Bug Summary

File:tools/clang/lib/Sema/SemaDecl.cpp
Warning:line 3197, column 5
Value stored to 'NewType' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-config-compatibility-mode=true -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn348900/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn348900/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-12-042652-12204-1 -x c++ /build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp -faddrsig
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaInternal.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Triple.h"
47#include <algorithm>
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using namespace sema;
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55 if (OwnedType) {
56 Decl *Group[2] = { OwnedType, Ptr };
57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58 }
59
60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61}
62
63namespace {
64
65class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66 public:
67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68 bool AllowTemplates = false,
69 bool AllowNonTemplates = true)
70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72 WantExpressionKeywords = false;
73 WantCXXNamedCasts = false;
74 WantRemainingKeywords = false;
75 }
76
77 bool ValidateCandidate(const TypoCorrection &candidate) override {
78 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79 if (!AllowInvalidDecl && ND->isInvalidDecl())
80 return false;
81
82 if (getAsTypeTemplateDecl(ND))
83 return AllowTemplates;
84
85 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86 if (!IsType)
87 return false;
88
89 if (AllowNonTemplates)
90 return true;
91
92 // An injected-class-name of a class template (specialization) is valid
93 // as a template or as a non-template.
94 if (AllowTemplates) {
95 auto *RD = dyn_cast<CXXRecordDecl>(ND);
96 if (!RD || !RD->isInjectedClassName())
97 return false;
98 RD = cast<CXXRecordDecl>(RD->getDeclContext());
99 return RD->getDescribedClassTemplate() ||
100 isa<ClassTemplateSpecializationDecl>(RD);
101 }
102
103 return false;
104 }
105
106 return !WantClassName && candidate.isKeyword();
107 }
108
109 private:
110 bool AllowInvalidDecl;
111 bool WantClassName;
112 bool AllowTemplates;
113 bool AllowNonTemplates;
114};
115
116} // end anonymous namespace
117
118/// Determine whether the token kind starts a simple-type-specifier.
119bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120 switch (Kind) {
121 // FIXME: Take into account the current language when deciding whether a
122 // token kind is a valid type specifier
123 case tok::kw_short:
124 case tok::kw_long:
125 case tok::kw___int64:
126 case tok::kw___int128:
127 case tok::kw_signed:
128 case tok::kw_unsigned:
129 case tok::kw_void:
130 case tok::kw_char:
131 case tok::kw_int:
132 case tok::kw_half:
133 case tok::kw_float:
134 case tok::kw_double:
135 case tok::kw__Float16:
136 case tok::kw___float128:
137 case tok::kw_wchar_t:
138 case tok::kw_bool:
139 case tok::kw___underlying_type:
140 case tok::kw___auto_type:
141 return true;
142
143 case tok::annot_typename:
144 case tok::kw_char16_t:
145 case tok::kw_char32_t:
146 case tok::kw_typeof:
147 case tok::annot_decltype:
148 case tok::kw_decltype:
149 return getLangOpts().CPlusPlus;
150
151 case tok::kw_char8_t:
152 return getLangOpts().Char8;
153
154 default:
155 break;
156 }
157
158 return false;
159}
160
161namespace {
162enum class UnqualifiedTypeNameLookupResult {
163 NotFound,
164 FoundNonType,
165 FoundType
166};
167} // end anonymous namespace
168
169/// Tries to perform unqualified lookup of the type decls in bases for
170/// dependent class.
171/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
172/// type decl, \a FoundType if only type decls are found.
173static UnqualifiedTypeNameLookupResult
174lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
175 SourceLocation NameLoc,
176 const CXXRecordDecl *RD) {
177 if (!RD->hasDefinition())
178 return UnqualifiedTypeNameLookupResult::NotFound;
179 // Look for type decls in base classes.
180 UnqualifiedTypeNameLookupResult FoundTypeDecl =
181 UnqualifiedTypeNameLookupResult::NotFound;
182 for (const auto &Base : RD->bases()) {
183 const CXXRecordDecl *BaseRD = nullptr;
184 if (auto *BaseTT = Base.getType()->getAs<TagType>())
185 BaseRD = BaseTT->getAsCXXRecordDecl();
186 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
187 // Look for type decls in dependent base classes that have known primary
188 // templates.
189 if (!TST || !TST->isDependentType())
190 continue;
191 auto *TD = TST->getTemplateName().getAsTemplateDecl();
192 if (!TD)
193 continue;
194 if (auto *BasePrimaryTemplate =
195 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
196 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
197 BaseRD = BasePrimaryTemplate;
198 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
199 if (const ClassTemplatePartialSpecializationDecl *PS =
200 CTD->findPartialSpecialization(Base.getType()))
201 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
202 BaseRD = PS;
203 }
204 }
205 }
206 if (BaseRD) {
207 for (NamedDecl *ND : BaseRD->lookup(&II)) {
208 if (!isa<TypeDecl>(ND))
209 return UnqualifiedTypeNameLookupResult::FoundNonType;
210 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
211 }
212 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
213 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
214 case UnqualifiedTypeNameLookupResult::FoundNonType:
215 return UnqualifiedTypeNameLookupResult::FoundNonType;
216 case UnqualifiedTypeNameLookupResult::FoundType:
217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218 break;
219 case UnqualifiedTypeNameLookupResult::NotFound:
220 break;
221 }
222 }
223 }
224 }
225
226 return FoundTypeDecl;
227}
228
229static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
230 const IdentifierInfo &II,
231 SourceLocation NameLoc) {
232 // Lookup in the parent class template context, if any.
233 const CXXRecordDecl *RD = nullptr;
234 UnqualifiedTypeNameLookupResult FoundTypeDecl =
235 UnqualifiedTypeNameLookupResult::NotFound;
236 for (DeclContext *DC = S.CurContext;
237 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
238 DC = DC->getParent()) {
239 // Look for type decls in dependent base classes that have known primary
240 // templates.
241 RD = dyn_cast<CXXRecordDecl>(DC);
242 if (RD && RD->getDescribedClassTemplate())
243 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
244 }
245 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
246 return nullptr;
247
248 // We found some types in dependent base classes. Recover as if the user
249 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
250 // lookup during template instantiation.
251 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
252
253 ASTContext &Context = S.Context;
254 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
255 cast<Type>(Context.getRecordType(RD)));
256 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
257
258 CXXScopeSpec SS;
259 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
260
261 TypeLocBuilder Builder;
262 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
263 DepTL.setNameLoc(NameLoc);
264 DepTL.setElaboratedKeywordLoc(SourceLocation());
265 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
266 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
267}
268
269/// If the identifier refers to a type name within this scope,
270/// return the declaration of that type.
271///
272/// This routine performs ordinary name lookup of the identifier II
273/// within the given scope, with optional C++ scope specifier SS, to
274/// determine whether the name refers to a type. If so, returns an
275/// opaque pointer (actually a QualType) corresponding to that
276/// type. Otherwise, returns NULL.
277ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
278 Scope *S, CXXScopeSpec *SS,
279 bool isClassName, bool HasTrailingDot,
280 ParsedType ObjectTypePtr,
281 bool IsCtorOrDtorName,
282 bool WantNontrivialTypeSourceInfo,
283 bool IsClassTemplateDeductionContext,
284 IdentifierInfo **CorrectedII) {
285 // FIXME: Consider allowing this outside C++1z mode as an extension.
286 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
287 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
288 !isClassName && !HasTrailingDot;
289
290 // Determine where we will perform name lookup.
291 DeclContext *LookupCtx = nullptr;
292 if (ObjectTypePtr) {
293 QualType ObjectType = ObjectTypePtr.get();
294 if (ObjectType->isRecordType())
295 LookupCtx = computeDeclContext(ObjectType);
296 } else if (SS && SS->isNotEmpty()) {
297 LookupCtx = computeDeclContext(*SS, false);
298
299 if (!LookupCtx) {
300 if (isDependentScopeSpecifier(*SS)) {
301 // C++ [temp.res]p3:
302 // A qualified-id that refers to a type and in which the
303 // nested-name-specifier depends on a template-parameter (14.6.2)
304 // shall be prefixed by the keyword typename to indicate that the
305 // qualified-id denotes a type, forming an
306 // elaborated-type-specifier (7.1.5.3).
307 //
308 // We therefore do not perform any name lookup if the result would
309 // refer to a member of an unknown specialization.
310 if (!isClassName && !IsCtorOrDtorName)
311 return nullptr;
312
313 // We know from the grammar that this name refers to a type,
314 // so build a dependent node to describe the type.
315 if (WantNontrivialTypeSourceInfo)
316 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
317
318 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
319 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
320 II, NameLoc);
321 return ParsedType::make(T);
322 }
323
324 return nullptr;
325 }
326
327 if (!LookupCtx->isDependentContext() &&
328 RequireCompleteDeclContext(*SS, LookupCtx))
329 return nullptr;
330 }
331
332 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
333 // lookup for class-names.
334 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
335 LookupOrdinaryName;
336 LookupResult Result(*this, &II, NameLoc, Kind);
337 if (LookupCtx) {
338 // Perform "qualified" name lookup into the declaration context we
339 // computed, which is either the type of the base of a member access
340 // expression or the declaration context associated with a prior
341 // nested-name-specifier.
342 LookupQualifiedName(Result, LookupCtx);
343
344 if (ObjectTypePtr && Result.empty()) {
345 // C++ [basic.lookup.classref]p3:
346 // If the unqualified-id is ~type-name, the type-name is looked up
347 // in the context of the entire postfix-expression. If the type T of
348 // the object expression is of a class type C, the type-name is also
349 // looked up in the scope of class C. At least one of the lookups shall
350 // find a name that refers to (possibly cv-qualified) T.
351 LookupName(Result, S);
352 }
353 } else {
354 // Perform unqualified name lookup.
355 LookupName(Result, S);
356
357 // For unqualified lookup in a class template in MSVC mode, look into
358 // dependent base classes where the primary class template is known.
359 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
360 if (ParsedType TypeInBase =
361 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
362 return TypeInBase;
363 }
364 }
365
366 NamedDecl *IIDecl = nullptr;
367 switch (Result.getResultKind()) {
368 case LookupResult::NotFound:
369 case LookupResult::NotFoundInCurrentInstantiation:
370 if (CorrectedII) {
371 TypoCorrection Correction =
372 CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
373 llvm::make_unique<TypeNameValidatorCCC>(
374 true, isClassName, AllowDeducedTemplate),
375 CTK_ErrorRecovery);
376 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
377 TemplateTy Template;
378 bool MemberOfUnknownSpecialization;
379 UnqualifiedId TemplateName;
380 TemplateName.setIdentifier(NewII, NameLoc);
381 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
382 CXXScopeSpec NewSS, *NewSSPtr = SS;
383 if (SS && NNS) {
384 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
385 NewSSPtr = &NewSS;
386 }
387 if (Correction && (NNS || NewII != &II) &&
388 // Ignore a correction to a template type as the to-be-corrected
389 // identifier is not a template (typo correction for template names
390 // is handled elsewhere).
391 !(getLangOpts().CPlusPlus && NewSSPtr &&
392 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
393 Template, MemberOfUnknownSpecialization))) {
394 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
395 isClassName, HasTrailingDot, ObjectTypePtr,
396 IsCtorOrDtorName,
397 WantNontrivialTypeSourceInfo,
398 IsClassTemplateDeductionContext);
399 if (Ty) {
400 diagnoseTypo(Correction,
401 PDiag(diag::err_unknown_type_or_class_name_suggest)
402 << Result.getLookupName() << isClassName);
403 if (SS && NNS)
404 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
405 *CorrectedII = NewII;
406 return Ty;
407 }
408 }
409 }
410 // If typo correction failed or was not performed, fall through
411 LLVM_FALLTHROUGH[[clang::fallthrough]];
412 case LookupResult::FoundOverloaded:
413 case LookupResult::FoundUnresolvedValue:
414 Result.suppressDiagnostics();
415 return nullptr;
416
417 case LookupResult::Ambiguous:
418 // Recover from type-hiding ambiguities by hiding the type. We'll
419 // do the lookup again when looking for an object, and we can
420 // diagnose the error then. If we don't do this, then the error
421 // about hiding the type will be immediately followed by an error
422 // that only makes sense if the identifier was treated like a type.
423 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
424 Result.suppressDiagnostics();
425 return nullptr;
426 }
427
428 // Look to see if we have a type anywhere in the list of results.
429 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
430 Res != ResEnd; ++Res) {
431 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
432 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
433 if (!IIDecl ||
434 (*Res)->getLocation().getRawEncoding() <
435 IIDecl->getLocation().getRawEncoding())
436 IIDecl = *Res;
437 }
438 }
439
440 if (!IIDecl) {
441 // None of the entities we found is a type, so there is no way
442 // to even assume that the result is a type. In this case, don't
443 // complain about the ambiguity. The parser will either try to
444 // perform this lookup again (e.g., as an object name), which
445 // will produce the ambiguity, or will complain that it expected
446 // a type name.
447 Result.suppressDiagnostics();
448 return nullptr;
449 }
450
451 // We found a type within the ambiguous lookup; diagnose the
452 // ambiguity and then return that type. This might be the right
453 // answer, or it might not be, but it suppresses any attempt to
454 // perform the name lookup again.
455 break;
456
457 case LookupResult::Found:
458 IIDecl = Result.getFoundDecl();
459 break;
460 }
461
462 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 462, __PRETTY_FUNCTION__))
;
463
464 QualType T;
465 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
466 // C++ [class.qual]p2: A lookup that would find the injected-class-name
467 // instead names the constructors of the class, except when naming a class.
468 // This is ill-formed when we're not actually forming a ctor or dtor name.
469 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
470 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
471 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
472 FoundRD->isInjectedClassName() &&
473 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
474 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
475 << &II << /*Type*/1;
476
477 DiagnoseUseOfDecl(IIDecl, NameLoc);
478
479 T = Context.getTypeDeclType(TD);
480 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
481 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
482 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
483 if (!HasTrailingDot)
484 T = Context.getObjCInterfaceType(IDecl);
485 } else if (AllowDeducedTemplate) {
486 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
487 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
488 QualType(), false);
489 }
490
491 if (T.isNull()) {
492 // If it's not plausibly a type, suppress diagnostics.
493 Result.suppressDiagnostics();
494 return nullptr;
495 }
496
497 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
498 // constructor or destructor name (in such a case, the scope specifier
499 // will be attached to the enclosing Expr or Decl node).
500 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
501 !isa<ObjCInterfaceDecl>(IIDecl)) {
502 if (WantNontrivialTypeSourceInfo) {
503 // Construct a type with type-source information.
504 TypeLocBuilder Builder;
505 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
506
507 T = getElaboratedType(ETK_None, *SS, T);
508 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
509 ElabTL.setElaboratedKeywordLoc(SourceLocation());
510 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
511 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
512 } else {
513 T = getElaboratedType(ETK_None, *SS, T);
514 }
515 }
516
517 return ParsedType::make(T);
518}
519
520// Builds a fake NNS for the given decl context.
521static NestedNameSpecifier *
522synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
523 for (;; DC = DC->getLookupParent()) {
524 DC = DC->getPrimaryContext();
525 auto *ND = dyn_cast<NamespaceDecl>(DC);
526 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
527 return NestedNameSpecifier::Create(Context, nullptr, ND);
528 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
529 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
530 RD->getTypeForDecl());
531 else if (isa<TranslationUnitDecl>(DC))
532 return NestedNameSpecifier::GlobalSpecifier(Context);
533 }
534 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 534)
;
535}
536
537/// Find the parent class with dependent bases of the innermost enclosing method
538/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
539/// up allowing unqualified dependent type names at class-level, which MSVC
540/// correctly rejects.
541static const CXXRecordDecl *
542findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
543 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
544 DC = DC->getPrimaryContext();
545 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
546 if (MD->getParent()->hasAnyDependentBases())
547 return MD->getParent();
548 }
549 return nullptr;
550}
551
552ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
553 SourceLocation NameLoc,
554 bool IsTemplateTypeArg) {
555 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 555, __PRETTY_FUNCTION__))
;
556
557 NestedNameSpecifier *NNS = nullptr;
558 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
559 // If we weren't able to parse a default template argument, delay lookup
560 // until instantiation time by making a non-dependent DependentTypeName. We
561 // pretend we saw a NestedNameSpecifier referring to the current scope, and
562 // lookup is retried.
563 // FIXME: This hurts our diagnostic quality, since we get errors like "no
564 // type named 'Foo' in 'current_namespace'" when the user didn't write any
565 // name specifiers.
566 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
567 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
568 } else if (const CXXRecordDecl *RD =
569 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
570 // Build a DependentNameType that will perform lookup into RD at
571 // instantiation time.
572 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
573 RD->getTypeForDecl());
574
575 // Diagnose that this identifier was undeclared, and retry the lookup during
576 // template instantiation.
577 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
578 << RD;
579 } else {
580 // This is not a situation that we should recover from.
581 return ParsedType();
582 }
583
584 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
585
586 // Build type location information. We synthesized the qualifier, so we have
587 // to build a fake NestedNameSpecifierLoc.
588 NestedNameSpecifierLocBuilder NNSLocBuilder;
589 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
590 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
591
592 TypeLocBuilder Builder;
593 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
594 DepTL.setNameLoc(NameLoc);
595 DepTL.setElaboratedKeywordLoc(SourceLocation());
596 DepTL.setQualifierLoc(QualifierLoc);
597 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
598}
599
600/// isTagName() - This method is called *for error recovery purposes only*
601/// to determine if the specified name is a valid tag name ("struct foo"). If
602/// so, this returns the TST for the tag corresponding to it (TST_enum,
603/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
604/// cases in C where the user forgot to specify the tag.
605DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
606 // Do a tag name lookup in this scope.
607 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
608 LookupName(R, S, false);
609 R.suppressDiagnostics();
610 if (R.getResultKind() == LookupResult::Found)
611 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
612 switch (TD->getTagKind()) {
613 case TTK_Struct: return DeclSpec::TST_struct;
614 case TTK_Interface: return DeclSpec::TST_interface;
615 case TTK_Union: return DeclSpec::TST_union;
616 case TTK_Class: return DeclSpec::TST_class;
617 case TTK_Enum: return DeclSpec::TST_enum;
618 }
619 }
620
621 return DeclSpec::TST_unspecified;
622}
623
624/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
625/// if a CXXScopeSpec's type is equal to the type of one of the base classes
626/// then downgrade the missing typename error to a warning.
627/// This is needed for MSVC compatibility; Example:
628/// @code
629/// template<class T> class A {
630/// public:
631/// typedef int TYPE;
632/// };
633/// template<class T> class B : public A<T> {
634/// public:
635/// A<T>::TYPE a; // no typename required because A<T> is a base class.
636/// };
637/// @endcode
638bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
639 if (CurContext->isRecord()) {
640 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
641 return true;
642
643 const Type *Ty = SS->getScopeRep()->getAsType();
644
645 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
646 for (const auto &Base : RD->bases())
647 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
648 return true;
649 return S->isFunctionPrototypeScope();
650 }
651 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
652}
653
654void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
655 SourceLocation IILoc,
656 Scope *S,
657 CXXScopeSpec *SS,
658 ParsedType &SuggestedType,
659 bool IsTemplateName) {
660 // Don't report typename errors for editor placeholders.
661 if (II->isEditorPlaceholder())
662 return;
663 // We don't have anything to suggest (yet).
664 SuggestedType = nullptr;
665
666 // There may have been a typo in the name of the type. Look up typo
667 // results, in case we have something that we can suggest.
668 if (TypoCorrection Corrected =
669 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
670 llvm::make_unique<TypeNameValidatorCCC>(
671 false, false, IsTemplateName, !IsTemplateName),
672 CTK_ErrorRecovery)) {
673 // FIXME: Support error recovery for the template-name case.
674 bool CanRecover = !IsTemplateName;
675 if (Corrected.isKeyword()) {
676 // We corrected to a keyword.
677 diagnoseTypo(Corrected,
678 PDiag(IsTemplateName ? diag::err_no_template_suggest
679 : diag::err_unknown_typename_suggest)
680 << II);
681 II = Corrected.getCorrectionAsIdentifierInfo();
682 } else {
683 // We found a similarly-named type or interface; suggest that.
684 if (!SS || !SS->isSet()) {
685 diagnoseTypo(Corrected,
686 PDiag(IsTemplateName ? diag::err_no_template_suggest
687 : diag::err_unknown_typename_suggest)
688 << II, CanRecover);
689 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
690 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
691 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
692 II->getName().equals(CorrectedStr);
693 diagnoseTypo(Corrected,
694 PDiag(IsTemplateName
695 ? diag::err_no_member_template_suggest
696 : diag::err_unknown_nested_typename_suggest)
697 << II << DC << DroppedSpecifier << SS->getRange(),
698 CanRecover);
699 } else {
700 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 700)
;
701 }
702
703 if (!CanRecover)
704 return;
705
706 CXXScopeSpec tmpSS;
707 if (Corrected.getCorrectionSpecifier())
708 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
709 SourceRange(IILoc));
710 // FIXME: Support class template argument deduction here.
711 SuggestedType =
712 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
713 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
714 /*IsCtorOrDtorName=*/false,
715 /*NonTrivialTypeSourceInfo=*/true);
716 }
717 return;
718 }
719
720 if (getLangOpts().CPlusPlus && !IsTemplateName) {
721 // See if II is a class template that the user forgot to pass arguments to.
722 UnqualifiedId Name;
723 Name.setIdentifier(II, IILoc);
724 CXXScopeSpec EmptySS;
725 TemplateTy TemplateResult;
726 bool MemberOfUnknownSpecialization;
727 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
728 Name, nullptr, true, TemplateResult,
729 MemberOfUnknownSpecialization) == TNK_Type_template) {
730 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
731 return;
732 }
733 }
734
735 // FIXME: Should we move the logic that tries to recover from a missing tag
736 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
737
738 if (!SS || (!SS->isSet() && !SS->isInvalid()))
739 Diag(IILoc, IsTemplateName ? diag::err_no_template
740 : diag::err_unknown_typename)
741 << II;
742 else if (DeclContext *DC = computeDeclContext(*SS, false))
743 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
744 : diag::err_typename_nested_not_found)
745 << II << DC << SS->getRange();
746 else if (isDependentScopeSpecifier(*SS)) {
747 unsigned DiagID = diag::err_typename_missing;
748 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
749 DiagID = diag::ext_typename_missing;
750
751 Diag(SS->getRange().getBegin(), DiagID)
752 << SS->getScopeRep() << II->getName()
753 << SourceRange(SS->getRange().getBegin(), IILoc)
754 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
755 SuggestedType = ActOnTypenameType(S, SourceLocation(),
756 *SS, *II, IILoc).get();
757 } else {
758 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 759, __PRETTY_FUNCTION__))
759 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 759, __PRETTY_FUNCTION__))
;
760 }
761}
762
763/// Determine whether the given result set contains either a type name
764/// or
765static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
766 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
767 NextToken.is(tok::less);
768
769 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
770 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
771 return true;
772
773 if (CheckTemplate && isa<TemplateDecl>(*I))
774 return true;
775 }
776
777 return false;
778}
779
780static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
781 Scope *S, CXXScopeSpec &SS,
782 IdentifierInfo *&Name,
783 SourceLocation NameLoc) {
784 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
785 SemaRef.LookupParsedName(R, S, &SS);
786 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
787 StringRef FixItTagName;
788 switch (Tag->getTagKind()) {
789 case TTK_Class:
790 FixItTagName = "class ";
791 break;
792
793 case TTK_Enum:
794 FixItTagName = "enum ";
795 break;
796
797 case TTK_Struct:
798 FixItTagName = "struct ";
799 break;
800
801 case TTK_Interface:
802 FixItTagName = "__interface ";
803 break;
804
805 case TTK_Union:
806 FixItTagName = "union ";
807 break;
808 }
809
810 StringRef TagName = FixItTagName.drop_back();
811 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
812 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
813 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
814
815 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
816 I != IEnd; ++I)
817 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
818 << Name << TagName;
819
820 // Replace lookup results with just the tag decl.
821 Result.clear(Sema::LookupTagName);
822 SemaRef.LookupParsedName(Result, S, &SS);
823 return true;
824 }
825
826 return false;
827}
828
829/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
830static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
831 QualType T, SourceLocation NameLoc) {
832 ASTContext &Context = S.Context;
833
834 TypeLocBuilder Builder;
835 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
836
837 T = S.getElaboratedType(ETK_None, SS, T);
838 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
839 ElabTL.setElaboratedKeywordLoc(SourceLocation());
840 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
841 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
842}
843
844Sema::NameClassification
845Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
846 SourceLocation NameLoc, const Token &NextToken,
847 bool IsAddressOfOperand,
848 std::unique_ptr<CorrectionCandidateCallback> CCC) {
849 DeclarationNameInfo NameInfo(Name, NameLoc);
850 ObjCMethodDecl *CurMethod = getCurMethodDecl();
851
852 if (NextToken.is(tok::coloncolon)) {
853 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
854 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
855 } else if (getLangOpts().CPlusPlus && SS.isSet() &&
856 isCurrentClassName(*Name, S, &SS)) {
857 // Per [class.qual]p2, this names the constructors of SS, not the
858 // injected-class-name. We don't have a classification for that.
859 // There's not much point caching this result, since the parser
860 // will reject it later.
861 return NameClassification::Unknown();
862 }
863
864 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
865 LookupParsedName(Result, S, &SS, !CurMethod);
866
867 // For unqualified lookup in a class template in MSVC mode, look into
868 // dependent base classes where the primary class template is known.
869 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
870 if (ParsedType TypeInBase =
871 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
872 return TypeInBase;
873 }
874
875 // Perform lookup for Objective-C instance variables (including automatically
876 // synthesized instance variables), if we're in an Objective-C method.
877 // FIXME: This lookup really, really needs to be folded in to the normal
878 // unqualified lookup mechanism.
879 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
880 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
881 if (E.get() || E.isInvalid())
882 return E;
883 }
884
885 bool SecondTry = false;
886 bool IsFilteredTemplateName = false;
887
888Corrected:
889 switch (Result.getResultKind()) {
890 case LookupResult::NotFound:
891 // If an unqualified-id is followed by a '(', then we have a function
892 // call.
893 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
894 // In C++, this is an ADL-only call.
895 // FIXME: Reference?
896 if (getLangOpts().CPlusPlus)
897 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
898
899 // C90 6.3.2.2:
900 // If the expression that precedes the parenthesized argument list in a
901 // function call consists solely of an identifier, and if no
902 // declaration is visible for this identifier, the identifier is
903 // implicitly declared exactly as if, in the innermost block containing
904 // the function call, the declaration
905 //
906 // extern int identifier ();
907 //
908 // appeared.
909 //
910 // We also allow this in C99 as an extension.
911 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
912 Result.addDecl(D);
913 Result.resolveKind();
914 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
915 }
916 }
917
918 // In C, we first see whether there is a tag type by the same name, in
919 // which case it's likely that the user just forgot to write "enum",
920 // "struct", or "union".
921 if (!getLangOpts().CPlusPlus && !SecondTry &&
922 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
923 break;
924 }
925
926 // Perform typo correction to determine if there is another name that is
927 // close to this name.
928 if (!SecondTry && CCC) {
929 SecondTry = true;
930 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
931 Result.getLookupKind(), S,
932 &SS, std::move(CCC),
933 CTK_ErrorRecovery)) {
934 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
935 unsigned QualifiedDiag = diag::err_no_member_suggest;
936
937 NamedDecl *FirstDecl = Corrected.getFoundDecl();
938 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
939 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
940 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
941 UnqualifiedDiag = diag::err_no_template_suggest;
942 QualifiedDiag = diag::err_no_member_template_suggest;
943 } else if (UnderlyingFirstDecl &&
944 (isa<TypeDecl>(UnderlyingFirstDecl) ||
945 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
946 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
947 UnqualifiedDiag = diag::err_unknown_typename_suggest;
948 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
949 }
950
951 if (SS.isEmpty()) {
952 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
953 } else {// FIXME: is this even reachable? Test it.
954 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
955 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
956 Name->getName().equals(CorrectedStr);
957 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
958 << Name << computeDeclContext(SS, false)
959 << DroppedSpecifier << SS.getRange());
960 }
961
962 // Update the name, so that the caller has the new name.
963 Name = Corrected.getCorrectionAsIdentifierInfo();
964
965 // Typo correction corrected to a keyword.
966 if (Corrected.isKeyword())
967 return Name;
968
969 // Also update the LookupResult...
970 // FIXME: This should probably go away at some point
971 Result.clear();
972 Result.setLookupName(Corrected.getCorrection());
973 if (FirstDecl)
974 Result.addDecl(FirstDecl);
975
976 // If we found an Objective-C instance variable, let
977 // LookupInObjCMethod build the appropriate expression to
978 // reference the ivar.
979 // FIXME: This is a gross hack.
980 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
981 Result.clear();
982 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
983 return E;
984 }
985
986 goto Corrected;
987 }
988 }
989
990 // We failed to correct; just fall through and let the parser deal with it.
991 Result.suppressDiagnostics();
992 return NameClassification::Unknown();
993
994 case LookupResult::NotFoundInCurrentInstantiation: {
995 // We performed name lookup into the current instantiation, and there were
996 // dependent bases, so we treat this result the same way as any other
997 // dependent nested-name-specifier.
998
999 // C++ [temp.res]p2:
1000 // A name used in a template declaration or definition and that is
1001 // dependent on a template-parameter is assumed not to name a type
1002 // unless the applicable name lookup finds a type name or the name is
1003 // qualified by the keyword typename.
1004 //
1005 // FIXME: If the next token is '<', we might want to ask the parser to
1006 // perform some heroics to see if we actually have a
1007 // template-argument-list, which would indicate a missing 'template'
1008 // keyword here.
1009 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1010 NameInfo, IsAddressOfOperand,
1011 /*TemplateArgs=*/nullptr);
1012 }
1013
1014 case LookupResult::Found:
1015 case LookupResult::FoundOverloaded:
1016 case LookupResult::FoundUnresolvedValue:
1017 break;
1018
1019 case LookupResult::Ambiguous:
1020 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1021 hasAnyAcceptableTemplateNames(Result)) {
1022 // C++ [temp.local]p3:
1023 // A lookup that finds an injected-class-name (10.2) can result in an
1024 // ambiguity in certain cases (for example, if it is found in more than
1025 // one base class). If all of the injected-class-names that are found
1026 // refer to specializations of the same class template, and if the name
1027 // is followed by a template-argument-list, the reference refers to the
1028 // class template itself and not a specialization thereof, and is not
1029 // ambiguous.
1030 //
1031 // This filtering can make an ambiguous result into an unambiguous one,
1032 // so try again after filtering out template names.
1033 FilterAcceptableTemplateNames(Result);
1034 if (!Result.isAmbiguous()) {
1035 IsFilteredTemplateName = true;
1036 break;
1037 }
1038 }
1039
1040 // Diagnose the ambiguity and return an error.
1041 return NameClassification::Error();
1042 }
1043
1044 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1045 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1046 // C++ [temp.names]p3:
1047 // After name lookup (3.4) finds that a name is a template-name or that
1048 // an operator-function-id or a literal- operator-id refers to a set of
1049 // overloaded functions any member of which is a function template if
1050 // this is followed by a <, the < is always taken as the delimiter of a
1051 // template-argument-list and never as the less-than operator.
1052 if (!IsFilteredTemplateName)
1053 FilterAcceptableTemplateNames(Result);
1054
1055 if (!Result.empty()) {
1056 bool IsFunctionTemplate;
1057 bool IsVarTemplate;
1058 TemplateName Template;
1059 if (Result.end() - Result.begin() > 1) {
1060 IsFunctionTemplate = true;
1061 Template = Context.getOverloadedTemplateName(Result.begin(),
1062 Result.end());
1063 } else {
1064 TemplateDecl *TD
1065 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1066 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1067 IsVarTemplate = isa<VarTemplateDecl>(TD);
1068
1069 if (SS.isSet() && !SS.isInvalid())
1070 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1071 /*TemplateKeyword=*/false,
1072 TD);
1073 else
1074 Template = TemplateName(TD);
1075 }
1076
1077 if (IsFunctionTemplate) {
1078 // Function templates always go through overload resolution, at which
1079 // point we'll perform the various checks (e.g., accessibility) we need
1080 // to based on which function we selected.
1081 Result.suppressDiagnostics();
1082
1083 return NameClassification::FunctionTemplate(Template);
1084 }
1085
1086 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1087 : NameClassification::TypeTemplate(Template);
1088 }
1089 }
1090
1091 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1092 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1093 DiagnoseUseOfDecl(Type, NameLoc);
1094 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1095 QualType T = Context.getTypeDeclType(Type);
1096 if (SS.isNotEmpty())
1097 return buildNestedType(*this, SS, T, NameLoc);
1098 return ParsedType::make(T);
1099 }
1100
1101 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1102 if (!Class) {
1103 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1104 if (ObjCCompatibleAliasDecl *Alias =
1105 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1106 Class = Alias->getClassInterface();
1107 }
1108
1109 if (Class) {
1110 DiagnoseUseOfDecl(Class, NameLoc);
1111
1112 if (NextToken.is(tok::period)) {
1113 // Interface. <something> is parsed as a property reference expression.
1114 // Just return "unknown" as a fall-through for now.
1115 Result.suppressDiagnostics();
1116 return NameClassification::Unknown();
1117 }
1118
1119 QualType T = Context.getObjCInterfaceType(Class);
1120 return ParsedType::make(T);
1121 }
1122
1123 // We can have a type template here if we're classifying a template argument.
1124 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1125 !isa<VarTemplateDecl>(FirstDecl))
1126 return NameClassification::TypeTemplate(
1127 TemplateName(cast<TemplateDecl>(FirstDecl)));
1128
1129 // Check for a tag type hidden by a non-type decl in a few cases where it
1130 // seems likely a type is wanted instead of the non-type that was found.
1131 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1132 if ((NextToken.is(tok::identifier) ||
1133 (NextIsOp &&
1134 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1135 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1136 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1137 DiagnoseUseOfDecl(Type, NameLoc);
1138 QualType T = Context.getTypeDeclType(Type);
1139 if (SS.isNotEmpty())
1140 return buildNestedType(*this, SS, T, NameLoc);
1141 return ParsedType::make(T);
1142 }
1143
1144 if (FirstDecl->isCXXClassMember())
1145 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1146 nullptr, S);
1147
1148 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1149 return BuildDeclarationNameExpr(SS, Result, ADL);
1150}
1151
1152Sema::TemplateNameKindForDiagnostics
1153Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1154 auto *TD = Name.getAsTemplateDecl();
1155 if (!TD)
1156 return TemplateNameKindForDiagnostics::DependentTemplate;
1157 if (isa<ClassTemplateDecl>(TD))
1158 return TemplateNameKindForDiagnostics::ClassTemplate;
1159 if (isa<FunctionTemplateDecl>(TD))
1160 return TemplateNameKindForDiagnostics::FunctionTemplate;
1161 if (isa<VarTemplateDecl>(TD))
1162 return TemplateNameKindForDiagnostics::VarTemplate;
1163 if (isa<TypeAliasTemplateDecl>(TD))
1164 return TemplateNameKindForDiagnostics::AliasTemplate;
1165 if (isa<TemplateTemplateParmDecl>(TD))
1166 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1167 return TemplateNameKindForDiagnostics::DependentTemplate;
1168}
1169
1170// Determines the context to return to after temporarily entering a
1171// context. This depends in an unnecessarily complicated way on the
1172// exact ordering of callbacks from the parser.
1173DeclContext *Sema::getContainingDC(DeclContext *DC) {
1174
1175 // Functions defined inline within classes aren't parsed until we've
1176 // finished parsing the top-level class, so the top-level class is
1177 // the context we'll need to return to.
1178 // A Lambda call operator whose parent is a class must not be treated
1179 // as an inline member function. A Lambda can be used legally
1180 // either as an in-class member initializer or a default argument. These
1181 // are parsed once the class has been marked complete and so the containing
1182 // context would be the nested class (when the lambda is defined in one);
1183 // If the class is not complete, then the lambda is being used in an
1184 // ill-formed fashion (such as to specify the width of a bit-field, or
1185 // in an array-bound) - in which case we still want to return the
1186 // lexically containing DC (which could be a nested class).
1187 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1188 DC = DC->getLexicalParent();
1189
1190 // A function not defined within a class will always return to its
1191 // lexical context.
1192 if (!isa<CXXRecordDecl>(DC))
1193 return DC;
1194
1195 // A C++ inline method/friend is parsed *after* the topmost class
1196 // it was declared in is fully parsed ("complete"); the topmost
1197 // class is the context we need to return to.
1198 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1199 DC = RD;
1200
1201 // Return the declaration context of the topmost class the inline method is
1202 // declared in.
1203 return DC;
1204 }
1205
1206 return DC->getLexicalParent();
1207}
1208
1209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1210 assert(getContainingDC(DC) == CurContext &&((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1211, __PRETTY_FUNCTION__))
1211 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1211, __PRETTY_FUNCTION__))
;
1212 CurContext = DC;
1213 S->setEntity(DC);
1214}
1215
1216void Sema::PopDeclContext() {
1217 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1217, __PRETTY_FUNCTION__))
;
1218
1219 CurContext = getContainingDC(CurContext);
1220 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1220, __PRETTY_FUNCTION__))
;
1221}
1222
1223Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1224 Decl *D) {
1225 // Unlike PushDeclContext, the context to which we return is not necessarily
1226 // the containing DC of TD, because the new context will be some pre-existing
1227 // TagDecl definition instead of a fresh one.
1228 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1229 CurContext = cast<TagDecl>(D)->getDefinition();
1230 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 // Start lookups from the parent of the current context; we don't want to look
1232 // into the pre-existing complete definition.
1233 S->setEntity(CurContext->getLookupParent());
1234 return Result;
1235}
1236
1237void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1238 CurContext = static_cast<decltype(CurContext)>(Context);
1239}
1240
1241/// EnterDeclaratorContext - Used when we must lookup names in the context
1242/// of a declarator's nested name specifier.
1243///
1244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1245 // C++0x [basic.lookup.unqual]p13:
1246 // A name used in the definition of a static data member of class
1247 // X (after the qualified-id of the static member) is looked up as
1248 // if the name was used in a member function of X.
1249 // C++0x [basic.lookup.unqual]p14:
1250 // If a variable member of a namespace is defined outside of the
1251 // scope of its namespace then any name used in the definition of
1252 // the variable member (after the declarator-id) is looked up as
1253 // if the definition of the variable member occurred in its
1254 // namespace.
1255 // Both of these imply that we should push a scope whose context
1256 // is the semantic context of the declaration. We can't use
1257 // PushDeclContext here because that context is not necessarily
1258 // lexically contained in the current context. Fortunately,
1259 // the containing scope should have the appropriate information.
1260
1261 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1261, __PRETTY_FUNCTION__))
;
1262
1263#ifndef NDEBUG
1264 Scope *Ancestor = S->getParent();
1265 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1266 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1266, __PRETTY_FUNCTION__))
;
1267#endif
1268
1269 CurContext = DC;
1270 S->setEntity(DC);
1271}
1272
1273void Sema::ExitDeclaratorContext(Scope *S) {
1274 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1274, __PRETTY_FUNCTION__))
;
1275
1276 // Switch back to the lexical context. The safety of this is
1277 // enforced by an assert in EnterDeclaratorContext.
1278 Scope *Ancestor = S->getParent();
1279 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1280 CurContext = Ancestor->getEntity();
1281
1282 // We don't need to do anything with the scope, which is going to
1283 // disappear.
1284}
1285
1286void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1287 // We assume that the caller has already called
1288 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1289 FunctionDecl *FD = D->getAsFunction();
1290 if (!FD)
1291 return;
1292
1293 // Same implementation as PushDeclContext, but enters the context
1294 // from the lexical parent, rather than the top-level class.
1295 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1296, __PRETTY_FUNCTION__))
1296 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1296, __PRETTY_FUNCTION__))
;
1297 CurContext = FD;
1298 S->setEntity(CurContext);
1299
1300 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1301 ParmVarDecl *Param = FD->getParamDecl(P);
1302 // If the parameter has an identifier, then add it to the scope
1303 if (Param->getIdentifier()) {
1304 S->AddDecl(Param);
1305 IdResolver.AddDecl(Param);
1306 }
1307 }
1308}
1309
1310void Sema::ActOnExitFunctionContext() {
1311 // Same implementation as PopDeclContext, but returns to the lexical parent,
1312 // rather than the top-level class.
1313 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 CurContext = CurContext->getLexicalParent();
1315 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1315, __PRETTY_FUNCTION__))
;
1316}
1317
1318/// Determine whether we allow overloading of the function
1319/// PrevDecl with another declaration.
1320///
1321/// This routine determines whether overloading is possible, not
1322/// whether some new function is actually an overload. It will return
1323/// true in C++ (where we can always provide overloads) or, as an
1324/// extension, in C when the previous function is already an
1325/// overloaded function declaration or has the "overloadable"
1326/// attribute.
1327static bool AllowOverloadingOfFunction(LookupResult &Previous,
1328 ASTContext &Context,
1329 const FunctionDecl *New) {
1330 if (Context.getLangOpts().CPlusPlus)
1331 return true;
1332
1333 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1334 return true;
1335
1336 return Previous.getResultKind() == LookupResult::Found &&
1337 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1338 New->hasAttr<OverloadableAttr>());
1339}
1340
1341/// Add this decl to the scope shadowed decl chains.
1342void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1343 // Move up the scope chain until we find the nearest enclosing
1344 // non-transparent context. The declaration will be introduced into this
1345 // scope.
1346 while (S->getEntity() && S->getEntity()->isTransparentContext())
1347 S = S->getParent();
1348
1349 // Add scoped declarations into their context, so that they can be
1350 // found later. Declarations without a context won't be inserted
1351 // into any context.
1352 if (AddToContext)
1353 CurContext->addDecl(D);
1354
1355 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1356 // are function-local declarations.
1357 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1358 !D->getDeclContext()->getRedeclContext()->Equals(
1359 D->getLexicalDeclContext()->getRedeclContext()) &&
1360 !D->getLexicalDeclContext()->isFunctionOrMethod())
1361 return;
1362
1363 // Template instantiations should also not be pushed into scope.
