy constructors.
15652
15653 CXXSpecialMember member = CXXInvalid;
15654 // We're required to check for any non-trivial constructors. Since the
15655 // implicit default constructor is suppressed if there are any
15656 // user-declared constructors, we just need to check that there is a
15657 // trivial default constructor and a trivial copy constructor. (We don't
15658 // worry about move constructors here, since this is a C++98 check.)
15659 if (RDecl->hasNonTrivialCopyConstructor())
15660 member = CXXCopyConstructor;
15661 else if (!RDecl->hasTrivialDefaultConstructor())
15662 member = CXXDefaultConstructor;
15663 else if (RDecl->hasNonTrivialCopyAssignment())
15664 member = CXXCopyAssignment;
15665 else if (RDecl->hasNonTrivialDestructor())
15666 member = CXXDestructor;
15667
15668 if (member != CXXInvalid) {
15669 if (!getLangOpts().CPlusPlus11 &&
15670 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15671 // Objective-C++ ARC: it is an error to have a non-trivial field of
15672 // a union. However, system headers in Objective-C programs
15673 // occasionally have Objective-C lifetime objects within unions,
15674 // and rather than cause the program to fail, we make those
15675 // members unavailable.
15676 SourceLocation Loc = FD->getLocation();
15677 if (getSourceManager().isInSystemHeader(Loc)) {
15678 if (!FD->hasAttr<UnavailableAttr>())
15679 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15680 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15681 return false;
15682 }
15683 }
15684
15685 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15686 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15687 diag::err_illegal_union_or_anon_struct_member)
15688 << FD->getParent()->isUnion() << FD->getDeclName() << member;
15689 DiagnoseNontrivial(RDecl, member);
15690 return !getLangOpts().CPlusPlus11;
15691 }
15692 }
15693 }
15694
15695 return false;
15696}
15697
15698/// TranslateIvarVisibility - Translate visibility from a token ID to an
15699/// AST enum value.
15700static ObjCIvarDecl::AccessControl
15701TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15702 switch (ivarVisibility) {
15703 default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15703)
;
15704 case tok::objc_private: return ObjCIvarDecl::Private;
15705 case tok::objc_public: return ObjCIvarDecl::Public;
15706 case tok::objc_protected: return ObjCIvarDecl::Protected;
15707 case tok::objc_package: return ObjCIvarDecl::Package;
15708 }
15709}
15710
15711/// ActOnIvar - Each ivar field of an objective-c class is passed into this
15712/// in order to create an IvarDecl object for it.
15713Decl *Sema::ActOnIvar(Scope *S,
15714 SourceLocation DeclStart,
15715 Declarator &D, Expr *BitfieldWidth,
15716 tok::ObjCKeywordKind Visibility) {
15717
15718 IdentifierInfo *II = D.getIdentifier();
15719 Expr *BitWidth = (Expr*)BitfieldWidth;
15720 SourceLocation Loc = DeclStart;
15721 if (II) Loc = D.getIdentifierLoc();
15722
15723 // FIXME: Unnamed fields can be handled in various different ways, for
15724 // example, unnamed unions inject all members into the struct namespace!
15725
15726 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15727 QualType T = TInfo->getType();
15728
15729 if (BitWidth) {
15730 // 6.7.2.1p3, 6.7.2.1p4
15731 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15732 if (!BitWidth)
15733 D.setInvalidType();
15734 } else {
15735 // Not a bitfield.
15736
15737 // validate II.
15738
15739 }
15740 if (T->isReferenceType()) {
15741 Diag(Loc, diag::err_ivar_reference_type);
15742 D.setInvalidType();
15743 }
15744 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15745 // than a variably modified type.
15746 else if (T->isVariablyModifiedType()) {
15747 Diag(Loc, diag::err_typecheck_ivar_variable_size);
15748 D.setInvalidType();
15749 }
15750
15751 // Get the visibility (access control) for this ivar.
15752 ObjCIvarDecl::AccessControl ac =
15753 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15754 : ObjCIvarDecl::None;
15755 // Must set ivar's DeclContext to its enclosing interface.
15756 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15757 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15758 return nullptr;
15759 ObjCContainerDecl *EnclosingContext;
15760 if (ObjCImplementationDecl *IMPDecl =
15761 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15762 if (LangOpts.ObjCRuntime.isFragile()) {
15763 // Case of ivar declared in an implementation. Context is that of its class.
15764 EnclosingContext = IMPDecl->getClassInterface();
15765 assert(EnclosingContext && "Implementation has no class interface!")((EnclosingContext && "Implementation has no class interface!"
) ? static_cast<void> (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15765, __PRETTY_FUNCTION__))
;
15766 }
15767 else
15768 EnclosingContext = EnclosingDecl;
15769 } else {
15770 if (ObjCCategoryDecl *CDecl =
15771 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15772 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15773 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15774 return nullptr;
15775 }
15776 }
15777 EnclosingContext = EnclosingDecl;
15778 }
15779
15780 // Construct the decl.
15781 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15782 DeclStart, Loc, II, T,
15783 TInfo, ac, (Expr *)BitfieldWidth);
15784
15785 if (II) {
15786 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15787 ForVisibleRedeclaration);
15788 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15789 && !isa<TagDecl>(PrevDecl)) {
15790 Diag(Loc, diag::err_duplicate_member) << II;
15791 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15792 NewID->setInvalidDecl();
15793 }
15794 }
15795
15796 // Process attributes attached to the ivar.
15797 ProcessDeclAttributes(S, NewID, D);
15798
15799 if (D.isInvalidType())
15800 NewID->setInvalidDecl();
15801
15802 // In ARC, infer 'retaining' for ivars of retainable type.
15803 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15804 NewID->setInvalidDecl();
15805
15806 if (D.getDeclSpec().isModulePrivateSpecified())
15807 NewID->setModulePrivate();
15808
15809 if (II) {
15810 // FIXME: When interfaces are DeclContexts, we'll need to add
15811 // these to the interface.
15812 S->AddDecl(NewID);
15813 IdResolver.AddDecl(NewID);
15814 }
15815
15816 if (LangOpts.ObjCRuntime.isNonFragile() &&
15817 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15818 Diag(Loc, diag::warn_ivars_in_interface);
15819
15820 return NewID;
15821}
15822
15823/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15824/// class and class extensions. For every class \@interface and class
15825/// extension \@interface, if the last ivar is a bitfield of any type,
15826/// then add an implicit `char :0` ivar to the end of that interface.
15827void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15828 SmallVectorImpl<Decl *> &AllIvarDecls) {
15829 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15830 return;
15831
15832 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15833 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15834
15835 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15836 return;
15837 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15838 if (!ID) {
15839 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15840 if (!CD->IsClassExtension())
15841 return;
15842 }
15843 // No need to add this to end of @implementation.
15844 else
15845 return;
15846 }
15847 // All conditions are met. Add a new bitfield to the tail end of ivars.
15848 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15849 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15850
15851 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15852 DeclLoc, DeclLoc, nullptr,
15853 Context.CharTy,
15854 Context.getTrivialTypeSourceInfo(Context.CharTy,
15855 DeclLoc),
15856 ObjCIvarDecl::Private, BW,
15857 true);
15858 AllIvarDecls.push_back(Ivar);
15859}
15860
15861void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15862 ArrayRef<Decl *> Fields, SourceLocation LBrac,
15863 SourceLocation RBrac,
15864 const ParsedAttributesView &Attrs) {
15865 assert(EnclosingDecl && "missing record or interface decl")((EnclosingDecl && "missing record or interface decl"
) ? static_cast<void> (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 15865, __PRETTY_FUNCTION__))
;
15866
15867 // If this is an Objective-C @implementation or category and we have
15868 // new fields here we should reset the layout of the interface since
15869 // it will now change.
15870 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15871 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15872 switch (DC->getKind()) {
15873 default: break;
15874 case Decl::ObjCCategory:
15875 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15876 break;
15877 case Decl::ObjCImplementation:
15878 Context.
15879 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15880 break;
15881 }
15882 }
15883
15884 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15885 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
15886
15887 // Start counting up the number of named members; make sure to include
15888 // members of anonymous structs and unions in the total.
15889 unsigned NumNamedMembers = 0;
15890 if (Record) {
15891 for (const auto *I : Record->decls()) {
15892 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15893 if (IFD->getDeclName())
15894 ++NumNamedMembers;
15895 }
15896 }
15897
15898 // Verify that all the fields are okay.
15899 SmallVector<FieldDecl*, 32> RecFields;
15900
15901 bool ObjCFieldLifetimeErrReported = false;
15902 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15903 i != end; ++i) {
15904 FieldDecl *FD = cast<FieldDecl>(*i);
15905
15906 // Get the type for the field.
15907 const Type *FDTy = FD->getType().getTypePtr();
15908
15909 if (!FD->isAnonymousStructOrUnion()) {
15910 // Remember all fields written by the user.
15911 RecFields.push_back(FD);
15912 }
15913
15914 // If the field is already invalid for some reason, don't emit more
15915 // diagnostics about it.
15916 if (FD->isInvalidDecl()) {
15917 EnclosingDecl->setInvalidDecl();
15918 continue;
15919 }
15920
15921 // C99 6.7.2.1p2:
15922 // A structure or union shall not contain a member with
15923 // incomplete or function type (hence, a structure shall not
15924 // contain an instance of itself, but may contain a pointer to
15925 // an instance of itself), except that the last member of a
15926 // structure with more than one named member may have incomplete
15927 // array type; such a structure (and any union containing,
15928 // possibly recursively, a member that is such a structure)
15929 // shall not be a member of a structure or an element of an
15930 // array.
15931 bool IsLastField = (i + 1 == Fields.end());
15932 if (FDTy->isFunctionType()) {
15933 // Field declared as a function.
15934 Diag(FD->getLocation(), diag::err_field_declared_as_function)
15935 << FD->getDeclName();
15936 FD->setInvalidDecl();
15937 EnclosingDecl->setInvalidDecl();
15938 continue;
15939 } else if (FDTy->isIncompleteArrayType() &&
15940 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15941 if (Record) {
15942 // Flexible array member.
15943 // Microsoft and g++ is more permissive regarding flexible array.
15944 // It will accept flexible array in union and also
15945 // as the sole element of a struct/class.
15946 unsigned DiagID = 0;
15947 if (!Record->isUnion() && !IsLastField) {
15948 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15949 << FD->getDeclName() << FD->getType() << Record->getTagKind();
15950 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15951 FD->setInvalidDecl();
15952 EnclosingDecl->setInvalidDecl();
15953 continue;
15954 } else if (Record->isUnion())
15955 DiagID = getLangOpts().MicrosoftExt
15956 ? diag::ext_flexible_array_union_ms
15957 : getLangOpts().CPlusPlus
15958 ? diag::ext_flexible_array_union_gnu
15959 : diag::err_flexible_array_union;
15960 else if (NumNamedMembers < 1)
15961 DiagID = getLangOpts().MicrosoftExt
15962 ? diag::ext_flexible_array_empty_aggregate_ms
15963 : getLangOpts().CPlusPlus
15964 ? diag::ext_flexible_array_empty_aggregate_gnu
15965 : diag::err_flexible_array_empty_aggregate;
15966
15967 if (DiagID)
15968 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15969 << Record->getTagKind();
15970 // While the layout of types that contain virtual bases is not specified
15971 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15972 // virtual bases after the derived members. This would make a flexible
15973 // array member declared at the end of an object not adjacent to the end
15974 // of the type.
15975 if (CXXRecord && CXXRecord->getNumVBases() != 0)
15976 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15977 << FD->getDeclName() << Record->getTagKind();
15978 if (!getLangOpts().C99)
15979 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15980 << FD->getDeclName() << Record->getTagKind();
15981
15982 // If the element type has a non-trivial destructor, we would not
15983 // implicitly destroy the elements, so disallow it for now.
15984 //
15985 // FIXME: GCC allows this. We should probably either implicitly delete
15986 // the destructor of the containing class, or just allow this.
15987 QualType BaseElem = Context.getBaseElementType(FD->getType());
15988 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15989 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15990 << FD->getDeclName() << FD->getType();
15991 FD->setInvalidDecl();
15992 EnclosingDecl->setInvalidDecl();
15993 continue;
15994 }
15995 // Okay, we have a legal flexible array member at the end of the struct.
15996 Record->setHasFlexibleArrayMember(true);
15997 } else {
15998 // In ObjCContainerDecl ivars with incomplete array type are accepted,
15999 // unless they are followed by another ivar. That check is done
16000 // elsewhere, after synthesized ivars are known.
16001 }
16002 } else if (!FDTy->isDependentType() &&
16003 RequireCompleteType(FD->getLocation(), FD->getType(),
16004 diag::err_field_incomplete)) {
16005 // Incomplete type
16006 FD->setInvalidDecl();
16007 EnclosingDecl->setInvalidDecl();
16008 continue;
16009 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
16010 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
16011 // A type which contains a flexible array member is considered to be a
16012 // flexible array member.