1364 if (isa<FunctionDecl>(D) &&
1365 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1366 return;
1367
1368 // If this replaces anything in the current scope,
1369 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1370 IEnd = IdResolver.end();
1371 for (; I != IEnd; ++I) {
1372 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1373 S->RemoveDecl(*I);
1374 IdResolver.RemoveDecl(*I);
1375
1376 // Should only need to replace one decl.
1377 break;
1378 }
1379 }
1380
1381 S->AddDecl(D);
1382
1383 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1384 // Implicitly-generated labels may end up getting generated in an order that
1385 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1386 // the label at the appropriate place in the identifier chain.
1387 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1388 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1389 if (IDC == CurContext) {
1390 if (!S->isDeclScope(*I))
1391 continue;
1392 } else if (IDC->Encloses(CurContext))
1393 break;
1394 }
1395
1396 IdResolver.InsertDeclAfter(I, D);
1397 } else {
1398 IdResolver.AddDecl(D);
1399 }
1400}
1401
1402void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1403 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1404 TUScope->AddDecl(D);
1405}
1406
1407bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1408 bool AllowInlineNamespace) {
1409 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1410}
1411
1412Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1413 DeclContext *TargetDC = DC->getPrimaryContext();
1414 do {
1415 if (DeclContext *ScopeDC = S->getEntity())
1416 if (ScopeDC->getPrimaryContext() == TargetDC)
1417 return S;
1418 } while ((S = S->getParent()));
1419
1420 return nullptr;
1421}
1422
1423static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1424 DeclContext*,
1425 ASTContext&);
1426
1427/// Filters out lookup results that don't fall within the given scope
1428/// as determined by isDeclInScope.
1429void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1430 bool ConsiderLinkage,
1431 bool AllowInlineNamespace) {
1432 LookupResult::Filter F = R.makeFilter();
1433 while (F.hasNext()) {
1434 NamedDecl *D = F.next();
1435
1436 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1437 continue;
1438
1439 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1440 continue;
1441
1442 F.erase();
1443 }
1444
1445 F.done();
1446}
1447
1448/// We've determined that \p New is a redeclaration of \p Old. Check that they
1449/// have compatible owning modules.
1450bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1451 // FIXME: The Modules TS is not clear about how friend declarations are
1452 // to be treated. It's not meaningful to have different owning modules for
1453 // linkage in redeclarations of the same entity, so for now allow the
1454 // redeclaration and change the owning modules to match.
1455 if (New->getFriendObjectKind() &&
1456 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1457 New->setLocalOwningModule(Old->getOwningModule());
1458 makeMergedDefinitionVisible(New);
1459 return false;
1460 }
1461
1462 Module *NewM = New->getOwningModule();
1463 Module *OldM = Old->getOwningModule();
1464 if (NewM == OldM)
1465 return false;
1466
1467 // FIXME: Check proclaimed-ownership-declarations here too.
1468 bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1469 bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1470 if (NewIsModuleInterface || OldIsModuleInterface) {
1471 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1472 // if a declaration of D [...] appears in the purview of a module, all
1473 // other such declarations shall appear in the purview of the same module
1474 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1475 << New
1476 << NewIsModuleInterface
1477 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1478 << OldIsModuleInterface
1479 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1480 Diag(Old->getLocation(), diag::note_previous_declaration);
1481 New->setInvalidDecl();
1482 return true;
1483 }
1484
1485 return false;
1486}
1487
1488static bool isUsingDecl(NamedDecl *D) {
1489 return isa<UsingShadowDecl>(D) ||
1490 isa<UnresolvedUsingTypenameDecl>(D) ||
1491 isa<UnresolvedUsingValueDecl>(D);
1492}
1493
1494/// Removes using shadow declarations from the lookup results.
1495static void RemoveUsingDecls(LookupResult &R) {
1496 LookupResult::Filter F = R.makeFilter();
1497 while (F.hasNext())
1498 if (isUsingDecl(F.next()))
1499 F.erase();
1500
1501 F.done();
1502}
1503
1504/// Check for this common pattern:
1505/// @code
1506/// class S {
1507/// S(const S&); // DO NOT IMPLEMENT
1508/// void operator=(const S&); // DO NOT IMPLEMENT
1509/// };
1510/// @endcode
1511static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1512 // FIXME: Should check for private access too but access is set after we get
1513 // the decl here.
1514 if (D->doesThisDeclarationHaveABody())
1515 return false;
1516
1517 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1518 return CD->isCopyConstructor();
1519 return D->isCopyAssignmentOperator();
1520}
1521
1522// We need this to handle
1523//
1524// typedef struct {
1525// void *foo() { return 0; }
1526// } A;
1527//
1528// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1529// for example. If 'A', foo will have external linkage. If we have '*A',
1530// foo will have no linkage. Since we can't know until we get to the end
1531// of the typedef, this function finds out if D might have non-external linkage.
1532// Callers should verify at the end of the TU if it D has external linkage or
1533// not.
1534bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1535 const DeclContext *DC = D->getDeclContext();
1536 while (!DC->isTranslationUnit()) {
1537 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1538 if (!RD->hasNameForLinkage())
1539 return true;
1540 }
1541 DC = DC->getParent();
1542 }
1543
1544 return !D->isExternallyVisible();
1545}
1546
1547// FIXME: This needs to be refactored; some other isInMainFile users want
1548// these semantics.
1549static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1550 if (S.TUKind != TU_Complete)
1551 return false;
1552 return S.SourceMgr.isInMainFile(Loc);
1553}
1554
1555bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1556 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1556, __PRETTY_FUNCTION__))
;
1557
1558 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1559 return false;
1560
1561 // Ignore all entities declared within templates, and out-of-line definitions
1562 // of members of class templates.
1563 if (D->getDeclContext()->isDependentContext() ||
1564 D->getLexicalDeclContext()->isDependentContext())
1565 return false;
1566
1567 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1568 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1569 return false;
1570 // A non-out-of-line declaration of a member specialization was implicitly
1571 // instantiated; it's the out-of-line declaration that we're interested in.
1572 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1573 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1574 return false;
1575
1576 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1577 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1578 return false;
1579 } else {
1580 // 'static inline' functions are defined in headers; don't warn.
1581 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1582 return false;
1583 }
1584
1585 if (FD->doesThisDeclarationHaveABody() &&
1586 Context.DeclMustBeEmitted(FD))
1587 return false;
1588 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1589 // Constants and utility variables are defined in headers with internal
1590 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1591 // like "inline".)
1592 if (!isMainFileLoc(*this, VD->getLocation()))
1593 return false;
1594
1595 if (Context.DeclMustBeEmitted(VD))
1596 return false;
1597
1598 if (VD->isStaticDataMember() &&
1599 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1600 return false;
1601 if (VD->isStaticDataMember() &&
1602 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1603 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1604 return false;
1605
1606 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1607 return false;
1608 } else {
1609 return false;
1610 }
1611
1612 // Only warn for unused decls internal to the translation unit.
1613 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1614 // for inline functions defined in the main source file, for instance.
1615 return mightHaveNonExternalLinkage(D);
1616}
1617
1618void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1619 if (!D)
1620 return;
1621
1622 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1623 const FunctionDecl *First = FD->getFirstDecl();
1624 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1625 return; // First should already be in the vector.
1626 }
1627
1628 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1629 const VarDecl *First = VD->getFirstDecl();
1630 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1631 return; // First should already be in the vector.
1632 }
1633
1634 if (ShouldWarnIfUnusedFileScopedDecl(D))
1635 UnusedFileScopedDecls.push_back(D);
1636}
1637
1638static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1639 if (D->isInvalidDecl())
1640 return false;
1641
1642 bool Referenced = false;
1643 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1644 // For a decomposition declaration, warn if none of the bindings are
1645 // referenced, instead of if the variable itself is referenced (which
1646 // it is, by the bindings' expressions).
1647 for (auto *BD : DD->bindings()) {
1648 if (BD->isReferenced()) {
1649 Referenced = true;
1650 break;
1651 }
1652 }
1653 } else if (!D->getDeclName()) {
1654 return false;
1655 } else if (D->isReferenced() || D->isUsed()) {
1656 Referenced = true;
1657 }
1658
1659 if (Referenced || D->hasAttr<UnusedAttr>() ||
1660 D->hasAttr<ObjCPreciseLifetimeAttr>())
1661 return false;
1662
1663 if (isa<LabelDecl>(D))
1664 return true;
1665
1666 // Except for labels, we only care about unused decls that are local to
1667 // functions.
1668 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1669 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1670 // For dependent types, the diagnostic is deferred.
1671 WithinFunction =
1672 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1673 if (!WithinFunction)
1674 return false;
1675
1676 if (isa<TypedefNameDecl>(D))
1677 return true;
1678
1679 // White-list anything that isn't a local variable.
1680 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1681 return false;
1682
1683 // Types of valid local variables should be complete, so this should succeed.
1684 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1685
1686 // White-list anything with an __attribute__((unused)) type.
1687 const auto *Ty = VD->getType().getTypePtr();
1688
1689 // Only look at the outermost level of typedef.
1690 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1691 if (TT->getDecl()->hasAttr<UnusedAttr>())
1692 return false;
1693 }
1694
1695 // If we failed to complete the type for some reason, or if the type is
1696 // dependent, don't diagnose the variable.
1697 if (Ty->isIncompleteType() || Ty->isDependentType())
1698 return false;
1699
1700 // Look at the element type to ensure that the warning behaviour is
1701 // consistent for both scalars and arrays.
1702 Ty = Ty->getBaseElementTypeUnsafe();
1703
1704 if (const TagType *TT = Ty->getAs<TagType>()) {
1705 const TagDecl *Tag = TT->getDecl();
1706 if (Tag->hasAttr<UnusedAttr>())
1707 return false;
1708
1709 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1710 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1711 return false;
1712
1713 if (const Expr *Init = VD->getInit()) {
1714 if (const ExprWithCleanups *Cleanups =
1715 dyn_cast<ExprWithCleanups>(Init))
1716 Init = Cleanups->getSubExpr();
1717 const CXXConstructExpr *Construct =
1718 dyn_cast<CXXConstructExpr>(Init);
1719 if (Construct && !Construct->isElidable()) {
1720 CXXConstructorDecl *CD = Construct->getConstructor();
1721 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1722 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1723 return false;
1724 }
1725 }
1726 }
1727 }
1728
1729 // TODO: __attribute__((unused)) templates?
1730 }
1731
1732 return true;
1733}
1734
1735static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1736 FixItHint &Hint) {
1737 if (isa<LabelDecl>(D)) {
1738 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1739 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1740 true);
1741 if (AfterColon.isInvalid())
1742 return;
1743 Hint = FixItHint::CreateRemoval(
1744 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1745 }
1746}
1747
1748void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1749 if (D->getTypeForDecl()->isDependentType())
1750 return;
1751
1752 for (auto *TmpD : D->decls()) {
1753 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1754 DiagnoseUnusedDecl(T);
1755 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1756 DiagnoseUnusedNestedTypedefs(R);
1757 }
1758}
1759
1760/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1761/// unless they are marked attr(unused).
1762void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1763 if (!ShouldDiagnoseUnusedDecl(D))
1764 return;
1765
1766 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1767 // typedefs can be referenced later on, so the diagnostics are emitted
1768 // at end-of-translation-unit.
1769 UnusedLocalTypedefNameCandidates.insert(TD);
1770 return;
1771 }
1772
1773 FixItHint Hint;
1774 GenerateFixForUnusedDecl(D, Context, Hint);
1775
1776 unsigned DiagID;
1777 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1778 DiagID = diag::warn_unused_exception_param;
1779 else if (isa<LabelDecl>(D))
1780 DiagID = diag::warn_unused_label;
1781 else
1782 DiagID = diag::warn_unused_variable;
1783
1784 Diag(D->getLocation(), DiagID) << D << Hint;
1785}
1786
1787static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1788 // Verify that we have no forward references left. If so, there was a goto
1789 // or address of a label taken, but no definition of it. Label fwd
1790 // definitions are indicated with a null substmt which is also not a resolved
1791 // MS inline assembly label name.
1792 bool Diagnose = false;
1793 if (L->isMSAsmLabel())
1794 Diagnose = !L->isResolvedMSAsmLabel();
1795 else
1796 Diagnose = L->getStmt() == nullptr;
1797 if (Diagnose)
1798 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1799}
1800
1801void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1802 S->mergeNRVOIntoParent();
1803
1804 if (S->decl_empty()) return;
1805 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1806, __PRETTY_FUNCTION__))
1806 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1806, __PRETTY_FUNCTION__))
;
1807
1808 for (auto *TmpD : S->decls()) {
1809 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1811, __PRETTY_FUNCTION__))
;
1812 NamedDecl *D = cast<NamedDecl>(TmpD);
1813
1814 // Diagnose unused variables in this scope.
1815 if (!S->hasUnrecoverableErrorOccurred()) {
1816 DiagnoseUnusedDecl(D);
1817 if (const auto *RD = dyn_cast<RecordDecl>(D))
1818 DiagnoseUnusedNestedTypedefs(RD);
1819 }
1820
1821 if (!D->getDeclName()) continue;
1822
1823 // If this was a forward reference to a label, verify it was defined.
1824 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1825 CheckPoppedLabel(LD, *this);
1826
1827 // Remove this name from our lexical scope, and warn on it if we haven't
1828 // already.
1829 IdResolver.RemoveDecl(D);
1830 auto ShadowI = ShadowingDecls.find(D);
1831 if (ShadowI != ShadowingDecls.end()) {
1832 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1833 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1834 << D << FD << FD->getParent();
1835 Diag(FD->getLocation(), diag::note_previous_declaration);
1836 }
1837 ShadowingDecls.erase(ShadowI);
1838 }
1839 }
1840}
1841
1842/// Look for an Objective-C class in the translation unit.
1843///
1844/// \param Id The name of the Objective-C class we're looking for. If
1845/// typo-correction fixes this name, the Id will be updated
1846/// to the fixed name.
1847///
1848/// \param IdLoc The location of the name in the translation unit.
1849///
1850/// \param DoTypoCorrection If true, this routine will attempt typo correction
1851/// if there is no class with the given name.
1852///
1853/// \returns The declaration of the named Objective-C class, or NULL if the
1854/// class could not be found.
1855ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1856 SourceLocation IdLoc,
1857 bool DoTypoCorrection) {
1858 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1859 // creation from this context.
1860 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1861
1862 if (!IDecl && DoTypoCorrection) {
1863 // Perform typo correction at the given location, but only if we
1864 // find an Objective-C class name.
1865 if (TypoCorrection C = CorrectTypo(
1866 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1867 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1868 CTK_ErrorRecovery)) {
1869 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1870 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1871 Id = IDecl->getIdentifier();
1872 }
1873 }
1874 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1875 // This routine must always return a class definition, if any.
1876 if (Def && Def->getDefinition())
1877 Def = Def->getDefinition();
1878 return Def;
1879}
1880
1881/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1882/// from S, where a non-field would be declared. This routine copes
1883/// with the difference between C and C++ scoping rules in structs and
1884/// unions. For example, the following code is well-formed in C but
1885/// ill-formed in C++:
1886/// @code
1887/// struct S6 {
1888/// enum { BAR } e;
1889/// };
1890///
1891/// void test_S6() {
1892/// struct S6 a;
1893/// a.e = BAR;
1894/// }
1895/// @endcode
1896/// For the declaration of BAR, this routine will return a different
1897/// scope. The scope S will be the scope of the unnamed enumeration
1898/// within S6. In C++, this routine will return the scope associated
1899/// with S6, because the enumeration's scope is a transparent
1900/// context but structures can contain non-field names. In C, this
1901/// routine will return the translation unit scope, since the
1902/// enumeration's scope is a transparent context and structures cannot
1903/// contain non-field names.
1904Scope *Sema::getNonFieldDeclScope(Scope *S) {
1905 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1906 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1907 (S->isClassScope() && !getLangOpts().CPlusPlus))
1908 S = S->getParent();
1909 return S;
1910}
1911
1912/// Looks up the declaration of "struct objc_super" and
1913/// saves it for later use in building builtin declaration of
1914/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1915/// pre-existing declaration exists no action takes place.
1916static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1917 IdentifierInfo *II) {
1918 if (!II->isStr("objc_msgSendSuper"))
1919 return;
1920 ASTContext &Context = ThisSema.Context;
1921
1922 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1923 SourceLocation(), Sema::LookupTagName);
1924 ThisSema.LookupName(Result, S);
1925 if (Result.getResultKind() == LookupResult::Found)
1926 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1927 Context.setObjCSuperType(Context.getTagDeclType(TD));
1928}
1929
1930static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1931 switch (Error) {
1932 case ASTContext::GE_None:
1933 return "";
1934 case ASTContext::GE_Missing_stdio:
1935 return "stdio.h";
1936 case ASTContext::GE_Missing_setjmp:
1937 return "setjmp.h";
1938 case ASTContext::GE_Missing_ucontext:
1939 return "ucontext.h";
1940 }
1941 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 1941)
;
1942}
1943
1944/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1945/// file scope. lazily create a decl for it. ForRedeclaration is true
1946/// if we're creating this built-in in anticipation of redeclaring the
1947/// built-in.
1948NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1949 Scope *S, bool ForRedeclaration,
1950 SourceLocation Loc) {
1951 LookupPredefedObjCSuperType(*this, S, II);
1952
1953 ASTContext::GetBuiltinTypeError Error;
1954 QualType R = Context.GetBuiltinType(ID, Error);
1955 if (Error) {
1956 if (ForRedeclaration)
1957 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1958 << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1959 return nullptr;
1960 }
1961
1962 if (!ForRedeclaration &&
1963 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1964 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1965 Diag(Loc, diag::ext_implicit_lib_function_decl)
1966 << Context.BuiltinInfo.getName(ID) << R;
1967 if (Context.BuiltinInfo.getHeaderName(ID) &&
1968 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1969 Diag(Loc, diag::note_include_header_or_declare)
1970 << Context.BuiltinInfo.getHeaderName(ID)
1971 << Context.BuiltinInfo.getName(ID);
1972 }
1973
1974 if (R.isNull())
1975 return nullptr;
1976
1977 DeclContext *Parent = Context.getTranslationUnitDecl();
1978 if (getLangOpts().CPlusPlus) {
1979 LinkageSpecDecl *CLinkageDecl =
1980 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1981 LinkageSpecDecl::lang_c, false);
1982 CLinkageDecl->setImplicit();
1983 Parent->addDecl(CLinkageDecl);
1984 Parent = CLinkageDecl;
1985 }
1986
1987 FunctionDecl *New = FunctionDecl::Create(Context,
1988 Parent,
1989 Loc, Loc, II, R, /*TInfo=*/nullptr,
1990 SC_Extern,
1991 false,
1992 R->isFunctionProtoType());
1993 New->setImplicit();
1994
1995 // Create Decl objects for each parameter, adding them to the
1996 // FunctionDecl.
1997 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1998 SmallVector<ParmVarDecl*, 16> Params;
1999 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2000 ParmVarDecl *parm =
2001 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2002 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2003 SC_None, nullptr);
2004 parm->setScopeInfo(0, i);
2005 Params.push_back(parm);
2006 }
2007 New->setParams(Params);
2008 }
2009
2010 AddKnownFunctionAttributes(New);
2011 RegisterLocallyScopedExternCDecl(New, S);
2012
2013 // TUScope is the translation-unit scope to insert this function into.
2014 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2015 // relate Scopes to DeclContexts, and probably eliminate CurContext
2016 // entirely, but we're not there yet.
2017 DeclContext *SavedContext = CurContext;
2018 CurContext = Parent;
2019 PushOnScopeChains(New, TUScope);
2020 CurContext = SavedContext;
2021 return New;
2022}
2023
2024/// Typedef declarations don't have linkage, but they still denote the same
2025/// entity if their types are the same.
2026/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2027/// isSameEntity.
2028static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2029 TypedefNameDecl *Decl,
2030 LookupResult &Previous) {
2031 // This is only interesting when modules are enabled.
2032 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2033 return;
2034
2035 // Empty sets are uninteresting.
2036 if (Previous.empty())
2037 return;
2038
2039 LookupResult::Filter Filter = Previous.makeFilter();
2040 while (Filter.hasNext()) {
2041 NamedDecl *Old = Filter.next();
2042
2043 // Non-hidden declarations are never ignored.
2044 if (S.isVisible(Old))
2045 continue;
2046
2047 // Declarations of the same entity are not ignored, even if they have
2048 // different linkages.
2049 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2050 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2051 Decl->getUnderlyingType()))
2052 continue;
2053
2054 // If both declarations give a tag declaration a typedef name for linkage
2055 // purposes, then they declare the same entity.
2056 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2057 Decl->getAnonDeclWithTypedefName())
2058 continue;
2059 }
2060
2061 Filter.erase();
2062 }
2063
2064 Filter.done();
2065}
2066
2067bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2068 QualType OldType;
2069 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2070 OldType = OldTypedef->getUnderlyingType();
2071 else
2072 OldType = Context.getTypeDeclType(Old);
2073 QualType NewType = New->getUnderlyingType();
2074
2075 if (NewType->isVariablyModifiedType()) {
2076 // Must not redefine a typedef with a variably-modified type.
2077 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2078 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2079 << Kind << NewType;
2080 if (Old->getLocation().isValid())
2081 notePreviousDefinition(Old, New->getLocation());
2082 New->setInvalidDecl();
2083 return true;
2084 }
2085
2086 if (OldType != NewType &&
2087 !OldType->isDependentType() &&
2088 !NewType->isDependentType() &&
2089 !Context.hasSameType(OldType, NewType)) {
2090 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2091 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2092 << Kind << NewType << OldType;
2093 if (Old->getLocation().isValid())
2094 notePreviousDefinition(Old, New->getLocation());
2095 New->setInvalidDecl();
2096 return true;
2097 }
2098 return false;
2099}
2100
2101/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2102/// same name and scope as a previous declaration 'Old'. Figure out
2103/// how to resolve this situation, merging decls or emitting
2104/// diagnostics as appropriate. If there was an error, set New to be invalid.
2105///
2106void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2107 LookupResult &OldDecls) {
2108 // If the new decl is known invalid already, don't bother doing any
2109 // merging checks.
2110 if (New->isInvalidDecl()) return;
2111
2112 // Allow multiple definitions for ObjC built-in typedefs.
2113 // FIXME: Verify the underlying types are equivalent!
2114 if (getLangOpts().ObjC) {
2115 const IdentifierInfo *TypeID = New->getIdentifier();
2116 switch (TypeID->getLength()) {
2117 default: break;
2118 case 2:
2119 {
2120 if (!TypeID->isStr("id"))
2121 break;
2122 QualType T = New->getUnderlyingType();
2123 if (!T->isPointerType())
2124 break;
2125 if (!T->isVoidPointerType()) {
2126 QualType PT = T->getAs<PointerType>()->getPointeeType();
2127 if (!PT->isStructureType())
2128 break;
2129 }
2130 Context.setObjCIdRedefinitionType(T);
2131 // Install the built-in type for 'id', ignoring the current definition.
2132 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2133 return;
2134 }
2135 case 5:
2136 if (!TypeID->isStr("Class"))
2137 break;
2138 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2139 // Install the built-in type for 'Class', ignoring the current definition.
2140 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2141 return;
2142 case 3:
2143 if (!TypeID->isStr("SEL"))
2144 break;
2145 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2146 // Install the built-in type for 'SEL', ignoring the current definition.
2147 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2148 return;
2149 }
2150 // Fall through - the typedef name was not a builtin type.
2151 }
2152
2153 // Verify the old decl was also a type.
2154 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2155 if (!Old) {
2156 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157 << New->getDeclName();
2158
2159 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2160 if (OldD->getLocation().isValid())
2161 notePreviousDefinition(OldD, New->getLocation());
2162
2163 return New->setInvalidDecl();
2164 }
2165
2166 // If the old declaration is invalid, just give up here.
2167 if (Old->isInvalidDecl())
2168 return New->setInvalidDecl();
2169
2170 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2171 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2172 auto *NewTag = New->getAnonDeclWithTypedefName();
2173 NamedDecl *Hidden = nullptr;
2174 if (OldTag && NewTag &&
2175 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2176 !hasVisibleDefinition(OldTag, &Hidden)) {
2177 // There is a definition of this tag, but it is not visible. Use it
2178 // instead of our tag.
2179 New->setTypeForDecl(OldTD->getTypeForDecl());
2180 if (OldTD->isModed())
2181 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2182 OldTD->getUnderlyingType());
2183 else
2184 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2185
2186 // Make the old tag definition visible.
2187 makeMergedDefinitionVisible(Hidden);
2188
2189 // If this was an unscoped enumeration, yank all of its enumerators
2190 // out of the scope.
2191 if (isa<EnumDecl>(NewTag)) {
2192 Scope *EnumScope = getNonFieldDeclScope(S);
2193 for (auto *D : NewTag->decls()) {
2194 auto *ED = cast<EnumConstantDecl>(D);
2195 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196 EnumScope->RemoveDecl(ED);
2197 IdResolver.RemoveDecl(ED);
2198 ED->getLexicalDeclContext()->removeDecl(ED);
2199 }
2200 }
2201 }
2202 }
2203
2204 // If the typedef types are not identical, reject them in all languages and
2205 // with any extensions enabled.
2206 if (isIncompatibleTypedef(Old, New))
2207 return;
2208
2209 // The types match. Link up the redeclaration chain and merge attributes if
2210 // the old declaration was a typedef.
2211 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2212 New->setPreviousDecl(Typedef);
2213 mergeDeclAttributes(New, Old);
2214 }
2215
2216 if (getLangOpts().MicrosoftExt)
2217 return;
2218
2219 if (getLangOpts().CPlusPlus) {
2220 // C++ [dcl.typedef]p2:
2221 // In a given non-class scope, a typedef specifier can be used to
2222 // redefine the name of any type declared in that scope to refer
2223 // to the type to which it already refers.
2224 if (!isa<CXXRecordDecl>(CurContext))
2225 return;
2226
2227 // C++0x [dcl.typedef]p4:
2228 // In a given class scope, a typedef specifier can be used to redefine
2229 // any class-name declared in that scope that is not also a typedef-name
2230 // to refer to the type to which it already refers.
2231 //
2232 // This wording came in via DR424, which was a correction to the
2233 // wording in DR56, which accidentally banned code like:
2234 //
2235 // struct S {
2236 // typedef struct A { } A;
2237 // };
2238 //
2239 // in the C++03 standard. We implement the C++0x semantics, which
2240 // allow the above but disallow
2241 //
2242 // struct S {
2243 // typedef int I;
2244 // typedef int I;
2245 // };
2246 //
2247 // since that was the intent of DR56.
2248 if (!isa<TypedefNameDecl>(Old))
2249 return;
2250
2251 Diag(New->getLocation(), diag::err_redefinition)
2252 << New->getDeclName();
2253 notePreviousDefinition(Old, New->getLocation());
2254 return New->setInvalidDecl();
2255 }
2256
2257 // Modules always permit redefinition of typedefs, as does C11.
2258 if (getLangOpts().Modules || getLangOpts().C11)
2259 return;
2260
2261 // If we have a redefinition of a typedef in C, emit a warning. This warning
2262 // is normally mapped to an error, but can be controlled with
2263 // -Wtypedef-redefinition. If either the original or the redefinition is
2264 // in a system header, don't emit this for compatibility with GCC.
2265 if (getDiagnostics().getSuppressSystemWarnings() &&
2266 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2267 (Old->isImplicit() ||
2268 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2269 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2270 return;
2271
2272 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2273 << New->getDeclName();
2274 notePreviousDefinition(Old, New->getLocation());
2275}
2276
2277/// DeclhasAttr - returns true if decl Declaration already has the target
2278/// attribute.
2279static bool DeclHasAttr(const Decl *D, const Attr *A) {
2280 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2281 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2282 for (const auto *i : D->attrs())
2283 if (i->getKind() == A->getKind()) {
2284 if (Ann) {
2285 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2286 return true;
2287 continue;
2288 }
2289 // FIXME: Don't hardcode this check
2290 if (OA && isa<OwnershipAttr>(i))
2291 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2292 return true;
2293 }
2294
2295 return false;
2296}
2297
2298static bool isAttributeTargetADefinition(Decl *D) {
2299 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2300 return VD->isThisDeclarationADefinition();
2301 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2302 return TD->isCompleteDefinition() || TD->isBeingDefined();
2303 return true;
2304}
2305
2306/// Merge alignment attributes from \p Old to \p New, taking into account the
2307/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2308///
2309/// \return \c true if any attributes were added to \p New.
2310static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2311 // Look for alignas attributes on Old, and pick out whichever attribute
2312 // specifies the strictest alignment requirement.
2313 AlignedAttr *OldAlignasAttr = nullptr;
2314 AlignedAttr *OldStrictestAlignAttr = nullptr;
2315 unsigned OldAlign = 0;
2316 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2317 // FIXME: We have no way of representing inherited dependent alignments
2318 // in a case like:
2319 // template<int A, int B> struct alignas(A) X;
2320 // template<int A, int B> struct alignas(B) X {};
2321 // For now, we just ignore any alignas attributes which are not on the
2322 // definition in such a case.
2323 if (I->isAlignmentDependent())
2324 return false;
2325
2326 if (I->isAlignas())
2327 OldAlignasAttr = I;
2328
2329 unsigned Align = I->getAlignment(S.Context);
2330 if (Align > OldAlign) {
2331 OldAlign = Align;
2332 OldStrictestAlignAttr = I;
2333 }
2334 }
2335
2336 // Look for alignas attributes on New.
2337 AlignedAttr *NewAlignasAttr = nullptr;
2338 unsigned NewAlign = 0;
2339 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2340 if (I->isAlignmentDependent())
2341 return false;
2342
2343 if (I->isAlignas())
2344 NewAlignasAttr = I;
2345
2346 unsigned Align = I->getAlignment(S.Context);
2347 if (Align > NewAlign)
2348 NewAlign = Align;
2349 }
2350
2351 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2352 // Both declarations have 'alignas' attributes. We require them to match.
2353 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2354 // fall short. (If two declarations both have alignas, they must both match
2355 // every definition, and so must match each other if there is a definition.)
2356
2357 // If either declaration only contains 'alignas(0)' specifiers, then it
2358 // specifies the natural alignment for the type.
2359 if (OldAlign == 0 || NewAlign == 0) {
2360 QualType Ty;
2361 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2362 Ty = VD->getType();
2363 else
2364 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2365
2366 if (OldAlign == 0)
2367 OldAlign = S.Context.getTypeAlign(Ty);
2368 if (NewAlign == 0)
2369 NewAlign = S.Context.getTypeAlign(Ty);
2370 }
2371
2372 if (OldAlign != NewAlign) {
2373 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2374 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2375 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2376 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2377 }
2378 }
2379
2380 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2381 // C++11 [dcl.align]p6:
2382 // if any declaration of an entity has an alignment-specifier,
2383 // every defining declaration of that entity shall specify an
2384 // equivalent alignment.
2385 // C11 6.7.5/7:
2386 // If the definition of an object does not have an alignment
2387 // specifier, any other declaration of that object shall also
2388 // have no alignment specifier.
2389 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2390 << OldAlignasAttr;
2391 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2392 << OldAlignasAttr;
2393 }
2394
2395 bool AnyAdded = false;
2396
2397 // Ensure we have an attribute representing the strictest alignment.
2398 if (OldAlign > NewAlign) {
2399 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2400 Clone->setInherited(true);
2401 New->addAttr(Clone);
2402 AnyAdded = true;
2403 }
2404
2405 // Ensure we have an alignas attribute if the old declaration had one.
2406 if (OldAlignasAttr && !NewAlignasAttr &&
2407 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2408 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2409 Clone->setInherited(true);
2410 New->addAttr(Clone);
2411 AnyAdded = true;
2412 }
2413
2414 return AnyAdded;
2415}
2416
2417static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2418 const InheritableAttr *Attr,
2419 Sema::AvailabilityMergeKind AMK) {
2420 // This function copies an attribute Attr from a previous declaration to the
2421 // new declaration D if the new declaration doesn't itself have that attribute
2422 // yet or if that attribute allows duplicates.
2423 // If you're adding a new attribute that requires logic different from
2424 // "use explicit attribute on decl if present, else use attribute from
2425 // previous decl", for example if the attribute needs to be consistent
2426 // between redeclarations, you need to call a custom merge function here.
2427 InheritableAttr *NewAttr = nullptr;
2428 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2429 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2430 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2431 AA->isImplicit(), AA->getIntroduced(),
2432 AA->getDeprecated(),
2433 AA->getObsoleted(), AA->getUnavailable(),
2434 AA->getMessage(), AA->getStrict(),
2435 AA->getReplacement(), AMK,
2436 AttrSpellingListIndex);
2437 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2438 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2439 AttrSpellingListIndex);
2440 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2441 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2442 AttrSpellingListIndex);
2443 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2444 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2445 AttrSpellingListIndex);
2446 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2447 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2448 AttrSpellingListIndex);
2449 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2450 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2451 FA->getFormatIdx(), FA->getFirstArg(),
2452 AttrSpellingListIndex);
2453 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2454 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2455 AttrSpellingListIndex);
2456 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2457 NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2458 AttrSpellingListIndex);
2459 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2460 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2461 AttrSpellingListIndex,
2462 IA->getSemanticSpelling());
2463 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2464 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2465 &S.Context.Idents.get(AA->getSpelling()),
2466 AttrSpellingListIndex);
2467 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2468 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2469 isa<CUDAGlobalAttr>(Attr))) {
2470 // CUDA target attributes are part of function signature for
2471 // overloading purposes and must not be merged.
2472 return false;
2473 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2474 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2475 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2476 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2477 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2478 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2479 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2480 NewAttr = S.mergeCommonAttr(D, *CommonA);
2481 else if (isa<AlignedAttr>(Attr))
2482 // AlignedAttrs are handled separately, because we need to handle all
2483 // such attributes on a declaration at the same time.
2484 NewAttr = nullptr;
2485 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2486 (AMK == Sema::AMK_Override ||
2487 AMK == Sema::AMK_ProtocolImplementation))
2488 NewAttr = nullptr;
2489 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2490 NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2491 UA->getGuid());
2492 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2493 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2494
2495 if (NewAttr) {
2496 NewAttr->setInherited(true);
2497 D->addAttr(NewAttr);
2498 if (isa<MSInheritanceAttr>(NewAttr))
2499 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2500 return true;
2501 }
2502
2503 return false;
2504}
2505
2506static const NamedDecl *getDefinition(const Decl *D) {
2507 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2508 return TD->getDefinition();
2509 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2510 const VarDecl *Def = VD->getDefinition();
2511 if (Def)
2512 return Def;
2513 return VD->getActingDefinition();
2514 }
2515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2516 return FD->getDefinition();
2517 return nullptr;
2518}
2519
2520static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2521 for (const auto *Attribute : D->attrs())
2522 if (Attribute->getKind() == Kind)
2523 return true;
2524 return false;
2525}
2526
2527/// checkNewAttributesAfterDef - If we already have a definition, check that
2528/// there are no new attributes in this declaration.
2529static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2530 if (!New->hasAttrs())
2531 return;
2532
2533 const NamedDecl *Def = getDefinition(Old);
2534 if (!Def || Def == New)
2535 return;
2536
2537 AttrVec &NewAttributes = New->getAttrs();
2538 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2539 const Attr *NewAttribute = NewAttributes[I];
2540
2541 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2542 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2543 Sema::SkipBodyInfo SkipBody;
2544 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2545
2546 // If we're skipping this definition, drop the "alias" attribute.
2547 if (SkipBody.ShouldSkip) {
2548 NewAttributes.erase(NewAttributes.begin() + I);
2549 --E;
2550 continue;
2551 }
2552 } else {
2553 VarDecl *VD = cast<VarDecl>(New);
2554 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2555 VarDecl::TentativeDefinition
2556 ? diag::err_alias_after_tentative
2557 : diag::err_redefinition;
2558 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2559 if (Diag == diag::err_redefinition)
2560 S.notePreviousDefinition(Def, VD->getLocation());
2561 else
2562 S.Diag(Def->getLocation(), diag::note_previous_definition);
2563 VD->setInvalidDecl();
2564 }
2565 ++I;
2566 continue;
2567 }
2568
2569 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2570 // Tentative definitions are only interesting for the alias check above.
2571 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2572 ++I;
2573 continue;
2574 }
2575 }
2576
2577 if (hasAttribute(Def, NewAttribute->getKind())) {
2578 ++I;
2579 continue; // regular attr merging will take care of validating this.
2580 }
2581
2582 if (isa<C11NoReturnAttr>(NewAttribute)) {
2583 // C's _Noreturn is allowed to be added to a function after it is defined.
2584 ++I;
2585 continue;
2586 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2587 if (AA->isAlignas()) {
2588 // C++11 [dcl.align]p6:
2589 // if any declaration of an entity has an alignment-specifier,
2590 // every defining declaration of that entity shall specify an
2591 // equivalent alignment.
2592 // C11 6.7.5/7:
2593 // If the definition of an object does not have an alignment
2594 // specifier, any other declaration of that object shall also
2595 // have no alignment specifier.
2596 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2597 << AA;
2598 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2599 << AA;
2600 NewAttributes.erase(NewAttributes.begin() + I);
2601 --E;
2602 continue;
2603 }
2604 }
2605
2606 S.Diag(NewAttribute->getLocation(),
2607 diag::warn_attribute_precede_definition);
2608 S.Diag(Def->getLocation(), diag::note_previous_definition);
2609 NewAttributes.erase(NewAttributes.begin() + I);
2610 --E;
2611 }
2612}
2613
2614/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2615void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2616 AvailabilityMergeKind AMK) {
2617 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2618 UsedAttr *NewAttr = OldAttr->clone(Context);
2619 NewAttr->setInherited(true);
2620 New->addAttr(NewAttr);
2621 }
2622
2623 if (!Old->hasAttrs() && !New->hasAttrs())
2624 return;
2625
2626 // Attributes declared post-definition are currently ignored.
2627 checkNewAttributesAfterDef(*this, New, Old);
2628
2629 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2630 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2631 if (OldA->getLabel() != NewA->getLabel()) {
2632 // This redeclaration changes __asm__ label.
2633 Diag(New->getLocation(), diag::err_different_asm_label);
2634 Diag(OldA->getLocation(), diag::note_previous_declaration);
2635 }
2636 } else if (Old->isUsed()) {
2637 // This redeclaration adds an __asm__ label to a declaration that has
2638 // already been ODR-used.
2639 Diag(New->getLocation(), diag::err_late_asm_label_name)
2640 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2641 }
2642 }
2643
2644 // Re-declaration cannot add abi_tag's.
2645 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2646 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2647 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2648 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2649 NewTag) == OldAbiTagAttr->tags_end()) {
2650 Diag(NewAbiTagAttr->getLocation(),
2651 diag::err_new_abi_tag_on_redeclaration)
2652 << NewTag;
2653 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2654 }
2655 }
2656 } else {
2657 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2658 Diag(Old->getLocation(), diag::note_previous_declaration);
2659 }
2660 }
2661
2662 // This redeclaration adds a section attribute.
2663 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2664 if (auto *VD = dyn_cast<VarDecl>(New)) {
2665 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2666 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2667 Diag(Old->getLocation(), diag::note_previous_declaration);
2668 }
2669 }
2670 }
2671
2672 // Redeclaration adds code-seg attribute.
2673 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2674 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2675 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2676 Diag(New->getLocation(), diag::warn_mismatched_section)
2677 << 0 /*codeseg*/;
2678 Diag(Old->getLocation(), diag::note_previous_declaration);
2679 }
2680
2681 if (!Old->hasAttrs())
2682 return;
2683
2684 bool foundAny = New->hasAttrs();
2685
2686 // Ensure that any moving of objects within the allocated map is done before
2687 // we process them.
2688 if (!foundAny) New->setAttrs(AttrVec());
2689
2690 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2691 // Ignore deprecated/unavailable/availability attributes if requested.
2692 AvailabilityMergeKind LocalAMK = AMK_None;
2693 if (isa<DeprecatedAttr>(I) ||
2694 isa<UnavailableAttr>(I) ||
2695 isa<AvailabilityAttr>(I)) {
2696 switch (AMK) {
2697 case AMK_None:
2698 continue;
2699
2700 case AMK_Redeclaration:
2701 case AMK_Override:
2702 case AMK_ProtocolImplementation:
2703 LocalAMK = AMK;
2704 break;
2705 }
2706 }
2707
2708 // Already handled.
2709 if (isa<UsedAttr>(I))
2710 continue;
2711
2712 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2713 foundAny = true;
2714 }
2715
2716 if (mergeAlignedAttrs(*this, New, Old))
2717 foundAny = true;
2718
2719 if (!foundAny) New->dropAttrs();
2720}
2721
2722/// mergeParamDeclAttributes - Copy attributes from the old parameter
2723/// to the new one.
2724static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2725 const ParmVarDecl *oldDecl,
2726 Sema &S) {
2727 // C++11 [dcl.attr.depend]p2:
2728 // The first declaration of a function shall specify the
2729 // carries_dependency attribute for its declarator-id if any declaration
2730 // of the function specifies the carries_dependency attribute.
2731 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2732 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2733 S.Diag(CDA->getLocation(),
2734 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2735 // Find the first declaration of the parameter.
2736 // FIXME: Should we build redeclaration chains for function parameters?
2737 const FunctionDecl *FirstFD =
2738 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2739 const ParmVarDecl *FirstVD =
2740 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2741 S.Diag(FirstVD->getLocation(),
2742 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2743 }
2744
2745 if (!oldDecl->hasAttrs())
2746 return;
2747
2748 bool foundAny = newDecl->hasAttrs();
2749
2750 // Ensure that any moving of objects within the allocated map is
2751 // done before we process them.
2752 if (!foundAny) newDecl->setAttrs(AttrVec());
2753
2754 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2755 if (!DeclHasAttr(newDecl, I)) {
2756 InheritableAttr *newAttr =
2757 cast<InheritableParamAttr>(I->clone(S.Context));
2758 newAttr->setInherited(true);
2759 newDecl->addAttr(newAttr);
2760 foundAny = true;
2761 }
2762 }
2763
2764 if (!foundAny) newDecl->dropAttrs();
2765}
2766
2767static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2768 const ParmVarDecl *OldParam,
2769 Sema &S) {
2770 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2771 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2772 if (*Oldnullability != *Newnullability) {
2773 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2774 << DiagNullabilityKind(
2775 *Newnullability,
2776 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2777 != 0))
2778 << DiagNullabilityKind(
2779 *Oldnullability,
2780 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2781 != 0));
2782 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2783 }
2784 } else {
2785 QualType NewT = NewParam->getType();
2786 NewT = S.Context.getAttributedType(
2787 AttributedType::getNullabilityAttrKind(*Oldnullability),
2788 NewT, NewT);
2789 NewParam->setType(NewT);
2790 }
2791 }
2792}
2793
2794namespace {
2795
2796/// Used in MergeFunctionDecl to keep track of function parameters in
2797/// C.
2798struct GNUCompatibleParamWarning {
2799 ParmVarDecl *OldParm;
2800 ParmVarDecl *NewParm;
2801 QualType PromotedType;
2802};
2803
2804} // end anonymous namespace
2805
2806/// getSpecialMember - get the special member enum for a method.
2807Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2808 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2809 if (Ctor->isDefaultConstructor())
2810 return Sema::CXXDefaultConstructor;
2811
2812 if (Ctor->isCopyConstructor())
2813 return Sema::CXXCopyConstructor;
2814
2815 if (Ctor->isMoveConstructor())
2816 return Sema::CXXMoveConstructor;
2817 } else if (isa<CXXDestructorDecl>(MD)) {
2818 return Sema::CXXDestructor;
2819 } else if (MD->isCopyAssignmentOperator()) {
2820 return Sema::CXXCopyAssignment;
2821 } else if (MD->isMoveAssignmentOperator()) {
2822 return Sema::CXXMoveAssignment;
2823 }
2824
2825 return Sema::CXXInvalid;
2826}
2827
2828// Determine whether the previous declaration was a definition, implicit
2829// declaration, or a declaration.
2830template <typename T>
2831static std::pair<diag::kind, SourceLocation>
2832getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2833 diag::kind PrevDiag;
2834 SourceLocation OldLocation = Old->getLocation();
2835 if (Old->isThisDeclarationADefinition())
2836 PrevDiag = diag::note_previous_definition;
2837 else if (Old->isImplicit()) {
2838 PrevDiag = diag::note_previous_implicit_declaration;
2839 if (OldLocation.isInvalid())
2840 OldLocation = New->getLocation();
2841 } else
2842 PrevDiag = diag::note_previous_declaration;
2843 return std::make_pair(PrevDiag, OldLocation);
2844}
2845
2846/// canRedefineFunction - checks if a function can be redefined. Currently,
2847/// only extern inline functions can be redefined, and even then only in
2848/// GNU89 mode.
2849static bool canRedefineFunction(const FunctionDecl *FD,
2850 const LangOptions& LangOpts) {
2851 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2852 !LangOpts.CPlusPlus &&
2853 FD->isInlineSpecified() &&
2854 FD->getStorageClass() == SC_Extern);
2855}
2856
2857const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2858 const AttributedType *AT = T->getAs<AttributedType>();
2859 while (AT && !AT->isCallingConv())
2860 AT = AT->getModifiedType()->getAs<AttributedType>();
2861 return AT;
2862}
2863
2864template <typename T>
2865static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2866 const DeclContext *DC = Old->getDeclContext();
2867 if (DC->isRecord())
2868 return false;
2869
2870 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2871 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2872 return true;
2873 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2874 return true;
2875 return false;
2876}
2877
2878template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2879static bool isExternC(VarTemplateDecl *) { return false; }
2880
2881/// Check whether a redeclaration of an entity introduced by a
2882/// using-declaration is valid, given that we know it's not an overload
2883/// (nor a hidden tag declaration).
2884template<typename ExpectedDecl>
2885static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2886 ExpectedDecl *New) {
2887 // C++11 [basic.scope.declarative]p4:
2888 // Given a set of declarations in a single declarative region, each of
2889 // which specifies the same unqualified name,
2890 // -- they shall all refer to the same entity, or all refer to functions
2891 // and function templates; or
2892 // -- exactly one declaration shall declare a class name or enumeration
2893 // name that is not a typedef name and the other declarations shall all
2894 // refer to the same variable or enumerator, or all refer to functions
2895 // and function templates; in this case the class name or enumeration
2896 // name is hidden (3.3.10).
2897
2898 // C++11 [namespace.udecl]p14:
2899 // If a function declaration in namespace scope or block scope has the
2900 // same name and the same parameter-type-list as a function introduced
2901 // by a using-declaration, and the declarations do not declare the same
2902 // function, the program is ill-formed.
2903
2904 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2905 if (Old &&
2906 !Old->getDeclContext()->getRedeclContext()->Equals(
2907 New->getDeclContext()->getRedeclContext()) &&
2908 !(isExternC(Old) && isExternC(New)))
2909 Old = nullptr;
2910
2911 if (!Old) {
2912 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2913 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2914 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2915 return true;
2916 }
2917 return false;
2918}
2919
2920static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2921 const FunctionDecl *B) {
2922 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 2922, __PRETTY_FUNCTION__))
;
2923
2924 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2925 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2926 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2927 if (AttrA == AttrB)
2928 return true;
2929 return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2930 };
2931
2932 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2933}
2934
2935/// If necessary, adjust the semantic declaration context for a qualified
2936/// declaration to name the correct inline namespace within the qualifier.
2937static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2938 DeclaratorDecl *OldD) {
2939 // The only case where we need to update the DeclContext is when
2940 // redeclaration lookup for a qualified name finds a declaration
2941 // in an inline namespace within the context named by the qualifier:
2942 //
2943 // inline namespace N { int f(); }
2944 // int ::f(); // Sema DC needs adjusting from :: to N::.
2945 //
2946 // For unqualified declarations, the semantic context *can* change
2947 // along the redeclaration chain (for local extern declarations,
2948 // extern "C" declarations, and friend declarations in particular).
2949 if (!NewD->getQualifier())
2950 return;
2951
2952 // NewD is probably already in the right context.
2953 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2954 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2955 if (NamedDC->Equals(SemaDC))
2956 return;
2957
2958 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
2959 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
2960 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
;
2961
2962 auto *LexDC = NewD->getLexicalDeclContext();
2963 auto FixSemaDC = [=](NamedDecl *D) {
2964 if (!D)
2965 return;
2966 D->setDeclContext(SemaDC);
2967 D->setLexicalDeclContext(LexDC);
2968 };
2969
2970 FixSemaDC(NewD);
2971 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2972 FixSemaDC(FD->getDescribedFunctionTemplate());
2973 else if (auto *VD = dyn_cast<VarDecl>(NewD))
2974 FixSemaDC(VD->getDescribedVarTemplate());
2975}
2976
2977/// MergeFunctionDecl - We just parsed a function 'New' from
2978/// declarator D which has the same name and scope as a previous
2979/// declaration 'Old'. Figure out how to resolve this situation,
2980/// merging decls or emitting diagnostics as appropriate.
2981///
2982/// In C++, New and Old must be declarations that are not
2983/// overloaded. Use IsOverload to determine whether New and Old are
2984/// overloaded, and to select the Old declaration that New should be
2985/// merged with.
2986///
2987/// Returns true if there was an error, false otherwise.
2988bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2989 Scope *S, bool MergeTypeWithOld) {
2990 // Verify the old decl was also a function.
2991 FunctionDecl *Old = OldD->getAsFunction();
2992 if (!Old) {
2993 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2994 if (New->getFriendObjectKind()) {
2995 Diag(New->getLocation(), diag::err_using_decl_friend);
2996 Diag(Shadow->getTargetDecl()->getLocation(),
2997 diag::note_using_decl_target);
2998 Diag(Shadow->getUsingDecl()->getLocation(),
2999 diag::note_using_decl) << 0;
3000 return true;
3001 }
3002
3003 // Check whether the two declarations might declare the same function.
3004 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3005 return true;
3006 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3007 } else {
3008 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3009 << New->getDeclName();
3010 notePreviousDefinition(OldD, New->getLocation());
3011 return true;
3012 }
3013 }
3014
3015 // If the old declaration is invalid, just give up here.
3016 if (Old->isInvalidDecl())
3017 return true;
3018
3019 // Disallow redeclaration of some builtins.
3020 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3021 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3022 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3023 << Old << Old->getType();
3024 return true;
3025 }
3026
3027 diag::kind PrevDiag;
3028 SourceLocation OldLocation;
3029 std::tie(PrevDiag, OldLocation) =
3030 getNoteDiagForInvalidRedeclaration(Old, New);
3031
3032 // Don't complain about this if we're in GNU89 mode and the old function
3033 // is an extern inline function.
3034 // Don't complain about specializations. They are not supposed to have
3035 // storage classes.
3036 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3037 New->getStorageClass() == SC_Static &&
3038 Old->hasExternalFormalLinkage() &&
3039 !New->getTemplateSpecializationInfo() &&
3040 !canRedefineFunction(Old, getLangOpts())) {
3041 if (getLangOpts().MicrosoftExt) {
3042 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3043 Diag(OldLocation, PrevDiag);
3044 } else {
3045 Diag(New->getLocation(), diag::err_static_non_static) << New;
3046 Diag(OldLocation, PrevDiag);
3047 return true;
3048 }
3049 }
3050
3051 if (New->hasAttr<InternalLinkageAttr>() &&
3052 !Old->hasAttr<InternalLinkageAttr>()) {
3053 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3054 << New->getDeclName();
3055 notePreviousDefinition(Old, New->getLocation());
3056 New->dropAttr<InternalLinkageAttr>();
3057 }
3058
3059 if (CheckRedeclarationModuleOwnership(New, Old))
3060 return true;
3061
3062 if (!getLangOpts().CPlusPlus) {
3063 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3064 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3065 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3066 << New << OldOvl;
3067
3068 // Try our best to find a decl that actually has the overloadable
3069 // attribute for the note. In most cases (e.g. programs with only one
3070 // broken declaration/definition), this won't matter.
3071 //
3072 // FIXME: We could do this if we juggled some extra state in
3073 // OverloadableAttr, rather than just removing it.
3074 const Decl *DiagOld = Old;
3075 if (OldOvl) {
3076 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3077 const auto *A = D->getAttr<OverloadableAttr>();
3078 return A && !A->isImplicit();
3079 });
3080 // If we've implicitly added *all* of the overloadable attrs to this
3081 // chain, emitting a "previous redecl" note is pointless.
3082 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3083 }
3084
3085 if (DiagOld)
3086 Diag(DiagOld->getLocation(),
3087 diag::note_attribute_overloadable_prev_overload)
3088 << OldOvl;
3089
3090 if (OldOvl)
3091 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3092 else
3093 New->dropAttr<OverloadableAttr>();
3094 }
3095 }
3096
3097 // If a function is first declared with a calling convention, but is later
3098 // declared or defined without one, all following decls assume the calling
3099 // convention of the first.
3100 //
3101 // It's OK if a function is first declared without a calling convention,
3102 // but is later declared or defined with the default calling convention.
3103 //
3104 // To test if either decl has an explicit calling convention, we look for
3105 // AttributedType sugar nodes on the type as written. If they are missing or
3106 // were canonicalized away, we assume the calling convention was implicit.
3107 //
3108 // Note also that we DO NOT return at this point, because we still have
3109 // other tests to run.
3110 QualType OldQType = Context.getCanonicalType(Old->getType());
3111 QualType NewQType = Context.getCanonicalType(New->getType());
3112 const FunctionType *OldType = cast<FunctionType>(OldQType);
3113 const FunctionType *NewType = cast<FunctionType>(NewQType);
3114 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3115 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3116 bool RequiresAdjustment = false;
3117
3118 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3119 FunctionDecl *First = Old->getFirstDecl();
3120 const FunctionType *FT =
3121 First->getType().getCanonicalType()->castAs<FunctionType>();
3122 FunctionType::ExtInfo FI = FT->getExtInfo();
3123 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3124 if (!NewCCExplicit) {
3125 // Inherit the CC from the previous declaration if it was specified
3126 // there but not here.
3127 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3128 RequiresAdjustment = true;
3129 } else {
3130 // Calling conventions aren't compatible, so complain.
3131 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3132 Diag(New->getLocation(), diag::err_cconv_change)
3133 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3134 << !FirstCCExplicit
3135 << (!FirstCCExplicit ? "" :
3136 FunctionType::getNameForCallConv(FI.getCC()));
3137
3138 // Put the note on the first decl, since it is the one that matters.
3139 Diag(First->getLocation(), diag::note_previous_declaration);
3140 return true;
3141 }
3142 }
3143
3144 // FIXME: diagnose the other way around?
3145 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3146 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3147 RequiresAdjustment = true;
3148 }
3149
3150 // Merge regparm attribute.
3151 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3152 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3153 if (NewTypeInfo.getHasRegParm()) {
3154 Diag(New->getLocation(), diag::err_regparm_mismatch)
3155 << NewType->getRegParmType()
3156 << OldType->getRegParmType();
3157 Diag(OldLocation, diag::note_previous_declaration);
3158 return true;
3159 }
3160
3161 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3162 RequiresAdjustment = true;
3163 }
3164
3165 // Merge ns_returns_retained attribute.
3166 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3167 if (NewTypeInfo.getProducesResult()) {
3168 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3169 << "'ns_returns_retained'";
3170 Diag(OldLocation, diag::note_previous_declaration);
3171 return true;
3172 }
3173
3174 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3175 RequiresAdjustment = true;
3176 }
3177
3178 if (OldTypeInfo.getNoCallerSavedRegs() !=
3179 NewTypeInfo.getNoCallerSavedRegs()) {
3180 if (NewTypeInfo.getNoCallerSavedRegs()) {
3181 AnyX86NoCallerSavedRegistersAttr *Attr =
3182 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3183 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3184 Diag(OldLocation, diag::note_previous_declaration);
3185 return true;
3186 }
3187
3188 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3189 RequiresAdjustment = true;
3190 }
3191
3192 if (RequiresAdjustment) {
3193 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3194 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3195 New->setType(QualType(AdjustedType, 0));
3196 NewQType = Context.getCanonicalType(New->getType());
3197 NewType = cast<FunctionType>(NewQType);
Value stored to 'NewType' is never read
3198 }
3199
3200 // If this redeclaration makes the function inline, we may need to add it to
3201 // UndefinedButUsed.
3202 if (!Old->isInlined() && New->isInlined() &&
3203 !New->hasAttr<GNUInlineAttr>() &&
3204 !getLangOpts().GNUInline &&
3205 Old->isUsed(false) &&
3206 !Old->isDefined() && !New->isThisDeclarationADefinition())
3207 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3208 SourceLocation()));
3209
3210 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3211 // about it.
3212 if (New->hasAttr<GNUInlineAttr>() &&
3213 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3214 UndefinedButUsed.erase(Old->getCanonicalDecl());
3215 }
3216
3217 // If pass_object_size params don't match up perfectly, this isn't a valid
3218 // redeclaration.
3219 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3220 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3221 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3222 << New->getDeclName();
3223 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3224 return true;
3225 }
3226
3227 if (getLangOpts().CPlusPlus) {
3228 // C++1z [over.load]p2
3229 // Certain function declarations cannot be overloaded:
3230 // -- Function declarations that differ only in the return type,
3231 // the exception specification, or both cannot be overloaded.
3232
3233 // Check the exception specifications match. This may recompute the type of
3234 // both Old and New if it resolved exception specifications, so grab the
3235 // types again after this. Because this updates the type, we do this before
3236 // any of the other checks below, which may update the "de facto" NewQType
3237 // but do not necessarily update the type of New.
3238 if (CheckEquivalentExceptionSpec(Old, New))
3239 return true;
3240 OldQType = Context.getCanonicalType(Old->getType());
3241 NewQType = Context.getCanonicalType(New->getType());
3242
3243 // Go back to the type source info to compare the declared return types,
3244 // per C++1y [dcl.type.auto]p13:
3245 // Redeclarations or specializations of a function or function template
3246 // with a declared return type that uses a placeholder type shall also
3247 // use that placeholder, not a deduced type.
3248 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3249 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3250 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3251 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3252 OldDeclaredReturnType)) {
3253 QualType ResQT;
3254 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3255 OldDeclaredReturnType->isObjCObjectPointerType())
3256 // FIXME: This does the wrong thing for a deduced return type.
3257 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3258 if (ResQT.isNull()) {
3259 if (New->isCXXClassMember() && New->isOutOfLine())
3260 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3261 << New << New->getReturnTypeSourceRange();
3262 else
3263 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3264 << New->getReturnTypeSourceRange();
3265 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3266 << Old->getReturnTypeSourceRange();
3267 return true;
3268 }
3269 else
3270 NewQType = ResQT;
3271 }
3272
3273 QualType OldReturnType = OldType->getReturnType();
3274 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3275 if (OldReturnType != NewReturnType) {
3276 // If this function has a deduced return type and has already been
3277 // defined, copy the deduced value from the old declaration.
3278 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3279 if (OldAT && OldAT->isDeduced()) {
3280 New->setType(
3281 SubstAutoType(New->getType(),
3282 OldAT->isDependentType() ? Context.DependentTy
3283 : OldAT->getDeducedType()));
3284 NewQType = Context.getCanonicalType(
3285 SubstAutoType(NewQType,
3286 OldAT->isDependentType() ? Context.DependentTy
3287 : OldAT->getDeducedType()));
3288 }
3289 }
3290
3291 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3292 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3293 if (OldMethod && NewMethod) {
3294 // Preserve triviality.
3295 NewMethod->setTrivial(OldMethod->isTrivial());
3296
3297 // MSVC allows explicit template specialization at class scope:
3298 // 2 CXXMethodDecls referring to the same function will be injected.
3299 // We don't want a redeclaration error.
3300 bool IsClassScopeExplicitSpecialization =
3301 OldMethod->isFunctionTemplateSpecialization() &&
3302 NewMethod->isFunctionTemplateSpecialization();
3303 bool isFriend = NewMethod->getFriendObjectKind();
3304
3305 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3306 !IsClassScopeExplicitSpecialization) {
3307 // -- Member function declarations with the same name and the
3308 // same parameter types cannot be overloaded if any of them
3309 // is a static member function declaration.
3310 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3311 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3312 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3313 return true;
3314 }
3315
3316 // C++ [class.mem]p1:
3317 // [...] A member shall not be declared twice in the
3318 // member-specification, except that a nested class or member
3319 // class template can be declared and then later defined.
3320 if (!inTemplateInstantiation()) {
3321 unsigned NewDiag;
3322 if (isa<CXXConstructorDecl>(OldMethod))
3323 NewDiag = diag::err_constructor_redeclared;
3324 else if (isa<CXXDestructorDecl>(NewMethod))
3325 NewDiag = diag::err_destructor_redeclared;
3326 else if (isa<CXXConversionDecl>(NewMethod))
3327 NewDiag = diag::err_conv_function_redeclared;
3328 else
3329 NewDiag = diag::err_member_redeclared;
3330
3331 Diag(New->getLocation(), NewDiag);
3332 } else {
3333 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3334 << New << New->getType();
3335 }
3336 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3337 return true;
3338
3339 // Complain if this is an explicit declaration of a special
3340 // member that was initially declared implicitly.
3341 //
3342 // As an exception, it's okay to befriend such methods in order
3343 // to permit the implicit constructor/destructor/operator calls.
3344 } else if (OldMethod->isImplicit()) {
3345 if (isFriend) {
3346 NewMethod->setImplicit();
3347 } else {
3348 Diag(NewMethod->getLocation(),
3349 diag::err_definition_of_implicitly_declared_member)
3350 << New << getSpecialMember(OldMethod);
3351 return true;
3352 }
3353 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3354 Diag(NewMethod->getLocation(),
3355 diag::err_definition_of_explicitly_defaulted_member)
3356 << getSpecialMember(OldMethod);
3357 return true;
3358 }
3359 }
3360
3361 // C++11 [dcl.attr.noreturn]p1:
3362 // The first declaration of a function shall specify the noreturn
3363 // attribute if any declaration of that function specifies the noreturn
3364 // attribute.
3365 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3366 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3367 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3368 Diag(Old->getFirstDecl()->getLocation(),
3369 diag::note_noreturn_missing_first_decl);
3370 }
3371
3372 // C++11 [dcl.attr.depend]p2:
3373 // The first declaration of a function shall specify the
3374 // carries_dependency attribute for its declarator-id if any declaration
3375 // of the function specifies the carries_dependency attribute.
3376 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3377 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3378 Diag(CDA->getLocation(),
3379 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3380 Diag(Old->getFirstDecl()->getLocation(),
3381 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3382 }
3383
3384 // (C++98 8.3.5p3):
3385 // All declarations for a function shall agree exactly in both the
3386 // return type and the parameter-type-list.
3387 // We also want to respect all the extended bits except noreturn.
3388
3389 // noreturn should now match unless the old type info didn't have it.
3390 QualType OldQTypeForComparison = OldQType;
3391 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3392 auto *OldType = OldQType->castAs<FunctionProtoType>();
3393 const FunctionType *OldTypeForComparison
3394 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3395 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3396 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 3396, __PRETTY_FUNCTION__))
;
3397 }
3398
3399 if (haveIncompatibleLanguageLinkages(Old, New)) {
3400 // As a special case, retain the language linkage from previous
3401 // declarations of a friend function as an extension.
3402 //
3403 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3404 // and is useful because there's otherwise no way to specify language
3405 // linkage within class scope.
3406 //
3407 // Check cautiously as the friend object kind isn't yet complete.
3408 if (New->getFriendObjectKind() != Decl::FOK_None) {
3409 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3410 Diag(OldLocation, PrevDiag);
3411 } else {
3412 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3413 Diag(OldLocation, PrevDiag);
3414 return true;
3415 }
3416 }
3417
3418 if (OldQTypeForComparison == NewQType)
3419 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3420
3421 // If the types are imprecise (due to dependent constructs in friends or
3422 // local extern declarations), it's OK if they differ. We'll check again
3423 // during instantiation.
3424 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3425 return false;
3426
3427 // Fall through for conflicting redeclarations and redefinitions.
3428 }
3429
3430 // C: Function types need to be compatible, not identical. This handles
3431 // duplicate function decls like "void f(int); void f(enum X);" properly.
3432 if (!getLangOpts().CPlusPlus &&
3433 Context.typesAreCompatible(OldQType, NewQType)) {
3434 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3435 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3436 const FunctionProtoType *OldProto = nullptr;
3437 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3438 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3439 // The old declaration provided a function prototype, but the
3440 // new declaration does not. Merge in the prototype.
3441 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 3441, __PRETTY_FUNCTION__))
;
3442 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3443 NewQType =
3444 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3445 OldProto->getExtProtoInfo());
3446 New->setType(NewQType);
3447 New->setHasInheritedPrototype();
3448
3449 // Synthesize parameters with the same types.
3450 SmallVector<ParmVarDecl*, 16> Params;
3451 for (const auto &ParamType : OldProto->param_types()) {
3452 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3453 SourceLocation(), nullptr,
3454 ParamType, /*TInfo=*/nullptr,
3455 SC_None, nullptr);
3456 Param->setScopeInfo(0, Params.size());
3457 Param->setImplicit();
3458 Params.push_back(Param);
3459 }
3460
3461 New->setParams(Params);
3462 }
3463
3464 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3465 }
3466
3467 // GNU C permits a K&R definition to follow a prototype declaration
3468 // if the declared types of the parameters in the K&R definition
3469 // match the types in the prototype declaration, even when the
3470 // promoted types of the parameters from the K&R definition differ
3471 // from the types in the prototype. GCC then keeps the types from
3472 // the prototype.
3473 //
3474 // If a variadic prototype is followed by a non-variadic K&R definition,
3475 // the K&R definition becomes variadic. This is sort of an edge case, but
3476 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3477 // C99 6.9.1p8.
3478 if (!getLangOpts().CPlusPlus &&
3479 Old->hasPrototype() && !New->hasPrototype() &&
3480 New->getType()->getAs<FunctionProtoType>() &&
3481 Old->getNumParams() == New->getNumParams()) {
3482 SmallVector<QualType, 16> ArgTypes;
3483 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3484 const FunctionProtoType *OldProto
3485 = Old->getType()->getAs<FunctionProtoType>();
3486 const FunctionProtoType *NewProto
3487 = New->getType()->getAs<FunctionProtoType>();
3488
3489 // Determine whether this is the GNU C extension.
3490 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3491 NewProto->getReturnType());
3492 bool LooseCompatible = !MergedReturn.isNull();
3493 for (unsigned Idx = 0, End = Old->getNumParams();
3494 LooseCompatible && Idx != End; ++Idx) {
3495 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3496 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3497 if (Context.typesAreCompatible(OldParm->getType(),
3498 NewProto->getParamType(Idx))) {
3499 ArgTypes.push_back(NewParm->getType());
3500 } else if (Context.typesAreCompatible(OldParm->getType(),
3501 NewParm->getType(),
3502 /*CompareUnqualified=*/true)) {
3503 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3504 NewProto->getParamType(Idx) };
3505 Warnings.push_back(Warn);
3506 ArgTypes.push_back(NewParm->getType());
3507 } else
3508 LooseCompatible = false;
3509 }
3510
3511 if (LooseCompatible) {
3512 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3513 Diag(Warnings[Warn].NewParm->getLocation(),
3514 diag::ext_param_promoted_not_compatible_with_prototype)
3515 << Warnings[Warn].PromotedType
3516 << Warnings[Warn].OldParm->getType();
3517 if (Warnings[Warn].OldParm->getLocation().isValid())
3518 Diag(Warnings[Warn].OldParm->getLocation(),
3519 diag::note_previous_declaration);
3520 }
3521
3522 if (MergeTypeWithOld)
3523 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3524 OldProto->getExtProtoInfo()));
3525 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3526 }
3527
3528 // Fall through to diagnose conflicting types.
3529 }
3530
3531 // A function that has already been declared has been redeclared or
3532 // defined with a different type; show an appropriate diagnostic.
3533
3534 // If the previous declaration was an implicitly-generated builtin
3535 // declaration, then at the very least we should use a specialized note.
3536 unsigned BuiltinID;
3537 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3538 // If it's actually a library-defined builtin function like 'malloc'
3539 // or 'printf', just warn about the incompatible redeclaration.
3540 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3541 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3542 Diag(OldLocation, diag::note_previous_builtin_declaration)
3543 << Old << Old->getType();
3544
3545 // If this is a global redeclaration, just forget hereafter
3546 // about the "builtin-ness" of the function.
3547 //
3548 // Doing this for local extern declarations is problematic. If
3549 // the builtin declaration remains visible, a second invalid
3550 // local declaration will produce a hard error; if it doesn't
3551 // remain visible, a single bogus local redeclaration (which is
3552 // actually only a warning) could break all the downstream code.
3553 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3554 New->getIdentifier()->revertBuiltin();
3555
3556 return false;
3557 }
3558
3559 PrevDiag = diag::note_previous_builtin_declaration;
3560 }
3561
3562 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3563 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3564 return true;
3565}
3566
3567/// Completes the merge of two function declarations that are
3568/// known to be compatible.
3569///
3570/// This routine handles the merging of attributes and other
3571/// properties of function declarations from the old declaration to
3572/// the new declaration, once we know that New is in fact a
3573/// redeclaration of Old.
3574///
3575/// \returns false
3576bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3577 Scope *S, bool MergeTypeWithOld) {
3578 // Merge the attributes
3579 mergeDeclAttributes(New, Old);
3580
3581 // Merge "pure" flag.
3582 if (Old->isPure())
3583 New->setPure();
3584
3585 // Merge "used" flag.
3586 if (Old->getMostRecentDecl()->isUsed(false))
3587 New->setIsUsed();
3588
3589 // Merge attributes from the parameters. These can mismatch with K&R
3590 // declarations.
3591 if (New->getNumParams() == Old->getNumParams())
3592 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3593 ParmVarDecl *NewParam = New->getParamDecl(i);
3594 ParmVarDecl *OldParam = Old->getParamDecl(i);
3595 mergeParamDeclAttributes(NewParam, OldParam, *this);
3596 mergeParamDeclTypes(NewParam, OldParam, *this);
3597 }
3598
3599 if (getLangOpts().CPlusPlus)
3600 return MergeCXXFunctionDecl(New, Old, S);
3601
3602 // Merge the function types so the we get the composite types for the return
3603 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3604 // was visible.
3605 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3606 if (!Merged.isNull() && MergeTypeWithOld)
3607 New->setType(Merged);
3608
3609 return false;
3610}
3611
3612void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3613 ObjCMethodDecl *oldMethod) {
3614 // Merge the attributes, including deprecated/unavailable
3615 AvailabilityMergeKind MergeKind =
3616 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3617 ? AMK_ProtocolImplementation
3618 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3619 : AMK_Override;
3620
3621 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3622
3623 // Merge attributes from the parameters.
3624 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3625 oe = oldMethod->param_end();
3626 for (ObjCMethodDecl::param_iterator
3627 ni = newMethod->param_begin(), ne = newMethod->param_end();
3628 ni != ne && oi != oe; ++ni, ++oi)
3629 mergeParamDeclAttributes(*ni, *oi, *this);
3630
3631 CheckObjCMethodOverride(newMethod, oldMethod);
3632}
3633
3634static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3635 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 3635, __PRETTY_FUNCTION__))
;
3636
3637 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3638 ? diag::err_redefinition_different_type
3639 : diag::err_redeclaration_different_type)
3640 << New->getDeclName() << New->getType() << Old->getType();
3641
3642 diag::kind PrevDiag;
3643 SourceLocation OldLocation;
3644 std::tie(PrevDiag, OldLocation)
3645 = getNoteDiagForInvalidRedeclaration(Old, New);
3646 S.Diag(OldLocation, PrevDiag);
3647 New->setInvalidDecl();
3648}
3649
3650/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3651/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3652/// emitting diagnostics as appropriate.
3653///
3654/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3655/// to here in AddInitializerToDecl. We can't check them before the initializer
3656/// is attached.
3657void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3658 bool MergeTypeWithOld) {
3659 if (New->isInvalidDecl() || Old->isInvalidDecl())
3660 return;
3661
3662 QualType MergedT;
3663 if (getLangOpts().CPlusPlus) {
3664 if (New->getType()->isUndeducedType()) {
3665 // We don't know what the new type is until the initializer is attached.
3666 return;
3667 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3668 // These could still be something that needs exception specs checked.
3669 return MergeVarDeclExceptionSpecs(New, Old);
3670 }
3671 // C++ [basic.link]p10:
3672 // [...] the types specified by all declarations referring to a given
3673 // object or function shall be identical, except that declarations for an
3674 // array object can specify array types that differ by the presence or
3675 // absence of a major array bound (8.3.4).
3676 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3677 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3678 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3679
3680 // We are merging a variable declaration New into Old. If it has an array
3681 // bound, and that bound differs from Old's bound, we should diagnose the
3682 // mismatch.
3683 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3684 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3685 PrevVD = PrevVD->getPreviousDecl()) {
3686 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3687 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3688 continue;
3689
3690 if (!Context.hasSameType(NewArray, PrevVDTy))
3691 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3692 }
3693 }
3694
3695 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3696 if (Context.hasSameType(OldArray->getElementType(),
3697 NewArray->getElementType()))
3698 MergedT = New->getType();
3699 }
3700 // FIXME: Check visibility. New is hidden but has a complete type. If New
3701 // has no array bound, it should not inherit one from Old, if Old is not
3702 // visible.
3703 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3704 if (Context.hasSameType(OldArray->getElementType(),
3705 NewArray->getElementType()))
3706 MergedT = Old->getType();
3707 }
3708 }
3709 else if (New->getType()->isObjCObjectPointerType() &&
3710 Old->getType()->isObjCObjectPointerType()) {
3711 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3712 Old->getType());
3713 }
3714 } else {
3715 // C 6.2.7p2:
3716 // All declarations that refer to the same object or function shall have
3717 // compatible type.
3718 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3719 }
3720 if (MergedT.isNull()) {
3721 // It's OK if we couldn't merge types if either type is dependent, for a
3722 // block-scope variable. In other cases (static data members of class
3723 // templates, variable templates, ...), we require the types to be
3724 // equivalent.
3725 // FIXME: The C++ standard doesn't say anything about this.
3726 if ((New->getType()->isDependentType() ||
3727 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3728 // If the old type was dependent, we can't merge with it, so the new type
3729 // becomes dependent for now. We'll reproduce the original type when we
3730 // instantiate the TypeSourceInfo for the variable.
3731 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3732 New->setType(Context.DependentTy);
3733 return;
3734 }
3735 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3736 }
3737
3738 // Don't actually update the type on the new declaration if the old
3739 // declaration was an extern declaration in a different scope.
3740 if (MergeTypeWithOld)
3741 New->setType(MergedT);
3742}
3743
3744static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3745 LookupResult &Previous) {
3746 // C11 6.2.7p4:
3747 // For an identifier with internal or external linkage declared
3748 // in a scope in which a prior declaration of that identifier is
3749 // visible, if the prior declaration specifies internal or
3750 // external linkage, the type of the identifier at the later
3751 // declaration becomes the composite type.
3752 //
3753 // If the variable isn't visible, we do not merge with its type.
3754 if (Previous.isShadowed())
3755 return false;
3756
3757 if (S.getLangOpts().CPlusPlus) {
3758 // C++11 [dcl.array]p3:
3759 // If there is a preceding declaration of the entity in the same
3760 // scope in which the bound was specified, an omitted array bound
3761 // is taken to be the same as in that earlier declaration.
3762 return NewVD->isPreviousDeclInSameBlockScope() ||
3763 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3764 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3765 } else {
3766 // If the old declaration was function-local, don't merge with its
3767 // type unless we're in the same function.
3768 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3769 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3770 }
3771}
3772
3773/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3774/// and scope as a previous declaration 'Old'. Figure out how to resolve this
3775/// situation, merging decls or emitting diagnostics as appropriate.
3776///
3777/// Tentative definition rules (C99 6.9.2p2) are checked by
3778/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3779/// definitions here, since the initializer hasn't been attached.
3780///
3781void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3782 // If the new decl is already invalid, don't do any other checking.
3783 if (New->isInvalidDecl())
3784 return;
3785
3786 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3787 return;
3788
3789 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3790
3791 // Verify the old decl was also a variable or variable template.
3792 VarDecl *Old = nullptr;
3793 VarTemplateDecl *OldTemplate = nullptr;
3794 if (Previous.isSingleResult()) {
3795 if (NewTemplate) {
3796 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3797 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3798
3799 if (auto *Shadow =
3800 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3801 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3802 return New->setInvalidDecl();
3803 } else {
3804 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3805
3806 if (auto *Shadow =
3807 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3808 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3809 return New->setInvalidDecl();
3810 }
3811 }
3812 if (!Old) {
3813 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3814 << New->getDeclName();
3815 notePreviousDefinition(Previous.getRepresentativeDecl(),
3816 New->getLocation());
3817 return New->setInvalidDecl();
3818 }
3819
3820 // Ensure the template parameters are compatible.
3821 if (NewTemplate &&
3822 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3823 OldTemplate->getTemplateParameters(),
3824 /*Complain=*/true, TPL_TemplateMatch))
3825 return New->setInvalidDecl();
3826
3827 // C++ [class.mem]p1:
3828 // A member shall not be declared twice in the member-specification [...]
3829 //
3830 // Here, we need only consider static data members.
3831 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3832 Diag(New->getLocation(), diag::err_duplicate_member)
3833 << New->getIdentifier();
3834 Diag(Old->getLocation(), diag::note_previous_declaration);
3835 New->setInvalidDecl();
3836 }
3837
3838 mergeDeclAttributes(New, Old);
3839 // Warn if an already-declared variable is made a weak_import in a subsequent
3840 // declaration
3841 if (New->hasAttr<WeakImportAttr>() &&
3842 Old->getStorageClass() == SC_None &&
3843 !Old->hasAttr<WeakImportAttr>()) {
3844 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3845 notePreviousDefinition(Old, New->getLocation());
3846 // Remove weak_import attribute on new declaration.
3847 New->dropAttr<WeakImportAttr>();
3848 }
3849
3850 if (New->hasAttr<InternalLinkageAttr>() &&
3851 !Old->hasAttr<InternalLinkageAttr>()) {
3852 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3853 << New->getDeclName();
3854 notePreviousDefinition(Old, New->getLocation());
3855 New->dropAttr<InternalLinkageAttr>();
3856 }
3857
3858 // Merge the types.
3859 VarDecl *MostRecent = Old->getMostRecentDecl();
3860 if (MostRecent != Old) {
3861 MergeVarDeclTypes(New, MostRecent,
3862 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3863 if (New->isInvalidDecl())
3864 return;
3865 }
3866
3867 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3868 if (New->isInvalidDecl())
3869 return;
3870
3871 diag::kind PrevDiag;
3872 SourceLocation OldLocation;
3873 std::tie(PrevDiag, OldLocation) =
3874 getNoteDiagForInvalidRedeclaration(Old, New);
3875
3876 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3877 if (New->getStorageClass() == SC_Static &&
3878 !New->isStaticDataMember() &&
3879 Old->hasExternalFormalLinkage()) {
3880 if (getLangOpts().MicrosoftExt) {
3881 Diag(New->getLocation(), diag::ext_static_non_static)
3882 << New->getDeclName();
3883 Diag(OldLocation, PrevDiag);
3884 } else {
3885 Diag(New->getLocation(), diag::err_static_non_static)
3886 << New->getDeclName();
3887 Diag(OldLocation, PrevDiag);
3888 return New->setInvalidDecl();
3889 }
3890 }
3891 // C99 6.2.2p4:
3892 // For an identifier declared with the storage-class specifier
3893 // extern in a scope in which a prior declaration of that
3894 // identifier is visible,23) if the prior declaration specifies
3895 // internal or external linkage, the linkage of the identifier at
3896 // the later declaration is the same as the linkage specified at
3897 // the prior declaration. If no prior declaration is visible, or
3898 // if the prior declaration specifies no linkage, then the
3899 // identifier has external linkage.
3900 if (New->hasExternalStorage() && Old->hasLinkage())
3901 /* Okay */;
3902 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3903 !New->isStaticDataMember() &&
3904 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3905 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3906 Diag(OldLocation, PrevDiag);
3907 return New->setInvalidDecl();
3908 }
3909
3910 // Check if extern is followed by non-extern and vice-versa.
3911 if (New->hasExternalStorage() &&
3912 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3913 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3914 Diag(OldLocation, PrevDiag);
3915 return New->setInvalidDecl();
3916 }
3917 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3918 !New->hasExternalStorage()) {
3919 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3920 Diag(OldLocation, PrevDiag);
3921 return New->setInvalidDecl();
3922 }
3923
3924 if (CheckRedeclarationModuleOwnership(New, Old))
3925 return;
3926
3927 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3928
3929 // FIXME: The test for external storage here seems wrong? We still
3930 // need to check for mismatches.
3931 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3932 // Don't complain about out-of-line definitions of static members.
3933 !(Old->getLexicalDeclContext()->isRecord() &&
3934 !New->getLexicalDeclContext()->isRecord())) {
3935 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3936 Diag(OldLocation, PrevDiag);
3937 return New->setInvalidDecl();
3938 }
3939
3940 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3941 if (VarDecl *Def = Old->getDefinition()) {
3942 // C++1z [dcl.fcn.spec]p4:
3943 // If the definition of a variable appears in a translation unit before
3944 // its first declaration as inline, the program is ill-formed.
3945 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3946 Diag(Def->getLocation(), diag::note_previous_definition);
3947 }
3948 }
3949
3950 // If this redeclaration makes the variable inline, we may need to add it to
3951 // UndefinedButUsed.
3952 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3953 !Old->getDefinition() && !New->isThisDeclarationADefinition())
3954 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3955 SourceLocation()));
3956
3957 if (New->getTLSKind() != Old->getTLSKind()) {
3958 if (!Old->getTLSKind()) {
3959 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3960 Diag(OldLocation, PrevDiag);
3961 } else if (!New->getTLSKind()) {
3962 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3963 Diag(OldLocation, PrevDiag);
3964 } else {
3965 // Do not allow redeclaration to change the variable between requiring
3966 // static and dynamic initialization.
3967 // FIXME: GCC allows this, but uses the TLS keyword on the first
3968 // declaration to determine the kind. Do we need to be compatible here?
3969 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3970 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3971 Diag(OldLocation, PrevDiag);
3972 }
3973 }
3974
3975 // C++ doesn't have tentative definitions, so go right ahead and check here.
3976 if (getLangOpts().CPlusPlus &&
3977 New->isThisDeclarationADefinition() == VarDecl::Definition) {
3978 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3979 Old->getCanonicalDecl()->isConstexpr()) {
3980 // This definition won't be a definition any more once it's been merged.
3981 Diag(New->getLocation(),
3982 diag::warn_deprecated_redundant_constexpr_static_def);
3983 } else if (VarDecl *Def = Old->getDefinition()) {
3984 if (checkVarDeclRedefinition(Def, New))
3985 return;
3986 }
3987 }
3988
3989 if (haveIncompatibleLanguageLinkages(Old, New)) {
3990 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3991 Diag(OldLocation, PrevDiag);
3992 New->setInvalidDecl();
3993 return;
3994 }
3995
3996 // Merge "used" flag.
3997 if (Old->getMostRecentDecl()->isUsed(false))
3998 New->setIsUsed();
3999
4000 // Keep a chain of previous declarations.
4001 New->setPreviousDecl(Old);
4002 if (NewTemplate)
4003 NewTemplate->setPreviousDecl(OldTemplate);
4004 adjustDeclContextForDeclaratorDecl(New, Old);
4005
4006 // Inherit access appropriately.