16013 Record->setHasFlexibleArrayMember(true);
16014 if (!Record->isUnion()) {
16015 // If this is a struct/class and this is not the last element, reject
16016 // it. Note that GCC supports variable sized arrays in the middle of
16017 // structures.
16018 if (!IsLastField)
16019 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
16020 << FD->getDeclName() << FD->getType();
16021 else {
16022 // We support flexible arrays at the end of structs in
16023 // other structs as an extension.
16024 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
16025 << FD->getDeclName();
16026 }
16027 }
16028 }
16029 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
16030 RequireNonAbstractType(FD->getLocation(), FD->getType(),
16031 diag::err_abstract_type_in_decl,
16032 AbstractIvarType)) {
16033 // Ivars can not have abstract class types
16034 FD->setInvalidDecl();
16035 }
16036 if (Record && FDTTy->getDecl()->hasObjectMember())
16037 Record->setHasObjectMember(true);
16038 if (Record && FDTTy->getDecl()->hasVolatileMember())
16039 Record->setHasVolatileMember(true);
16040 if (Record && Record->isUnion() &&
16041 FD->getType().isNonTrivialPrimitiveCType(Context))
16042 Diag(FD->getLocation(),
16043 diag::err_nontrivial_primitive_type_in_union);
16044 } else if (FDTy->isObjCObjectType()) {
16045 /// A field cannot be an Objective-c object
16046 Diag(FD->getLocation(), diag::err_statically_allocated_object)
16047 << FixItHint::CreateInsertion(FD->getLocation(), "*");
16048 QualType T = Context.getObjCObjectPointerType(FD->getType());
16049 FD->setType(T);
16050 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
16051 Record && !ObjCFieldLifetimeErrReported && Record->isUnion() &&
16052 !getLangOpts().CPlusPlus) {
16053 // It's an error in ARC or Weak if a field has lifetime.
16054 // We don't want to report this in a system header, though,
16055 // so we just make the field unavailable.
16056 // FIXME: that's really not sufficient; we need to make the type
16057 // itself invalid to, say, initialize or copy.
16058 QualType T = FD->getType();
16059 if (T.hasNonTrivialObjCLifetime()) {
16060 SourceLocation loc = FD->getLocation();
16061 if (getSourceManager().isInSystemHeader(loc)) {
16062 if (!FD->hasAttr<UnavailableAttr>()) {
16063 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16064 UnavailableAttr::IR_ARCFieldWithOwnership, loc));
16065 }
16066 } else {
16067 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
16068 << T->isBlockPointerType() << Record->getTagKind();
16069 }
16070 ObjCFieldLifetimeErrReported = true;
16071 }
16072 } else if (getLangOpts().ObjC &&
16073 getLangOpts().getGC() != LangOptions::NonGC &&
16074 Record && !Record->hasObjectMember()) {
16075 if (FD->getType()->isObjCObjectPointerType() ||
16076 FD->getType().isObjCGCStrong())
16077 Record->setHasObjectMember(true);
16078 else if (Context.getAsArrayType(FD->getType())) {
16079 QualType BaseType = Context.getBaseElementType(FD->getType());
16080 if (BaseType->isRecordType() &&
16081 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
16082 Record->setHasObjectMember(true);
16083 else if (BaseType->isObjCObjectPointerType() ||
16084 BaseType.isObjCGCStrong())
16085 Record->setHasObjectMember(true);
16086 }
16087 }
16088
16089 if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
16090 QualType FT = FD->getType();
16091 if (FT.isNonTrivialToPrimitiveDefaultInitialize())
16092 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
16093 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
16094 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
16095 Record->setNonTrivialToPrimitiveCopy(true);
16096 if (FT.isDestructedType()) {
16097 Record->setNonTrivialToPrimitiveDestroy(true);
16098 Record->setParamDestroyedInCallee(true);
16099 }
16100
16101 if (const auto *RT = FT->getAs<RecordType>()) {
16102 if (RT->getDecl()->getArgPassingRestrictions() ==
16103 RecordDecl::APK_CanNeverPassInRegs)
16104 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16105 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
16106 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16107 }
16108
16109 if (Record && FD->getType().isVolatileQualified())
16110 Record->setHasVolatileMember(true);
16111 // Keep track of the number of named members.
16112 if (FD->getIdentifier())
16113 ++NumNamedMembers;
16114 }
16115
16116 // Okay, we successfully defined 'Record'.
16117 if (Record) {
16118 bool Completed = false;
16119 if (CXXRecord) {
16120 if (!CXXRecord->isInvalidDecl()) {
16121 // Set access bits correctly on the directly-declared conversions.
16122 for (CXXRecordDecl::conversion_iterator
16123 I = CXXRecord->conversion_begin(),
16124 E = CXXRecord->conversion_end(); I != E; ++I)
16125 I.setAccess((*I)->getAccess());
16126 }
16127
16128 if (!CXXRecord->isDependentType()) {
16129 // Add any implicitly-declared members to this class.
16130 AddImplicitlyDeclaredMembersToClass(CXXRecord);
16131
16132 if (!CXXRecord->isInvalidDecl()) {
16133 // If we have virtual base classes, we may end up finding multiple
16134 // final overriders for a given virtual function. Check for this
16135 // problem now.
16136 if (CXXRecord->getNumVBases()) {
16137 CXXFinalOverriderMap FinalOverriders;
16138 CXXRecord->getFinalOverriders(FinalOverriders);
16139
16140 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16141 MEnd = FinalOverriders.end();
16142 M != MEnd; ++M) {
16143 for (OverridingMethods::iterator SO = M->second.begin(),
16144 SOEnd = M->second.end();
16145 SO != SOEnd; ++SO) {
16146 assert(SO->second.size() > 0 &&((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16147, __PRETTY_FUNCTION__))
16147 "Virtual function without overriding functions?")((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16147, __PRETTY_FUNCTION__))
;
16148 if (SO->second.size() == 1)
16149 continue;
16150
16151 // C++ [class.virtual]p2:
16152 // In a derived class, if a virtual member function of a base
16153 // class subobject has more than one final overrider the
16154 // program is ill-formed.
16155 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16156 << (const NamedDecl *)M->first << Record;
16157 Diag(M->first->getLocation(),
16158 diag::note_overridden_virtual_function);
16159 for (OverridingMethods::overriding_iterator
16160 OM = SO->second.begin(),
16161 OMEnd = SO->second.end();
16162 OM != OMEnd; ++OM)
16163 Diag(OM->Method->getLocation(), diag::note_final_overrider)
16164 << (const NamedDecl *)M->first << OM->Method->getParent();
16165
16166 Record->setInvalidDecl();
16167 }
16168 }
16169 CXXRecord->completeDefinition(&FinalOverriders);
16170 Completed = true;
16171 }
16172 }
16173 }
16174 }
16175
16176 if (!Completed)
16177 Record->completeDefinition();
16178
16179 // Handle attributes before checking the layout.
16180 ProcessDeclAttributeList(S, Record, Attrs);
16181
16182 // We may have deferred checking for a deleted destructor. Check now.
16183 if (CXXRecord) {
16184 auto *Dtor = CXXRecord->getDestructor();
16185 if (Dtor && Dtor->isImplicit() &&
16186 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16187 CXXRecord->setImplicitDestructorIsDeleted();
16188 SetDeclDeleted(Dtor, CXXRecord->getLocation());
16189 }
16190 }
16191
16192 if (Record->hasAttrs()) {
16193 CheckAlignasUnderalignment(Record);
16194
16195 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16196 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16197 IA->getRange(), IA->getBestCase(),
16198 IA->getSemanticSpelling());
16199 }
16200
16201 // Check if the structure/union declaration is a type that can have zero
16202 // size in C. For C this is a language extension, for C++ it may cause
16203 // compatibility problems.
16204 bool CheckForZeroSize;
16205 if (!getLangOpts().CPlusPlus) {
16206 CheckForZeroSize = true;
16207 } else {
16208 // For C++ filter out types that cannot be referenced in C code.
16209 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16210 CheckForZeroSize =
16211 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16212 !CXXRecord->isDependentType() &&
16213 CXXRecord->isCLike();
16214 }
16215 if (CheckForZeroSize) {
16216 bool ZeroSize = true;
16217 bool IsEmpty = true;
16218 unsigned NonBitFields = 0;
16219 for (RecordDecl::field_iterator I = Record->field_begin(),
16220 E = Record->field_end();
16221 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16222 IsEmpty = false;
16223 if (I->isUnnamedBitfield()) {
16224 if (!I->isZeroLengthBitField(Context))
16225 ZeroSize = false;
16226 } else {
16227 ++NonBitFields;
16228 QualType FieldType = I->getType();
16229 if (FieldType->isIncompleteType() ||
16230 !Context.getTypeSizeInChars(FieldType).isZero())
16231 ZeroSize = false;
16232 }
16233 }
16234
16235 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16236 // allowed in C++, but warn if its declaration is inside
16237 // extern "C" block.
16238 if (ZeroSize) {
16239 Diag(RecLoc, getLangOpts().CPlusPlus ?
16240 diag::warn_zero_size_struct_union_in_extern_c :
16241 diag::warn_zero_size_struct_union_compat)
16242 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16243 }
16244
16245 // Structs without named members are extension in C (C99 6.7.2.1p7),
16246 // but are accepted by GCC.
16247 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16248 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16249 diag::ext_no_named_members_in_struct_union)
16250 << Record->isUnion();
16251 }
16252 }
16253 } else {
16254 ObjCIvarDecl **ClsFields =
16255 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16256 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16257 ID->setEndOfDefinitionLoc(RBrac);
16258 // Add ivar's to class's DeclContext.
16259 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16260 ClsFields[i]->setLexicalDeclContext(ID);
16261 ID->addDecl(ClsFields[i]);
16262 }
16263 // Must enforce the rule that ivars in the base classes may not be
16264 // duplicates.
16265 if (ID->getSuperClass())
16266 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16267 } else if (ObjCImplementationDecl *IMPDecl =
16268 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16269 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")((IMPDecl && "ActOnFields - missing ObjCImplementationDecl"
) ? static_cast<void> (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16269, __PRETTY_FUNCTION__))
;
16270 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16271 // Ivar declared in @implementation never belongs to the implementation.
16272 // Only it is in implementation's lexical context.
16273 ClsFields[I]->setLexicalDeclContext(IMPDecl);
16274 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16275 IMPDecl->setIvarLBraceLoc(LBrac);
16276 IMPDecl->setIvarRBraceLoc(RBrac);
16277 } else if (ObjCCategoryDecl *CDecl =
16278 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16279 // case of ivars in class extension; all other cases have been
16280 // reported as errors elsewhere.
16281 // FIXME. Class extension does not have a LocEnd field.
16282 // CDecl->setLocEnd(RBrac);
16283 // Add ivar's to class extension's DeclContext.
16284 // Diagnose redeclaration of private ivars.
16285 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16286 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16287 if (IDecl) {
16288 if (const ObjCIvarDecl *ClsIvar =
16289 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16290 Diag(ClsFields[i]->getLocation(),
16291 diag::err_duplicate_ivar_declaration);
16292 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16293 continue;
16294 }
16295 for (const auto *Ext : IDecl->known_extensions()) {
16296 if (const ObjCIvarDecl *ClsExtIvar
16297 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16298 Diag(ClsFields[i]->getLocation(),
16299 diag::err_duplicate_ivar_declaration);
16300 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16301 continue;
16302 }
16303 }
16304 }
16305 ClsFields[i]->setLexicalDeclContext(CDecl);
16306 CDecl->addDecl(ClsFields[i]);
16307 }
16308 CDecl->setIvarLBraceLoc(LBrac);
16309 CDecl->setIvarRBraceLoc(RBrac);
16310 }
16311 }
16312}
16313
16314/// Determine whether the given integral value is representable within
16315/// the given type T.
16316static bool isRepresentableIntegerValue(ASTContext &Context,
16317 llvm::APSInt &Value,
16318 QualType T) {
16319 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16320, __PRETTY_FUNCTION__))
16320 "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16320, __PRETTY_FUNCTION__))
;
16321 unsigned BitWidth = Context.getIntWidth(T);
16322
16323 if (Value.isUnsigned() || Value.isNonNegative()) {
16324 if (T->isSignedIntegerOrEnumerationType())
16325 --BitWidth;
16326 return Value.getActiveBits() <= BitWidth;
16327 }
16328 return Value.getMinSignedBits() <= BitWidth;
16329}
16330
16331// Given an integral type, return the next larger integral type
16332// (or a NULL type of no such type exists).
16333static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16334 // FIXME: Int128/UInt128 support, which also needs to be introduced into
16335 // enum checking below.