4007 New->setAccess(Old->getAccess());
4008 if (NewTemplate)
4009 NewTemplate->setAccess(New->getAccess());
4010
4011 if (Old->isInline())
4012 New->setImplicitlyInline();
4013}
4014
4015void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4016 SourceManager &SrcMgr = getSourceManager();
4017 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4018 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4019 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4020 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4021 auto &HSI = PP.getHeaderSearchInfo();
4022 StringRef HdrFilename =
4023 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4024
4025 auto noteFromModuleOrInclude = [&](Module *Mod,
4026 SourceLocation IncLoc) -> bool {
4027 // Redefinition errors with modules are common with non modular mapped
4028 // headers, example: a non-modular header H in module A that also gets
4029 // included directly in a TU. Pointing twice to the same header/definition
4030 // is confusing, try to get better diagnostics when modules is on.
4031 if (IncLoc.isValid()) {
4032 if (Mod) {
4033 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4034 << HdrFilename.str() << Mod->getFullModuleName();
4035 if (!Mod->DefinitionLoc.isInvalid())
4036 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4037 << Mod->getFullModuleName();
4038 } else {
4039 Diag(IncLoc, diag::note_redefinition_include_same_file)
4040 << HdrFilename.str();
4041 }
4042 return true;
4043 }
4044
4045 return false;
4046 };
4047
4048 // Is it the same file and same offset? Provide more information on why
4049 // this leads to a redefinition error.
4050 bool EmittedDiag = false;
4051 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4052 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4053 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4054 EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4055 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4056
4057 // If the header has no guards, emit a note suggesting one.
4058 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4059 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4060
4061 if (EmittedDiag)
4062 return;
4063 }
4064
4065 // Redefinition coming from different files or couldn't do better above.
4066 if (Old->getLocation().isValid())
4067 Diag(Old->getLocation(), diag::note_previous_definition);
4068}
4069
4070/// We've just determined that \p Old and \p New both appear to be definitions
4071/// of the same variable. Either diagnose or fix the problem.
4072bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4073 if (!hasVisibleDefinition(Old) &&
4074 (New->getFormalLinkage() == InternalLinkage ||
4075 New->isInline() ||
4076 New->getDescribedVarTemplate() ||
4077 New->getNumTemplateParameterLists() ||
4078 New->getDeclContext()->isDependentContext())) {
4079 // The previous definition is hidden, and multiple definitions are
4080 // permitted (in separate TUs). Demote this to a declaration.
4081 New->demoteThisDefinitionToDeclaration();
4082
4083 // Make the canonical definition visible.
4084 if (auto *OldTD = Old->getDescribedVarTemplate())
4085 makeMergedDefinitionVisible(OldTD);
4086 makeMergedDefinitionVisible(Old);
4087 return false;
4088 } else {
4089 Diag(New->getLocation(), diag::err_redefinition) << New;
4090 notePreviousDefinition(Old, New->getLocation());
4091 New->setInvalidDecl();
4092 return true;
4093 }
4094}
4095
4096/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4097/// no declarator (e.g. "struct foo;") is parsed.
4098Decl *
4099Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4100 RecordDecl *&AnonRecord) {
4101 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4102 AnonRecord);
4103}
4104
4105// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4106// disambiguate entities defined in different scopes.
4107// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4108// compatibility.
4109// We will pick our mangling number depending on which version of MSVC is being
4110// targeted.
4111static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4112 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4113 ? S->getMSCurManglingNumber()
4114 : S->getMSLastManglingNumber();
4115}
4116
4117void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4118 if (!Context.getLangOpts().CPlusPlus)
4119 return;
4120
4121 if (isa<CXXRecordDecl>(Tag->getParent())) {
4122 // If this tag is the direct child of a class, number it if
4123 // it is anonymous.
4124 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4125 return;
4126 MangleNumberingContext &MCtx =
4127 Context.getManglingNumberContext(Tag->getParent());
4128 Context.setManglingNumber(
4129 Tag, MCtx.getManglingNumber(
4130 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4131 return;
4132 }
4133
4134 // If this tag isn't a direct child of a class, number it if it is local.
4135 Decl *ManglingContextDecl;
4136 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4137 Tag->getDeclContext(), ManglingContextDecl)) {
4138 Context.setManglingNumber(
4139 Tag, MCtx->getManglingNumber(
4140 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4141 }
4142}
4143
4144void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4145 TypedefNameDecl *NewTD) {
4146 if (TagFromDeclSpec->isInvalidDecl())
4147 return;
4148
4149 // Do nothing if the tag already has a name for linkage purposes.
4150 if (TagFromDeclSpec->hasNameForLinkage())
4151 return;
4152
4153 // A well-formed anonymous tag must always be a TUK_Definition.
4154 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4154, __PRETTY_FUNCTION__))
;
4155
4156 // The type must match the tag exactly; no qualifiers allowed.
4157 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4158 Context.getTagDeclType(TagFromDeclSpec))) {
4159 if (getLangOpts().CPlusPlus)
4160 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4161 return;
4162 }
4163
4164 // If we've already computed linkage for the anonymous tag, then
4165 // adding a typedef name for the anonymous decl can change that
4166 // linkage, which might be a serious problem. Diagnose this as
4167 // unsupported and ignore the typedef name. TODO: we should
4168 // pursue this as a language defect and establish a formal rule
4169 // for how to handle it.
4170 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4171 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4172
4173 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4174 tagLoc = getLocForEndOfToken(tagLoc);
4175
4176 llvm::SmallString<40> textToInsert;
4177 textToInsert += ' ';
4178 textToInsert += NewTD->getIdentifier()->getName();
4179 Diag(tagLoc, diag::note_typedef_changes_linkage)
4180 << FixItHint::CreateInsertion(tagLoc, textToInsert);
4181 return;
4182 }
4183
4184 // Otherwise, set this is the anon-decl typedef for the tag.
4185 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4186}
4187
4188static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4189 switch (T) {
4190 case DeclSpec::TST_class:
4191 return 0;
4192 case DeclSpec::TST_struct:
4193 return 1;
4194 case DeclSpec::TST_interface:
4195 return 2;
4196 case DeclSpec::TST_union:
4197 return 3;
4198 case DeclSpec::TST_enum:
4199 return 4;
4200 default:
4201 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4201)
;
4202 }
4203}
4204
4205/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4206/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4207/// parameters to cope with template friend declarations.
4208Decl *
4209Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4210 MultiTemplateParamsArg TemplateParams,
4211 bool IsExplicitInstantiation,
4212 RecordDecl *&AnonRecord) {
4213 Decl *TagD = nullptr;
4214 TagDecl *Tag = nullptr;
4215 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4216 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4217 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4218 DS.getTypeSpecType() == DeclSpec::TST_union ||
4219 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4220 TagD = DS.getRepAsDecl();
4221
4222 if (!TagD) // We probably had an error
4223 return nullptr;
4224
4225 // Note that the above type specs guarantee that the
4226 // type rep is a Decl, whereas in many of the others
4227 // it's a Type.
4228 if (isa<TagDecl>(TagD))
4229 Tag = cast<TagDecl>(TagD);
4230 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4231 Tag = CTD->getTemplatedDecl();
4232 }
4233
4234 if (Tag) {
4235 handleTagNumbering(Tag, S);
4236 Tag->setFreeStanding();
4237 if (Tag->isInvalidDecl())
4238 return Tag;
4239 }
4240
4241 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4242 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4243 // or incomplete types shall not be restrict-qualified."
4244 if (TypeQuals & DeclSpec::TQ_restrict)
4245 Diag(DS.getRestrictSpecLoc(),
4246 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4247 << DS.getSourceRange();
4248 }
4249
4250 if (DS.isInlineSpecified())
4251 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4252 << getLangOpts().CPlusPlus17;
4253
4254 if (DS.isConstexprSpecified()) {
4255 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4256 // and definitions of functions and variables.
4257 if (Tag)
4258 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4259 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4260 else
4261 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4262 // Don't emit warnings after this error.
4263 return TagD;
4264 }
4265
4266 DiagnoseFunctionSpecifiers(DS);
4267
4268 if (DS.isFriendSpecified()) {
4269 // If we're dealing with a decl but not a TagDecl, assume that
4270 // whatever routines created it handled the friendship aspect.
4271 if (TagD && !Tag)
4272 return nullptr;
4273 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4274 }
4275
4276 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4277 bool IsExplicitSpecialization =
4278 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4279 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4280 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4281 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4282 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4283 // nested-name-specifier unless it is an explicit instantiation
4284 // or an explicit specialization.
4285 //
4286 // FIXME: We allow class template partial specializations here too, per the
4287 // obvious intent of DR1819.
4288 //
4289 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4290 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4291 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4292 return nullptr;
4293 }
4294
4295 // Track whether this decl-specifier declares anything.
4296 bool DeclaresAnything = true;
4297
4298 // Handle anonymous struct definitions.
4299 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4300 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4301 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4302 if (getLangOpts().CPlusPlus ||
4303 Record->getDeclContext()->isRecord()) {
4304 // If CurContext is a DeclContext that can contain statements,
4305 // RecursiveASTVisitor won't visit the decls that
4306 // BuildAnonymousStructOrUnion() will put into CurContext.
4307 // Also store them here so that they can be part of the
4308 // DeclStmt that gets created in this case.
4309 // FIXME: Also return the IndirectFieldDecls created by
4310 // BuildAnonymousStructOr union, for the same reason?
4311 if (CurContext->isFunctionOrMethod())
4312 AnonRecord = Record;
4313 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4314 Context.getPrintingPolicy());
4315 }
4316
4317 DeclaresAnything = false;
4318 }
4319 }
4320
4321 // C11 6.7.2.1p2:
4322 // A struct-declaration that does not declare an anonymous structure or
4323 // anonymous union shall contain a struct-declarator-list.
4324 //
4325 // This rule also existed in C89 and C99; the grammar for struct-declaration
4326 // did not permit a struct-declaration without a struct-declarator-list.
4327 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4328 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4329 // Check for Microsoft C extension: anonymous struct/union member.
4330 // Handle 2 kinds of anonymous struct/union:
4331 // struct STRUCT;
4332 // union UNION;
4333 // and
4334 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4335 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4336 if ((Tag && Tag->getDeclName()) ||
4337 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4338 RecordDecl *Record = nullptr;
4339 if (Tag)
4340 Record = dyn_cast<RecordDecl>(Tag);
4341 else if (const RecordType *RT =
4342 DS.getRepAsType().get()->getAsStructureType())
4343 Record = RT->getDecl();
4344 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4345 Record = UT->getDecl();
4346
4347 if (Record && getLangOpts().MicrosoftExt) {
4348 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4349 << Record->isUnion() << DS.getSourceRange();
4350 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4351 }
4352
4353 DeclaresAnything = false;
4354 }
4355 }
4356
4357 // Skip all the checks below if we have a type error.
4358 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4359 (TagD && TagD->isInvalidDecl()))
4360 return TagD;
4361
4362 if (getLangOpts().CPlusPlus &&
4363 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4364 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4365 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4366 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4367 DeclaresAnything = false;
4368
4369 if (!DS.isMissingDeclaratorOk()) {
4370 // Customize diagnostic for a typedef missing a name.
4371 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4372 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4373 << DS.getSourceRange();
4374 else
4375 DeclaresAnything = false;
4376 }
4377
4378 if (DS.isModulePrivateSpecified() &&
4379 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4380 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4381 << Tag->getTagKind()
4382 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4383
4384 ActOnDocumentableDecl(TagD);
4385
4386 // C 6.7/2:
4387 // A declaration [...] shall declare at least a declarator [...], a tag,
4388 // or the members of an enumeration.
4389 // C++ [dcl.dcl]p3:
4390 // [If there are no declarators], and except for the declaration of an
4391 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4392 // names into the program, or shall redeclare a name introduced by a
4393 // previous declaration.
4394 if (!DeclaresAnything) {
4395 // In C, we allow this as a (popular) extension / bug. Don't bother
4396 // producing further diagnostics for redundant qualifiers after this.
4397 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4398 return TagD;
4399 }
4400
4401 // C++ [dcl.stc]p1:
4402 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4403 // init-declarator-list of the declaration shall not be empty.
4404 // C++ [dcl.fct.spec]p1:
4405 // If a cv-qualifier appears in a decl-specifier-seq, the
4406 // init-declarator-list of the declaration shall not be empty.
4407 //
4408 // Spurious qualifiers here appear to be valid in C.
4409 unsigned DiagID = diag::warn_standalone_specifier;
4410 if (getLangOpts().CPlusPlus)
4411 DiagID = diag::ext_standalone_specifier;
4412
4413 // Note that a linkage-specification sets a storage class, but
4414 // 'extern "C" struct foo;' is actually valid and not theoretically
4415 // useless.
4416 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4417 if (SCS == DeclSpec::SCS_mutable)
4418 // Since mutable is not a viable storage class specifier in C, there is
4419 // no reason to treat it as an extension. Instead, diagnose as an error.
4420 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4421 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4422 Diag(DS.getStorageClassSpecLoc(), DiagID)
4423 << DeclSpec::getSpecifierName(SCS);
4424 }
4425
4426 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4427 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4428 << DeclSpec::getSpecifierName(TSCS);
4429 if (DS.getTypeQualifiers()) {
4430 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4431 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4432 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4433 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4434 // Restrict is covered above.
4435 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4436 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4437 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4438 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4439 }
4440
4441 // Warn about ignored type attributes, for example:
4442 // __attribute__((aligned)) struct A;
4443 // Attributes should be placed after tag to apply to type declaration.
4444 if (!DS.getAttributes().empty()) {
4445 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4446 if (TypeSpecType == DeclSpec::TST_class ||
4447 TypeSpecType == DeclSpec::TST_struct ||
4448 TypeSpecType == DeclSpec::TST_interface ||
4449 TypeSpecType == DeclSpec::TST_union ||
4450 TypeSpecType == DeclSpec::TST_enum) {
4451 for (const ParsedAttr &AL : DS.getAttributes())
4452 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4453 << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4454 }
4455 }
4456
4457 return TagD;
4458}
4459
4460/// We are trying to inject an anonymous member into the given scope;
4461/// check if there's an existing declaration that can't be overloaded.
4462///
4463/// \return true if this is a forbidden redeclaration
4464static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4465 Scope *S,
4466 DeclContext *Owner,
4467 DeclarationName Name,
4468 SourceLocation NameLoc,
4469 bool IsUnion) {
4470 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4471 Sema::ForVisibleRedeclaration);
4472 if (!SemaRef.LookupName(R, S)) return false;
4473
4474 // Pick a representative declaration.
4475 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4476 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4476, __PRETTY_FUNCTION__))
;
4477
4478 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4479 return false;
4480
4481 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4482 << IsUnion << Name;
4483 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4484
4485 return true;
4486}
4487
4488/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4489/// anonymous struct or union AnonRecord into the owning context Owner
4490/// and scope S. This routine will be invoked just after we realize
4491/// that an unnamed union or struct is actually an anonymous union or
4492/// struct, e.g.,
4493///
4494/// @code
4495/// union {
4496/// int i;
4497/// float f;
4498/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4499/// // f into the surrounding scope.x
4500/// @endcode
4501///
4502/// This routine is recursive, injecting the names of nested anonymous
4503/// structs/unions into the owning context and scope as well.
4504static bool
4505InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4506 RecordDecl *AnonRecord, AccessSpecifier AS,
4507 SmallVectorImpl<NamedDecl *> &Chaining) {
4508 bool Invalid = false;
4509
4510 // Look every FieldDecl and IndirectFieldDecl with a name.
4511 for (auto *D : AnonRecord->decls()) {
4512 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4513 cast<NamedDecl>(D)->getDeclName()) {
4514 ValueDecl *VD = cast<ValueDecl>(D);
4515 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4516 VD->getLocation(),
4517 AnonRecord->isUnion())) {
4518 // C++ [class.union]p2:
4519 // The names of the members of an anonymous union shall be
4520 // distinct from the names of any other entity in the
4521 // scope in which the anonymous union is declared.
4522 Invalid = true;
4523 } else {
4524 // C++ [class.union]p2:
4525 // For the purpose of name lookup, after the anonymous union
4526 // definition, the members of the anonymous union are
4527 // considered to have been defined in the scope in which the
4528 // anonymous union is declared.
4529 unsigned OldChainingSize = Chaining.size();
4530 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4531 Chaining.append(IF->chain_begin(), IF->chain_end());
4532 else
4533 Chaining.push_back(VD);
4534
4535 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4535, __PRETTY_FUNCTION__))
;
4536 NamedDecl **NamedChain =
4537 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4538 for (unsigned i = 0; i < Chaining.size(); i++)
4539 NamedChain[i] = Chaining[i];
4540
4541 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4542 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4543 VD->getType(), {NamedChain, Chaining.size()});
4544
4545 for (const auto *Attr : VD->attrs())
4546 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4547
4548 IndirectField->setAccess(AS);
4549 IndirectField->setImplicit();
4550 SemaRef.PushOnScopeChains(IndirectField, S);
4551
4552 // That includes picking up the appropriate access specifier.
4553 if (AS != AS_none) IndirectField->setAccess(AS);
4554
4555 Chaining.resize(OldChainingSize);
4556 }
4557 }
4558 }
4559
4560 return Invalid;
4561}
4562
4563/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4564/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4565/// illegal input values are mapped to SC_None.
4566static StorageClass
4567StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4568 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4569 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4570, __PRETTY_FUNCTION__))
4570 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4570, __PRETTY_FUNCTION__))
;
4571 switch (StorageClassSpec) {
4572 case DeclSpec::SCS_unspecified: return SC_None;
4573 case DeclSpec::SCS_extern:
4574 if (DS.isExternInLinkageSpec())
4575 return SC_None;
4576 return SC_Extern;
4577 case DeclSpec::SCS_static: return SC_Static;
4578 case DeclSpec::SCS_auto: return SC_Auto;
4579 case DeclSpec::SCS_register: return SC_Register;
4580 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4581 // Illegal SCSs map to None: error reporting is up to the caller.
4582 case DeclSpec::SCS_mutable: // Fall through.
4583 case DeclSpec::SCS_typedef: return SC_None;
4584 }
4585 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4585)
;
4586}
4587
4588static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4589 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4589, __PRETTY_FUNCTION__))
;
4590
4591 for (const auto *I : Record->decls()) {
4592 const auto *FD = dyn_cast<FieldDecl>(I);
4593 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4594 FD = IFD->getAnonField();
4595 if (FD && FD->hasInClassInitializer())
4596 return FD->getLocation();
4597 }
4598
4599 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4599)
;
4600}
4601
4602static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4603 SourceLocation DefaultInitLoc) {
4604 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4605 return;
4606
4607 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4608 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4609}
4610
4611static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4612 CXXRecordDecl *AnonUnion) {
4613 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4614 return;
4615
4616 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4617}
4618
4619/// BuildAnonymousStructOrUnion - Handle the declaration of an
4620/// anonymous structure or union. Anonymous unions are a C++ feature
4621/// (C++ [class.union]) and a C11 feature; anonymous structures
4622/// are a C11 feature and GNU C++ extension.
4623Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4624 AccessSpecifier AS,
4625 RecordDecl *Record,
4626 const PrintingPolicy &Policy) {
4627 DeclContext *Owner = Record->getDeclContext();
4628
4629 // Diagnose whether this anonymous struct/union is an extension.
4630 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4631 Diag(Record->getLocation(), diag::ext_anonymous_union);
4632 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4633 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4634 else if (!Record->isUnion() && !getLangOpts().C11)
4635 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4636
4637 // C and C++ require different kinds of checks for anonymous
4638 // structs/unions.
4639 bool Invalid = false;
4640 if (getLangOpts().CPlusPlus) {
4641 const char *PrevSpec = nullptr;
4642 unsigned DiagID;
4643 if (Record->isUnion()) {
4644 // C++ [class.union]p6:
4645 // C++17 [class.union.anon]p2:
4646 // Anonymous unions declared in a named namespace or in the
4647 // global namespace shall be declared static.
4648 DeclContext *OwnerScope = Owner->getRedeclContext();
4649 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4650 (OwnerScope->isTranslationUnit() ||
4651 (OwnerScope->isNamespace() &&
4652 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4653 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4654 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4655
4656 // Recover by adding 'static'.
4657 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4658 PrevSpec, DiagID, Policy);
4659 }
4660 // C++ [class.union]p6:
4661 // A storage class is not allowed in a declaration of an
4662 // anonymous union in a class scope.
4663 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4664 isa<RecordDecl>(Owner)) {
4665 Diag(DS.getStorageClassSpecLoc(),
4666 diag::err_anonymous_union_with_storage_spec)
4667 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4668
4669 // Recover by removing the storage specifier.
4670 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4671 SourceLocation(),
4672 PrevSpec, DiagID, Context.getPrintingPolicy());
4673 }
4674 }
4675
4676 // Ignore const/volatile/restrict qualifiers.
4677 if (DS.getTypeQualifiers()) {
4678 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4679 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4680 << Record->isUnion() << "const"
4681 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4682 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4683 Diag(DS.getVolatileSpecLoc(),
4684 diag::ext_anonymous_struct_union_qualified)
4685 << Record->isUnion() << "volatile"
4686 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4687 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4688 Diag(DS.getRestrictSpecLoc(),
4689 diag::ext_anonymous_struct_union_qualified)
4690 << Record->isUnion() << "restrict"
4691 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4692 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4693 Diag(DS.getAtomicSpecLoc(),
4694 diag::ext_anonymous_struct_union_qualified)
4695 << Record->isUnion() << "_Atomic"
4696 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4697 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4698 Diag(DS.getUnalignedSpecLoc(),
4699 diag::ext_anonymous_struct_union_qualified)
4700 << Record->isUnion() << "__unaligned"
4701 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4702
4703 DS.ClearTypeQualifiers();
4704 }
4705
4706 // C++ [class.union]p2:
4707 // The member-specification of an anonymous union shall only
4708 // define non-static data members. [Note: nested types and
4709 // functions cannot be declared within an anonymous union. ]
4710 for (auto *Mem : Record->decls()) {
4711 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4712 // C++ [class.union]p3:
4713 // An anonymous union shall not have private or protected
4714 // members (clause 11).
4715 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4715, __PRETTY_FUNCTION__))
;
4716 if (FD->getAccess() != AS_public) {
4717 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4718 << Record->isUnion() << (FD->getAccess() == AS_protected);
4719 Invalid = true;
4720 }
4721
4722 // C++ [class.union]p1
4723 // An object of a class with a non-trivial constructor, a non-trivial
4724 // copy constructor, a non-trivial destructor, or a non-trivial copy
4725 // assignment operator cannot be a member of a union, nor can an
4726 // array of such objects.
4727 if (CheckNontrivialField(FD))
4728 Invalid = true;
4729 } else if (Mem->isImplicit()) {
4730 // Any implicit members are fine.
4731 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4732 // This is a type that showed up in an
4733 // elaborated-type-specifier inside the anonymous struct or
4734 // union, but which actually declares a type outside of the
4735 // anonymous struct or union. It's okay.
4736 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4737 if (!MemRecord->isAnonymousStructOrUnion() &&
4738 MemRecord->getDeclName()) {
4739 // Visual C++ allows type definition in anonymous struct or union.
4740 if (getLangOpts().MicrosoftExt)
4741 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4742 << Record->isUnion();
4743 else {
4744 // This is a nested type declaration.
4745 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4746 << Record->isUnion();
4747 Invalid = true;
4748 }
4749 } else {
4750 // This is an anonymous type definition within another anonymous type.
4751 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4752 // not part of standard C++.
4753 Diag(MemRecord->getLocation(),
4754 diag::ext_anonymous_record_with_anonymous_type)
4755 << Record->isUnion();
4756 }
4757 } else if (isa<AccessSpecDecl>(Mem)) {
4758 // Any access specifier is fine.
4759 } else if (isa<StaticAssertDecl>(Mem)) {
4760 // In C++1z, static_assert declarations are also fine.
4761 } else {
4762 // We have something that isn't a non-static data
4763 // member. Complain about it.
4764 unsigned DK = diag::err_anonymous_record_bad_member;
4765 if (isa<TypeDecl>(Mem))
4766 DK = diag::err_anonymous_record_with_type;
4767 else if (isa<FunctionDecl>(Mem))
4768 DK = diag::err_anonymous_record_with_function;
4769 else if (isa<VarDecl>(Mem))
4770 DK = diag::err_anonymous_record_with_static;
4771
4772 // Visual C++ allows type definition in anonymous struct or union.
4773 if (getLangOpts().MicrosoftExt &&
4774 DK == diag::err_anonymous_record_with_type)
4775 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4776 << Record->isUnion();
4777 else {
4778 Diag(Mem->getLocation(), DK) << Record->isUnion();
4779 Invalid = true;
4780 }
4781 }
4782 }
4783
4784 // C++11 [class.union]p8 (DR1460):
4785 // At most one variant member of a union may have a
4786 // brace-or-equal-initializer.
4787 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4788 Owner->isRecord())
4789 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4790 cast<CXXRecordDecl>(Record));
4791 }
4792
4793 if (!Record->isUnion() && !Owner->isRecord()) {
4794 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4795 << getLangOpts().CPlusPlus;
4796 Invalid = true;
4797 }
4798
4799 // Mock up a declarator.
4800 Declarator Dc(DS, DeclaratorContext::MemberContext);
4801 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4802 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4802, __PRETTY_FUNCTION__))
;
4803
4804 // Create a declaration for this anonymous struct/union.
4805 NamedDecl *Anon = nullptr;
4806 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4807 Anon = FieldDecl::Create(
4808 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4809 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4810 /*BitWidth=*/nullptr, /*Mutable=*/false,
4811 /*InitStyle=*/ICIS_NoInit);
4812 Anon->setAccess(AS);
4813 if (getLangOpts().CPlusPlus)
4814 FieldCollector->Add(cast<FieldDecl>(Anon));
4815 } else {
4816 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4817 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4818 if (SCSpec == DeclSpec::SCS_mutable) {
4819 // mutable can only appear on non-static class members, so it's always
4820 // an error here
4821 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4822 Invalid = true;
4823 SC = SC_None;
4824 }
4825
4826 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4827 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4828 Context.getTypeDeclType(Record), TInfo, SC);
4829
4830 // Default-initialize the implicit variable. This initialization will be
4831 // trivial in almost all cases, except if a union member has an in-class
4832 // initializer:
4833 // union { int n = 0; };
4834 ActOnUninitializedDecl(Anon);
4835 }
4836 Anon->setImplicit();
4837
4838 // Mark this as an anonymous struct/union type.
4839 Record->setAnonymousStructOrUnion(true);
4840
4841 // Add the anonymous struct/union object to the current
4842 // context. We'll be referencing this object when we refer to one of
4843 // its members.
4844 Owner->addDecl(Anon);
4845
4846 // Inject the members of the anonymous struct/union into the owning
4847 // context and into the identifier resolver chain for name lookup
4848 // purposes.
4849 SmallVector<NamedDecl*, 2> Chain;
4850 Chain.push_back(Anon);
4851
4852 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4853 Invalid = true;
4854
4855 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4856 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4857 Decl *ManglingContextDecl;
4858 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4859 NewVD->getDeclContext(), ManglingContextDecl)) {
4860 Context.setManglingNumber(
4861 NewVD, MCtx->getManglingNumber(
4862 NewVD, getMSManglingNumber(getLangOpts(), S)));
4863 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4864 }
4865 }
4866 }
4867
4868 if (Invalid)
4869 Anon->setInvalidDecl();
4870
4871 return Anon;
4872}
4873
4874/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4875/// Microsoft C anonymous structure.
4876/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4877/// Example:
4878///
4879/// struct A { int a; };
4880/// struct B { struct A; int b; };
4881///
4882/// void foo() {
4883/// B var;
4884/// var.a = 3;
4885/// }
4886///
4887Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4888 RecordDecl *Record) {
4889 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4889, __PRETTY_FUNCTION__))
;
4890
4891 // Mock up a declarator.
4892 Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4893 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4894 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 4894, __PRETTY_FUNCTION__))
;
4895
4896 auto *ParentDecl = cast<RecordDecl>(CurContext);
4897 QualType RecTy = Context.getTypeDeclType(Record);
4898
4899 // Create a declaration for this anonymous struct.
4900 NamedDecl *Anon =
4901 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4902 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4903 /*BitWidth=*/nullptr, /*Mutable=*/false,
4904 /*InitStyle=*/ICIS_NoInit);
4905 Anon->setImplicit();
4906
4907 // Add the anonymous struct object to the current context.
4908 CurContext->addDecl(Anon);
4909
4910 // Inject the members of the anonymous struct into the current
4911 // context and into the identifier resolver chain for name lookup
4912 // purposes.
4913 SmallVector<NamedDecl*, 2> Chain;
4914 Chain.push_back(Anon);
4915
4916 RecordDecl *RecordDef = Record->getDefinition();
4917 if (RequireCompleteType(Anon->getLocation(), RecTy,
4918 diag::err_field_incomplete) ||
4919 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4920 AS_none, Chain)) {
4921 Anon->setInvalidDecl();
4922 ParentDecl->setInvalidDecl();
4923 }
4924
4925 return Anon;
4926}
4927
4928/// GetNameForDeclarator - Determine the full declaration name for the
4929/// given Declarator.
4930DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4931 return GetNameFromUnqualifiedId(D.getName());
4932}
4933
4934/// Retrieves the declaration name from a parsed unqualified-id.
4935DeclarationNameInfo
4936Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4937 DeclarationNameInfo NameInfo;
4938 NameInfo.setLoc(Name.StartLocation);
4939
4940 switch (Name.getKind()) {
4941
4942 case UnqualifiedIdKind::IK_ImplicitSelfParam:
4943 case UnqualifiedIdKind::IK_Identifier:
4944 NameInfo.setName(Name.Identifier);
4945 return NameInfo;
4946
4947 case UnqualifiedIdKind::IK_DeductionGuideName: {
4948 // C++ [temp.deduct.guide]p3:
4949 // The simple-template-id shall name a class template specialization.
4950 // The template-name shall be the same identifier as the template-name
4951 // of the simple-template-id.
4952 // These together intend to imply that the template-name shall name a
4953 // class template.
4954 // FIXME: template<typename T> struct X {};
4955 // template<typename T> using Y = X<T>;
4956 // Y(int) -> Y<int>;
4957 // satisfies these rules but does not name a class template.
4958 TemplateName TN = Name.TemplateName.get().get();
4959 auto *Template = TN.getAsTemplateDecl();
4960 if (!Template || !isa<ClassTemplateDecl>(Template)) {
4961 Diag(Name.StartLocation,
4962 diag::err_deduction_guide_name_not_class_template)
4963 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4964 if (Template)
4965 Diag(Template->getLocation(), diag::note_template_decl_here);
4966 return DeclarationNameInfo();
4967 }
4968
4969 NameInfo.setName(
4970 Context.DeclarationNames.getCXXDeductionGuideName(Template));
4971 return NameInfo;
4972 }
4973
4974 case UnqualifiedIdKind::IK_OperatorFunctionId:
4975 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4976 Name.OperatorFunctionId.Operator));
4977 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4978 = Name.OperatorFunctionId.SymbolLocations[0];
4979 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4980 = Name.EndLocation.getRawEncoding();
4981 return NameInfo;
4982
4983 case UnqualifiedIdKind::IK_LiteralOperatorId:
4984 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4985 Name.Identifier));
4986 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4987 return NameInfo;
4988
4989 case UnqualifiedIdKind::IK_ConversionFunctionId: {
4990 TypeSourceInfo *TInfo;
4991 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4992 if (Ty.isNull())
4993 return DeclarationNameInfo();
4994 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4995 Context.getCanonicalType(Ty)));
4996 NameInfo.setNamedTypeInfo(TInfo);
4997 return NameInfo;
4998 }
4999
5000 case UnqualifiedIdKind::IK_ConstructorName: {
5001 TypeSourceInfo *TInfo;
5002 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5003 if (Ty.isNull())
5004 return DeclarationNameInfo();
5005 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5006 Context.getCanonicalType(Ty)));
5007 NameInfo.setNamedTypeInfo(TInfo);
5008 return NameInfo;
5009 }
5010
5011 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5012 // In well-formed code, we can only have a constructor
5013 // template-id that refers to the current context, so go there
5014 // to find the actual type being constructed.
5015 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5016 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5017 return DeclarationNameInfo();
5018
5019 // Determine the type of the class being constructed.
5020 QualType CurClassType = Context.getTypeDeclType(CurClass);
5021
5022 // FIXME: Check two things: that the template-id names the same type as
5023 // CurClassType, and that the template-id does not occur when the name
5024 // was qualified.
5025
5026 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5027 Context.getCanonicalType(CurClassType)));
5028 // FIXME: should we retrieve TypeSourceInfo?
5029 NameInfo.setNamedTypeInfo(nullptr);
5030 return NameInfo;
5031 }
5032
5033 case UnqualifiedIdKind::IK_DestructorName: {
5034 TypeSourceInfo *TInfo;
5035 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5036 if (Ty.isNull())
5037 return DeclarationNameInfo();
5038 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5039 Context.getCanonicalType(Ty)));
5040 NameInfo.setNamedTypeInfo(TInfo);
5041 return NameInfo;
5042 }
5043
5044 case UnqualifiedIdKind::IK_TemplateId: {
5045 TemplateName TName = Name.TemplateId->Template.get();
5046 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5047 return Context.getNameForTemplate(TName, TNameLoc);
5048 }
5049
5050 } // switch (Name.getKind())
5051
5052 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 5052)
;
5053}
5054
5055static QualType getCoreType(QualType Ty) {
5056 do {
5057 if (Ty->isPointerType() || Ty->isReferenceType())
5058 Ty = Ty->getPointeeType();
5059 else if (Ty->isArrayType())
5060 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5061 else
5062 return Ty.withoutLocalFastQualifiers();
5063 } while (true);
5064}
5065
5066/// hasSimilarParameters - Determine whether the C++ functions Declaration
5067/// and Definition have "nearly" matching parameters. This heuristic is
5068/// used to improve diagnostics in the case where an out-of-line function
5069/// definition doesn't match any declaration within the class or namespace.
5070/// Also sets Params to the list of indices to the parameters that differ
5071/// between the declaration and the definition. If hasSimilarParameters
5072/// returns true and Params is empty, then all of the parameters match.
5073static bool hasSimilarParameters(ASTContext &Context,
5074 FunctionDecl *Declaration,
5075 FunctionDecl *Definition,
5076 SmallVectorImpl<unsigned> &Params) {
5077 Params.clear();
5078 if (Declaration->param_size() != Definition->param_size())
5079 return false;
5080 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5081 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5082 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5083
5084 // The parameter types are identical
5085 if (Context.hasSameType(DefParamTy, DeclParamTy))
5086 continue;
5087
5088 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5089 QualType DefParamBaseTy = getCoreType(DefParamTy);
5090 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5091 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5092
5093 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5094 (DeclTyName && DeclTyName == DefTyName))
5095 Params.push_back(Idx);
5096 else // The two parameters aren't even close
5097 return false;
5098 }
5099
5100 return true;
5101}
5102
5103/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5104/// declarator needs to be rebuilt in the current instantiation.
5105/// Any bits of declarator which appear before the name are valid for
5106/// consideration here. That's specifically the type in the decl spec
5107/// and the base type in any member-pointer chunks.
5108static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5109 DeclarationName Name) {
5110 // The types we specifically need to rebuild are:
5111 // - typenames, typeofs, and decltypes
5112 // - types which will become injected class names
5113 // Of course, we also need to rebuild any type referencing such a
5114 // type. It's safest to just say "dependent", but we call out a
5115 // few cases here.
5116
5117 DeclSpec &DS = D.getMutableDeclSpec();
5118 switch (DS.getTypeSpecType()) {
5119 case DeclSpec::TST_typename:
5120 case DeclSpec::TST_typeofType:
5121 case DeclSpec::TST_underlyingType:
5122 case DeclSpec::TST_atomic: {
5123 // Grab the type from the parser.
5124 TypeSourceInfo *TSI = nullptr;
5125 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5126 if (T.isNull() || !T->isDependentType()) break;
5127
5128 // Make sure there's a type source info. This isn't really much
5129 // of a waste; most dependent types should have type source info
5130 // attached already.
5131 if (!TSI)
5132 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5133
5134 // Rebuild the type in the current instantiation.
5135 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5136 if (!TSI) return true;
5137
5138 // Store the new type back in the decl spec.
5139 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5140 DS.UpdateTypeRep(LocType);
5141 break;
5142 }
5143
5144 case DeclSpec::TST_decltype:
5145 case DeclSpec::TST_typeofExpr: {
5146 Expr *E = DS.getRepAsExpr();
5147 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5148 if (Result.isInvalid()) return true;
5149 DS.UpdateExprRep(Result.get());
5150 break;
5151 }
5152
5153 default:
5154 // Nothing to do for these decl specs.
5155 break;
5156 }
5157
5158 // It doesn't matter what order we do this in.
5159 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5160 DeclaratorChunk &Chunk = D.getTypeObject(I);
5161
5162 // The only type information in the declarator which can come
5163 // before the declaration name is the base type of a member
5164 // pointer.
5165 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5166 continue;
5167
5168 // Rebuild the scope specifier in-place.
5169 CXXScopeSpec &SS = Chunk.Mem.Scope();
5170 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5171 return true;
5172 }
5173
5174 return false;
5175}
5176
5177Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5178 D.setFunctionDefinitionKind(FDK_Declaration);
5179 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5180
5181 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5182 Dcl && Dcl->getDeclContext()->isFileContext())
5183 Dcl->setTopLevelDeclInObjCContainer();
5184
5185 if (getLangOpts().OpenCL)
5186 setCurrentOpenCLExtensionForDecl(Dcl);
5187
5188 return Dcl;
5189}
5190
5191/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5192/// If T is the name of a class, then each of the following shall have a
5193/// name different from T:
5194/// - every static data member of class T;
5195/// - every member function of class T
5196/// - every member of class T that is itself a type;
5197/// \returns true if the declaration name violates these rules.
5198bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5199 DeclarationNameInfo NameInfo) {
5200 DeclarationName Name = NameInfo.getName();
5201
5202 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5203 while (Record && Record->isAnonymousStructOrUnion())
5204 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5205 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5206 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5207 return true;
5208 }
5209
5210 return false;
5211}
5212
5213/// Diagnose a declaration whose declarator-id has the given
5214/// nested-name-specifier.
5215///
5216/// \param SS The nested-name-specifier of the declarator-id.
5217///
5218/// \param DC The declaration context to which the nested-name-specifier
5219/// resolves.
5220///
5221/// \param Name The name of the entity being declared.
5222///
5223/// \param Loc The location of the name of the entity being declared.
5224///
5225/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5226/// we're declaring an explicit / partial specialization / instantiation.
5227///
5228/// \returns true if we cannot safely recover from this error, false otherwise.
5229bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5230 DeclarationName Name,
5231 SourceLocation Loc, bool IsTemplateId) {
5232 DeclContext *Cur = CurContext;
5233 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5234 Cur = Cur->getParent();
5235
5236 // If the user provided a superfluous scope specifier that refers back to the
5237 // class in which the entity is already declared, diagnose and ignore it.
5238 //
5239 // class X {
5240 // void X::f();
5241 // };
5242 //
5243 // Note, it was once ill-formed to give redundant qualification in all
5244 // contexts, but that rule was removed by DR482.
5245 if (Cur->Equals(DC)) {
5246 if (Cur->isRecord()) {
5247 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5248 : diag::err_member_extra_qualification)
5249 << Name << FixItHint::CreateRemoval(SS.getRange());
5250 SS.clear();
5251 } else {
5252 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5253 }
5254 return false;
5255 }
5256
5257 // Check whether the qualifying scope encloses the scope of the original
5258 // declaration. For a template-id, we perform the checks in
5259 // CheckTemplateSpecializationScope.
5260 if (!Cur->Encloses(DC) && !IsTemplateId) {
5261 if (Cur->isRecord())
5262 Diag(Loc, diag::err_member_qualification)
5263 << Name << SS.getRange();
5264 else if (isa<TranslationUnitDecl>(DC))
5265 Diag(Loc, diag::err_invalid_declarator_global_scope)
5266 << Name << SS.getRange();
5267 else if (isa<FunctionDecl>(Cur))
5268 Diag(Loc, diag::err_invalid_declarator_in_function)
5269 << Name << SS.getRange();
5270 else if (isa<BlockDecl>(Cur))
5271 Diag(Loc, diag::err_invalid_declarator_in_block)
5272 << Name << SS.getRange();
5273 else
5274 Diag(Loc, diag::err_invalid_declarator_scope)
5275 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5276
5277 return true;
5278 }
5279
5280 if (Cur->isRecord()) {
5281 // Cannot qualify members within a class.
5282 Diag(Loc, diag::err_member_qualification)
5283 << Name << SS.getRange();
5284 SS.clear();
5285
5286 // C++ constructors and destructors with incorrect scopes can break
5287 // our AST invariants by having the wrong underlying types. If
5288 // that's the case, then drop this declaration entirely.
5289 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5290 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5291 !Context.hasSameType(Name.getCXXNameType(),
5292 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5293 return true;
5294
5295 return false;
5296 }
5297
5298 // C++11 [dcl.meaning]p1:
5299 // [...] "The nested-name-specifier of the qualified declarator-id shall
5300 // not begin with a decltype-specifer"
5301 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5302 while (SpecLoc.getPrefix())
5303 SpecLoc = SpecLoc.getPrefix();
5304 if (dyn_cast_or_null<DecltypeType>(
5305 SpecLoc.getNestedNameSpecifier()->getAsType()))
5306 Diag(Loc, diag::err_decltype_in_declarator)
5307 << SpecLoc.getTypeLoc().getSourceRange();
5308
5309 return false;
5310}
5311
5312NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5313 MultiTemplateParamsArg TemplateParamLists) {
5314 // TODO: consider using NameInfo for diagnostic.
5315 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5316 DeclarationName Name = NameInfo.getName();
5317
5318 // All of these full declarators require an identifier. If it doesn't have
5319 // one, the ParsedFreeStandingDeclSpec action should be used.
5320 if (D.isDecompositionDeclarator()) {
5321 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5322 } else if (!Name) {
5323 if (!D.isInvalidType()) // Reject this if we think it is valid.