16336 assert((T->isIntegralType(Context) ||(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16337, __PRETTY_FUNCTION__))
16337 T->isEnumeralType()) && "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16337, __PRETTY_FUNCTION__))
;
16338 const unsigned NumTypes = 4;
16339 QualType SignedIntegralTypes[NumTypes] = {
16340 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16341 };
16342 QualType UnsignedIntegralTypes[NumTypes] = {
16343 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16344 Context.UnsignedLongLongTy
16345 };
16346
16347 unsigned BitWidth = Context.getTypeSize(T);
16348 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16349 : UnsignedIntegralTypes;
16350 for (unsigned I = 0; I != NumTypes; ++I)
16351 if (Context.getTypeSize(Types[I]) > BitWidth)
16352 return Types[I];
16353
16354 return QualType();
16355}
16356
16357EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16358 EnumConstantDecl *LastEnumConst,
16359 SourceLocation IdLoc,
16360 IdentifierInfo *Id,
16361 Expr *Val) {
16362 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16363 llvm::APSInt EnumVal(IntWidth);
16364 QualType EltTy;
16365
16366 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16367 Val = nullptr;
16368
16369 if (Val)
16370 Val = DefaultLvalueConversion(Val).get();
16371
16372 if (Val) {
16373 if (Enum->isDependentType() || Val->isTypeDependent())
16374 EltTy = Context.DependentTy;
16375 else {
16376 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16377 !getLangOpts().MSVCCompat) {
16378 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16379 // constant-expression in the enumerator-definition shall be a converted
16380 // constant expression of the underlying type.
16381 EltTy = Enum->getIntegerType();
16382 ExprResult Converted =
16383 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16384 CCEK_Enumerator);
16385 if (Converted.isInvalid())
16386 Val = nullptr;
16387 else
16388 Val = Converted.get();
16389 } else if (!Val->isValueDependent() &&
16390 !(Val = VerifyIntegerConstantExpression(Val,
16391 &EnumVal).get())) {
16392 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16393 } else {
16394 if (Enum->isComplete()) {
16395 EltTy = Enum->getIntegerType();
16396
16397 // In Obj-C and Microsoft mode, require the enumeration value to be
16398 // representable in the underlying type of the enumeration. In C++11,
16399 // we perform a non-narrowing conversion as part of converted constant
16400 // expression checking.
16401 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16402 if (getLangOpts().MSVCCompat) {
16403 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16404 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16405 } else
16406 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16407 } else
16408 Val = ImpCastExprToType(Val, EltTy,
16409 EltTy->isBooleanType() ?
16410 CK_IntegralToBoolean : CK_IntegralCast)
16411 .get();
16412 } else if (getLangOpts().CPlusPlus) {
16413 // C++11 [dcl.enum]p5:
16414 // If the underlying type is not fixed, the type of each enumerator
16415 // is the type of its initializing value:
16416 // - If an initializer is specified for an enumerator, the
16417 // initializing value has the same type as the expression.
16418 EltTy = Val->getType();
16419 } else {
16420 // C99 6.7.2.2p2:
16421 // The expression that defines the value of an enumeration constant
16422 // shall be an integer constant expression that has a value
16423 // representable as an int.
16424
16425 // Complain if the value is not representable in an int.
16426 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16427 Diag(IdLoc, diag::ext_enum_value_not_int)
16428 << EnumVal.toString(10) << Val->getSourceRange()
16429 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16430 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16431 // Force the type of the expression to 'int'.
16432 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16433 }
16434 EltTy = Val->getType();
16435 }
16436 }
16437 }
16438 }
16439
16440 if (!Val) {
16441 if (Enum->isDependentType())
16442 EltTy = Context.DependentTy;
16443 else if (!LastEnumConst) {
16444 // C++0x [dcl.enum]p5:
16445 // If the underlying type is not fixed, the type of each enumerator
16446 // is the type of its initializing value:
16447 // - If no initializer is specified for the first enumerator, the
16448 // initializing value has an unspecified integral type.
16449 //
16450 // GCC uses 'int' for its unspecified integral type, as does
16451 // C99 6.7.2.2p3.
16452 if (Enum->isFixed()) {
16453 EltTy = Enum->getIntegerType();
16454 }
16455 else {
16456 EltTy = Context.IntTy;
16457 }
16458 } else {
16459 // Assign the last value + 1.
16460 EnumVal = LastEnumConst->getInitVal();
16461 ++EnumVal;
16462 EltTy = LastEnumConst->getType();
16463
16464 // Check for overflow on increment.
16465 if (EnumVal < LastEnumConst->getInitVal()) {
16466 // C++0x [dcl.enum]p5:
16467 // If the underlying type is not fixed, the type of each enumerator
16468 // is the type of its initializing value:
16469 //
16470 // - Otherwise the type of the initializing value is the same as
16471 // the type of the initializing value of the preceding enumerator
16472 // unless the incremented value is not representable in that type,
16473 // in which case the type is an unspecified integral type
16474 // sufficient to contain the incremented value. If no such type
16475 // exists, the program is ill-formed.
16476 QualType T = getNextLargerIntegralType(Context, EltTy);
16477 if (T.isNull() || Enum->isFixed()) {
16478 // There is no integral type larger enough to represent this
16479 // value. Complain, then allow the value to wrap around.
16480 EnumVal = LastEnumConst->getInitVal();
16481 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16482 ++EnumVal;
16483 if (Enum->isFixed())
16484 // When the underlying type is fixed, this is ill-formed.
16485 Diag(IdLoc, diag::err_enumerator_wrapped)
16486 << EnumVal.toString(10)
16487 << EltTy;
16488 else
16489 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16490 << EnumVal.toString(10);
16491 } else {
16492 EltTy = T;
16493 }
16494
16495 // Retrieve the last enumerator's value, extent that type to the
16496 // type that is supposed to be large enough to represent the incremented
16497 // value, then increment.
16498 EnumVal = LastEnumConst->getInitVal();
16499 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16500 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16501 ++EnumVal;
16502
16503 // If we're not in C++, diagnose the overflow of enumerator values,
16504 // which in C99 means that the enumerator value is not representable in
16505 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16506 // permits enumerator values that are representable in some larger
16507 // integral type.
16508 if (!getLangOpts().CPlusPlus && !T.isNull())
16509 Diag(IdLoc, diag::warn_enum_value_overflow);
16510 } else if (!getLangOpts().CPlusPlus &&
16511 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16512 // Enforce C99 6.7.2.2p2 even when we compute the next value.
16513 Diag(IdLoc, diag::ext_enum_value_not_int)
16514 << EnumVal.toString(10) << 1;
16515 }
16516 }
16517 }
16518
16519 if (!EltTy->isDependentType()) {
16520 // Make the enumerator value match the signedness and size of the
16521 // enumerator's type.