5324 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5325 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5326 return nullptr;
5327 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5328 return nullptr;
5329
5330 // The scope passed in may not be a decl scope. Zip up the scope tree until
5331 // we find one that is.
5332 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5333 (S->getFlags() & Scope::TemplateParamScope) != 0)
5334 S = S->getParent();
5335
5336 DeclContext *DC = CurContext;
5337 if (D.getCXXScopeSpec().isInvalid())
5338 D.setInvalidType();
5339 else if (D.getCXXScopeSpec().isSet()) {
5340 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5341 UPPC_DeclarationQualifier))
5342 return nullptr;
5343
5344 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5345 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5346 if (!DC || isa<EnumDecl>(DC)) {
5347 // If we could not compute the declaration context, it's because the
5348 // declaration context is dependent but does not refer to a class,
5349 // class template, or class template partial specialization. Complain
5350 // and return early, to avoid the coming semantic disaster.
5351 Diag(D.getIdentifierLoc(),
5352 diag::err_template_qualified_declarator_no_match)
5353 << D.getCXXScopeSpec().getScopeRep()
5354 << D.getCXXScopeSpec().getRange();
5355 return nullptr;
5356 }
5357 bool IsDependentContext = DC->isDependentContext();
5358
5359 if (!IsDependentContext &&
5360 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5361 return nullptr;
5362
5363 // If a class is incomplete, do not parse entities inside it.
5364 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5365 Diag(D.getIdentifierLoc(),
5366 diag::err_member_def_undefined_record)
5367 << Name << DC << D.getCXXScopeSpec().getRange();
5368 return nullptr;
5369 }
5370 if (!D.getDeclSpec().isFriendSpecified()) {
5371 if (diagnoseQualifiedDeclaration(
5372 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5373 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5374 if (DC->isRecord())
5375 return nullptr;
5376
5377 D.setInvalidType();
5378 }
5379 }
5380
5381 // Check whether we need to rebuild the type of the given
5382 // declaration in the current instantiation.
5383 if (EnteringContext && IsDependentContext &&
5384 TemplateParamLists.size() != 0) {
5385 ContextRAII SavedContext(*this, DC);
5386 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5387 D.setInvalidType();
5388 }
5389 }
5390
5391 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5392 QualType R = TInfo->getType();
5393
5394 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5395 UPPC_DeclarationType))
5396 D.setInvalidType();
5397
5398 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5399 forRedeclarationInCurContext());
5400
5401 // See if this is a redefinition of a variable in the same scope.
5402 if (!D.getCXXScopeSpec().isSet()) {
5403 bool IsLinkageLookup = false;
5404 bool CreateBuiltins = false;
5405
5406 // If the declaration we're planning to build will be a function
5407 // or object with linkage, then look for another declaration with
5408 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5409 //
5410 // If the declaration we're planning to build will be declared with
5411 // external linkage in the translation unit, create any builtin with
5412 // the same name.
5413 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5414 /* Do nothing*/;
5415 else if (CurContext->isFunctionOrMethod() &&
5416 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5417 R->isFunctionType())) {
5418 IsLinkageLookup = true;
5419 CreateBuiltins =
5420 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5421 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5422 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5423 CreateBuiltins = true;
5424
5425 if (IsLinkageLookup) {
5426 Previous.clear(LookupRedeclarationWithLinkage);
5427 Previous.setRedeclarationKind(ForExternalRedeclaration);
5428 }
5429
5430 LookupName(Previous, S, CreateBuiltins);
5431 } else { // Something like "int foo::x;"
5432 LookupQualifiedName(Previous, DC);
5433
5434 // C++ [dcl.meaning]p1:
5435 // When the declarator-id is qualified, the declaration shall refer to a
5436 // previously declared member of the class or namespace to which the
5437 // qualifier refers (or, in the case of a namespace, of an element of the
5438 // inline namespace set of that namespace (7.3.1)) or to a specialization
5439 // thereof; [...]
5440 //
5441 // Note that we already checked the context above, and that we do not have
5442 // enough information to make sure that Previous contains the declaration
5443 // we want to match. For example, given:
5444 //
5445 // class X {
5446 // void f();
5447 // void f(float);
5448 // };
5449 //
5450 // void X::f(int) { } // ill-formed
5451 //
5452 // In this case, Previous will point to the overload set
5453 // containing the two f's declared in X, but neither of them
5454 // matches.
5455
5456 // C++ [dcl.meaning]p1:
5457 // [...] the member shall not merely have been introduced by a
5458 // using-declaration in the scope of the class or namespace nominated by
5459 // the nested-name-specifier of the declarator-id.
5460 RemoveUsingDecls(Previous);
5461 }
5462
5463 if (Previous.isSingleResult() &&
5464 Previous.getFoundDecl()->isTemplateParameter()) {
5465 // Maybe we will complain about the shadowed template parameter.
5466 if (!D.isInvalidType())
5467 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5468 Previous.getFoundDecl());
5469
5470 // Just pretend that we didn't see the previous declaration.
5471 Previous.clear();
5472 }
5473
5474 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5475 // Forget that the previous declaration is the injected-class-name.
5476 Previous.clear();
5477
5478 // In C++, the previous declaration we find might be a tag type
5479 // (class or enum). In this case, the new declaration will hide the
5480 // tag type. Note that this applies to functions, function templates, and
5481 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5482 if (Previous.isSingleTagDecl() &&
5483 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5484 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5485 Previous.clear();
5486
5487 // Check that there are no default arguments other than in the parameters
5488 // of a function declaration (C++ only).
5489 if (getLangOpts().CPlusPlus)
5490 CheckExtraCXXDefaultArguments(D);
5491
5492 NamedDecl *New;
5493
5494 bool AddToScope = true;
5495 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5496 if (TemplateParamLists.size()) {
5497 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5498 return nullptr;
5499 }
5500
5501 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5502 } else if (R->isFunctionType()) {
5503 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5504 TemplateParamLists,
5505 AddToScope);
5506 } else {
5507 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5508 AddToScope);
5509 }
5510
5511 if (!New)
5512 return nullptr;
5513
5514 // If this has an identifier and is not a function template specialization,
5515 // add it to the scope stack.
5516 if (New->getDeclName() && AddToScope) {
5517 // Only make a locally-scoped extern declaration visible if it is the first
5518 // declaration of this entity. Qualified lookup for such an entity should
5519 // only find this declaration if there is no visible declaration of it.
5520 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5521 PushOnScopeChains(New, S, AddToContext);
5522 if (!AddToContext)
5523 CurContext->addHiddenDecl(New);
5524 }
5525
5526 if (isInOpenMPDeclareTargetContext())
5527 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5528
5529 return New;
5530}
5531
5532/// Helper method to turn variable array types into constant array
5533/// types in certain situations which would otherwise be errors (for
5534/// GCC compatibility).
5535static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5536 ASTContext &Context,
5537 bool &SizeIsNegative,
5538 llvm::APSInt &Oversized) {
5539 // This method tries to turn a variable array into a constant
5540 // array even when the size isn't an ICE. This is necessary
5541 // for compatibility with code that depends on gcc's buggy
5542 // constant expression folding, like struct {char x[(int)(char*)2];}
5543 SizeIsNegative = false;
5544 Oversized = 0;
5545
5546 if (T->isDependentType())
5547 return QualType();
5548
5549 QualifierCollector Qs;
5550 const Type *Ty = Qs.strip(T);
5551
5552 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5553 QualType Pointee = PTy->getPointeeType();
5554 QualType FixedType =
5555 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5556 Oversized);
5557 if (FixedType.isNull()) return FixedType;
5558 FixedType = Context.getPointerType(FixedType);
5559 return Qs.apply(Context, FixedType);
5560 }
5561 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5562 QualType Inner = PTy->getInnerType();
5563 QualType FixedType =
5564 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5565 Oversized);
5566 if (FixedType.isNull()) return FixedType;
5567 FixedType = Context.getParenType(FixedType);
5568 return Qs.apply(Context, FixedType);
5569 }
5570
5571 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5572 if (!VLATy)
5573 return QualType();
5574 // FIXME: We should probably handle this case
5575 if (VLATy->getElementType()->isVariablyModifiedType())
5576 return QualType();
5577
5578 Expr::EvalResult Result;
5579 if (!VLATy->getSizeExpr() ||
5580 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5581 return QualType();
5582
5583 llvm::APSInt Res = Result.Val.getInt();
5584
5585 // Check whether the array size is negative.
5586 if (Res.isSigned() && Res.isNegative()) {
5587 SizeIsNegative = true;
5588 return QualType();
5589 }
5590
5591 // Check whether the array is too large to be addressed.
5592 unsigned ActiveSizeBits
5593 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5594 Res);
5595 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5596 Oversized = Res;
5597 return QualType();
5598 }
5599
5600 return Context.getConstantArrayType(VLATy->getElementType(),
5601 Res, ArrayType::Normal, 0);
5602}
5603
5604static void
5605FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5606 SrcTL = SrcTL.getUnqualifiedLoc();
5607 DstTL = DstTL.getUnqualifiedLoc();
5608 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5609 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5610 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5611 DstPTL.getPointeeLoc());
5612 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5613 return;
5614 }
5615 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5616 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5617 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5618 DstPTL.getInnerLoc());
5619 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5620 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5621 return;
5622 }
5623 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5624 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5625 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5626 TypeLoc DstElemTL = DstATL.getElementLoc();
5627 DstElemTL.initializeFullCopy(SrcElemTL);
5628 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5629 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5630 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5631}
5632
5633/// Helper method to turn variable array types into constant array
5634/// types in certain situations which would otherwise be errors (for
5635/// GCC compatibility).
5636static TypeSourceInfo*
5637TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5638 ASTContext &Context,
5639 bool &SizeIsNegative,
5640 llvm::APSInt &Oversized) {
5641 QualType FixedTy
5642 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5643 SizeIsNegative, Oversized);
5644 if (FixedTy.isNull())
5645 return nullptr;
5646 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5647 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5648 FixedTInfo->getTypeLoc());
5649 return FixedTInfo;
5650}
5651
5652/// Register the given locally-scoped extern "C" declaration so
5653/// that it can be found later for redeclarations. We include any extern "C"
5654/// declaration that is not visible in the translation unit here, not just
5655/// function-scope declarations.
5656void
5657Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5658 if (!getLangOpts().CPlusPlus &&
5659 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5660 // Don't need to track declarations in the TU in C.
5661 return;
5662
5663 // Note that we have a locally-scoped external with this name.
5664 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5665}
5666
5667NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5668 // FIXME: We can have multiple results via __attribute__((overloadable)).
5669 auto Result = Context.getExternCContextDecl()->lookup(Name);
5670 return Result.empty() ? nullptr : *Result.begin();
5671}
5672
5673/// Diagnose function specifiers on a declaration of an identifier that
5674/// does not identify a function.
5675void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5676 // FIXME: We should probably indicate the identifier in question to avoid
5677 // confusion for constructs like "virtual int a(), b;"
5678 if (DS.isVirtualSpecified())
5679 Diag(DS.getVirtualSpecLoc(),
5680 diag::err_virtual_non_function);
5681
5682 if (DS.isExplicitSpecified())
5683 Diag(DS.getExplicitSpecLoc(),
5684 diag::err_explicit_non_function);
5685
5686 if (DS.isNoreturnSpecified())
5687 Diag(DS.getNoreturnSpecLoc(),
5688 diag::err_noreturn_non_function);
5689}
5690
5691NamedDecl*
5692Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5693 TypeSourceInfo *TInfo, LookupResult &Previous) {
5694 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5695 if (D.getCXXScopeSpec().isSet()) {
5696 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5697 << D.getCXXScopeSpec().getRange();
5698 D.setInvalidType();
5699 // Pretend we didn't see the scope specifier.
5700 DC = CurContext;
5701 Previous.clear();
5702 }
5703
5704 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5705
5706 if (D.getDeclSpec().isInlineSpecified())
5707 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5708 << getLangOpts().CPlusPlus17;
5709 if (D.getDeclSpec().isConstexprSpecified())
5710 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5711 << 1;
5712
5713 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5714 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5715 Diag(D.getName().StartLocation,
5716 diag::err_deduction_guide_invalid_specifier)
5717 << "typedef";
5718 else
5719 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5720 << D.getName().getSourceRange();
5721 return nullptr;
5722 }
5723
5724 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5725 if (!NewTD) return nullptr;
5726
5727 // Handle attributes prior to checking for duplicates in MergeVarDecl
5728 ProcessDeclAttributes(S, NewTD, D);
5729
5730 CheckTypedefForVariablyModifiedType(S, NewTD);
5731
5732 bool Redeclaration = D.isRedeclaration();
5733 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5734 D.setRedeclaration(Redeclaration);
5735 return ND;
5736}
5737
5738void
5739Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5740 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5741 // then it shall have block scope.
5742 // Note that variably modified types must be fixed before merging the decl so
5743 // that redeclarations will match.
5744 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5745 QualType T = TInfo->getType();
5746 if (T->isVariablyModifiedType()) {
5747 setFunctionHasBranchProtectedScope();
5748
5749 if (S->getFnParent() == nullptr) {
5750 bool SizeIsNegative;
5751 llvm::APSInt Oversized;
5752 TypeSourceInfo *FixedTInfo =
5753 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5754 SizeIsNegative,
5755 Oversized);
5756 if (FixedTInfo) {
5757 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5758 NewTD->setTypeSourceInfo(FixedTInfo);
5759 } else {
5760 if (SizeIsNegative)
5761 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5762 else if (T->isVariableArrayType())
5763 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5764 else if (Oversized.getBoolValue())
5765 Diag(NewTD->getLocation(), diag::err_array_too_large)
5766 << Oversized.toString(10);
5767 else
5768 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5769 NewTD->setInvalidDecl();
5770 }
5771 }
5772 }
5773}
5774
5775/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5776/// declares a typedef-name, either using the 'typedef' type specifier or via
5777/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5778NamedDecl*
5779Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5780 LookupResult &Previous, bool &Redeclaration) {
5781
5782 // Find the shadowed declaration before filtering for scope.
5783 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5784
5785 // Merge the decl with the existing one if appropriate. If the decl is
5786 // in an outer scope, it isn't the same thing.
5787 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5788 /*AllowInlineNamespace*/false);
5789 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5790 if (!Previous.empty()) {
5791 Redeclaration = true;
5792 MergeTypedefNameDecl(S, NewTD, Previous);
5793 }
5794
5795 if (ShadowedDecl && !Redeclaration)
5796 CheckShadow(NewTD, ShadowedDecl, Previous);
5797
5798 // If this is the C FILE type, notify the AST context.
5799 if (IdentifierInfo *II = NewTD->getIdentifier())
5800 if (!NewTD->isInvalidDecl() &&
5801 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5802 if (II->isStr("FILE"))
5803 Context.setFILEDecl(NewTD);
5804 else if (II->isStr("jmp_buf"))
5805 Context.setjmp_bufDecl(NewTD);
5806 else if (II->isStr("sigjmp_buf"))
5807 Context.setsigjmp_bufDecl(NewTD);
5808 else if (II->isStr("ucontext_t"))
5809 Context.setucontext_tDecl(NewTD);
5810 }
5811
5812 return NewTD;
5813}
5814
5815/// Determines whether the given declaration is an out-of-scope
5816/// previous declaration.
5817///
5818/// This routine should be invoked when name lookup has found a
5819/// previous declaration (PrevDecl) that is not in the scope where a
5820/// new declaration by the same name is being introduced. If the new
5821/// declaration occurs in a local scope, previous declarations with
5822/// linkage may still be considered previous declarations (C99
5823/// 6.2.2p4-5, C++ [basic.link]p6).
5824///
5825/// \param PrevDecl the previous declaration found by name
5826/// lookup
5827///
5828/// \param DC the context in which the new declaration is being
5829/// declared.
5830///
5831/// \returns true if PrevDecl is an out-of-scope previous declaration
5832/// for a new delcaration with the same name.
5833static bool
5834isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5835 ASTContext &Context) {
5836 if (!PrevDecl)
5837 return false;
5838
5839 if (!PrevDecl->hasLinkage())
5840 return false;
5841
5842 if (Context.getLangOpts().CPlusPlus) {
5843 // C++ [basic.link]p6:
5844 // If there is a visible declaration of an entity with linkage
5845 // having the same name and type, ignoring entities declared
5846 // outside the innermost enclosing namespace scope, the block
5847 // scope declaration declares that same entity and receives the
5848 // linkage of the previous declaration.
5849 DeclContext *OuterContext = DC->getRedeclContext();
5850 if (!OuterContext->isFunctionOrMethod())
5851 // This rule only applies to block-scope declarations.
5852 return false;
5853
5854 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5855 if (PrevOuterContext->isRecord())
5856 // We found a member function: ignore it.
5857 return false;
5858
5859 // Find the innermost enclosing namespace for the new and
5860 // previous declarations.
5861 OuterContext = OuterContext->getEnclosingNamespaceContext();
5862 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5863
5864 // The previous declaration is in a different namespace, so it
5865 // isn't the same function.
5866 if (!OuterContext->Equals(PrevOuterContext))
5867 return false;
5868 }
5869
5870 return true;
5871}
5872
5873static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5874 CXXScopeSpec &SS = D.getCXXScopeSpec();
5875 if (!SS.isSet()) return;
5876 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5877}
5878
5879bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5880 QualType type = decl->getType();
5881 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5882 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5883 // Various kinds of declaration aren't allowed to be __autoreleasing.
5884 unsigned kind = -1U;
5885 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5886 if (var->hasAttr<BlocksAttr>())
5887 kind = 0; // __block
5888 else if (!var->hasLocalStorage())
5889 kind = 1; // global
5890 } else if (isa<ObjCIvarDecl>(decl)) {
5891 kind = 3; // ivar
5892 } else if (isa<FieldDecl>(decl)) {
5893 kind = 2; // field
5894 }
5895
5896 if (kind != -1U) {
5897 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5898 << kind;
5899 }
5900 } else if (lifetime == Qualifiers::OCL_None) {
5901 // Try to infer lifetime.
5902 if (!type->isObjCLifetimeType())
5903 return false;
5904
5905 lifetime = type->getObjCARCImplicitLifetime();
5906 type = Context.getLifetimeQualifiedType(type, lifetime);
5907 decl->setType(type);
5908 }
5909
5910 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5911 // Thread-local variables cannot have lifetime.
5912 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5913 var->getTLSKind()) {
5914 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5915 << var->getType();
5916 return true;
5917 }
5918 }
5919
5920 return false;
5921}
5922
5923static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5924 // Ensure that an auto decl is deduced otherwise the checks below might cache
5925 // the wrong linkage.
5926 assert(S.ParsingInitForAutoVars.count(&ND) == 0)((S.ParsingInitForAutoVars.count(&ND) == 0) ? static_cast
<void> (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 5926, __PRETTY_FUNCTION__))
;
5927
5928 // 'weak' only applies to declarations with external linkage.
5929 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5930 if (!ND.isExternallyVisible()) {
5931 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5932 ND.dropAttr<WeakAttr>();
5933 }
5934 }
5935 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5936 if (ND.isExternallyVisible()) {
5937 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5938 ND.dropAttr<WeakRefAttr>();
5939 ND.dropAttr<AliasAttr>();
5940 }
5941 }
5942
5943 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5944 if (VD->hasInit()) {
5945 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5946 assert(VD->isThisDeclarationADefinition() &&((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 5947, __PRETTY_FUNCTION__))
5947 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 5947, __PRETTY_FUNCTION__))
;
5948 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5949 VD->dropAttr<AliasAttr>();
5950 }
5951 }
5952 }
5953
5954 // 'selectany' only applies to externally visible variable declarations.
5955 // It does not apply to functions.
5956 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5957 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5958 S.Diag(Attr->getLocation(),
5959 diag::err_attribute_selectany_non_extern_data);
5960 ND.dropAttr<SelectAnyAttr>();
5961 }
5962 }
5963
5964 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5965 // dll attributes require external linkage. Static locals may have external
5966 // linkage but still cannot be explicitly imported or exported.
5967 auto *VD = dyn_cast<VarDecl>(&ND);
5968 if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5969 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5970 << &ND << Attr;
5971 ND.setInvalidDecl();
5972 }
5973 }
5974
5975 // Virtual functions cannot be marked as 'notail'.
5976 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5977 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5978 if (MD->isVirtual()) {
5979 S.Diag(ND.getLocation(),
5980 diag::err_invalid_attribute_on_virtual_function)
5981 << Attr;
5982 ND.dropAttr<NotTailCalledAttr>();
5983 }
5984
5985 // Check the attributes on the function type, if any.
5986 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
5987 // Don't declare this variable in the second operand of the for-statement;
5988 // GCC miscompiles that by ending its lifetime before evaluating the
5989 // third operand. See gcc.gnu.org/PR86769.
5990 AttributedTypeLoc ATL;
5991 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
5992 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
5993 TL = ATL.getModifiedLoc()) {
5994 // The [[lifetimebound]] attribute can be applied to the implicit object
5995 // parameter of a non-static member function (other than a ctor or dtor)
5996 // by applying it to the function type.
5997 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
5998 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
5999 if (!MD || MD->isStatic()) {
6000 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6001 << !MD << A->getRange();
6002 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6003 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6004 << isa<CXXDestructorDecl>(MD) << A->getRange();
6005 }
6006 }
6007 }
6008 }
6009}
6010
6011static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6012 NamedDecl *NewDecl,
6013 bool IsSpecialization,
6014 bool IsDefinition) {
6015 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6016 return;
6017
6018 bool IsTemplate = false;
6019 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6020 OldDecl = OldTD->getTemplatedDecl();
6021 IsTemplate = true;
6022 if (!IsSpecialization)
6023 IsDefinition = false;
6024 }
6025 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6026 NewDecl = NewTD->getTemplatedDecl();
6027 IsTemplate = true;
6028 }
6029
6030 if (!OldDecl || !NewDecl)
6031 return;
6032
6033 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6034 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6035 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6036 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6037
6038 // dllimport and dllexport are inheritable attributes so we have to exclude
6039 // inherited attribute instances.
6040 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6041 (NewExportAttr && !NewExportAttr->isInherited());
6042
6043 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6044 // the only exception being explicit specializations.
6045 // Implicitly generated declarations are also excluded for now because there
6046 // is no other way to switch these to use dllimport or dllexport.
6047 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6048
6049 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6050 // Allow with a warning for free functions and global variables.
6051 bool JustWarn = false;
6052 if (!OldDecl->isCXXClassMember()) {
6053 auto *VD = dyn_cast<VarDecl>(OldDecl);
6054 if (VD && !VD->getDescribedVarTemplate())
6055 JustWarn = true;
6056 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6057 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6058 JustWarn = true;
6059 }
6060
6061 // We cannot change a declaration that's been used because IR has already
6062 // been emitted. Dllimported functions will still work though (modulo
6063 // address equality) as they can use the thunk.
6064 if (OldDecl->isUsed())
6065 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6066 JustWarn = false;
6067
6068 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6069 : diag::err_attribute_dll_redeclaration;
6070 S.Diag(NewDecl->getLocation(), DiagID)
6071 << NewDecl
6072 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6073 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6074 if (!JustWarn) {
6075 NewDecl->setInvalidDecl();
6076 return;
6077 }
6078 }
6079
6080 // A redeclaration is not allowed to drop a dllimport attribute, the only
6081 // exceptions being inline function definitions (except for function
6082 // templates), local extern declarations, qualified friend declarations or
6083 // special MSVC extension: in the last case, the declaration is treated as if
6084 // it were marked dllexport.
6085 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6086 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6087 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6088 // Ignore static data because out-of-line definitions are diagnosed
6089 // separately.
6090 IsStaticDataMember = VD->isStaticDataMember();
6091 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6092 VarDecl::DeclarationOnly;
6093 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6094 IsInline = FD->isInlined();
6095 IsQualifiedFriend = FD->getQualifier() &&
6096 FD->getFriendObjectKind() == Decl::FOK_Declared;
6097 }
6098
6099 if (OldImportAttr && !HasNewAttr &&
6100 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6101 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6102 if (IsMicrosoft && IsDefinition) {
6103 S.Diag(NewDecl->getLocation(),
6104 diag::warn_redeclaration_without_import_attribute)
6105 << NewDecl;
6106 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6107 NewDecl->dropAttr<DLLImportAttr>();
6108 NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6109 NewImportAttr->getRange(), S.Context,
6110 NewImportAttr->getSpellingListIndex()));
6111 } else {
6112 S.Diag(NewDecl->getLocation(),
6113 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6114 << NewDecl << OldImportAttr;
6115 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6116 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6117 OldDecl->dropAttr<DLLImportAttr>();
6118 NewDecl->dropAttr<DLLImportAttr>();
6119 }
6120 } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6121 // In MinGW, seeing a function declared inline drops the dllimport
6122 // attribute.
6123 OldDecl->dropAttr<DLLImportAttr>();
6124 NewDecl->dropAttr<DLLImportAttr>();
6125 S.Diag(NewDecl->getLocation(),
6126 diag::warn_dllimport_dropped_from_inline_function)
6127 << NewDecl << OldImportAttr;
6128 }
6129
6130 // A specialization of a class template member function is processed here
6131 // since it's a redeclaration. If the parent class is dllexport, the
6132 // specialization inherits that attribute. This doesn't happen automatically
6133 // since the parent class isn't instantiated until later.
6134 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6135 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6136 !NewImportAttr && !NewExportAttr) {
6137 if (const DLLExportAttr *ParentExportAttr =
6138 MD->getParent()->getAttr<DLLExportAttr>()) {
6139 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6140 NewAttr->setInherited(true);
6141 NewDecl->addAttr(NewAttr);
6142 }
6143 }
6144 }
6145}
6146
6147/// Given that we are within the definition of the given function,
6148/// will that definition behave like C99's 'inline', where the
6149/// definition is discarded except for optimization purposes?
6150static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6151 // Try to avoid calling GetGVALinkageForFunction.
6152
6153 // All cases of this require the 'inline' keyword.
6154 if (!FD->isInlined()) return false;
6155
6156 // This is only possible in C++ with the gnu_inline attribute.
6157 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6158 return false;
6159
6160 // Okay, go ahead and call the relatively-more-expensive function.
6161 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6162}
6163
6164/// Determine whether a variable is extern "C" prior to attaching
6165/// an initializer. We can't just call isExternC() here, because that
6166/// will also compute and cache whether the declaration is externally
6167/// visible, which might change when we attach the initializer.
6168///
6169/// This can only be used if the declaration is known to not be a
6170/// redeclaration of an internal linkage declaration.
6171///
6172/// For instance:
6173///
6174/// auto x = []{};
6175///
6176/// Attaching the initializer here makes this declaration not externally
6177/// visible, because its type has internal linkage.
6178///
6179/// FIXME: This is a hack.
6180template<typename T>
6181static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6182 if (S.getLangOpts().CPlusPlus) {
6183 // In C++, the overloadable attribute negates the effects of extern "C".
6184 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6185 return false;
6186
6187 // So do CUDA's host/device attributes.
6188 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6189 D->template hasAttr<CUDAHostAttr>()))
6190 return false;
6191 }
6192 return D->isExternC();
6193}
6194
6195static bool shouldConsiderLinkage(const VarDecl *VD) {
6196 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6197 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
6198 return VD->hasExternalStorage();
6199 if (DC->isFileContext())
6200 return true;
6201 if (DC->isRecord())
6202 return false;
6203 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6203)
;
6204}
6205
6206static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6207 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6208 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6209 isa<OMPDeclareReductionDecl>(DC))
6210 return true;
6211 if (DC->isRecord())
6212 return false;
6213 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6213)
;
6214}
6215
6216static bool hasParsedAttr(Scope *S, const Declarator &PD,
6217 ParsedAttr::Kind Kind) {
6218 // Check decl attributes on the DeclSpec.
6219 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6220 return true;
6221
6222 // Walk the declarator structure, checking decl attributes that were in a type
6223 // position to the decl itself.
6224 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6225 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6226 return true;
6227 }
6228
6229 // Finally, check attributes on the decl itself.
6230 return PD.getAttributes().hasAttribute(Kind);
6231}
6232
6233/// Adjust the \c DeclContext for a function or variable that might be a
6234/// function-local external declaration.
6235bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6236 if (!DC->isFunctionOrMethod())
6237 return false;
6238
6239 // If this is a local extern function or variable declared within a function
6240 // template, don't add it into the enclosing namespace scope until it is
6241 // instantiated; it might have a dependent type right now.
6242 if (DC->isDependentContext())
6243 return true;
6244
6245 // C++11 [basic.link]p7:
6246 // When a block scope declaration of an entity with linkage is not found to
6247 // refer to some other declaration, then that entity is a member of the
6248 // innermost enclosing namespace.
6249 //
6250 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6251 // semantically-enclosing namespace, not a lexically-enclosing one.
6252 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6253 DC = DC->getParent();
6254 return true;
6255}
6256
6257/// Returns true if given declaration has external C language linkage.
6258static bool isDeclExternC(const Decl *D) {
6259 if (const auto *FD = dyn_cast<FunctionDecl>(D))
6260 return FD->isExternC();
6261 if (const auto *VD = dyn_cast<VarDecl>(D))
6262 return VD->isExternC();
6263
6264 llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6264)
;
6265}
6266
6267NamedDecl *Sema::ActOnVariableDeclarator(
6268 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6269 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6270 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6271 QualType R = TInfo->getType();
6272 DeclarationName Name = GetNameForDeclarator(D).getName();
6273
6274 IdentifierInfo *II = Name.getAsIdentifierInfo();
6275
6276 if (D.isDecompositionDeclarator()) {
6277 // Take the name of the first declarator as our name for diagnostic
6278 // purposes.
6279 auto &Decomp = D.getDecompositionDeclarator();
6280 if (!Decomp.bindings().empty()) {
6281 II = Decomp.bindings()[0].Name;
6282 Name = II;
6283 }
6284 } else if (!II) {
6285 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6286 return nullptr;
6287 }
6288
6289 if (getLangOpts().OpenCL) {
6290 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6291 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6292 // argument.
6293 if (R->isImageType() || R->isPipeType()) {
6294 Diag(D.getIdentifierLoc(),
6295 diag::err_opencl_type_can_only_be_used_as_function_parameter)
6296 << R;
6297 D.setInvalidType();
6298 return nullptr;
6299 }
6300
6301 // OpenCL v1.2 s6.9.r:
6302 // The event type cannot be used to declare a program scope variable.
6303 // OpenCL v2.0 s6.9.q:
6304 // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6305 if (NULL__null == S->getParent()) {
6306 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6307 Diag(D.getIdentifierLoc(),
6308 diag::err_invalid_type_for_program_scope_var) << R;
6309 D.setInvalidType();
6310 return nullptr;
6311 }
6312 }
6313
6314 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6315 QualType NR = R;
6316 while (NR->isPointerType()) {
6317 if (NR->isFunctionPointerType()) {
6318 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6319 D.setInvalidType();
6320 break;
6321 }
6322 NR = NR->getPointeeType();
6323 }
6324
6325 if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6326 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6327 // half array type (unless the cl_khr_fp16 extension is enabled).
6328 if (Context.getBaseElementType(R)->isHalfType()) {
6329 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6330 D.setInvalidType();
6331 }
6332 }
6333
6334 if (R->isSamplerT()) {
6335 // OpenCL v1.2 s6.9.b p4:
6336 // The sampler type cannot be used with the __local and __global address
6337 // space qualifiers.
6338 if (R.getAddressSpace() == LangAS::opencl_local ||
6339 R.getAddressSpace() == LangAS::opencl_global) {
6340 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6341 }
6342
6343 // OpenCL v1.2 s6.12.14.1:
6344 // A global sampler must be declared with either the constant address
6345 // space qualifier or with the const qualifier.
6346 if (DC->isTranslationUnit() &&
6347 !(R.getAddressSpace() == LangAS::opencl_constant ||
6348 R.isConstQualified())) {
6349 Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6350 D.setInvalidType();
6351 }
6352 }
6353
6354 // OpenCL v1.2 s6.9.r:
6355 // The event type cannot be used with the __local, __constant and __global
6356 // address space qualifiers.
6357 if (R->isEventT()) {
6358 if (R.getAddressSpace() != LangAS::opencl_private) {
6359 Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6360 D.setInvalidType();
6361 }
6362 }
6363
6364 // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6365 // supported. OpenCL C does not support thread_local either, and
6366 // also reject all other thread storage class specifiers.
6367 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6368 if (TSC != TSCS_unspecified) {
6369 bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6370 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6371 diag::err_opencl_unknown_type_specifier)
6372 << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6373 << DeclSpec::getSpecifierName(TSC) << 1;
6374 D.setInvalidType();
6375 return nullptr;
6376 }
6377 }
6378
6379 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6380 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6381
6382 // dllimport globals without explicit storage class are treated as extern. We
6383 // have to change the storage class this early to get the right DeclContext.
6384 if (SC == SC_None && !DC->isRecord() &&
6385 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6386 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6387 SC = SC_Extern;
6388
6389 DeclContext *OriginalDC = DC;
6390 bool IsLocalExternDecl = SC == SC_Extern &&
6391 adjustContextForLocalExternDecl(DC);
6392
6393 if (SCSpec == DeclSpec::SCS_mutable) {
6394 // mutable can only appear on non-static class members, so it's always
6395 // an error here
6396 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6397 D.setInvalidType();
6398 SC = SC_None;
6399 }
6400
6401 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6402 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6403 D.getDeclSpec().getStorageClassSpecLoc())) {
6404 // In C++11, the 'register' storage class specifier is deprecated.
6405 // Suppress the warning in system macros, it's used in macros in some
6406 // popular C system headers, such as in glibc's htonl() macro.
6407 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6408 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6409 : diag::warn_deprecated_register)
6410 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6411 }
6412
6413 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6414
6415 if (!DC->isRecord() && S->getFnParent() == nullptr) {
6416 // C99 6.9p2: The storage-class specifiers auto and register shall not
6417 // appear in the declaration specifiers in an external declaration.
6418 // Global Register+Asm is a GNU extension we support.
6419 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6420 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6421 D.setInvalidType();
6422 }
6423 }
6424
6425 bool IsMemberSpecialization = false;
6426 bool IsVariableTemplateSpecialization = false;
6427 bool IsPartialSpecialization = false;
6428 bool IsVariableTemplate = false;
6429 VarDecl *NewVD = nullptr;
6430 VarTemplateDecl *NewTemplate = nullptr;
6431 TemplateParameterList *TemplateParams = nullptr;
6432 if (!getLangOpts().CPlusPlus) {
6433 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6434 II, R, TInfo, SC);
6435
6436 if (R->getContainedDeducedType())
6437 ParsingInitForAutoVars.insert(NewVD);
6438
6439 if (D.isInvalidType())
6440 NewVD->setInvalidDecl();
6441 } else {
6442 bool Invalid = false;
6443
6444 if (DC->isRecord() && !CurContext->isRecord()) {
6445 // This is an out-of-line definition of a static data member.
6446 switch (SC) {
6447 case SC_None:
6448 break;
6449 case SC_Static:
6450 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6451 diag::err_static_out_of_line)
6452 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6453 break;
6454 case SC_Auto:
6455 case SC_Register:
6456 case SC_Extern:
6457 // [dcl.stc] p2: The auto or register specifiers shall be applied only
6458 // to names of variables declared in a block or to function parameters.
6459 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6460 // of class members
6461
6462 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6463 diag::err_storage_class_for_static_member)
6464 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6465 break;
6466 case SC_PrivateExtern:
6467 llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6467)
;
6468 }
6469 }
6470
6471 if (SC == SC_Static && CurContext->isRecord()) {
6472 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6473 if (RD->isLocalClass())
6474 Diag(D.getIdentifierLoc(),
6475 diag::err_static_data_member_not_allowed_in_local_class)
6476 << Name << RD->getDeclName();
6477
6478 // C++98 [class.union]p1: If a union contains a static data member,
6479 // the program is ill-formed. C++11 drops this restriction.
6480 if (RD->isUnion())
6481 Diag(D.getIdentifierLoc(),
6482 getLangOpts().CPlusPlus11
6483 ? diag::warn_cxx98_compat_static_data_member_in_union
6484 : diag::ext_static_data_member_in_union) << Name;
6485 // We conservatively disallow static data members in anonymous structs.
6486 else if (!RD->getDeclName())
6487 Diag(D.getIdentifierLoc(),
6488 diag::err_static_data_member_not_allowed_in_anon_struct)
6489 << Name << RD->isUnion();
6490 }
6491 }
6492
6493 // Match up the template parameter lists with the scope specifier, then
6494 // determine whether we have a template or a template specialization.
6495 TemplateParams = MatchTemplateParametersToScopeSpecifier(
6496 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6497 D.getCXXScopeSpec(),
6498 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6499 ? D.getName().TemplateId
6500 : nullptr,
6501 TemplateParamLists,
6502 /*never a friend*/ false, IsMemberSpecialization, Invalid);
6503
6504 if (TemplateParams) {
6505 if (!TemplateParams->size() &&
6506 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6507 // There is an extraneous 'template<>' for this variable. Complain
6508 // about it, but allow the declaration of the variable.
6509 Diag(TemplateParams->getTemplateLoc(),
6510 diag::err_template_variable_noparams)
6511 << II
6512 << SourceRange(TemplateParams->getTemplateLoc(),
6513 TemplateParams->getRAngleLoc());
6514 TemplateParams = nullptr;
6515 } else {
6516 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6517 // This is an explicit specialization or a partial specialization.
6518 // FIXME: Check that we can declare a specialization here.
6519 IsVariableTemplateSpecialization = true;
6520 IsPartialSpecialization = TemplateParams->size() > 0;
6521 } else { // if (TemplateParams->size() > 0)
6522 // This is a template declaration.
6523 IsVariableTemplate = true;
6524
6525 // Check that we can declare a template here.
6526 if (CheckTemplateDeclScope(S, TemplateParams))
6527 return nullptr;
6528
6529 // Only C++1y supports variable templates (N3651).
6530 Diag(D.getIdentifierLoc(),
6531 getLangOpts().CPlusPlus14
6532 ? diag::warn_cxx11_compat_variable_template
6533 : diag::ext_variable_template);
6534 }
6535 }
6536 } else {
6537 assert((Invalid ||(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6539, __PRETTY_FUNCTION__))
6538 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6539, __PRETTY_FUNCTION__))
6539 "should have a 'template<>' for this decl")(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6539, __PRETTY_FUNCTION__))
;
6540 }
6541
6542 if (IsVariableTemplateSpecialization) {
6543 SourceLocation TemplateKWLoc =
6544 TemplateParamLists.size() > 0
6545 ? TemplateParamLists[0]->getTemplateLoc()
6546 : SourceLocation();
6547 DeclResult Res = ActOnVarTemplateSpecialization(
6548 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6549 IsPartialSpecialization);
6550 if (Res.isInvalid())
6551 return nullptr;
6552 NewVD = cast<VarDecl>(Res.get());
6553 AddToScope = false;
6554 } else if (D.isDecompositionDeclarator()) {
6555 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6556 D.getIdentifierLoc(), R, TInfo, SC,
6557 Bindings);
6558 } else
6559 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6560 D.getIdentifierLoc(), II, R, TInfo, SC);
6561
6562 // If this is supposed to be a variable template, create it as such.
6563 if (IsVariableTemplate) {
6564 NewTemplate =
6565 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6566 TemplateParams, NewVD);
6567 NewVD->setDescribedVarTemplate(NewTemplate);
6568 }
6569
6570 // If this decl has an auto type in need of deduction, make a note of the
6571 // Decl so we can diagnose uses of it in its own initializer.
6572 if (R->getContainedDeducedType())
6573 ParsingInitForAutoVars.insert(NewVD);
6574
6575 if (D.isInvalidType() || Invalid) {
6576 NewVD->setInvalidDecl();
6577 if (NewTemplate)
6578 NewTemplate->setInvalidDecl();
6579 }
6580
6581 SetNestedNameSpecifier(NewVD, D);
6582
6583 // If we have any template parameter lists that don't directly belong to
6584 // the variable (matching the scope specifier), store them.
6585 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6586 if (TemplateParamLists.size() > VDTemplateParamLists)
6587 NewVD->setTemplateParameterListsInfo(
6588 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6589
6590 if (D.getDeclSpec().isConstexprSpecified()) {
6591 NewVD->setConstexpr(true);
6592 // C++1z [dcl.spec.constexpr]p1:
6593 // A static data member declared with the constexpr specifier is
6594 // implicitly an inline variable.
6595 if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6596 NewVD->setImplicitlyInline();
6597 }
6598 }
6599
6600 if (D.getDeclSpec().isInlineSpecified()) {
6601 if (!getLangOpts().CPlusPlus) {
6602 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6603 << 0;
6604 } else if (CurContext->isFunctionOrMethod()) {
6605 // 'inline' is not allowed on block scope variable declaration.
6606 Diag(D.getDeclSpec().getInlineSpecLoc(),
6607 diag::err_inline_declaration_block_scope) << Name
6608 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6609 } else {
6610 Diag(D.getDeclSpec().getInlineSpecLoc(),
6611 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6612 : diag::ext_inline_variable);
6613 NewVD->setInlineSpecified();
6614 }
6615 }
6616
6617 // Set the lexical context. If the declarator has a C++ scope specifier, the
6618 // lexical context will be different from the semantic context.
6619 NewVD->setLexicalDeclContext(CurContext);
6620 if (NewTemplate)
6621 NewTemplate->setLexicalDeclContext(CurContext);
6622
6623 if (IsLocalExternDecl) {
6624 if (D.isDecompositionDeclarator())
6625 for (auto *B : Bindings)
6626 B->setLocalExternDecl();
6627 else
6628 NewVD->setLocalExternDecl();
6629 }
6630
6631 bool EmitTLSUnsupportedError = false;
6632 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6633 // C++11 [dcl.stc]p4:
6634 // When thread_local is applied to a variable of block scope the
6635 // storage-class-specifier static is implied if it does not appear
6636 // explicitly.
6637 // Core issue: 'static' is not implied if the variable is declared
6638 // 'extern'.
6639 if (NewVD->hasLocalStorage() &&
6640 (SCSpec != DeclSpec::SCS_unspecified ||
6641 TSCS != DeclSpec::TSCS_thread_local ||
6642 !DC->isFunctionOrMethod()))
6643 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6644 diag::err_thread_non_global)
6645 << DeclSpec::getSpecifierName(TSCS);
6646 else if (!Context.getTargetInfo().isTLSSupported()) {
6647 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6648 // Postpone error emission until we've collected attributes required to
6649 // figure out whether it's a host or device variable and whether the
6650 // error should be ignored.
6651 EmitTLSUnsupportedError = true;
6652 // We still need to mark the variable as TLS so it shows up in AST with
6653 // proper storage class for other tools to use even if we're not going
6654 // to emit any code for it.
6655 NewVD->setTSCSpec(TSCS);
6656 } else
6657 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6658 diag::err_thread_unsupported);
6659 } else
6660 NewVD->setTSCSpec(TSCS);
6661 }
6662
6663 // C99 6.7.4p3
6664 // An inline definition of a function with external linkage shall
6665 // not contain a definition of a modifiable object with static or
6666 // thread storage duration...
6667 // We only apply this when the function is required to be defined
6668 // elsewhere, i.e. when the function is not 'extern inline'. Note
6669 // that a local variable with thread storage duration still has to
6670 // be marked 'static'. Also note that it's possible to get these
6671 // semantics in C++ using __attribute__((gnu_inline)).
6672 if (SC == SC_Static && S->getFnParent() != nullptr &&
6673 !NewVD->getType().isConstQualified()) {
6674 FunctionDecl *CurFD = getCurFunctionDecl();
6675 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6676 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6677 diag::warn_static_local_in_extern_inline);
6678 MaybeSuggestAddingStaticToDecl(CurFD);
6679 }
6680 }
6681
6682 if (D.getDeclSpec().isModulePrivateSpecified()) {
6683 if (IsVariableTemplateSpecialization)
6684 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6685 << (IsPartialSpecialization ? 1 : 0)
6686 << FixItHint::CreateRemoval(
6687 D.getDeclSpec().getModulePrivateSpecLoc());
6688 else if (IsMemberSpecialization)
6689 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6690 << 2
6691 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6692 else if (NewVD->hasLocalStorage())
6693 Diag(NewVD->getLocation(), diag::err_module_private_local)
6694 << 0 << NewVD->getDeclName()
6695 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6696 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6697 else {
6698 NewVD->setModulePrivate();
6699 if (NewTemplate)
6700 NewTemplate->setModulePrivate();
6701 for (auto *B : Bindings)
6702 B->setModulePrivate();
6703 }
6704 }
6705
6706 // Handle attributes prior to checking for duplicates in MergeVarDecl
6707 ProcessDeclAttributes(S, NewVD, D);
6708
6709 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6710 if (EmitTLSUnsupportedError &&
6711 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6712 (getLangOpts().OpenMPIsDevice &&
6713 NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6714 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6715 diag::err_thread_unsupported);
6716 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6717 // storage [duration]."
6718 if (SC == SC_None && S->getFnParent() != nullptr &&
6719 (NewVD->hasAttr<CUDASharedAttr>() ||
6720 NewVD->hasAttr<CUDAConstantAttr>())) {
6721 NewVD->setStorageClass(SC_Static);
6722 }
6723 }
6724
6725 // Ensure that dllimport globals without explicit storage class are treated as
6726 // extern. The storage class is set above using parsed attributes. Now we can
6727 // check the VarDecl itself.
6728 assert(!NewVD->hasAttr<DLLImportAttr>() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6730, __PRETTY_FUNCTION__))
6729 NewVD->getAttr<DLLImportAttr>()->isInherited() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6730, __PRETTY_FUNCTION__))
6730 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 6730, __PRETTY_FUNCTION__))
;
6731
6732 // In auto-retain/release, infer strong retension for variables of
6733 // retainable type.
6734 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6735 NewVD->setInvalidDecl();
6736
6737 // Handle GNU asm-label extension (encoded as an attribute).
6738 if (Expr *E = (Expr*)D.getAsmLabel()) {
6739 // The parser guarantees this is a string.
6740 StringLiteral *SE = cast<StringLiteral>(E);
6741 StringRef Label = SE->getString();
6742 if (S->getFnParent() != nullptr) {
6743 switch (SC) {
6744 case SC_None:
6745 case SC_Auto:
6746 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6747 break;
6748 case SC_Register:
6749 // Local Named register
6750 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6751 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6752 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6753 break;
6754 case SC_Static:
6755 case SC_Extern:
6756 case SC_PrivateExtern:
6757 break;
6758 }
6759 } else if (SC == SC_Register) {
6760 // Global Named register
6761 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6762 const auto &TI = Context.getTargetInfo();
6763 bool HasSizeMismatch;
6764
6765 if (!TI.isValidGCCRegisterName(Label))
6766 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6767 else if (!TI.validateGlobalRegisterVariable(Label,
6768 Context.getTypeSize(R),
6769 HasSizeMismatch))
6770 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6771 else if (HasSizeMismatch)
6772 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6773 }
6774
6775 if (!R->isIntegralType(Context) && !R->isPointerType()) {
6776 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6777 NewVD->setInvalidDecl(true);
6778 }
6779 }
6780
6781 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6782 Context, Label, 0));
6783 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6784 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6785 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6786 if (I != ExtnameUndeclaredIdentifiers.end()) {
6787 if (isDeclExternC(NewVD)) {
6788 NewVD->addAttr(I->second);
6789 ExtnameUndeclaredIdentifiers.erase(I);
6790 } else
6791 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6792 << /*Variable*/1 << NewVD;
6793 }
6794 }
6795
6796 // Find the shadowed declaration before filtering for scope.
6797 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6798 ? getShadowedDeclaration(NewVD, Previous)
6799 : nullptr;
6800
6801 // Don't consider existing declarations that are in a different
6802 // scope and are out-of-semantic-context declarations (if the new
6803 // declaration has linkage).
6804 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6805 D.getCXXScopeSpec().isNotEmpty() ||
6806 IsMemberSpecialization ||
6807 IsVariableTemplateSpecialization);
6808
6809 // Check whether the previous declaration is in the same block scope. This
6810 // affects whether we merge types with it, per C++11 [dcl.array]p3.
6811 if (getLangOpts().CPlusPlus &&
6812 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6813 NewVD->setPreviousDeclInSameBlockScope(
6814 Previous.isSingleResult() && !Previous.isShadowed() &&
6815 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6816
6817 if (!getLangOpts().CPlusPlus) {
6818 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6819 } else {
6820 // If this is an explicit specialization of a static data member, check it.
6821 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6822 CheckMemberSpecialization(NewVD, Previous))
6823 NewVD->setInvalidDecl();
6824
6825 // Merge the decl with the existing one if appropriate.
6826 if (!Previous.empty()) {
6827 if (Previous.isSingleResult() &&
6828 isa<FieldDecl>(Previous.getFoundDecl()) &&
6829 D.getCXXScopeSpec().isSet()) {
6830 // The user tried to define a non-static data member
6831 // out-of-line (C++ [dcl.meaning]p1).
6832 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6833 << D.getCXXScopeSpec().getRange();
6834 Previous.clear();
6835 NewVD->setInvalidDecl();
6836 }
6837 } else if (D.getCXXScopeSpec().isSet()) {
6838 // No previous declaration in the qualifying scope.
6839 Diag(D.getIdentifierLoc(), diag::err_no_member)
6840 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6841 << D.getCXXScopeSpec().getRange();
6842 NewVD->setInvalidDecl();
6843 }
6844
6845 if (!IsVariableTemplateSpecialization)
6846 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6847
6848 if (NewTemplate) {
6849 VarTemplateDecl *PrevVarTemplate =
6850 NewVD->getPreviousDecl()
6851 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6852 : nullptr;
6853
6854 // Check the template parameter list of this declaration, possibly
6855 // merging in the template parameter list from the previous variable
6856 // template declaration.
6857 if (CheckTemplateParameterList(
6858 TemplateParams,
6859 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6860 : nullptr,
6861 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6862 DC->isDependentContext())
6863 ? TPC_ClassTemplateMember
6864 : TPC_VarTemplate))
6865 NewVD->setInvalidDecl();
6866
6867 // If we are providing an explicit specialization of a static variable
6868 // template, make a note of that.
6869 if (PrevVarTemplate &&
6870 PrevVarTemplate->getInstantiatedFromMemberTemplate())
6871 PrevVarTemplate->setMemberSpecialization();
6872 }
6873 }
6874
6875 // Diagnose shadowed variables iff this isn't a redeclaration.
6876 if (ShadowedDecl && !D.isRedeclaration())
6877 CheckShadow(NewVD, ShadowedDecl, Previous);
6878
6879 ProcessPragmaWeak(S, NewVD);
6880
6881 // If this is the first declaration of an extern C variable, update
6882 // the map of such variables.
6883 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6884 isIncompleteDeclExternC(*this, NewVD))
6885 RegisterLocallyScopedExternCDecl(NewVD, S);
6886
6887 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6888 Decl *ManglingContextDecl;
6889 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6890 NewVD->getDeclContext(), ManglingContextDecl)) {
6891 Context.setManglingNumber(
6892 NewVD, MCtx->getManglingNumber(
6893 NewVD, getMSManglingNumber(getLangOpts(), S)));
6894 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6895 }
6896 }
6897
6898 // Special handling of variable named 'main'.
6899 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6900 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6901 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6902
6903 // C++ [basic.start.main]p3
6904 // A program that declares a variable main at global scope is ill-formed.
6905 if (getLangOpts().CPlusPlus)
6906 Diag(D.getBeginLoc(), diag::err_main_global_variable);
6907
6908 // In C, and external-linkage variable named main results in undefined
6909 // behavior.
6910 else if (NewVD->hasExternalFormalLinkage())
6911 Diag(D.getBeginLoc(), diag::warn_main_redefined);
6912 }
6913
6914 if (D.isRedeclaration() && !Previous.empty()) {
6915 NamedDecl *Prev = Previous.getRepresentativeDecl();
6916 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6917 D.isFunctionDefinition());
6918 }
6919
6920 if (NewTemplate) {
6921 if (NewVD->isInvalidDecl())
6922 NewTemplate->setInvalidDecl();
6923 ActOnDocumentableDecl(NewTemplate);
6924 return NewTemplate;
6925 }
6926
6927 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6928 CompleteMemberSpecialization(NewVD, Previous);
6929
6930 return NewVD;
6931}
6932
6933/// Enum describing the %select options in diag::warn_decl_shadow.
6934enum ShadowedDeclKind {
6935 SDK_Local,
6936 SDK_Global,
6937 SDK_StaticMember,
6938 SDK_Field,
6939 SDK_Typedef,
6940 SDK_Using
6941};
6942
6943/// Determine what kind of declaration we're shadowing.
6944static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
6945 const DeclContext *OldDC) {
6946 if (isa<TypeAliasDecl>(ShadowedDecl))
6947 return SDK_Using;
6948 else if (isa<TypedefDecl>(ShadowedDecl))
6949 return SDK_Typedef;
6950 else if (isa<RecordDecl>(OldDC))
6951 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
6952
6953 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
6954}
6955
6956/// Return the location of the capture if the given lambda captures the given
6957/// variable \p VD, or an invalid source location otherwise.
6958static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
6959 const VarDecl *VD) {
6960 for (const Capture &Capture : LSI->Captures) {
6961 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
6962 return Capture.getLocation();
6963 }
6964 return SourceLocation();
6965}
6966
6967static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
6968 const LookupResult &R) {
6969 // Only diagnose if we're shadowing an unambiguous field or variable.
6970 if (R.getResultKind() != LookupResult::Found)
6971 return false;
6972
6973 // Return false if warning is ignored.
6974 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
6975}
6976
6977/// Return the declaration shadowed by the given variable \p D, or null
6978/// if it doesn't shadow any declaration or shadowing warnings are disabled.
6979NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
6980 const LookupResult &R) {
6981 if (!shouldWarnIfShadowedDecl(Diags, R))
6982 return nullptr;
6983
6984 // Don't diagnose declarations at file scope.
6985 if (D->hasGlobalStorage())
6986 return nullptr;
6987
6988 NamedDecl *ShadowedDecl = R.getFoundDecl();
6989 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
6990 ? ShadowedDecl
6991 : nullptr;
6992}
6993
6994/// Return the declaration shadowed by the given typedef \p D, or null
6995/// if it doesn't shadow any declaration or shadowing warnings are disabled.
6996NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
6997 const LookupResult &R) {
6998 // Don't warn if typedef declaration is part of a class
6999 if (D->getDeclContext()->isRecord())
7000 return nullptr;
7001
7002 if (!shouldWarnIfShadowedDecl(Diags, R))
7003 return nullptr;
7004
7005 NamedDecl *ShadowedDecl = R.getFoundDecl();
7006 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7007}
7008
7009/// Diagnose variable or built-in function shadowing. Implements
7010/// -Wshadow.
7011///
7012/// This method is called whenever a VarDecl is added to a "useful"
7013/// scope.
7014///
7015/// \param ShadowedDecl the declaration that is shadowed by the given variable
7016/// \param R the lookup of the name
7017///
7018void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7019 const LookupResult &R) {
7020 DeclContext *NewDC = D->getDeclContext();
7021
7022 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7023 // Fields are not shadowed by variables in C++ static methods.
7024 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7025 if (MD->isStatic())
7026 return;
7027
7028 // Fields shadowed by constructor parameters are a special case. Usually
7029 // the constructor initializes the field with the parameter.
7030 if (isa<CXXConstructorDecl>(NewDC))
7031 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7032 // Remember that this was shadowed so we can either warn about its
7033 // modification or its existence depending on warning settings.
7034 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7035 return;
7036 }
7037 }
7038
7039 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7040 if (shadowedVar->isExternC()) {
7041 // For shadowing external vars, make sure that we point to the global
7042 // declaration, not a locally scoped extern declaration.
7043 for (auto I : shadowedVar->redecls())
7044 if (I->isFileVarDecl()) {
7045 ShadowedDecl = I;
7046 break;
7047 }
7048 }
7049
7050 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7051
7052 unsigned WarningDiag = diag::warn_decl_shadow;
7053 SourceLocation CaptureLoc;
7054 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7055 isa<CXXMethodDecl>(NewDC)) {
7056 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7057 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7058 if (RD->getLambdaCaptureDefault() == LCD_None) {
7059 // Try to avoid warnings for lambdas with an explicit capture list.
7060 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7061 // Warn only when the lambda captures the shadowed decl explicitly.
7062 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7063 if (CaptureLoc.isInvalid())
7064 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7065 } else {
7066 // Remember that this was shadowed so we can avoid the warning if the
7067 // shadowed decl isn't captured and the warning settings allow it.
7068 cast<LambdaScopeInfo>(getCurFunction())
7069 ->ShadowingDecls.push_back(
7070 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7071 return;
7072 }
7073 }
7074
7075 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7076 // A variable can't shadow a local variable in an enclosing scope, if
7077 // they are separated by a non-capturing declaration context.
7078 for (DeclContext *ParentDC = NewDC;
7079 ParentDC && !ParentDC->Equals(OldDC);
7080 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7081 // Only block literals, captured statements, and lambda expressions
7082 // can capture; other scopes don't.
7083 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7084 !isLambdaCallOperator(ParentDC)) {
7085 return;
7086 }
7087 }
7088 }
7089 }
7090 }
7091
7092 // Only warn about certain kinds of shadowing for class members.
7093 if (NewDC && NewDC->isRecord()) {
7094 // In particular, don't warn about shadowing non-class members.
7095 if (!OldDC->isRecord())
7096 return;
7097
7098 // TODO: should we warn about static data members shadowing
7099 // static data members from base classes?
7100
7101 // TODO: don't diagnose for inaccessible shadowed members.
7102 // This is hard to do perfectly because we might friend the
7103 // shadowing context, but that's just a false negative.
7104 }
7105
7106
7107 DeclarationName Name = R.getLookupName();
7108
7109 // Emit warning and note.
7110 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7111 return;
7112 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7113 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7114 if (!CaptureLoc.isInvalid())
7115 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7116 << Name << /*explicitly*/ 1;
7117 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7118}
7119
7120/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7121/// when these variables are captured by the lambda.
7122void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7123 for (const auto &Shadow : LSI->ShadowingDecls) {
7124 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7125 // Try to avoid the warning when the shadowed decl isn't captured.
7126 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7127 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7128 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7129 ? diag::warn_decl_shadow_uncaptured_local
7130 : diag::warn_decl_shadow)
7131 << Shadow.VD->getDeclName()
7132 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7133 if (!CaptureLoc.isInvalid())
7134 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7135 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7136 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7137 }
7138}
7139
7140/// Check -Wshadow without the advantage of a previous lookup.
7141void Sema::CheckShadow(Scope *S, VarDecl *D) {
7142 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7143 return;
7144
7145 LookupResult R(*this, D->getDeclName(), D->getLocation(),
7146 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7147 LookupName(R, S);
7148 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7149 CheckShadow(D, ShadowedDecl, R);
7150}
7151
7152/// Check if 'E', which is an expression that is about to be modified, refers
7153/// to a constructor parameter that shadows a field.
7154void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7155 // Quickly ignore expressions that can't be shadowing ctor parameters.
7156 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7157 return;
7158 E = E->IgnoreParenImpCasts();
7159 auto *DRE = dyn_cast<DeclRefExpr>(E);
7160 if (!DRE)
7161 return;
7162 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7163 auto I = ShadowingDecls.find(D);
7164 if (I == ShadowingDecls.end())
7165 return;
7166 const NamedDecl *ShadowedDecl = I->second;
7167 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7168 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7169 Diag(D->getLocation(), diag::note_var_declared_here) << D;
7170 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7171
7172 // Avoid issuing multiple warnings about the same decl.
7173 ShadowingDecls.erase(I);
7174}
7175
7176/// Check for conflict between this global or extern "C" declaration and
7177/// previous global or extern "C" declarations. This is only used in C++.
7178template<typename T>
7179static bool checkGlobalOrExternCConflict(
7180 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7181 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")((S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7181, __PRETTY_FUNCTION__))
;
7182 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7183
7184 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7185 // The common case: this global doesn't conflict with any extern "C"
7186 // declaration.
7187 return false;
7188 }
7189
7190 if (Prev) {
7191 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7192 // Both the old and new declarations have C language linkage. This is a
7193 // redeclaration.
7194 Previous.clear();
7195 Previous.addDecl(Prev);
7196 return true;
7197 }
7198
7199 // This is a global, non-extern "C" declaration, and there is a previous
7200 // non-global extern "C" declaration. Diagnose if this is a variable
7201 // declaration.
7202 if (!isa<VarDecl>(ND))
7203 return false;
7204 } else {
7205 // The declaration is extern "C". Check for any declaration in the
7206 // translation unit which might conflict.
7207 if (IsGlobal) {
7208 // We have already performed the lookup into the translation unit.
7209 IsGlobal = false;
7210 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7211 I != E; ++I) {
7212 if (isa<VarDecl>(*I)) {
7213 Prev = *I;
7214 break;
7215 }
7216 }
7217 } else {
7218 DeclContext::lookup_result R =
7219 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7220 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7221 I != E; ++I) {
7222 if (isa<VarDecl>(*I)) {
7223 Prev = *I;
7224 break;
7225 }
7226 // FIXME: If we have any other entity with this name in global scope,
7227 // the declaration is ill-formed, but that is a defect: it breaks the
7228 // 'stat' hack, for instance. Only variables can have mangled name
7229 // clashes with extern "C" declarations, so only they deserve a
7230 // diagnostic.
7231 }
7232 }
7233
7234 if (!Prev)
7235 return false;
7236 }
7237
7238 // Use the first declaration's location to ensure we point at something which
7239 // is lexically inside an extern "C" linkage-spec.
7240 assert(Prev && "should have found a previous declaration to diagnose")((Prev && "should have found a previous declaration to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7240, __PRETTY_FUNCTION__))
;
7241 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7242 Prev = FD->getFirstDecl();
7243 else
7244 Prev = cast<VarDecl>(Prev)->getFirstDecl();
7245
7246 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7247 << IsGlobal << ND;
7248 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7249 << IsGlobal;
7250 return false;
7251}
7252
7253/// Apply special rules for handling extern "C" declarations. Returns \c true
7254/// if we have found that this is a redeclaration of some prior entity.
7255///
7256/// Per C++ [dcl.link]p6:
7257/// Two declarations [for a function or variable] with C language linkage
7258/// with the same name that appear in different scopes refer to the same
7259/// [entity]. An entity with C language linkage shall not be declared with
7260/// the same name as an entity in global scope.
7261template<typename T>
7262static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7263 LookupResult &Previous) {
7264 if (!S.getLangOpts().CPlusPlus) {
7265 // In C, when declaring a global variable, look for a corresponding 'extern'
7266 // variable declared in function scope. We don't need this in C++, because
7267 // we find local extern decls in the surrounding file-scope DeclContext.
7268 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7269 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7270 Previous.clear();
7271 Previous.addDecl(Prev);
7272 return true;
7273 }
7274 }
7275 return false;
7276 }
7277
7278 // A declaration in the translation unit can conflict with an extern "C"
7279 // declaration.
7280 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7281 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7282
7283 // An extern "C" declaration can conflict with a declaration in the
7284 // translation unit or can be a redeclaration of an extern "C" declaration
7285 // in another scope.
7286 if (isIncompleteDeclExternC(S,ND))
7287 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7288
7289 // Neither global nor extern "C": nothing to do.
7290 return false;
7291}
7292
7293void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7294 // If the decl is already known invalid, don't check it.
7295 if (NewVD->isInvalidDecl())
7296 return;
7297
7298 QualType T = NewVD->getType();
7299
7300 // Defer checking an 'auto' type until its initializer is attached.
7301 if (T->isUndeducedType())
7302 return;
7303
7304 if (NewVD->hasAttrs())
7305 CheckAlignasUnderalignment(NewVD);
7306
7307 if (T->isObjCObjectType()) {
7308 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7309 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7310 T = Context.getObjCObjectPointerType(T);
7311 NewVD->setType(T);
7312 }
7313
7314 // Emit an error if an address space was applied to decl with local storage.
7315 // This includes arrays of objects with address space qualifiers, but not
7316 // automatic variables that point to other address spaces.
7317 // ISO/IEC TR 18037 S5.1.2
7318 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7319 T.getAddressSpace() != LangAS::Default) {
7320 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7321 NewVD->setInvalidDecl();
7322 return;
7323 }
7324
7325 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7326 // scope.
7327 if (getLangOpts().OpenCLVersion == 120 &&
7328 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7329 NewVD->isStaticLocal()) {
7330 Diag(NewVD->getLocation(), diag::err_static_function_scope);
7331 NewVD->setInvalidDecl();
7332 return;
7333 }
7334
7335 if (getLangOpts().OpenCL) {
7336 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7337 if (NewVD->hasAttr<BlocksAttr>()) {
7338 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7339 return;
7340 }
7341
7342 if (T->isBlockPointerType()) {
7343 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7344 // can't use 'extern' storage class.
7345 if (!T.isConstQualified()) {
7346 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7347 << 0 /*const*/;
7348 NewVD->setInvalidDecl();
7349 return;
7350 }
7351 if (NewVD->hasExternalStorage()) {
7352 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7353 NewVD->setInvalidDecl();
7354 return;
7355 }
7356 }
7357 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7358 // __constant address space.
7359 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7360 // variables inside a function can also be declared in the global
7361 // address space.
7362 // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
7363 // address space additionally.
7364 // FIXME: Add local AS for OpenCL C++.
7365 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7366 NewVD->hasExternalStorage()) {
7367 if (!T->isSamplerT() &&
7368 !(T.getAddressSpace() == LangAS::opencl_constant ||
7369 (T.getAddressSpace() == LangAS::opencl_global &&
7370 (getLangOpts().OpenCLVersion == 200 ||
7371 getLangOpts().OpenCLCPlusPlus)))) {
7372 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7373 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7374 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7375 << Scope << "global or constant";
7376 else
7377 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7378 << Scope << "constant";
7379 NewVD->setInvalidDecl();
7380 return;
7381 }
7382 } else {
7383 if (T.getAddressSpace() == LangAS::opencl_global) {
7384 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7385 << 1 /*is any function*/ << "global";
7386 NewVD->setInvalidDecl();
7387 return;
7388 }
7389 if (T.getAddressSpace() == LangAS::opencl_constant ||
7390 T.getAddressSpace() == LangAS::opencl_local) {
7391 FunctionDecl *FD = getCurFunctionDecl();
7392 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7393 // in functions.
7394 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7395 if (T.getAddressSpace() == LangAS::opencl_constant)
7396 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7397 << 0 /*non-kernel only*/ << "constant";
7398 else
7399 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7400 << 0 /*non-kernel only*/ << "local";
7401 NewVD->setInvalidDecl();
7402 return;
7403 }
7404 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7405 // in the outermost scope of a kernel function.
7406 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7407 if (!getCurScope()->isFunctionScope()) {
7408 if (T.getAddressSpace() == LangAS::opencl_constant)
7409 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7410 << "constant";
7411 else
7412 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7413 << "local";
7414 NewVD->setInvalidDecl();
7415 return;
7416 }
7417 }
7418 } else if (T.getAddressSpace() != LangAS::opencl_private) {
7419 // Do not allow other address spaces on automatic variable.
7420 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7421 NewVD->setInvalidDecl();
7422 return;
7423 }
7424 }
7425 }
7426
7427 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7428 && !NewVD->hasAttr<BlocksAttr>()) {
7429 if (getLangOpts().getGC() != LangOptions::NonGC)
7430 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7431 else {
7432 assert(!getLangOpts().ObjCAutoRefCount)((!getLangOpts().ObjCAutoRefCount) ? static_cast<void> (
0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7432, __PRETTY_FUNCTION__))
;
7433 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7434 }
7435 }
7436
7437 bool isVM = T->isVariablyModifiedType();
7438 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7439 NewVD->hasAttr<BlocksAttr>())
7440 setFunctionHasBranchProtectedScope();
7441
7442 if ((isVM && NewVD->hasLinkage()) ||
7443 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7444 bool SizeIsNegative;
7445 llvm::APSInt Oversized;
7446 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7447 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7448 QualType FixedT;
7449 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
7450 FixedT = FixedTInfo->getType();
7451 else if (FixedTInfo) {
7452 // Type and type-as-written are canonically different. We need to fix up
7453 // both types separately.
7454 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7455 Oversized);
7456 }
7457 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7458 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7459 // FIXME: This won't give the correct result for
7460 // int a[10][n];
7461 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7462
7463 if (NewVD->isFileVarDecl())
7464 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7465 << SizeRange;
7466 else if (NewVD->isStaticLocal())
7467 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7468 << SizeRange;
7469 else
7470 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7471 << SizeRange;
7472 NewVD->setInvalidDecl();
7473 return;
7474 }
7475
7476 if (!FixedTInfo) {
7477 if (NewVD->isFileVarDecl())
7478 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7479 else
7480 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7481 NewVD->setInvalidDecl();
7482 return;
7483 }
7484
7485 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7486 NewVD->setType(FixedT);
7487 NewVD->setTypeSourceInfo(FixedTInfo);
7488 }
7489
7490 if (T->isVoidType()) {
7491 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7492 // of objects and functions.
7493 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7494 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7495 << T;
7496 NewVD->setInvalidDecl();
7497 return;
7498 }
7499 }
7500
7501 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7502 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7503 NewVD->setInvalidDecl();
7504 return;
7505 }
7506
7507 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7508 Diag(NewVD->getLocation(), diag::err_block_on_vm);
7509 NewVD->setInvalidDecl();
7510 return;
7511 }
7512
7513 if (NewVD->isConstexpr() && !T->isDependentType() &&
7514 RequireLiteralType(NewVD->getLocation(), T,
7515 diag::err_constexpr_var_non_literal)) {
7516 NewVD->setInvalidDecl();
7517 return;
7518 }
7519}
7520
7521/// Perform semantic checking on a newly-created variable
7522/// declaration.
7523///
7524/// This routine performs all of the type-checking required for a
7525/// variable declaration once it has been built. It is used both to
7526/// check variables after they have been parsed and their declarators
7527/// have been translated into a declaration, and to check variables
7528/// that have been instantiated from a template.
7529///
7530/// Sets NewVD->isInvalidDecl() if an error was encountered.
7531///
7532/// Returns true if the variable declaration is a redeclaration.
7533bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7534 CheckVariableDeclarationType(NewVD);
7535
7536 // If the decl is already known invalid, don't check it.
7537 if (NewVD->isInvalidDecl())
7538 return false;
7539
7540 // If we did not find anything by this name, look for a non-visible
7541 // extern "C" declaration with the same name.
7542 if (Previous.empty() &&
7543 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7544 Previous.setShadowed();
7545
7546 if (!Previous.empty()) {
7547 MergeVarDecl(NewVD, Previous);
7548 return true;
7549 }
7550 return false;
7551}
7552
7553namespace {
7554struct FindOverriddenMethod {
7555 Sema *S;
7556 CXXMethodDecl *Method;
7557
7558 /// Member lookup function that determines whether a given C++
7559 /// method overrides a method in a base class, to be used with
7560 /// CXXRecordDecl::lookupInBases().
7561 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7562 RecordDecl *BaseRecord =
7563 Specifier->getType()->getAs<RecordType>()->getDecl();
7564
7565 DeclarationName Name = Method->getDeclName();
7566
7567 // FIXME: Do we care about other names here too?
7568 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7569 // We really want to find the base class destructor here.
7570 QualType T = S->Context.getTypeDeclType(BaseRecord);
7571 CanQualType CT = S->Context.getCanonicalType(T);
7572
7573 Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7574 }
7575
7576 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7577 Path.Decls = Path.Decls.slice(1)) {
7578 NamedDecl *D = Path.Decls.front();
7579 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7580 if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7581 return true;
7582 }
7583 }
7584
7585 return false;
7586 }
7587};
7588
7589enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7590} // end anonymous namespace
7591
7592/// Report an error regarding overriding, along with any relevant
7593/// overridden methods.
7594///
7595/// \param DiagID the primary error to report.
7596/// \param MD the overriding method.
7597/// \param OEK which overrides to include as notes.
7598static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7599 OverrideErrorKind OEK = OEK_All) {
7600 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7601 for (const CXXMethodDecl *O : MD->overridden_methods()) {
7602 // This check (& the OEK parameter) could be replaced by a predicate, but
7603 // without lambdas that would be overkill. This is still nicer than writing
7604 // out the diag loop 3 times.
7605 if ((OEK == OEK_All) ||
7606 (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7607 (OEK == OEK_Deleted && O->isDeleted()))
7608 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7609 }
7610}
7611
7612/// AddOverriddenMethods - See if a method overrides any in the base classes,
7613/// and if so, check that it's a valid override and remember it.
7614bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7615 // Look for methods in base classes that this method might override.
7616 CXXBasePaths Paths;
7617 FindOverriddenMethod FOM;
7618 FOM.Method = MD;
7619 FOM.S = this;
7620 bool hasDeletedOverridenMethods = false;
7621 bool hasNonDeletedOverridenMethods = false;
7622 bool AddedAny = false;
7623 if (DC->lookupInBases(FOM, Paths)) {
7624 for (auto *I : Paths.found_decls()) {
7625 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7626 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7627 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7628 !CheckOverridingFunctionAttributes(MD, OldMD) &&
7629 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7630 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7631 hasDeletedOverridenMethods |= OldMD->isDeleted();
7632 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7633 AddedAny = true;
7634 }
7635 }
7636 }
7637 }
7638
7639 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7640 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7641 }
7642 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7643 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7644 }
7645
7646 return AddedAny;
7647}
7648
7649namespace {
7650 // Struct for holding all of the extra arguments needed by
7651 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7652 struct ActOnFDArgs {
7653 Scope *S;
7654 Declarator &D;
7655 MultiTemplateParamsArg TemplateParamLists;
7656 bool AddToScope;
7657 };
7658} // end anonymous namespace
7659
7660namespace {
7661
7662// Callback to only accept typo corrections that have a non-zero edit distance.
7663// Also only accept corrections that have the same parent decl.
7664class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
7665 public:
7666 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7667 CXXRecordDecl *Parent)
7668 : Context(Context), OriginalFD(TypoFD),
7669 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7670
7671 bool ValidateCandidate(const TypoCorrection &candidate) override {
7672 if (candidate.getEditDistance() == 0)
7673 return false;
7674
7675 SmallVector<unsigned, 1> MismatchedParams;
7676 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7677 CDeclEnd = candidate.end();
7678 CDecl != CDeclEnd; ++CDecl) {
7679 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7680
7681 if (FD && !FD->hasBody() &&
7682 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7683 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7684 CXXRecordDecl *Parent = MD->getParent();
7685 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7686 return true;
7687 } else if (!ExpectedParent) {
7688 return true;
7689 }
7690 }
7691 }
7692
7693 return false;
7694 }
7695
7696 private:
7697 ASTContext &Context;
7698 FunctionDecl *OriginalFD;
7699 CXXRecordDecl *ExpectedParent;
7700};
7701
7702} // end anonymous namespace
7703
7704void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7705 TypoCorrectedFunctionDefinitions.insert(F);
7706}
7707
7708/// Generate diagnostics for an invalid function redeclaration.
7709///
7710/// This routine handles generating the diagnostic messages for an invalid
7711/// function redeclaration, including finding possible similar declarations
7712/// or performing typo correction if there are no previous declarations with
7713/// the same name.
7714///
7715/// Returns a NamedDecl iff typo correction was performed and substituting in
7716/// the new declaration name does not cause new errors.
7717static NamedDecl *DiagnoseInvalidRedeclaration(
7718 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7719 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7720 DeclarationName Name = NewFD->getDeclName();
7721 DeclContext *NewDC = NewFD->getDeclContext();
7722 SmallVector<unsigned, 1> MismatchedParams;
7723 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7724 TypoCorrection Correction;
7725 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7726 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
7727 : diag::err_member_decl_does_not_match;
7728 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7729 IsLocalFriend ? Sema::LookupLocalFriendName
7730 : Sema::LookupOrdinaryName,
7731 Sema::ForVisibleRedeclaration);
7732
7733 NewFD->setInvalidDecl();
7734 if (IsLocalFriend)
7735 SemaRef.LookupName(Prev, S);
7736 else
7737 SemaRef.LookupQualifiedName(Prev, NewDC);
7738 assert(!Prev.isAmbiguous() &&((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7739, __PRETTY_FUNCTION__))
7739 "Cannot have an ambiguity in previous-declaration lookup")((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7739, __PRETTY_FUNCTION__))
;
7740 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7741 if (!Prev.empty()) {
7742 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7743 Func != FuncEnd; ++Func) {
7744 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7745 if (FD &&
7746 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7747 // Add 1 to the index so that 0 can mean the mismatch didn't
7748 // involve a parameter
7749 unsigned ParamNum =
7750 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7751 NearMatches.push_back(std::make_pair(FD, ParamNum));
7752 }
7753 }
7754 // If the qualified name lookup yielded nothing, try typo correction
7755 } else if ((Correction = SemaRef.CorrectTypo(
7756 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7757 &ExtraArgs.D.getCXXScopeSpec(),
7758 llvm::make_unique<DifferentNameValidatorCCC>(
7759 SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
7760 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
7761 // Set up everything for the call to ActOnFunctionDeclarator
7762 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7763 ExtraArgs.D.getIdentifierLoc());
7764 Previous.clear();
7765 Previous.setLookupName(Correction.getCorrection());
7766 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7767 CDeclEnd = Correction.end();
7768 CDecl != CDeclEnd; ++CDecl) {
7769 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7770 if (FD && !FD->hasBody() &&
7771 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7772 Previous.addDecl(FD);
7773 }
7774 }
7775 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7776
7777 NamedDecl *Result;
7778 // Retry building the function declaration with the new previous
7779 // declarations, and with errors suppressed.
7780 {
7781 // Trap errors.
7782 Sema::SFINAETrap Trap(SemaRef);
7783
7784 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7785 // pieces need to verify the typo-corrected C++ declaration and hopefully
7786 // eliminate the need for the parameter pack ExtraArgs.
7787 Result = SemaRef.ActOnFunctionDeclarator(
7788 ExtraArgs.S, ExtraArgs.D,
7789 Correction.getCorrectionDecl()->getDeclContext(),
7790 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7791 ExtraArgs.AddToScope);
7792
7793 if (Trap.hasErrorOccurred())
7794 Result = nullptr;
7795 }
7796
7797 if (Result) {
7798 // Determine which correction we picked.
7799 Decl *Canonical = Result->getCanonicalDecl();
7800 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7801 I != E; ++I)
7802 if ((*I)->getCanonicalDecl() == Canonical)
7803 Correction.setCorrectionDecl(*I);
7804
7805 // Let Sema know about the correction.
7806 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7807 SemaRef.diagnoseTypo(
7808 Correction,
7809 SemaRef.PDiag(IsLocalFriend
7810 ? diag::err_no_matching_local_friend_suggest
7811 : diag::err_member_decl_does_not_match_suggest)
7812 << Name << NewDC << IsDefinition);
7813 return Result;
7814 }
7815
7816 // Pretend the typo correction never occurred
7817 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7818 ExtraArgs.D.getIdentifierLoc());
7819 ExtraArgs.D.setRedeclaration(wasRedeclaration);
7820 Previous.clear();
7821 Previous.setLookupName(Name);
7822 }
7823
7824 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7825 << Name << NewDC << IsDefinition << NewFD->getLocation();
7826
7827 bool NewFDisConst = false;
7828 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7829 NewFDisConst = NewMD->isConst();
7830
7831 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7832 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7833 NearMatch != NearMatchEnd; ++NearMatch) {
7834 FunctionDecl *FD = NearMatch->first;
7835 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7836 bool FDisConst = MD && MD->isConst();
7837 bool IsMember = MD || !IsLocalFriend;
7838
7839 // FIXME: These notes are poorly worded for the local friend case.
7840 if (unsigned Idx = NearMatch->second) {
7841 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7842 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7843 if (Loc.isInvalid()) Loc = FD->getLocation();
7844 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7845 : diag::note_local_decl_close_param_match)
7846 << Idx << FDParam->getType()
7847 << NewFD->getParamDecl(Idx - 1)->getType();
7848 } else if (FDisConst != NewFDisConst) {
7849 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7850 << NewFDisConst << FD->getSourceRange().getEnd();
7851 } else
7852 SemaRef.Diag(FD->getLocation(),
7853 IsMember ? diag::note_member_def_close_match
7854 : diag::note_local_decl_close_match);
7855 }
7856 return nullptr;
7857}
7858
7859static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7860 switch (D.getDeclSpec().getStorageClassSpec()) {
7861 default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7861)
;
7862 case DeclSpec::SCS_auto:
7863 case DeclSpec::SCS_register:
7864 case DeclSpec::SCS_mutable:
7865 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7866 diag::err_typecheck_sclass_func);
7867 D.getMutableDeclSpec().ClearStorageClassSpecs();
7868 D.setInvalidType();
7869 break;
7870 case DeclSpec::SCS_unspecified: break;
7871 case DeclSpec::SCS_extern:
7872 if (D.getDeclSpec().isExternInLinkageSpec())
7873 return SC_None;
7874 return SC_Extern;
7875 case DeclSpec::SCS_static: {
7876 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7877 // C99 6.7.1p5:
7878 // The declaration of an identifier for a function that has
7879 // block scope shall have no explicit storage-class specifier
7880 // other than extern
7881 // See also (C++ [dcl.stc]p4).
7882 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7883 diag::err_static_block_func);
7884 break;
7885 } else
7886 return SC_Static;
7887 }
7888 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7889 }
7890
7891 // No explicit storage class has already been returned
7892 return SC_None;
7893}
7894
7895static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7896 DeclContext *DC, QualType &R,
7897 TypeSourceInfo *TInfo,
7898 StorageClass SC,
7899 bool &IsVirtualOkay) {
7900 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7901 DeclarationName Name = NameInfo.getName();
7902
7903 FunctionDecl *NewFD = nullptr;
7904 bool isInline = D.getDeclSpec().isInlineSpecified();
7905
7906 if (!SemaRef.getLangOpts().CPlusPlus) {
7907 // Determine whether the function was written with a
7908 // prototype. This true when:
7909 // - there is a prototype in the declarator, or
7910 // - the type R of the function is some kind of typedef or other non-
7911 // attributed reference to a type name (which eventually refers to a
7912 // function type).
7913 bool HasPrototype =
7914 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7915 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7916
7917 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
7918 R, TInfo, SC, isInline, HasPrototype, false);
7919 if (D.isInvalidType())
7920 NewFD->setInvalidDecl();
7921
7922 return NewFD;
7923 }
7924
7925 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7926 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7927
7928 // Check that the return type is not an abstract class type.
7929 // For record types, this is done by the AbstractClassUsageDiagnoser once
7930 // the class has been completely parsed.
7931 if (!DC->isRecord() &&
7932 SemaRef.RequireNonAbstractType(
7933 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7934 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7935 D.setInvalidType();
7936
7937 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7938 // This is a C++ constructor declaration.
7939 assert(DC->isRecord() &&((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7940, __PRETTY_FUNCTION__))
7940 "Constructors can only be declared in a member context")((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 7940, __PRETTY_FUNCTION__))
;
7941
7942 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7943 return CXXConstructorDecl::Create(
7944 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
7945 TInfo, isExplicit, isInline,
7946 /*isImplicitlyDeclared=*/false, isConstexpr);
7947
7948 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7949 // This is a C++ destructor declaration.
7950 if (DC->isRecord()) {
7951 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7952 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7953 CXXDestructorDecl *NewDD =
7954 CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
7955 NameInfo, R, TInfo, isInline,
7956 /*isImplicitlyDeclared=*/false);
7957
7958 // If the destructor needs an implicit exception specification, set it
7959 // now. FIXME: It'd be nice to be able to create the right type to start
7960 // with, but the type needs to reference the destructor declaration.