16522 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16523 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16524 }
16525
16526 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16527 Val, EnumVal);
16528}
16529
16530Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
16531 SourceLocation IILoc) {
16532 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16533 !getLangOpts().CPlusPlus)
16534 return SkipBodyInfo();
16535
16536 // We have an anonymous enum definition. Look up the first enumerator to
16537 // determine if we should merge the definition with an existing one and
16538 // skip the body.
16539 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16540 forRedeclarationInCurContext());
16541 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16542 if (!PrevECD)
16543 return SkipBodyInfo();
16544
16545 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16546 NamedDecl *Hidden;
16547 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16548 SkipBodyInfo Skip;
16549 Skip.Previous = Hidden;
16550 return Skip;
16551 }
16552
16553 return SkipBodyInfo();
16554}
16555
16556Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16557 SourceLocation IdLoc, IdentifierInfo *Id,
16558 const ParsedAttributesView &Attrs,
16559 SourceLocation EqualLoc, Expr *Val) {
16560 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16561 EnumConstantDecl *LastEnumConst =
16562 cast_or_null<EnumConstantDecl>(lastEnumConst);
16563
16564 // The scope passed in may not be a decl scope. Zip up the scope tree until
16565 // we find one that is.
16566 S = getNonFieldDeclScope(S);
16567
16568 // Verify that there isn't already something declared with this name in this
16569 // scope.
16570 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16571 LookupName(R, S);
16572 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16573
16574 if (PrevDecl && PrevDecl->isTemplateParameter()) {
16575 // Maybe we will complain about the shadowed template parameter.
16576 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16577 // Just pretend that we didn't see the previous declaration.
16578 PrevDecl = nullptr;
16579 }
16580
16581 // C++ [class.mem]p15:
16582 // If T is the name of a class, then each of the following shall have a name
16583 // different from T:
16584 // - every enumerator of every member of class T that is an unscoped
16585 // enumerated type
16586 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16587 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16588 DeclarationNameInfo(Id, IdLoc));
16589
16590 EnumConstantDecl *New =
16591 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16592 if (!New)
16593 return nullptr;
16594
16595 if (PrevDecl) {
16596 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16597 // Check for other kinds of shadowing not already handled.
16598 CheckShadow(New, PrevDecl, R);
16599 }
16600
16601 // When in C++, we may get a TagDecl with the same name; in this case the
16602 // enum constant will 'hide' the tag.
16603 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16604, __PRETTY_FUNCTION__))
16604 "Received TagDecl when not in C++!")(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16604, __PRETTY_FUNCTION__))
;
16605 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16606 if (isa<EnumConstantDecl>(PrevDecl))
16607 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16608 else
16609 Diag(IdLoc, diag::err_redefinition) << Id;
16610 notePreviousDefinition(PrevDecl, IdLoc);
16611 return nullptr;
16612 }
16613 }
16614
16615 // Process attributes.
16616 ProcessDeclAttributeList(S, New, Attrs);
16617 AddPragmaAttributes(S, New);
16618
16619 // Register this decl in the current scope stack.
16620 New->setAccess(TheEnumDecl->getAccess());
16621 PushOnScopeChains(New, S);
16622
16623 ActOnDocumentableDecl(New);
16624
16625 return New;
16626}
16627
16628// Returns true when the enum initial expression does not trigger the
16629// duplicate enum warning. A few common cases are exempted as follows:
16630// Element2 = Element1
16631// Element2 = Element1 + 1
16632// Element2 = Element1 - 1
16633// Where Element2 and Element1 are from the same enum.
16634static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16635 Expr *InitExpr = ECD->getInitExpr();
16636 if (!InitExpr)
16637 return true;
16638 InitExpr = InitExpr->IgnoreImpCasts();
16639
16640 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16641 if (!BO->isAdditiveOp())
16642 return true;
16643 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16644 if (!IL)
16645 return true;
16646 if (IL->getValue() != 1)
16647 return true;
16648
16649 InitExpr = BO->getLHS();
16650 }
16651
16652 // This checks if the elements are from the same enum.
16653 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16654 if (!DRE)
16655 return true;
16656
16657 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16658 if (!EnumConstant)
16659 return true;
16660
16661 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16662 Enum)
16663 return true;
16664
16665 return false;
16666}
16667
16668// Emits a warning when an element is implicitly set a value that
16669// a previous element has already been set to.
16670static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16671 EnumDecl *Enum, QualType EnumType) {
16672 // Avoid anonymous enums
16673 if (!Enum->getIdentifier())
16674 return;
16675
16676 // Only check for small enums.
16677 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16678 return;
16679
16680 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16681 return;
16682
16683 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16684 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16685
16686 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16687 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
16688
16689 // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16690 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16691 llvm::APSInt Val = D->getInitVal();
16692 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16693 };
16694
16695 DuplicatesVector DupVector;
16696 ValueToVectorMap EnumMap;
16697
16698 // Populate the EnumMap with all values represented by enum constants without
16699 // an initializer.
16700 for (auto *Element : Elements) {
16701 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16702
16703 // Null EnumConstantDecl means a previous diagnostic has been emitted for
16704 // this constant. Skip this enum since it may be ill-formed.
16705 if (!ECD) {
16706 return;
16707 }
16708
16709 // Constants with initalizers are handled in the next loop.
16710 if (ECD->getInitExpr())
16711 continue;
16712
16713 // Duplicate values are handled in the next loop.
16714 EnumMap.insert({EnumConstantToKey(ECD), ECD});
16715 }
16716
16717 if (EnumMap.size() == 0)
16718 return;
16719
16720 // Create vectors for any values that has duplicates.
16721 for (auto *Element : Elements) {
16722 // The last loop returned if any constant was null.
16723 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16724 if (!ValidDuplicateEnum(ECD, Enum))
16725 continue;
16726
16727 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16728 if (Iter == EnumMap.end())
16729 continue;
16730
16731 DeclOrVector& Entry = Iter->second;
16732 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16733 // Ensure constants are different.
16734 if (D == ECD)
16735 continue;
16736
16737 // Create new vector and push values onto it.
16738 auto Vec = llvm::make_unique<ECDVector>();
16739 Vec->push_back(D);
16740 Vec->push_back(ECD);
16741
16742 // Update entry to point to the duplicates vector.
16743 Entry = Vec.get();
16744
16745 // Store the vector somewhere we can consult later for quick emission of
16746 // diagnostics.
16747 DupVector.emplace_back(std::move(Vec));
16748 continue;
16749 }
16750
16751 ECDVector *Vec = Entry.get<ECDVector*>();
16752 // Make sure constants are not added more than once.