7961 if (SemaRef.getLangOpts().CPlusPlus11)
7962 SemaRef.AdjustDestructorExceptionSpec(NewDD);
7963
7964 IsVirtualOkay = true;
7965 return NewDD;
7966
7967 } else {
7968 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7969 D.setInvalidType();
7970
7971 // Create a FunctionDecl to satisfy the function definition parsing
7972 // code path.
7973 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
7974 D.getIdentifierLoc(), Name, R, TInfo, SC,
7975 isInline,
7976 /*hasPrototype=*/true, isConstexpr);
7977 }
7978
7979 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7980 if (!DC->isRecord()) {
7981 SemaRef.Diag(D.getIdentifierLoc(),
7982 diag::err_conv_function_not_member);
7983 return nullptr;
7984 }
7985
7986 SemaRef.CheckConversionDeclarator(D, R, SC);
7987 IsVirtualOkay = true;
7988 return CXXConversionDecl::Create(
7989 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
7990 TInfo, isInline, isExplicit, isConstexpr, SourceLocation());
7991
7992 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
7993 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
7994
7995 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
7996 isExplicit, NameInfo, R, TInfo,
7997 D.getEndLoc());
7998 } else if (DC->isRecord()) {
7999 // If the name of the function is the same as the name of the record,
8000 // then this must be an invalid constructor that has a return type.
8001 // (The parser checks for a return type and makes the declarator a
8002 // constructor if it has no return type).
8003 if (Name.getAsIdentifierInfo() &&
8004 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8005 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8006 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8007 << SourceRange(D.getIdentifierLoc());
8008 return nullptr;
8009 }
8010
8011 // This is a C++ method declaration.
8012 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8013 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8014 TInfo, SC, isInline, isConstexpr, SourceLocation());
8015 IsVirtualOkay = !Ret->isStatic();
8016 return Ret;
8017 } else {
8018 bool isFriend =
8019 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8020 if (!isFriend && SemaRef.CurContext->isRecord())
8021 return nullptr;
8022
8023 // Determine whether the function was written with a
8024 // prototype. This true when:
8025 // - we're in C++ (where every function has a prototype),
8026 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8027 R, TInfo, SC, isInline, true /*HasPrototype*/,
8028 isConstexpr);
8029 }
8030}
8031
8032enum OpenCLParamType {
8033 ValidKernelParam,
8034 PtrPtrKernelParam,
8035 PtrKernelParam,
8036 InvalidAddrSpacePtrKernelParam,
8037 InvalidKernelParam,
8038 RecordKernelParam
8039};
8040
8041static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8042 // Size dependent types are just typedefs to normal integer types
8043 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8044 // integers other than by their names.
8045 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8046
8047 // Remove typedefs one by one until we reach a typedef
8048 // for a size dependent type.
8049 QualType DesugaredTy = Ty;
8050 do {
8051 ArrayRef<StringRef> Names(SizeTypeNames);
8052 auto Match =
8053 std::find(Names.begin(), Names.end(), DesugaredTy.getAsString());
8054 if (Names.end() != Match)
8055 return true;
8056
8057 Ty = DesugaredTy;
8058 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8059 } while (DesugaredTy != Ty);
8060
8061 return false;
8062}
8063
8064static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8065 if (PT->isPointerType()) {
8066 QualType PointeeType = PT->getPointeeType();
8067 if (PointeeType->isPointerType())
8068 return PtrPtrKernelParam;
8069 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8070 PointeeType.getAddressSpace() == LangAS::opencl_private ||
8071 PointeeType.getAddressSpace() == LangAS::Default)
8072 return InvalidAddrSpacePtrKernelParam;
8073 return PtrKernelParam;
8074 }
8075
8076 // OpenCL v1.2 s6.9.k:
8077 // Arguments to kernel functions in a program cannot be declared with the
8078 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8079 // uintptr_t or a struct and/or union that contain fields declared to be one
8080 // of these built-in scalar types.
8081 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8082 return InvalidKernelParam;
8083
8084 if (PT->isImageType())
8085 return PtrKernelParam;
8086
8087 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8088 return InvalidKernelParam;
8089
8090 // OpenCL extension spec v1.2 s9.5:
8091 // This extension adds support for half scalar and vector types as built-in
8092 // types that can be used for arithmetic operations, conversions etc.
8093 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8094 return InvalidKernelParam;
8095
8096 if (PT->isRecordType())
8097 return RecordKernelParam;
8098
8099 // Look into an array argument to check if it has a forbidden type.
8100 if (PT->isArrayType()) {
8101 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8102 // Call ourself to check an underlying type of an array. Since the
8103 // getPointeeOrArrayElementType returns an innermost type which is not an
8104 // array, this recursive call only happens once.
8105 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8106 }
8107
8108 return ValidKernelParam;
8109}
8110
8111static void checkIsValidOpenCLKernelParameter(
8112 Sema &S,
8113 Declarator &D,
8114 ParmVarDecl *Param,
8115 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8116 QualType PT = Param->getType();
8117
8118 // Cache the valid types we encounter to avoid rechecking structs that are
8119 // used again
8120 if (ValidTypes.count(PT.getTypePtr()))
8121 return;
8122
8123 switch (getOpenCLKernelParameterType(S, PT)) {
8124 case PtrPtrKernelParam:
8125 // OpenCL v1.2 s6.9.a:
8126 // A kernel function argument cannot be declared as a
8127 // pointer to a pointer type.
8128 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8129 D.setInvalidType();
8130 return;
8131
8132 case InvalidAddrSpacePtrKernelParam:
8133 // OpenCL v1.0 s6.5:
8134 // __kernel function arguments declared to be a pointer of a type can point
8135 // to one of the following address spaces only : __global, __local or
8136 // __constant.
8137 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8138 D.setInvalidType();
8139 return;
8140
8141 // OpenCL v1.2 s6.9.k:
8142 // Arguments to kernel functions in a program cannot be declared with the
8143 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8144 // uintptr_t or a struct and/or union that contain fields declared to be
8145 // one of these built-in scalar types.
8146
8147 case InvalidKernelParam:
8148 // OpenCL v1.2 s6.8 n:
8149 // A kernel function argument cannot be declared
8150 // of event_t type.
8151 // Do not diagnose half type since it is diagnosed as invalid argument
8152 // type for any function elsewhere.
8153 if (!PT->isHalfType()) {
8154 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8155
8156 // Explain what typedefs are involved.
8157 const TypedefType *Typedef = nullptr;
8158 while ((Typedef = PT->getAs<TypedefType>())) {
8159 SourceLocation Loc = Typedef->getDecl()->getLocation();
8160 // SourceLocation may be invalid for a built-in type.
8161 if (Loc.isValid())
8162 S.Diag(Loc, diag::note_entity_declared_at) << PT;
8163 PT = Typedef->desugar();
8164 }
8165 }
8166
8167 D.setInvalidType();
8168 return;
8169
8170 case PtrKernelParam:
8171 case ValidKernelParam:
8172 ValidTypes.insert(PT.getTypePtr());
8173 return;
8174
8175 case RecordKernelParam:
8176 break;
8177 }
8178
8179 // Track nested structs we will inspect
8180 SmallVector<const Decl *, 4> VisitStack;
8181
8182 // Track where we are in the nested structs. Items will migrate from
8183 // VisitStack to HistoryStack as we do the DFS for bad field.
8184 SmallVector<const FieldDecl *, 4> HistoryStack;
8185 HistoryStack.push_back(nullptr);
8186
8187 // At this point we already handled everything except of a RecordType or
8188 // an ArrayType of a RecordType.
8189 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."
) ? static_cast<void> (0) : __assert_fail ("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8189, __PRETTY_FUNCTION__))
;
8190 const RecordType *RecTy =
8191 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8192 const RecordDecl *OrigRecDecl = RecTy->getDecl();
8193
8194 VisitStack.push_back(RecTy->getDecl());
8195 assert(VisitStack.back() && "First decl null?")((VisitStack.back() && "First decl null?") ? static_cast
<void> (0) : __assert_fail ("VisitStack.back() && \"First decl null?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8195, __PRETTY_FUNCTION__))
;
8196
8197 do {
8198 const Decl *Next = VisitStack.pop_back_val();
8199 if (!Next) {
8200 assert(!HistoryStack.empty())((!HistoryStack.empty()) ? static_cast<void> (0) : __assert_fail
("!HistoryStack.empty()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8200, __PRETTY_FUNCTION__))
;
8201 // Found a marker, we have gone up a level
8202 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8203 ValidTypes.insert(Hist->getType().getTypePtr());
8204
8205 continue;
8206 }
8207
8208 // Adds everything except the original parameter declaration (which is not a
8209 // field itself) to the history stack.
8210 const RecordDecl *RD;
8211 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8212 HistoryStack.push_back(Field);
8213
8214 QualType FieldTy = Field->getType();
8215 // Other field types (known to be valid or invalid) are handled while we
8216 // walk around RecordDecl::fields().
8217 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8218, __PRETTY_FUNCTION__))
8218 "Unexpected type.")(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8218, __PRETTY_FUNCTION__))
;
8219 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8220
8221 RD = FieldRecTy->castAs<RecordType>()->getDecl();
8222 } else {
8223 RD = cast<RecordDecl>(Next);
8224 }
8225
8226 // Add a null marker so we know when we've gone back up a level
8227 VisitStack.push_back(nullptr);
8228
8229 for (const auto *FD : RD->fields()) {
8230 QualType QT = FD->getType();
8231
8232 if (ValidTypes.count(QT.getTypePtr()))
8233 continue;
8234
8235 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8236 if (ParamType == ValidKernelParam)
8237 continue;
8238
8239 if (ParamType == RecordKernelParam) {
8240 VisitStack.push_back(FD);
8241 continue;
8242 }
8243
8244 // OpenCL v1.2 s6.9.p:
8245 // Arguments to kernel functions that are declared to be a struct or union
8246 // do not allow OpenCL objects to be passed as elements of the struct or
8247 // union.
8248 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8249 ParamType == InvalidAddrSpacePtrKernelParam) {
8250 S.Diag(Param->getLocation(),
8251 diag::err_record_with_pointers_kernel_param)
8252 << PT->isUnionType()
8253 << PT;
8254 } else {
8255 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8256 }
8257
8258 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8259 << OrigRecDecl->getDeclName();
8260
8261 // We have an error, now let's go back up through history and show where
8262 // the offending field came from
8263 for (ArrayRef<const FieldDecl *>::const_iterator
8264 I = HistoryStack.begin() + 1,
8265 E = HistoryStack.end();
8266 I != E; ++I) {
8267 const FieldDecl *OuterField = *I;
8268 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8269 << OuterField->getType();
8270 }
8271
8272 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8273 << QT->isPointerType()
8274 << QT;
8275 D.setInvalidType();
8276 return;
8277 }
8278 } while (!VisitStack.empty());
8279}
8280
8281/// Find the DeclContext in which a tag is implicitly declared if we see an
8282/// elaborated type specifier in the specified context, and lookup finds
8283/// nothing.
8284static DeclContext *getTagInjectionContext(DeclContext *DC) {
8285 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8286 DC = DC->getParent();
8287 return DC;
8288}
8289
8290/// Find the Scope in which a tag is implicitly declared if we see an
8291/// elaborated type specifier in the specified context, and lookup finds
8292/// nothing.
8293static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8294 while (S->isClassScope() ||
8295 (LangOpts.CPlusPlus &&
8296 S->isFunctionPrototypeScope()) ||
8297 ((S->getFlags() & Scope::DeclScope) == 0) ||
8298 (S->getEntity() && S->getEntity()->isTransparentContext()))
8299 S = S->getParent();
8300 return S;
8301}
8302
8303NamedDecl*
8304Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8305 TypeSourceInfo *TInfo, LookupResult &Previous,
8306 MultiTemplateParamsArg TemplateParamLists,
8307 bool &AddToScope) {
8308 QualType R = TInfo->getType();
8309
8310 assert(R->isFunctionType())((R->isFunctionType()) ? static_cast<void> (0) : __assert_fail
("R->isFunctionType()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8310, __PRETTY_FUNCTION__))
;
8311
8312 // TODO: consider using NameInfo for diagnostic.
8313 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8314 DeclarationName Name = NameInfo.getName();
8315 StorageClass SC = getFunctionStorageClass(*this, D);
8316
8317 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8318 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8319 diag::err_invalid_thread)
8320 << DeclSpec::getSpecifierName(TSCS);
8321
8322 if (D.isFirstDeclarationOfMember())
8323 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8324 D.getIdentifierLoc());
8325
8326 bool isFriend = false;
8327 FunctionTemplateDecl *FunctionTemplate = nullptr;
8328 bool isMemberSpecialization = false;
8329 bool isFunctionTemplateSpecialization = false;
8330
8331 bool isDependentClassScopeExplicitSpecialization = false;
8332 bool HasExplicitTemplateArgs = false;
8333 TemplateArgumentListInfo TemplateArgs;
8334
8335 bool isVirtualOkay = false;
8336
8337 DeclContext *OriginalDC = DC;
8338 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8339
8340 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8341 isVirtualOkay);
8342 if (!NewFD) return nullptr;
8343
8344 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8345 NewFD->setTopLevelDeclInObjCContainer();
8346
8347 // Set the lexical context. If this is a function-scope declaration, or has a
8348 // C++ scope specifier, or is the object of a friend declaration, the lexical
8349 // context will be different from the semantic context.
8350 NewFD->setLexicalDeclContext(CurContext);
8351
8352 if (IsLocalExternDecl)
8353 NewFD->setLocalExternDecl();
8354
8355 if (getLangOpts().CPlusPlus) {
8356 bool isInline = D.getDeclSpec().isInlineSpecified();
8357 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8358 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
8359 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8360 isFriend = D.getDeclSpec().isFriendSpecified();
8361 if (isFriend && !isInline && D.isFunctionDefinition()) {
8362 // C++ [class.friend]p5
8363 // A function can be defined in a friend declaration of a
8364 // class . . . . Such a function is implicitly inline.
8365 NewFD->setImplicitlyInline();
8366 }
8367
8368 // If this is a method defined in an __interface, and is not a constructor
8369 // or an overloaded operator, then set the pure flag (isVirtual will already
8370 // return true).
8371 if (const CXXRecordDecl *Parent =
8372 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8373 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8374 NewFD->setPure(true);
8375
8376 // C++ [class.union]p2
8377 // A union can have member functions, but not virtual functions.
8378 if (isVirtual && Parent->isUnion())
8379 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8380 }
8381
8382 SetNestedNameSpecifier(NewFD, D);
8383 isMemberSpecialization = false;
8384 isFunctionTemplateSpecialization = false;
8385 if (D.isInvalidType())
8386 NewFD->setInvalidDecl();
8387
8388 // Match up the template parameter lists with the scope specifier, then
8389 // determine whether we have a template or a template specialization.
8390 bool Invalid = false;
8391 if (TemplateParameterList *TemplateParams =
8392 MatchTemplateParametersToScopeSpecifier(
8393 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8394 D.getCXXScopeSpec(),
8395 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8396 ? D.getName().TemplateId
8397 : nullptr,
8398 TemplateParamLists, isFriend, isMemberSpecialization,
8399 Invalid)) {
8400 if (TemplateParams->size() > 0) {
8401 // This is a function template
8402
8403 // Check that we can declare a template here.
8404 if (CheckTemplateDeclScope(S, TemplateParams))
8405 NewFD->setInvalidDecl();
8406
8407 // A destructor cannot be a template.
8408 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8409 Diag(NewFD->getLocation(), diag::err_destructor_template);
8410 NewFD->setInvalidDecl();
8411 }
8412
8413 // If we're adding a template to a dependent context, we may need to
8414 // rebuilding some of the types used within the template parameter list,
8415 // now that we know what the current instantiation is.
8416 if (DC->isDependentContext()) {
8417 ContextRAII SavedContext(*this, DC);
8418 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8419 Invalid = true;
8420 }
8421
8422 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8423 NewFD->getLocation(),
8424 Name, TemplateParams,
8425 NewFD);
8426 FunctionTemplate->setLexicalDeclContext(CurContext);
8427 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8428
8429 // For source fidelity, store the other template param lists.
8430 if (TemplateParamLists.size() > 1) {
8431 NewFD->setTemplateParameterListsInfo(Context,
8432 TemplateParamLists.drop_back(1));
8433 }
8434 } else {
8435 // This is a function template specialization.
8436 isFunctionTemplateSpecialization = true;
8437 // For source fidelity, store all the template param lists.
8438 if (TemplateParamLists.size() > 0)
8439 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8440
8441 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8442 if (isFriend) {
8443 // We want to remove the "template<>", found here.
8444 SourceRange RemoveRange = TemplateParams->getSourceRange();
8445
8446 // If we remove the template<> and the name is not a
8447 // template-id, we're actually silently creating a problem:
8448 // the friend declaration will refer to an untemplated decl,
8449 // and clearly the user wants a template specialization. So
8450 // we need to insert '<>' after the name.
8451 SourceLocation InsertLoc;
8452 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8453 InsertLoc = D.getName().getSourceRange().getEnd();
8454 InsertLoc = getLocForEndOfToken(InsertLoc);
8455 }
8456
8457 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8458 << Name << RemoveRange
8459 << FixItHint::CreateRemoval(RemoveRange)
8460 << FixItHint::CreateInsertion(InsertLoc, "<>");
8461 }
8462 }
8463 } else {
8464 // All template param lists were matched against the scope specifier:
8465 // this is NOT (an explicit specialization of) a template.
8466 if (TemplateParamLists.size() > 0)
8467 // For source fidelity, store all the template param lists.
8468 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8469 }
8470
8471 if (Invalid) {
8472 NewFD->setInvalidDecl();
8473 if (FunctionTemplate)
8474 FunctionTemplate->setInvalidDecl();
8475 }
8476
8477 // C++ [dcl.fct.spec]p5:
8478 // The virtual specifier shall only be used in declarations of
8479 // nonstatic class member functions that appear within a
8480 // member-specification of a class declaration; see 10.3.
8481 //
8482 if (isVirtual && !NewFD->isInvalidDecl()) {
8483 if (!isVirtualOkay) {
8484 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8485 diag::err_virtual_non_function);
8486 } else if (!CurContext->isRecord()) {
8487 // 'virtual' was specified outside of the class.
8488 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8489 diag::err_virtual_out_of_class)
8490 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8491 } else if (NewFD->getDescribedFunctionTemplate()) {
8492 // C++ [temp.mem]p3:
8493 // A member function template shall not be virtual.
8494 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8495 diag::err_virtual_member_function_template)
8496 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8497 } else {
8498 // Okay: Add virtual to the method.
8499 NewFD->setVirtualAsWritten(true);
8500 }
8501
8502 if (getLangOpts().CPlusPlus14 &&
8503 NewFD->getReturnType()->isUndeducedType())
8504 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8505 }
8506
8507 if (getLangOpts().CPlusPlus14 &&
8508 (NewFD->isDependentContext() ||
8509 (isFriend && CurContext->isDependentContext())) &&
8510 NewFD->getReturnType()->isUndeducedType()) {
8511 // If the function template is referenced directly (for instance, as a
8512 // member of the current instantiation), pretend it has a dependent type.
8513 // This is not really justified by the standard, but is the only sane
8514 // thing to do.
8515 // FIXME: For a friend function, we have not marked the function as being
8516 // a friend yet, so 'isDependentContext' on the FD doesn't work.
8517 const FunctionProtoType *FPT =
8518 NewFD->getType()->castAs<FunctionProtoType>();
8519 QualType Result =
8520 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8521 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8522 FPT->getExtProtoInfo()));
8523 }
8524
8525 // C++ [dcl.fct.spec]p3:
8526 // The inline specifier shall not appear on a block scope function
8527 // declaration.
8528 if (isInline && !NewFD->isInvalidDecl()) {
8529 if (CurContext->isFunctionOrMethod()) {
8530 // 'inline' is not allowed on block scope function declaration.
8531 Diag(D.getDeclSpec().getInlineSpecLoc(),
8532 diag::err_inline_declaration_block_scope) << Name
8533 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8534 }
8535 }
8536
8537 // C++ [dcl.fct.spec]p6:
8538 // The explicit specifier shall be used only in the declaration of a
8539 // constructor or conversion function within its class definition;
8540 // see 12.3.1 and 12.3.2.
8541 if (isExplicit && !NewFD->isInvalidDecl() &&
8542 !isa<CXXDeductionGuideDecl>(NewFD)) {
8543 if (!CurContext->isRecord()) {
8544 // 'explicit' was specified outside of the class.
8545 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8546 diag::err_explicit_out_of_class)
8547 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8548 } else if (!isa<CXXConstructorDecl>(NewFD) &&
8549 !isa<CXXConversionDecl>(NewFD)) {
8550 // 'explicit' was specified on a function that wasn't a constructor
8551 // or conversion function.
8552 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8553 diag::err_explicit_non_ctor_or_conv_function)
8554 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8555 }
8556 }
8557
8558 if (isConstexpr) {
8559 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8560 // are implicitly inline.
8561 NewFD->setImplicitlyInline();
8562
8563 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8564 // be either constructors or to return a literal type. Therefore,
8565 // destructors cannot be declared constexpr.
8566 if (isa<CXXDestructorDecl>(NewFD))
8567 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8568 }
8569
8570 // If __module_private__ was specified, mark the function accordingly.
8571 if (D.getDeclSpec().isModulePrivateSpecified()) {
8572 if (isFunctionTemplateSpecialization) {
8573 SourceLocation ModulePrivateLoc
8574 = D.getDeclSpec().getModulePrivateSpecLoc();
8575 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8576 << 0
8577 << FixItHint::CreateRemoval(ModulePrivateLoc);
8578 } else {
8579 NewFD->setModulePrivate();
8580 if (FunctionTemplate)
8581 FunctionTemplate->setModulePrivate();
8582 }
8583 }
8584
8585 if (isFriend) {
8586 if (FunctionTemplate) {
8587 FunctionTemplate->setObjectOfFriendDecl();
8588 FunctionTemplate->setAccess(AS_public);
8589 }
8590 NewFD->setObjectOfFriendDecl();
8591 NewFD->setAccess(AS_public);
8592 }
8593
8594 // If a function is defined as defaulted or deleted, mark it as such now.
8595 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8596 // definition kind to FDK_Definition.
8597 switch (D.getFunctionDefinitionKind()) {
8598 case FDK_Declaration:
8599 case FDK_Definition:
8600 break;
8601
8602 case FDK_Defaulted:
8603 NewFD->setDefaulted();
8604 break;
8605
8606 case FDK_Deleted:
8607 NewFD->setDeletedAsWritten();
8608 break;
8609 }
8610
8611 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8612 D.isFunctionDefinition()) {
8613 // C++ [class.mfct]p2:
8614 // A member function may be defined (8.4) in its class definition, in
8615 // which case it is an inline member function (7.1.2)
8616 NewFD->setImplicitlyInline();
8617 }
8618
8619 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8620 !CurContext->isRecord()) {
8621 // C++ [class.static]p1:
8622 // A data or function member of a class may be declared static
8623 // in a class definition, in which case it is a static member of
8624 // the class.
8625
8626 // Complain about the 'static' specifier if it's on an out-of-line
8627 // member function definition.
8628 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8629 diag::err_static_out_of_line)
8630 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8631 }
8632
8633 // C++11 [except.spec]p15:
8634 // A deallocation function with no exception-specification is treated
8635 // as if it were specified with noexcept(true).
8636 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8637 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8638 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8639 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8640 NewFD->setType(Context.getFunctionType(
8641 FPT->getReturnType(), FPT->getParamTypes(),
8642 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8643 }
8644
8645 // Filter out previous declarations that don't match the scope.
8646 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8647 D.getCXXScopeSpec().isNotEmpty() ||
8648 isMemberSpecialization ||
8649 isFunctionTemplateSpecialization);
8650
8651 // Handle GNU asm-label extension (encoded as an attribute).
8652 if (Expr *E = (Expr*) D.getAsmLabel()) {
8653 // The parser guarantees this is a string.
8654 StringLiteral *SE = cast<StringLiteral>(E);
8655 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8656 SE->getString(), 0));
8657 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8658 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8659 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8660 if (I != ExtnameUndeclaredIdentifiers.end()) {
8661 if (isDeclExternC(NewFD)) {
8662 NewFD->addAttr(I->second);
8663 ExtnameUndeclaredIdentifiers.erase(I);
8664 } else
8665 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8666 << /*Variable*/0 << NewFD;
8667 }
8668 }
8669
8670 // Copy the parameter declarations from the declarator D to the function
8671 // declaration NewFD, if they are available. First scavenge them into Params.
8672 SmallVector<ParmVarDecl*, 16> Params;
8673 unsigned FTIIdx;
8674 if (D.isFunctionDeclarator(FTIIdx)) {
8675 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8676
8677 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8678 // function that takes no arguments, not a function that takes a
8679 // single void argument.
8680 // We let through "const void" here because Sema::GetTypeForDeclarator
8681 // already checks for that case.
8682 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8683 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8684 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8685 assert(Param->getDeclContext() != NewFD && "Was set before ?")((Param->getDeclContext() != NewFD && "Was set before ?"
) ? static_cast<void> (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8685, __PRETTY_FUNCTION__))
;
8686 Param->setDeclContext(NewFD);
8687 Params.push_back(Param);
8688
8689 if (Param->isInvalidDecl())
8690 NewFD->setInvalidDecl();
8691 }
8692 }
8693
8694 if (!getLangOpts().CPlusPlus) {
8695 // In C, find all the tag declarations from the prototype and move them
8696 // into the function DeclContext. Remove them from the surrounding tag
8697 // injection context of the function, which is typically but not always
8698 // the TU.
8699 DeclContext *PrototypeTagContext =
8700 getTagInjectionContext(NewFD->getLexicalDeclContext());
8701 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8702 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8703
8704 // We don't want to reparent enumerators. Look at their parent enum
8705 // instead.
8706 if (!TD) {
8707 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8708 TD = cast<EnumDecl>(ECD->getDeclContext());
8709 }
8710 if (!TD)
8711 continue;
8712 DeclContext *TagDC = TD->getLexicalDeclContext();
8713 if (!TagDC->containsDecl(TD))
8714 continue;
8715 TagDC->removeDecl(TD);
8716 TD->setDeclContext(NewFD);
8717 NewFD->addDecl(TD);
8718
8719 // Preserve the lexical DeclContext if it is not the surrounding tag
8720 // injection context of the FD. In this example, the semantic context of
8721 // E will be f and the lexical context will be S, while both the
8722 // semantic and lexical contexts of S will be f:
8723 // void f(struct S { enum E { a } f; } s);
8724 if (TagDC != PrototypeTagContext)
8725 TD->setLexicalDeclContext(TagDC);
8726 }
8727 }
8728 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8729 // When we're declaring a function with a typedef, typeof, etc as in the
8730 // following example, we'll need to synthesize (unnamed)
8731 // parameters for use in the declaration.
8732 //
8733 // @code
8734 // typedef void fn(int);
8735 // fn f;
8736 // @endcode
8737
8738 // Synthesize a parameter for each argument type.
8739 for (const auto &AI : FT->param_types()) {
8740 ParmVarDecl *Param =
8741 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8742 Param->setScopeInfo(0, Params.size());
8743 Params.push_back(Param);
8744 }
8745 } else {
8746 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8747, __PRETTY_FUNCTION__))
8747 "Should not need args for typedef of non-prototype fn")((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8747, __PRETTY_FUNCTION__))
;
8748 }
8749
8750 // Finally, we know we have the right number of parameters, install them.
8751 NewFD->setParams(Params);
8752
8753 if (D.getDeclSpec().isNoreturnSpecified())
8754 NewFD->addAttr(
8755 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8756 Context, 0));
8757
8758 // Functions returning a variably modified type violate C99 6.7.5.2p2
8759 // because all functions have linkage.
8760 if (!NewFD->isInvalidDecl() &&
8761 NewFD->getReturnType()->isVariablyModifiedType()) {
8762 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8763 NewFD->setInvalidDecl();
8764 }
8765
8766 // Apply an implicit SectionAttr if '#pragma clang section text' is active
8767 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8768 !NewFD->hasAttr<SectionAttr>()) {
8769 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8770 PragmaClangTextSection.SectionName,
8771 PragmaClangTextSection.PragmaLocation));
8772 }
8773
8774 // Apply an implicit SectionAttr if #pragma code_seg is active.
8775 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8776 !NewFD->hasAttr<SectionAttr>()) {
8777 NewFD->addAttr(
8778 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8779 CodeSegStack.CurrentValue->getString(),
8780 CodeSegStack.CurrentPragmaLocation));
8781 if (UnifySection(CodeSegStack.CurrentValue->getString(),
8782 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8783 ASTContext::PSF_Read,
8784 NewFD))
8785 NewFD->dropAttr<SectionAttr>();
8786 }
8787
8788 // Apply an implicit CodeSegAttr from class declspec or
8789 // apply an implicit SectionAttr from #pragma code_seg if active.
8790 if (!NewFD->hasAttr<CodeSegAttr>()) {
8791 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8792 D.isFunctionDefinition())) {
8793 NewFD->addAttr(SAttr);
8794 }
8795 }
8796
8797 // Handle attributes.
8798 ProcessDeclAttributes(S, NewFD, D);
8799
8800 if (getLangOpts().OpenCL) {
8801 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8802 // type declaration will generate a compilation error.
8803 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8804 if (AddressSpace != LangAS::Default) {
8805 Diag(NewFD->getLocation(),
8806 diag::err_opencl_return_value_with_address_space);
8807 NewFD->setInvalidDecl();
8808 }
8809 }
8810
8811 if (!getLangOpts().CPlusPlus) {
8812 // Perform semantic checking on the function declaration.
8813 if (!NewFD->isInvalidDecl() && NewFD->isMain())
8814 CheckMain(NewFD, D.getDeclSpec());
8815
8816 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8817 CheckMSVCRTEntryPoint(NewFD);
8818
8819 if (!NewFD->isInvalidDecl())
8820 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8821 isMemberSpecialization));
8822 else if (!Previous.empty())
8823 // Recover gracefully from an invalid redeclaration.
8824 D.setRedeclaration(true);
8825 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8827, __PRETTY_FUNCTION__))
8826 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8827, __PRETTY_FUNCTION__))
8827 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8827, __PRETTY_FUNCTION__))
;
8828
8829 // Diagnose no-prototype function declarations with calling conventions that
8830 // don't support variadic calls. Only do this in C and do it after merging
8831 // possibly prototyped redeclarations.
8832 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8833 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8834 CallingConv CC = FT->getExtInfo().getCC();
8835 if (!supportsVariadicCall(CC)) {
8836 // Windows system headers sometimes accidentally use stdcall without
8837 // (void) parameters, so we relax this to a warning.
8838 int DiagID =
8839 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8840 Diag(NewFD->getLocation(), DiagID)
8841 << FunctionType::getNameForCallConv(CC);
8842 }
8843 }
8844 } else {
8845 // C++11 [replacement.functions]p3:
8846 // The program's definitions shall not be specified as inline.
8847 //
8848 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8849 //
8850 // Suppress the diagnostic if the function is __attribute__((used)), since
8851 // that forces an external definition to be emitted.
8852 if (D.getDeclSpec().isInlineSpecified() &&
8853 NewFD->isReplaceableGlobalAllocationFunction() &&
8854 !NewFD->hasAttr<UsedAttr>())
8855 Diag(D.getDeclSpec().getInlineSpecLoc(),
8856 diag::ext_operator_new_delete_declared_inline)
8857 << NewFD->getDeclName();
8858
8859 // If the declarator is a template-id, translate the parser's template
8860 // argument list into our AST format.
8861 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8862 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8863 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8864 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8865 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8866 TemplateId->NumArgs);
8867 translateTemplateArguments(TemplateArgsPtr,
8868 TemplateArgs);
8869
8870 HasExplicitTemplateArgs = true;
8871
8872 if (NewFD->isInvalidDecl()) {
8873 HasExplicitTemplateArgs = false;
8874 } else if (FunctionTemplate) {
8875 // Function template with explicit template arguments.
8876 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8877 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8878
8879 HasExplicitTemplateArgs = false;
8880 } else {
8881 assert((isFunctionTemplateSpecialization ||(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8883, __PRETTY_FUNCTION__))
8882 D.getDeclSpec().isFriendSpecified()) &&(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8883, __PRETTY_FUNCTION__))
8883 "should have a 'template<>' for this decl")(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8883, __PRETTY_FUNCTION__))
;
8884 // "friend void foo<>(int);" is an implicit specialization decl.
8885 isFunctionTemplateSpecialization = true;
8886 }
8887 } else if (isFriend && isFunctionTemplateSpecialization) {
8888 // This combination is only possible in a recovery case; the user
8889 // wrote something like:
8890 // template <> friend void foo(int);
8891 // which we're recovering from as if the user had written:
8892 // friend void foo<>(int);
8893 // Go ahead and fake up a template id.
8894 HasExplicitTemplateArgs = true;
8895 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8896 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8897 }
8898
8899 // We do not add HD attributes to specializations here because
8900 // they may have different constexpr-ness compared to their
8901 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8902 // may end up with different effective targets. Instead, a
8903 // specialization inherits its target attributes from its template
8904 // in the CheckFunctionTemplateSpecialization() call below.
8905 if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8906 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8907
8908 // If it's a friend (and only if it's a friend), it's possible
8909 // that either the specialized function type or the specialized
8910 // template is dependent, and therefore matching will fail. In
8911 // this case, don't check the specialization yet.
8912 bool InstantiationDependent = false;
8913 if (isFunctionTemplateSpecialization && isFriend &&
8914 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8915 TemplateSpecializationType::anyDependentTemplateArguments(
8916 TemplateArgs,
8917 InstantiationDependent))) {
8918 assert(HasExplicitTemplateArgs &&((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8919, __PRETTY_FUNCTION__))
8919 "friend function specialization without template args")((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8919, __PRETTY_FUNCTION__))
;
8920 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8921 Previous))
8922 NewFD->setInvalidDecl();
8923 } else if (isFunctionTemplateSpecialization) {
8924 if (CurContext->isDependentContext() && CurContext->isRecord()
8925 && !isFriend) {
8926 isDependentClassScopeExplicitSpecialization = true;
8927 } else if (!NewFD->isInvalidDecl() &&
8928 CheckFunctionTemplateSpecialization(
8929 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
8930 Previous))
8931 NewFD->setInvalidDecl();
8932
8933 // C++ [dcl.stc]p1:
8934 // A storage-class-specifier shall not be specified in an explicit
8935 // specialization (14.7.3)
8936 FunctionTemplateSpecializationInfo *Info =
8937 NewFD->getTemplateSpecializationInfo();
8938 if (Info && SC != SC_None) {
8939 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8940 Diag(NewFD->getLocation(),
8941 diag::err_explicit_specialization_inconsistent_storage_class)
8942 << SC
8943 << FixItHint::CreateRemoval(
8944 D.getDeclSpec().getStorageClassSpecLoc());
8945
8946 else
8947 Diag(NewFD->getLocation(),
8948 diag::ext_explicit_specialization_storage_class)
8949 << FixItHint::CreateRemoval(
8950 D.getDeclSpec().getStorageClassSpecLoc());
8951 }
8952 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
8953 if (CheckMemberSpecialization(NewFD, Previous))
8954 NewFD->setInvalidDecl();
8955 }
8956
8957 // Perform semantic checking on the function declaration.
8958 if (!isDependentClassScopeExplicitSpecialization) {
8959 if (!NewFD->isInvalidDecl() && NewFD->isMain())
8960 CheckMain(NewFD, D.getDeclSpec());
8961
8962 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8963 CheckMSVCRTEntryPoint(NewFD);
8964
8965 if (!NewFD->isInvalidDecl())
8966 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8967 isMemberSpecialization));
8968 else if (!Previous.empty())
8969 // Recover gracefully from an invalid redeclaration.
8970 D.setRedeclaration(true);
8971 }
8972
8973 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8975, __PRETTY_FUNCTION__))
8974 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8975, __PRETTY_FUNCTION__))
8975 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 8975, __PRETTY_FUNCTION__))
;
8976
8977 NamedDecl *PrincipalDecl = (FunctionTemplate
8978 ? cast<NamedDecl>(FunctionTemplate)
8979 : NewFD);
8980
8981 if (isFriend && NewFD->getPreviousDecl()) {
8982 AccessSpecifier Access = AS_public;
8983 if (!NewFD->isInvalidDecl())
8984 Access = NewFD->getPreviousDecl()->getAccess();
8985
8986 NewFD->setAccess(Access);
8987 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8988 }
8989
8990 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8991 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8992 PrincipalDecl->setNonMemberOperator();
8993
8994 // If we have a function template, check the template parameter
8995 // list. This will check and merge default template arguments.
8996 if (FunctionTemplate) {
8997 FunctionTemplateDecl *PrevTemplate =
8998 FunctionTemplate->getPreviousDecl();
8999 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9000 PrevTemplate ? PrevTemplate->getTemplateParameters()
9001 : nullptr,
9002 D.getDeclSpec().isFriendSpecified()
9003 ? (D.isFunctionDefinition()
9004 ? TPC_FriendFunctionTemplateDefinition
9005 : TPC_FriendFunctionTemplate)
9006 : (D.getCXXScopeSpec().isSet() &&
9007 DC && DC->isRecord() &&
9008 DC->isDependentContext())
9009 ? TPC_ClassTemplateMember
9010 : TPC_FunctionTemplate);
9011 }
9012
9013 if (NewFD->isInvalidDecl()) {
9014 // Ignore all the rest of this.
9015 } else if (!D.isRedeclaration()) {
9016 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9017 AddToScope };
9018 // Fake up an access specifier if it's supposed to be a class member.
9019 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9020 NewFD->setAccess(AS_public);
9021
9022 // Qualified decls generally require a previous declaration.
9023 if (D.getCXXScopeSpec().isSet()) {
9024 // ...with the major exception of templated-scope or
9025 // dependent-scope friend declarations.
9026
9027 // TODO: we currently also suppress this check in dependent
9028 // contexts because (1) the parameter depth will be off when
9029 // matching friend templates and (2) we might actually be
9030 // selecting a friend based on a dependent factor. But there
9031 // are situations where these conditions don't apply and we
9032 // can actually do this check immediately.
9033 if (isFriend &&
9034 (TemplateParamLists.size() ||
9035 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9036 CurContext->isDependentContext())) {
9037 // ignore these
9038 } else {
9039 // The user tried to provide an out-of-line definition for a
9040 // function that is a member of a class or namespace, but there
9041 // was no such member function declared (C++ [class.mfct]p2,
9042 // C++ [namespace.memdef]p2). For example:
9043 //
9044 // class X {
9045 // void f() const;
9046 // };
9047 //
9048 // void X::f() { } // ill-formed
9049 //
9050 // Complain about this problem, and attempt to suggest close
9051 // matches (e.g., those that differ only in cv-qualifiers and
9052 // whether the parameter types are references).
9053
9054 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9055 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9056 AddToScope = ExtraArgs.AddToScope;
9057 return Result;
9058 }
9059 }
9060
9061 // Unqualified local friend declarations are required to resolve
9062 // to something.
9063 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9064 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9065 *this, Previous, NewFD, ExtraArgs, true, S)) {
9066 AddToScope = ExtraArgs.AddToScope;
9067 return Result;
9068 }
9069 }
9070 } else if (!D.isFunctionDefinition() &&
9071 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9072 !isFriend && !isFunctionTemplateSpecialization &&
9073 !isMemberSpecialization) {
9074 // An out-of-line member function declaration must also be a
9075 // definition (C++ [class.mfct]p2).
9076 // Note that this is not the case for explicit specializations of
9077 // function templates or member functions of class templates, per
9078 // C++ [temp.expl.spec]p2. We also allow these declarations as an
9079 // extension for compatibility with old SWIG code which likes to
9080 // generate them.
9081 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9082 << D.getCXXScopeSpec().getRange();
9083 }
9084 }
9085
9086 ProcessPragmaWeak(S, NewFD);
9087 checkAttributesAfterMerging(*this, *NewFD);
9088
9089 AddKnownFunctionAttributes(NewFD);
9090
9091 if (NewFD->hasAttr<OverloadableAttr>() &&
9092 !NewFD->getType()->getAs<FunctionProtoType>()) {
9093 Diag(NewFD->getLocation(),
9094 diag::err_attribute_overloadable_no_prototype)
9095 << NewFD;
9096
9097 // Turn this into a variadic function with no parameters.
9098 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9099 FunctionProtoType::ExtProtoInfo EPI(
9100 Context.getDefaultCallingConvention(true, false));
9101 EPI.Variadic = true;
9102 EPI.ExtInfo = FT->getExtInfo();
9103
9104 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9105 NewFD->setType(R);
9106 }
9107
9108 // If there's a #pragma GCC visibility in scope, and this isn't a class
9109 // member, set the visibility of this function.
9110 if (!DC->isRecord() && NewFD->isExternallyVisible())
9111 AddPushedVisibilityAttribute(NewFD);
9112
9113 // If there's a #pragma clang arc_cf_code_audited in scope, consider
9114 // marking the function.
9115 AddCFAuditedAttribute(NewFD);
9116
9117 // If this is a function definition, check if we have to apply optnone due to
9118 // a pragma.
9119 if(D.isFunctionDefinition())
9120 AddRangeBasedOptnone(NewFD);
9121
9122 // If this is the first declaration of an extern C variable, update
9123 // the map of such variables.
9124 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9125 isIncompleteDeclExternC(*this, NewFD))
9126 RegisterLocallyScopedExternCDecl(NewFD, S);
9127
9128 // Set this FunctionDecl's range up to the right paren.
9129 NewFD->setRangeEnd(D.getSourceRange().getEnd());
9130
9131 if (D.isRedeclaration() && !Previous.empty()) {
9132 NamedDecl *Prev = Previous.getRepresentativeDecl();
9133 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9134 isMemberSpecialization ||
9135 isFunctionTemplateSpecialization,
9136 D.isFunctionDefinition());
9137 }
9138
9139 if (getLangOpts().CUDA) {
9140 IdentifierInfo *II = NewFD->getIdentifier();
9141 if (II &&
9142 II->isStr(getLangOpts().HIP ? "hipConfigureCall"
9143 : "cudaConfigureCall") &&
9144 !NewFD->isInvalidDecl() &&
9145 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9146 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9147 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
9148 Context.setcudaConfigureCallDecl(NewFD);
9149 }
9150
9151 // Variadic functions, other than a *declaration* of printf, are not allowed
9152 // in device-side CUDA code, unless someone passed
9153 // -fcuda-allow-variadic-functions.