16753 if (*Vec->begin() == ECD)
16754 continue;
16755
16756 Vec->push_back(ECD);
16757 }
16758
16759 // Emit diagnostics.
16760 for (const auto &Vec : DupVector) {
16761 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")((Vec->size() > 1 && "ECDVector should have at least 2 elements."
) ? static_cast<void> (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16761, __PRETTY_FUNCTION__))
;
16762
16763 // Emit warning for one enum constant.
16764 auto *FirstECD = Vec->front();
16765 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16766 << FirstECD << FirstECD->getInitVal().toString(10)
16767 << FirstECD->getSourceRange();
16768
16769 // Emit one note for each of the remaining enum constants with
16770 // the same value.
16771 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16772 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16773 << ECD << ECD->getInitVal().toString(10)
16774 << ECD->getSourceRange();
16775 }
16776}
16777
16778bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16779 bool AllowMask) const {
16780 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")((ED->isClosedFlag() && "looking for value in non-flag or open enum"
) ? static_cast<void> (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16780, __PRETTY_FUNCTION__))
;
16781 assert(ED->isCompleteDefinition() && "expected enum definition")((ED->isCompleteDefinition() && "expected enum definition"
) ? static_cast<void> (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16781, __PRETTY_FUNCTION__))
;
16782
16783 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16784 llvm::APInt &FlagBits = R.first->second;
16785
16786 if (R.second) {
16787 for (auto *E : ED->enumerators()) {
16788 const auto &EVal = E->getInitVal();
16789 // Only single-bit enumerators introduce new flag values.
16790 if (EVal.isPowerOf2())
16791 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16792 }
16793 }
16794
16795 // A value is in a flag enum if either its bits are a subset of the enum's
16796 // flag bits (the first condition) or we are allowing masks and the same is
16797 // true of its complement (the second condition). When masks are allowed, we
16798 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16799 //
16800 // While it's true that any value could be used as a mask, the assumption is
16801 // that a mask will have all of the insignificant bits set. Anything else is
16802 // likely a logic error.
16803 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16804 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16805}
16806
16807void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16808 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
16809 const ParsedAttributesView &Attrs) {
16810 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16811 QualType EnumType = Context.getTypeDeclType(Enum);
16812
16813 ProcessDeclAttributeList(S, Enum, Attrs);
16814
16815 if (Enum->isDependentType()) {
16816 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16817 EnumConstantDecl *ECD =
16818 cast_or_null<EnumConstantDecl>(Elements[i]);
16819 if (!ECD) continue;
16820
16821 ECD->setType(EnumType);
16822 }
16823
16824 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16825 return;
16826 }
16827
16828 // TODO: If the result value doesn't fit in an int, it must be a long or long
16829 // long value. ISO C does not support this, but GCC does as an extension,
16830 // emit a warning.
16831 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16832 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16833 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16834
16835 // Verify that all the values are okay, compute the size of the values, and
16836 // reverse the list.
16837 unsigned NumNegativeBits = 0;
16838 unsigned NumPositiveBits = 0;
16839
16840 // Keep track of whether all elements have type int.
16841 bool AllElementsInt = true;
16842
16843 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16844 EnumConstantDecl *ECD =
16845 cast_or_null<EnumConstantDecl>(Elements[i]);
16846 if (!ECD) continue; // Already issued a diagnostic.
16847
16848 const llvm::APSInt &InitVal = ECD->getInitVal();
16849
16850 // Keep track of the size of positive and negative values.
16851 if (InitVal.isUnsigned() || InitVal.isNonNegative())
16852 NumPositiveBits = std::max(NumPositiveBits,
16853 (unsigned)InitVal.getActiveBits());
16854 else
16855 NumNegativeBits = std::max(NumNegativeBits,
16856 (unsigned)InitVal.getMinSignedBits());
16857
16858 // Keep track of whether every enum element has type int (very common).
16859 if (AllElementsInt)
16860 AllElementsInt = ECD->getType() == Context.IntTy;
16861 }
16862
16863 // Figure out the type that should be used for this enum.
16864 QualType BestType;
16865 unsigned BestWidth;
16866
16867 // C++0x N3000 [conv.prom]p3:
16868 // An rvalue of an unscoped enumeration type whose underlying
16869 // type is not fixed can be converted to an rvalue of the first
16870 // of the following types that can represent all the values of
16871 // the enumeration: int, unsigned int, long int, unsigned long
16872 // int, long long int, or unsigned long long int.
16873 // C99 6.4.4.3p2:
16874 // An identifier declared as an enumeration constant has type int.
16875 // The C99 rule is modified by a gcc extension
16876 QualType BestPromotionType;
16877
16878 bool Packed = Enum->hasAttr<PackedAttr>();
16879 // -fshort-enums is the equivalent to specifying the packed attribute on all
16880 // enum definitions.
16881 if (LangOpts.ShortEnums)
16882 Packed = true;
16883
16884 // If the enum already has a type because it is fixed or dictated by the
16885 // target, promote that type instead of analyzing the enumerators.
16886 if (Enum->isComplete()) {
16887 BestType = Enum->getIntegerType();
16888 if (BestType->isPromotableIntegerType())
16889 BestPromotionType = Context.getPromotedIntegerType(BestType);
16890 else
16891 BestPromotionType = BestType;
16892
16893 BestWidth = Context.getIntWidth(BestType);
16894 }
16895 else if (NumNegativeBits) {
16896 // If there is a negative value, figure out the smallest integer type (of
16897 // int/long/longlong) that fits.
16898 // If it's packed, check also if it fits a char or a short.
16899 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16900 BestType = Context.SignedCharTy;
16901 BestWidth = CharWidth;
16902 } else if (Packed && NumNegativeBits <= ShortWidth &&
16903 NumPositiveBits < ShortWidth) {
16904 BestType = Context.ShortTy;
16905 BestWidth = ShortWidth;
16906 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16907 BestType = Context.IntTy;
16908 BestWidth = IntWidth;
16909 } else {
16910 BestWidth = Context.getTargetInfo().getLongWidth();
16911
16912 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16913 BestType = Context.LongTy;
16914 } else {
16915 BestWidth = Context.getTargetInfo().getLongLongWidth();
16916
16917 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16918 Diag(Enum->getLocation(), diag::ext_enum_too_large);
16919 BestType = Context.LongLongTy;
16920 }
16921 }
16922 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16923 } else {
16924 // If there is no negative value, figure out the smallest type that fits
16925 // all of the enumerator values.
16926 // If it's packed, check also if it fits a char or a short.
16927 if (Packed && NumPositiveBits <= CharWidth) {
16928 BestType = Context.UnsignedCharTy;
16929 BestPromotionType = Context.IntTy;
16930 BestWidth = CharWidth;
16931 } else if (Packed && NumPositiveBits <= ShortWidth) {
16932 BestType = Context.UnsignedShortTy;
16933 BestPromotionType = Context.IntTy;
16934 BestWidth = ShortWidth;
16935 } else if (NumPositiveBits <= IntWidth) {
16936 BestType = Context.UnsignedIntTy;
16937 BestWidth = IntWidth;
16938 BestPromotionType
16939 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16940 ? Context.UnsignedIntTy : Context.IntTy;
16941 } else if (NumPositiveBits <=
16942 (BestWidth = Context.getTargetInfo().getLongWidth())) {
16943 BestType = Context.UnsignedLongTy;
16944 BestPromotionType
16945 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16946 ? Context.UnsignedLongTy : Context.LongTy;
16947 } else {
16948 BestWidth = Context.getTargetInfo().getLongLongWidth();
16949 assert(NumPositiveBits <= BestWidth &&((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16950, __PRETTY_FUNCTION__))
16950 "How could an initializer get larger than ULL?")((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDecl.cpp"
, 16950, __PRETTY_FUNCTION__))
;
16951 BestType = Context.UnsignedLongLongTy;
16952 BestPromotionType
16953 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16954 ? Context.UnsignedLongLongTy : Context.LongLongTy;
16955 }
16956 }
16957
16958 // Loop over all of the enumerator constants, changing their types to match
16959 // the type of the enum if needed.
16960 for (auto *D : Elements) {
16961 auto *ECD = cast_or_null<EnumConstantDecl>(D);
16962 if (!ECD) continue; // Already issued a diagnostic.
16963
16964 // Standard C says the enumerators have int type, but we allow, as an
16965 // extension, the enumerators to be larger than int size. If each
16966 // enumerator value fits in an int, type it as an int, otherwise type it the
16967 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
16968 // that X has type 'int', not 'unsigned'.
16969
16970 // Determine whether the value fits into an int.
16971 llvm::APSInt InitVal = ECD->getInitVal();
16972
16973 // If it fits into an integer type, force it. Otherwise force it to match
16974 // the enum decl type.
16975 QualType NewTy;
16976 unsigned NewWidth;
16977 bool NewSign;
16978 if (!getLangOpts().CPlusPlus &&
16979 !Enum->isFixed() &&
16980 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16981 NewTy = Context.IntTy;
16982 NewWidth = IntWidth;
16983 NewSign = true;
16984 } else if (ECD->getType() == BestType) {
16985 // Already the right type!
16986 if (getLangOpts().CPlusPlus)
16987 // C++ [dcl.enum]p4: Following the closing brace of an
16988 // enum-specifier, each enumerator has the type of its
16989 // enumeration.
16990 ECD->setType(EnumType);
16991 continue;
16992 } else {
16993 NewTy = BestType;
16994 NewWidth = BestWidth;
16995 NewSign = BestType->isSignedIntegerOrEnumerationType();
16996 }
16997
16998 // Adjust the APSInt value.
16999 InitVal = InitVal.extOrTrunc(NewWidth);
17000 InitVal.setIsSigned(NewSign);
17001 ECD->setInitVal(InitVal);
17002
17003 // Adjust the Expr initializer and type.
17004 if (ECD->getInitExpr() &&
17005 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
17006 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
17007 CK_IntegralCast,
17008 ECD->getInitExpr(),
17009 /*base paths*/ nullptr,
17010 VK_RValue));
17011 if (getLangOpts().CPlusPlus)
17012 // C++ [dcl.enum]p4: Following the closing brace of an
17013 // enum-specifier, each enumerator has the type of its
17014 // enumeration.
17015 ECD->setType(EnumType);
17016 else
17017 ECD->setType(NewTy);
17018 }
17019
17020 Enum->completeDefinition(BestType, BestPromotionType,
17021 NumPositiveBits, NumNegativeBits);
17022
17023 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
17024
17025 if (Enum->isClosedFlag()) {
17026 for (Decl *D : Elements) {
17027 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
17028 if (!ECD) continue; // Already issued a diagnostic.
17029
17030 llvm::APSInt InitVal = ECD->getInitVal();
17031 if (InitVal != 0 && !InitVal.isPowerOf2() &&
17032 !IsValueInFlagEnum(Enum, InitVal, true))
17033 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
17034 << ECD << Enum;
17035 }
17036 }
17037
17038 // Now that the enum type is defined, ensure it's not been underaligned.
17039 if (Enum->hasAttrs())
17040 CheckAlignasUnderalignment(Enum);
17041}
17042
17043Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
17044 SourceLocation StartLoc,
17045 SourceLocation EndLoc) {
17046 StringLiteral *AsmString = cast<StringLiteral>(expr);
17047
17048 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
17049 AsmString, StartLoc,
17050 EndLoc);
17051 CurContext->addDecl(New);
17052 return New;
17053}
17054
17055void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17056 IdentifierInfo* AliasName,
17057 SourceLocation PragmaLoc,
17058 SourceLocation NameLoc,
17059 SourceLocation AliasNameLoc) {
17060 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17061 LookupOrdinaryName);
17062 AsmLabelAttr *Attr =
17063 AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17064
17065 // If a declaration that:
17066 // 1) declares a function or a variable
17067 // 2) has external linkage
17068 // already exists, add a label attribute to it.
17069 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17070 if (isDeclExternC(PrevDecl))
17071 PrevDecl->addAttr(Attr);
17072 else
17073 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17074 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17075 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17076 } else
17077 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17078}
17079
17080void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17081 SourceLocation PragmaLoc,
17082 SourceLocation NameLoc) {
17083 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17084
17085 if (PrevDecl) {
17086 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17087 } else {
17088 (void)WeakUndeclaredIdentifiers.insert(
17089 std::pair<IdentifierInfo*,WeakInfo>
17090 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17091 }
17092}
17093
17094void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17095 IdentifierInfo* AliasName,
17096 SourceLocation PragmaLoc,
17097 SourceLocation NameLoc,
17098 SourceLocation AliasNameLoc) {
17099 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17100 LookupOrdinaryName);
17101 WeakInfo W = WeakInfo(Name, NameLoc);
17102
17103 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17104 if (!PrevDecl->hasAttr<AliasAttr>())
17105 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17106 DeclApplyPragmaWeak(TUScope, ND, W);
17107 } else {
17108 (void)WeakUndeclaredIdentifiers.insert(
17109 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17110 }
17111}
17112
17113Decl *Sema::getObjCDeclContext() const {
17114 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17115}