9154 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9155 (NewFD->hasAttr<CUDADeviceAttr>() ||
9156 NewFD->hasAttr<CUDAGlobalAttr>()) &&
9157 !(II && II->isStr("printf") && NewFD->isExternC() &&
9158 !D.isFunctionDefinition())) {
9159 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9160 }
9161 }
9162
9163 MarkUnusedFileScopedDecl(NewFD);
9164
9165 if (getLangOpts().CPlusPlus) {
9166 if (FunctionTemplate) {
9167 if (NewFD->isInvalidDecl())
9168 FunctionTemplate->setInvalidDecl();
9169 return FunctionTemplate;
9170 }
9171
9172 if (isMemberSpecialization && !NewFD->isInvalidDecl())
9173 CompleteMemberSpecialization(NewFD, Previous);
9174 }
9175
9176 if (NewFD->hasAttr<OpenCLKernelAttr>()) {
9177 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9178 if ((getLangOpts().OpenCLVersion >= 120)
9179 && (SC == SC_Static)) {
9180 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9181 D.setInvalidType();
9182 }
9183
9184 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9185 if (!NewFD->getReturnType()->isVoidType()) {
9186 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9187 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9188 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9189 : FixItHint());
9190 D.setInvalidType();
9191 }
9192
9193 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9194 for (auto Param : NewFD->parameters())
9195 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9196 }
9197 for (const ParmVarDecl *Param : NewFD->parameters()) {
9198 QualType PT = Param->getType();
9199
9200 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9201 // types.
9202 if (getLangOpts().OpenCLVersion >= 200) {
9203 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9204 QualType ElemTy = PipeTy->getElementType();
9205 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9206 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9207 D.setInvalidType();
9208 }
9209 }
9210 }
9211 }
9212
9213 // Here we have an function template explicit specialization at class scope.
9214 // The actual specialization will be postponed to template instatiation
9215 // time via the ClassScopeFunctionSpecializationDecl node.
9216 if (isDependentClassScopeExplicitSpecialization) {
9217 ClassScopeFunctionSpecializationDecl *NewSpec =
9218 ClassScopeFunctionSpecializationDecl::Create(
9219 Context, CurContext, NewFD->getLocation(),
9220 cast<CXXMethodDecl>(NewFD),
9221 HasExplicitTemplateArgs, TemplateArgs);
9222 CurContext->addDecl(NewSpec);
9223 AddToScope = false;
9224 }
9225
9226 // Diagnose availability attributes. Availability cannot be used on functions
9227 // that are run during load/unload.
9228 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9229 if (NewFD->hasAttr<ConstructorAttr>()) {
9230 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9231 << 1;
9232 NewFD->dropAttr<AvailabilityAttr>();
9233 }
9234 if (NewFD->hasAttr<DestructorAttr>()) {
9235 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9236 << 2;
9237 NewFD->dropAttr<AvailabilityAttr>();
9238 }
9239 }
9240
9241 return NewFD;
9242}
9243
9244/// Return a CodeSegAttr from a containing class. The Microsoft docs say
9245/// when __declspec(code_seg) "is applied to a class, all member functions of
9246/// the class and nested classes -- this includes compiler-generated special
9247/// member functions -- are put in the specified segment."
9248/// The actual behavior is a little more complicated. The Microsoft compiler
9249/// won't check outer classes if there is an active value from #pragma code_seg.
9250/// The CodeSeg is always applied from the direct parent but only from outer
9251/// classes when the #pragma code_seg stack is empty. See:
9252/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9253/// available since MS has removed the page.
9254static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9255 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9256 if (!Method)
9257 return nullptr;
9258 const CXXRecordDecl *Parent = Method->getParent();
9259 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9260 Attr *NewAttr = SAttr->clone(S.getASTContext());
9261 NewAttr->setImplicit(true);
9262 return NewAttr;
9263 }
9264
9265 // The Microsoft compiler won't check outer classes for the CodeSeg
9266 // when the #pragma code_seg stack is active.
9267 if (S.CodeSegStack.CurrentValue)
9268 return nullptr;
9269
9270 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9271 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9272 Attr *NewAttr = SAttr->clone(S.getASTContext());
9273 NewAttr->setImplicit(true);
9274 return NewAttr;
9275 }
9276 }
9277 return nullptr;
9278}
9279
9280/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9281/// containing class. Otherwise it will return implicit SectionAttr if the
9282/// function is a definition and there is an active value on CodeSegStack
9283/// (from the current #pragma code-seg value).
9284///
9285/// \param FD Function being declared.
9286/// \param IsDefinition Whether it is a definition or just a declarartion.
9287/// \returns A CodeSegAttr or SectionAttr to apply to the function or
9288/// nullptr if no attribute should be added.
9289Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9290 bool IsDefinition) {
9291 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9292 return A;
9293 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9294 CodeSegStack.CurrentValue) {
9295 return SectionAttr::CreateImplicit(getASTContext(),
9296 SectionAttr::Declspec_allocate,
9297 CodeSegStack.CurrentValue->getString(),
9298 CodeSegStack.CurrentPragmaLocation);
9299 }
9300 return nullptr;
9301}
9302
9303/// Determines if we can perform a correct type check for \p D as a
9304/// redeclaration of \p PrevDecl. If not, we can generally still perform a
9305/// best-effort check.
9306///
9307/// \param NewD The new declaration.
9308/// \param OldD The old declaration.
9309/// \param NewT The portion of the type of the new declaration to check.
9310/// \param OldT The portion of the type of the old declaration to check.
9311bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9312 QualType NewT, QualType OldT) {
9313 if (!NewD->getLexicalDeclContext()->isDependentContext())
9314 return true;
9315
9316 // For dependently-typed local extern declarations and friends, we can't
9317 // perform a correct type check in general until instantiation:
9318 //
9319 // int f();
9320 // template<typename T> void g() { T f(); }
9321 //
9322 // (valid if g() is only instantiated with T = int).
9323 if (NewT->isDependentType() &&
9324 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9325 return false;
9326
9327 // Similarly, if the previous declaration was a dependent local extern
9328 // declaration, we don't really know its type yet.
9329 if (OldT->isDependentType() && OldD->isLocalExternDecl())
9330 return false;
9331
9332 return true;
9333}
9334
9335/// Checks if the new declaration declared in dependent context must be
9336/// put in the same redeclaration chain as the specified declaration.
9337///
9338/// \param D Declaration that is checked.
9339/// \param PrevDecl Previous declaration found with proper lookup method for the
9340/// same declaration name.
9341/// \returns True if D must be added to the redeclaration chain which PrevDecl
9342/// belongs to.
9343///
9344bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9345 if (!D->getLexicalDeclContext()->isDependentContext())
9346 return true;
9347
9348 // Don't chain dependent friend function definitions until instantiation, to
9349 // permit cases like
9350 //
9351 // void func();
9352 // template<typename T> class C1 { friend void func() {} };
9353 // template<typename T> class C2 { friend void func() {} };
9354 //
9355 // ... which is valid if only one of C1 and C2 is ever instantiated.
9356 //
9357 // FIXME: This need only apply to function definitions. For now, we proxy
9358 // this by checking for a file-scope function. We do not want this to apply
9359 // to friend declarations nominating member functions, because that gets in
9360 // the way of access checks.
9361 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9362 return false;
9363
9364 auto *VD = dyn_cast<ValueDecl>(D);
9365 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9366 return !VD || !PrevVD ||
9367 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9368 PrevVD->getType());
9369}
9370
9371/// Check the target attribute of the function for MultiVersion
9372/// validity.
9373///
9374/// Returns true if there was an error, false otherwise.
9375static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9376 const auto *TA = FD->getAttr<TargetAttr>();
9377 assert(TA && "MultiVersion Candidate requires a target attribute")((TA && "MultiVersion Candidate requires a target attribute"
) ? static_cast<void> (0) : __assert_fail ("TA && \"MultiVersion Candidate requires a target attribute\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 9377, __PRETTY_FUNCTION__))
;
9378 TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9379 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9380 enum ErrType { Feature = 0, Architecture = 1 };
9381
9382 if (!ParseInfo.Architecture.empty() &&
9383 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9384 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9385 << Architecture << ParseInfo.Architecture;
9386 return true;
9387 }
9388
9389 for (const auto &Feat : ParseInfo.Features) {
9390 auto BareFeat = StringRef{Feat}.substr(1);
9391 if (Feat[0] == '-') {
9392 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9393 << Feature << ("no-" + BareFeat).str();
9394 return true;
9395 }
9396
9397 if (!TargetInfo.validateCpuSupports(BareFeat) ||
9398 !TargetInfo.isValidFeatureName(BareFeat)) {
9399 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9400 << Feature << BareFeat;
9401 return true;
9402 }
9403 }
9404 return false;
9405}
9406
9407static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9408 MultiVersionKind MVType) {
9409 for (const Attr *A : FD->attrs()) {
9410 switch (A->getKind()) {
9411 case attr::CPUDispatch:
9412 case attr::CPUSpecific:
9413 if (MVType != MultiVersionKind::CPUDispatch &&
9414 MVType != MultiVersionKind::CPUSpecific)
9415 return true;
9416 break;
9417 case attr::Target:
9418 if (MVType != MultiVersionKind::Target)
9419 return true;
9420 break;
9421 default:
9422 return true;
9423 }
9424 }
9425 return false;
9426}
9427
9428static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9429 const FunctionDecl *NewFD,
9430 bool CausesMV,
9431 MultiVersionKind MVType) {
9432 enum DoesntSupport {
9433 FuncTemplates = 0,
9434 VirtFuncs = 1,
9435 DeducedReturn = 2,
9436 Constructors = 3,
9437 Destructors = 4,
9438 DeletedFuncs = 5,
9439 DefaultedFuncs = 6,
9440 ConstexprFuncs = 7,
9441 };
9442 enum Different {
9443 CallingConv = 0,
9444 ReturnType = 1,
9445 ConstexprSpec = 2,
9446 InlineSpec = 3,
9447 StorageClass = 4,
9448 Linkage = 5
9449 };
9450
9451 bool IsCPUSpecificCPUDispatchMVType =
9452 MVType == MultiVersionKind::CPUDispatch ||
9453 MVType == MultiVersionKind::CPUSpecific;
9454
9455 if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9456 S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9457 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9458 return true;
9459 }
9460
9461 if (!NewFD->getType()->getAs<FunctionProtoType>())
9462 return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9463
9464 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9465 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9466 if (OldFD)
9467 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9468 return true;
9469 }
9470
9471 // For now, disallow all other attributes. These should be opt-in, but
9472 // an analysis of all of them is a future FIXME.
9473 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9474 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9475 << IsCPUSpecificCPUDispatchMVType;
9476 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9477 return true;
9478 }
9479
9480 if (HasNonMultiVersionAttributes(NewFD, MVType))
9481 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9482 << IsCPUSpecificCPUDispatchMVType;
9483
9484 if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9485 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9486 << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9487
9488 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9489 if (NewCXXFD->isVirtual())
9490 return S.Diag(NewCXXFD->getLocation(),
9491 diag::err_multiversion_doesnt_support)
9492 << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9493
9494 if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9495 return S.Diag(NewCXXCtor->getLocation(),
9496 diag::err_multiversion_doesnt_support)
9497 << IsCPUSpecificCPUDispatchMVType << Constructors;
9498
9499 if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9500 return S.Diag(NewCXXDtor->getLocation(),
9501 diag::err_multiversion_doesnt_support)
9502 << IsCPUSpecificCPUDispatchMVType << Destructors;
9503 }
9504
9505 if (NewFD->isDeleted())
9506 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9507 << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9508
9509 if (NewFD->isDefaulted())
9510 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9511 << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9512
9513 if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9514 MVType == MultiVersionKind::CPUSpecific))
9515 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9516 << IsCPUSpecificCPUDispatchMVType << ConstexprFuncs;
9517
9518 QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9519 const auto *NewType = cast<FunctionType>(NewQType);
9520 QualType NewReturnType = NewType->getReturnType();
9521
9522 if (NewReturnType->isUndeducedType())
9523 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9524 << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9525
9526 // Only allow transition to MultiVersion if it hasn't been used.
9527 if (OldFD && CausesMV && OldFD->isUsed(false))
9528 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9529
9530 // Ensure the return type is identical.
9531 if (OldFD) {
9532 QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9533 const auto *OldType = cast<FunctionType>(OldQType);
9534 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9535 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9536
9537 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9538 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9539 << CallingConv;
9540
9541 QualType OldReturnType = OldType->getReturnType();
9542
9543 if (OldReturnType != NewReturnType)
9544 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9545 << ReturnType;
9546
9547 if (OldFD->isConstexpr() != NewFD->isConstexpr())
9548 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9549 << ConstexprSpec;
9550
9551 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9552 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9553 << InlineSpec;
9554
9555 if (OldFD->getStorageClass() != NewFD->getStorageClass())
9556 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9557 << StorageClass;
9558
9559 if (OldFD->isExternC() != NewFD->isExternC())
9560 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9561 << Linkage;
9562
9563 if (S.CheckEquivalentExceptionSpec(
9564 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9565 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9566 return true;
9567 }
9568 return false;
9569}
9570
9571/// Check the validity of a multiversion function declaration that is the
9572/// first of its kind. Also sets the multiversion'ness' of the function itself.
9573///
9574/// This sets NewFD->isInvalidDecl() to true if there was an error.
9575///
9576/// Returns true if there was an error, false otherwise.
9577static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9578 MultiVersionKind MVType,
9579 const TargetAttr *TA,
9580 const CPUDispatchAttr *CPUDisp,
9581 const CPUSpecificAttr *CPUSpec) {
9582 assert(MVType != MultiVersionKind::None &&((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 9583, __PRETTY_FUNCTION__))
9583 "Function lacks multiversion attribute")((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 9583, __PRETTY_FUNCTION__))
;
9584
9585 // Target only causes MV if it is default, otherwise this is a normal
9586 // function.
9587 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9588 return false;
9589
9590 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9591 FD->setInvalidDecl();
9592 return true;
9593 }
9594
9595 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9596 FD->setInvalidDecl();
9597 return true;
9598 }
9599
9600 FD->setIsMultiVersion();
9601 return false;
9602}
9603
9604static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9605 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9606 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9607 return true;
9608 }
9609
9610 return false;
9611}
9612
9613static bool CheckTargetCausesMultiVersioning(
9614 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9615 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9616 LookupResult &Previous) {
9617 const auto *OldTA = OldFD->getAttr<TargetAttr>();
9618 TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9619 // Sort order doesn't matter, it just needs to be consistent.
9620 llvm::sort(NewParsed.Features);
9621
9622 // If the old decl is NOT MultiVersioned yet, and we don't cause that
9623 // to change, this is a simple redeclaration.
9624 if (!NewTA->isDefaultVersion() &&
9625 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9626 return false;
9627
9628 // Otherwise, this decl causes MultiVersioning.
9629 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9630 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9631 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9632 NewFD->setInvalidDecl();
9633 return true;
9634 }
9635
9636 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9637 MultiVersionKind::Target)) {
9638 NewFD->setInvalidDecl();
9639 return true;
9640 }
9641
9642 if (CheckMultiVersionValue(S, NewFD)) {
9643 NewFD->setInvalidDecl();
9644 return true;
9645 }
9646
9647 // If this is 'default', permit the forward declaration.
9648 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9649 Redeclaration = true;
9650 OldDecl = OldFD;
9651 OldFD->setIsMultiVersion();
9652 NewFD->setIsMultiVersion();
9653 return false;
9654 }
9655
9656 if (CheckMultiVersionValue(S, OldFD)) {
9657 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9658 NewFD->setInvalidDecl();
9659 return true;
9660 }
9661
9662 TargetAttr::ParsedTargetAttr OldParsed =
9663 OldTA->parse(std::less<std::string>());
9664
9665 if (OldParsed == NewParsed) {
9666 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9667 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9668 NewFD->setInvalidDecl();
9669 return true;
9670 }
9671
9672 for (const auto *FD : OldFD->redecls()) {
9673 const auto *CurTA = FD->getAttr<TargetAttr>();
9674 // We allow forward declarations before ANY multiversioning attributes, but
9675 // nothing after the fact.
9676 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9677 (!CurTA || CurTA->isInherited())) {
9678 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9679 << 0;
9680 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9681 NewFD->setInvalidDecl();
9682 return true;
9683 }
9684 }
9685
9686 OldFD->setIsMultiVersion();
9687 NewFD->setIsMultiVersion();
9688 Redeclaration = false;
9689 MergeTypeWithPrevious = false;
9690 OldDecl = nullptr;
9691 Previous.clear();
9692 return false;
9693}
9694
9695/// Check the validity of a new function declaration being added to an existing
9696/// multiversioned declaration collection.
9697static bool CheckMultiVersionAdditionalDecl(
9698 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9699 MultiVersionKind NewMVType, const TargetAttr *NewTA,
9700 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9701 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9702 LookupResult &Previous) {
9703
9704 MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9705 // Disallow mixing of multiversioning types.
9706 if ((OldMVType == MultiVersionKind::Target &&
9707 NewMVType != MultiVersionKind::Target) ||
9708 (NewMVType == MultiVersionKind::Target &&
9709 OldMVType != MultiVersionKind::Target)) {
9710 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9711 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9712 NewFD->setInvalidDecl();
9713 return true;
9714 }
9715
9716 TargetAttr::ParsedTargetAttr NewParsed;
9717 if (NewTA) {
9718 NewParsed = NewTA->parse();
9719 llvm::sort(NewParsed.Features);
9720 }
9721
9722 bool UseMemberUsingDeclRules =
9723 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9724
9725 // Next, check ALL non-overloads to see if this is a redeclaration of a
9726 // previous member of the MultiVersion set.
9727 for (NamedDecl *ND : Previous) {
9728 FunctionDecl *CurFD = ND->getAsFunction();
9729 if (!CurFD)
9730 continue;
9731 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9732 continue;
9733
9734 if (NewMVType == MultiVersionKind::Target) {
9735 const auto *CurTA = CurFD->getAttr<TargetAttr>();
9736 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9737 NewFD->setIsMultiVersion();
9738 Redeclaration = true;
9739 OldDecl = ND;
9740 return false;
9741 }
9742
9743 TargetAttr::ParsedTargetAttr CurParsed =
9744 CurTA->parse(std::less<std::string>());
9745 if (CurParsed == NewParsed) {
9746 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9747 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9748 NewFD->setInvalidDecl();
9749 return true;
9750 }
9751 } else {
9752 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9753 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9754 // Handle CPUDispatch/CPUSpecific versions.
9755 // Only 1 CPUDispatch function is allowed, this will make it go through
9756 // the redeclaration errors.
9757 if (NewMVType == MultiVersionKind::CPUDispatch &&
9758 CurFD->hasAttr<CPUDispatchAttr>()) {
9759 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9760 std::equal(
9761 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9762 NewCPUDisp->cpus_begin(),
9763 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9764 return Cur->getName() == New->getName();
9765 })) {
9766 NewFD->setIsMultiVersion();
9767 Redeclaration = true;
9768 OldDecl = ND;
9769 return false;
9770 }
9771
9772 // If the declarations don't match, this is an error condition.
9773 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9774 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9775 NewFD->setInvalidDecl();
9776 return true;
9777 }
9778 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9779
9780 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9781 std::equal(
9782 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9783 NewCPUSpec->cpus_begin(),
9784 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9785 return Cur->getName() == New->getName();
9786 })) {
9787 NewFD->setIsMultiVersion();
9788 Redeclaration = true;
9789 OldDecl = ND;
9790 return false;
9791 }
9792
9793 // Only 1 version of CPUSpecific is allowed for each CPU.
9794 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9795 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9796 if (CurII == NewII) {
9797 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9798 << NewII;
9799 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9800 NewFD->setInvalidDecl();
9801 return true;
9802 }
9803 }
9804 }
9805 }
9806 // If the two decls aren't the same MVType, there is no possible error
9807 // condition.
9808 }
9809 }
9810
9811 // Else, this is simply a non-redecl case. Checking the 'value' is only
9812 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9813 // handled in the attribute adding step.
9814 if (NewMVType == MultiVersionKind::Target &&
9815 CheckMultiVersionValue(S, NewFD)) {
9816 NewFD->setInvalidDecl();
9817 return true;
9818 }
9819
9820 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, false, NewMVType)) {
9821 NewFD->setInvalidDecl();
9822 return true;
9823 }
9824
9825 // Permit forward declarations in the case where these two are compatible.
9826 if (!OldFD->isMultiVersion()) {
9827 OldFD->setIsMultiVersion();
9828 NewFD->setIsMultiVersion();
9829 Redeclaration = true;
9830 OldDecl = OldFD;
9831 return false;
9832 }
9833
9834 NewFD->setIsMultiVersion();
9835 Redeclaration = false;
9836 MergeTypeWithPrevious = false;
9837 OldDecl = nullptr;
9838 Previous.clear();
9839 return false;
9840}
9841
9842
9843/// Check the validity of a mulitversion function declaration.
9844/// Also sets the multiversion'ness' of the function itself.
9845///
9846/// This sets NewFD->isInvalidDecl() to true if there was an error.
9847///
9848/// Returns true if there was an error, false otherwise.
9849static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9850 bool &Redeclaration, NamedDecl *&OldDecl,
9851 bool &MergeTypeWithPrevious,
9852 LookupResult &Previous) {
9853 const auto *NewTA = NewFD->getAttr<TargetAttr>();
9854 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9855 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9856
9857 // Mixing Multiversioning types is prohibited.
9858 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9859 (NewCPUDisp && NewCPUSpec)) {
9860 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9861 NewFD->setInvalidDecl();
9862 return true;
9863 }
9864
9865 MultiVersionKind MVType = NewFD->getMultiVersionKind();
9866
9867 // Main isn't allowed to become a multiversion function, however it IS
9868 // permitted to have 'main' be marked with the 'target' optimization hint.
9869 if (NewFD->isMain()) {
9870 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
9871 MVType == MultiVersionKind::CPUDispatch ||
9872 MVType == MultiVersionKind::CPUSpecific) {
9873 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9874 NewFD->setInvalidDecl();
9875 return true;
9876 }
9877 return false;
9878 }
9879
9880 if (!OldDecl || !OldDecl->getAsFunction() ||
9881 OldDecl->getDeclContext()->getRedeclContext() !=
9882 NewFD->getDeclContext()->getRedeclContext()) {
9883 // If there's no previous declaration, AND this isn't attempting to cause
9884 // multiversioning, this isn't an error condition.
9885 if (MVType == MultiVersionKind::None)
9886 return false;
9887 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA, NewCPUDisp,
9888 NewCPUSpec);
9889 }
9890
9891 FunctionDecl *OldFD = OldDecl->getAsFunction();
9892
9893 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
9894 return false;
9895
9896 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
9897 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
9898 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
9899 NewFD->setInvalidDecl();
9900 return true;
9901 }
9902
9903 // Handle the target potentially causes multiversioning case.
9904 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
9905 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
9906 Redeclaration, OldDecl,
9907 MergeTypeWithPrevious, Previous);
9908
9909 // At this point, we have a multiversion function decl (in OldFD) AND an
9910 // appropriate attribute in the current function decl. Resolve that these are
9911 // still compatible with previous declarations.
9912 return CheckMultiVersionAdditionalDecl(
9913 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
9914 OldDecl, MergeTypeWithPrevious, Previous);
9915}
9916
9917/// Perform semantic checking of a new function declaration.
9918///
9919/// Performs semantic analysis of the new function declaration
9920/// NewFD. This routine performs all semantic checking that does not
9921/// require the actual declarator involved in the declaration, and is
9922/// used both for the declaration of functions as they are parsed
9923/// (called via ActOnDeclarator) and for the declaration of functions
9924/// that have been instantiated via C++ template instantiation (called
9925/// via InstantiateDecl).
9926///
9927/// \param IsMemberSpecialization whether this new function declaration is
9928/// a member specialization (that replaces any definition provided by the
9929/// previous declaration).
9930///
9931/// This sets NewFD->isInvalidDecl() to true if there was an error.
9932///
9933/// \returns true if the function declaration is a redeclaration.
9934bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
9935 LookupResult &Previous,
9936 bool IsMemberSpecialization) {
9937 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 9938, __PRETTY_FUNCTION__))
9938 "Variably modified return types are not handled here")((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 9938, __PRETTY_FUNCTION__))
;
9939
9940 // Determine whether the type of this function should be merged with
9941 // a previous visible declaration. This never happens for functions in C++,
9942 // and always happens in C if the previous declaration was visible.
9943 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
9944 !Previous.isShadowed();
9945
9946 bool Redeclaration = false;
9947 NamedDecl *OldDecl = nullptr;
9948 bool MayNeedOverloadableChecks = false;
9949
9950 // Merge or overload the declaration with an existing declaration of
9951 // the same name, if appropriate.
9952 if (!Previous.empty()) {
9953 // Determine whether NewFD is an overload of PrevDecl or
9954 // a declaration that requires merging. If it's an overload,
9955 // there's no more work to do here; we'll just add the new
9956 // function to the scope.
9957 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
9958 NamedDecl *Candidate = Previous.getRepresentativeDecl();
9959 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
9960 Redeclaration = true;
9961 OldDecl = Candidate;
9962 }
9963 } else {
9964 MayNeedOverloadableChecks = true;
9965 switch (CheckOverload(S, NewFD, Previous, OldDecl,
9966 /*NewIsUsingDecl*/ false)) {
9967 case Ovl_Match:
9968 Redeclaration = true;
9969 break;
9970
9971 case Ovl_NonFunction:
9972 Redeclaration = true;
9973 break;
9974
9975 case Ovl_Overload:
9976 Redeclaration = false;
9977 break;
9978 }
9979 }
9980 }
9981
9982 // Check for a previous extern "C" declaration with this name.
9983 if (!Redeclaration &&
9984 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
9985 if (!Previous.empty()) {
9986 // This is an extern "C" declaration with the same name as a previous
9987 // declaration, and thus redeclares that entity...
9988 Redeclaration = true;
9989 OldDecl = Previous.getFoundDecl();
9990 MergeTypeWithPrevious = false;
9991
9992 // ... except in the presence of __attribute__((overloadable)).
9993 if (OldDecl->hasAttr<OverloadableAttr>() ||
9994 NewFD->hasAttr<OverloadableAttr>()) {
9995 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
9996 MayNeedOverloadableChecks = true;
9997 Redeclaration = false;
9998 OldDecl = nullptr;
9999 }
10000 }
10001 }
10002 }
10003
10004 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10005 MergeTypeWithPrevious, Previous))
10006 return Redeclaration;
10007
10008 // C++11 [dcl.constexpr]p8:
10009 // A constexpr specifier for a non-static member function that is not
10010 // a constructor declares that member function to be const.
10011 //
10012 // This needs to be delayed until we know whether this is an out-of-line
10013 // definition of a static member function.
10014 //
10015 // This rule is not present in C++1y, so we produce a backwards
10016 // compatibility warning whenever it happens in C++11.
10017 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10018 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10019 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10020 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
10021 CXXMethodDecl *OldMD = nullptr;
10022 if (OldDecl)
10023 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10024 if (!OldMD || !OldMD->isStatic()) {
10025 const FunctionProtoType *FPT =
10026 MD->getType()->castAs<FunctionProtoType>();
10027 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10028 EPI.TypeQuals |= Qualifiers::Const;
10029 MD->setType(Context.getFunctionType(FPT->getReturnType(),
10030 FPT->getParamTypes(), EPI));
10031
10032 // Warn that we did this, if we're not performing template instantiation.
10033 // In that case, we'll have warned already when the template was defined.
10034 if (!inTemplateInstantiation()) {
10035 SourceLocation AddConstLoc;
10036 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10037 .IgnoreParens().getAs<FunctionTypeLoc>())
10038 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10039
10040 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10041 << FixItHint::CreateInsertion(AddConstLoc, " const");
10042 }
10043 }
10044 }
10045
10046 if (Redeclaration) {
10047 // NewFD and OldDecl represent declarations that need to be
10048 // merged.
10049 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10050 NewFD->setInvalidDecl();
10051 return Redeclaration;
10052 }
10053
10054 Previous.clear();
10055 Previous.addDecl(OldDecl);
10056
10057 if (FunctionTemplateDecl *OldTemplateDecl =
10058 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10059 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10060 FunctionTemplateDecl *NewTemplateDecl
10061 = NewFD->getDescribedFunctionTemplate();
10062 assert(NewTemplateDecl && "Template/non-template mismatch")((NewTemplateDecl && "Template/non-template mismatch"
) ? static_cast<void> (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10062, __PRETTY_FUNCTION__))
;
10063
10064 // The call to MergeFunctionDecl above may have created some state in
10065 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10066 // can add it as a redeclaration.
10067 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10068
10069 NewFD->setPreviousDeclaration(OldFD);
10070 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10071 if (NewFD->isCXXClassMember()) {
10072 NewFD->setAccess(OldTemplateDecl->getAccess());
10073 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10074 }
10075
10076 // If this is an explicit specialization of a member that is a function
10077 // template, mark it as a member specialization.
10078 if (IsMemberSpecialization &&
10079 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10080 NewTemplateDecl->setMemberSpecialization();
10081 assert(OldTemplateDecl->isMemberSpecialization())((OldTemplateDecl->isMemberSpecialization()) ? static_cast
<void> (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10081, __PRETTY_FUNCTION__))
;
10082 // Explicit specializations of a member template do not inherit deleted
10083 // status from the parent member template that they are specializing.
10084 if (OldFD->isDeleted()) {
10085 // FIXME: This assert will not hold in the presence of modules.
10086 assert(OldFD->getCanonicalDecl() == OldFD)((OldFD->getCanonicalDecl() == OldFD) ? static_cast<void
> (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10086, __PRETTY_FUNCTION__))
;
10087 // FIXME: We need an update record for this AST mutation.
10088 OldFD->setDeletedAsWritten(false);
10089 }
10090 }
10091
10092 } else {
10093 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10094 auto *OldFD = cast<FunctionDecl>(OldDecl);
10095 // This needs to happen first so that 'inline' propagates.
10096 NewFD->setPreviousDeclaration(OldFD);
10097 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10098 if (NewFD->isCXXClassMember())
10099 NewFD->setAccess(OldFD->getAccess());
10100 }
10101 }
10102 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10103 !NewFD->getAttr<OverloadableAttr>()) {
10104 assert((Previous.empty() ||(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10109, __PRETTY_FUNCTION__))
10105 llvm::any_of(Previous,(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10109, __PRETTY_FUNCTION__))
10106 [](const NamedDecl *ND) {(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10109, __PRETTY_FUNCTION__))
10107 return ND->hasAttr<OverloadableAttr>();(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10109, __PRETTY_FUNCTION__))
10108 })) &&(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10109, __PRETTY_FUNCTION__))
10109 "Non-redecls shouldn't happen without overloadable present")(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10109, __PRETTY_FUNCTION__))
;
10110
10111 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10112 const auto *FD = dyn_cast<FunctionDecl>(ND);
10113 return FD && !FD->hasAttr<OverloadableAttr>();
10114 });
10115
10116 if (OtherUnmarkedIter != Previous.end()) {
10117 Diag(NewFD->getLocation(),
10118 diag::err_attribute_overloadable_multiple_unmarked_overloads);
10119 Diag((*OtherUnmarkedIter)->getLocation(),
10120 diag::note_attribute_overloadable_prev_overload)
10121 << false;
10122
10123 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10124 }
10125 }
10126
10127 // Semantic checking for this function declaration (in isolation).
10128
10129 if (getLangOpts().CPlusPlus) {
10130 // C++-specific checks.
10131 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10132 CheckConstructor(Constructor);
10133 } else if (CXXDestructorDecl *Destructor =
10134 dyn_cast<CXXDestructorDecl>(NewFD)) {
10135 CXXRecordDecl *Record = Destructor->getParent();
10136 QualType ClassType = Context.getTypeDeclType(Record);
10137
10138 // FIXME: Shouldn't we be able to perform this check even when the class
10139 // type is dependent? Both gcc and edg can handle that.
10140 if (!ClassType->isDependentType()) {
10141 DeclarationName Name
10142 = Context.DeclarationNames.getCXXDestructorName(
10143 Context.getCanonicalType(ClassType));
10144 if (NewFD->getDeclName() != Name) {
10145 Diag(NewFD->getLocation(), diag::err_destructor_name);
10146 NewFD->setInvalidDecl();
10147 return Redeclaration;
10148 }
10149 }
10150 } else if (CXXConversionDecl *Conversion
10151 = dyn_cast<CXXConversionDecl>(NewFD)) {
10152 ActOnConversionDeclarator(Conversion);
10153 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10154 if (auto *TD = Guide->getDescribedFunctionTemplate())
10155 CheckDeductionGuideTemplate(TD);
10156
10157 // A deduction guide is not on the list of entities that can be
10158 // explicitly specialized.
10159 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10160 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10161 << /*explicit specialization*/ 1;
10162 }
10163
10164 // Find any virtual functions that this function overrides.
10165 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10166 if (!Method->isFunctionTemplateSpecialization() &&
10167 !Method->getDescribedFunctionTemplate() &&
10168 Method->isCanonicalDecl()) {
10169 if (AddOverriddenMethods(Method->getParent(), Method)) {
10170 // If the function was marked as "static", we have a problem.
10171 if (NewFD->getStorageClass() == SC_Static) {
10172 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10173 }
10174 }
10175 }
10176
10177 if (Method->isStatic())
10178 checkThisInStaticMemberFunctionType(Method);
10179 }
10180
10181 // Extra checking for C++ overloaded operators (C++ [over.oper]).
10182 if (NewFD->isOverloadedOperator() &&
10183 CheckOverloadedOperatorDeclaration(NewFD)) {
10184 NewFD->setInvalidDecl();
10185 return Redeclaration;
10186 }
10187
10188 // Extra checking for C++0x literal operators (C++0x [over.literal]).
10189 if (NewFD->getLiteralIdentifier() &&
10190 CheckLiteralOperatorDeclaration(NewFD)) {
10191 NewFD->setInvalidDecl();
10192 return Redeclaration;
10193 }
10194
10195 // In C++, check default arguments now that we have merged decls. Unless
10196 // the lexical context is the class, because in this case this is done
10197 // during delayed parsing anyway.
10198 if (!CurContext->isRecord())
10199 CheckCXXDefaultArguments(NewFD);
10200
10201 // If this function declares a builtin function, check the type of this
10202 // declaration against the expected type for the builtin.
10203 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10204 ASTContext::GetBuiltinTypeError Error;
10205 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10206 QualType T = Context.GetBuiltinType(BuiltinID, Error);
10207 // If the type of the builtin differs only in its exception
10208 // specification, that's OK.
10209 // FIXME: If the types do differ in this way, it would be better to
10210 // retain the 'noexcept' form of the type.
10211 if (!T.isNull() &&
10212 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10213 NewFD->getType()))
10214 // The type of this function differs from the type of the builtin,
10215 // so forget about the builtin entirely.
10216 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10217 }
10218
10219 // If this function is declared as being extern "C", then check to see if
10220 // the function returns a UDT (class, struct, or union type) that is not C
10221 // compatible, and if it does, warn the user.
10222 // But, issue any diagnostic on the first declaration only.
10223 if (Previous.empty() && NewFD->isExternC()) {
10224 QualType R = NewFD->getReturnType();
10225 if (R->isIncompleteType() && !R->isVoidType())
10226 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10227 << NewFD << R;
10228 else if (!R.isPODType(Context) && !R->isVoidType() &&
10229 !R->isObjCObjectPointerType())
10230 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10231 }
10232
10233 // C++1z [dcl.fct]p6:
10234 // [...] whether the function has a non-throwing exception-specification
10235 // [is] part of the function type
10236 //
10237 // This results in an ABI break between C++14 and C++17 for functions whose
10238 // declared type includes an exception-specification in a parameter or
10239 // return type. (Exception specifications on the function itself are OK in
10240 // most cases, and exception specifications are not permitted in most other
10241 // contexts where they could make it into a mangling.)
10242 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10243 auto HasNoexcept = [&](QualType T) -> bool {
10244 // Strip off declarator chunks that could be between us and a function
10245 // type. We don't need to look far, exception specifications are very
10246 // restricted prior to C++17.
10247 if (auto *RT = T->getAs<ReferenceType>())
10248 T = RT->getPointeeType();
10249 else if (T->isAnyPointerType())
10250 T = T->getPointeeType();
10251 else if (auto *MPT = T->getAs<MemberPointerType>())
10252 T = MPT->getPointeeType();
10253 if (auto *FPT = T->getAs<FunctionProtoType>())
10254 if (FPT->isNothrow())
10255 return true;
10256 return false;
10257 };
10258
10259 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10260 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10261 for (QualType T : FPT->param_types())
10262 AnyNoexcept |= HasNoexcept(T);
10263 if (AnyNoexcept)
10264 Diag(NewFD->getLocation(),
10265 diag::warn_cxx17_compat_exception_spec_in_signature)
10266 << NewFD;
10267 }
10268
10269 if (!Redeclaration && LangOpts.CUDA)
10270 checkCUDATargetOverload(NewFD, Previous);
10271 }
10272 return Redeclaration;
10273}
10274
10275void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10276 // C++11 [basic.start.main]p3:
10277 // A program that [...] declares main to be inline, static or
10278 // constexpr is ill-formed.
10279 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
10280 // appear in a declaration of main.
10281 // static main is not an error under C99, but we should warn about it.
10282 // We accept _Noreturn main as an extension.
10283 if (FD->getStorageClass() == SC_Static)
10284 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10285 ? diag::err_static_main : diag::warn_static_main)
10286 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10287 if (FD->isInlineSpecified())
10288 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10289 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10290 if (DS.isNoreturnSpecified()) {
10291 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10292 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10293 Diag(NoreturnLoc, diag::ext_noreturn_main);
10294 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10295 << FixItHint::CreateRemoval(NoreturnRange);
10296 }
10297 if (FD->isConstexpr()) {
10298 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10299 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10300 FD->setConstexpr(false);
10301 }
10302
10303 if (getLangOpts().OpenCL) {
10304 Diag(FD->getLocation(), diag::err_opencl_no_main)
10305 << FD->hasAttr<OpenCLKernelAttr>();
10306 FD->setInvalidDecl();
10307 return;
10308 }
10309
10310 QualType T = FD->getType();
10311 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10311, __PRETTY_FUNCTION__))
;
10312 const FunctionType* FT = T->castAs<FunctionType>();
10313
10314 // Set default calling convention for main()
10315 if (FT->getCallConv() != CC_C) {
10316 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10317 FD->setType(QualType(FT, 0));
10318 T = Context.getCanonicalType(FD->getType());
10319 }
10320
10321 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10322 // In C with GNU extensions we allow main() to have non-integer return
10323 // type, but we should warn about the extension, and we disable the
10324 // implicit-return-zero rule.
10325
10326 // GCC in C mode accepts qualified 'int'.
10327 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10328 FD->setHasImplicitReturnZero(true);
10329 else {
10330 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10331 SourceRange RTRange = FD->getReturnTypeSourceRange();
10332 if (RTRange.isValid())
10333 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10334 << FixItHint::CreateReplacement(RTRange, "int");
10335 }
10336 } else {
10337 // In C and C++, main magically returns 0 if you fall off the end;
10338 // set the flag which tells us that.
10339 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10340
10341 // All the standards say that main() should return 'int'.
10342 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10343 FD->setHasImplicitReturnZero(true);
10344 else {
10345 // Otherwise, this is just a flat-out error.
10346 SourceRange RTRange = FD->getReturnTypeSourceRange();
10347 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10348 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10349 : FixItHint());
10350 FD->setInvalidDecl(true);
10351 }
10352 }
10353
10354 // Treat protoless main() as nullary.
10355 if (isa<FunctionNoProtoType>(FT)) return;
10356
10357 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10358 unsigned nparams = FTP->getNumParams();
10359 assert(FD->getNumParams() == nparams)((FD->getNumParams() == nparams) ? static_cast<void>
(0) : __assert_fail ("FD->getNumParams() == nparams", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10359, __PRETTY_FUNCTION__))
;
10360
10361 bool HasExtraParameters = (nparams > 3);
10362
10363 if (FTP->isVariadic()) {
10364 Diag(FD->getLocation(), diag::ext_variadic_main);
10365 // FIXME: if we had information about the location of the ellipsis, we
10366 // could add a FixIt hint to remove it as a parameter.
10367 }
10368
10369 // Darwin passes an undocumented fourth argument of type char**. If
10370 // other platforms start sprouting these, the logic below will start
10371 // getting shifty.
10372 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10373 HasExtraParameters = false;
10374
10375 if (HasExtraParameters) {
10376 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10377 FD->setInvalidDecl(true);
10378 nparams = 3;
10379 }
10380
10381 // FIXME: a lot of the following diagnostics would be improved
10382 // if we had some location information about types.
10383
10384 QualType CharPP =
10385 Context.getPointerType(Context.getPointerType(Context.CharTy));
10386 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10387
10388 for (unsigned i = 0; i < nparams; ++i) {
10389 QualType AT = FTP->getParamType(i);
10390
10391 bool mismatch = true;
10392
10393 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10394 mismatch = false;
10395 else if (Expected[i] == CharPP) {
10396 // As an extension, the following forms are okay:
10397 // char const **
10398 // char const * const *
10399 // char * const *
10400
10401 QualifierCollector qs;
10402 const PointerType* PT;
10403 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10404 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10405 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10406 Context.CharTy)) {
10407 qs.removeConst();
10408 mismatch = !qs.empty();
10409 }
10410 }
10411
10412 if (mismatch) {
10413 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10414 // TODO: suggest replacing given type with expected type
10415 FD->setInvalidDecl(true);
10416 }
10417 }
10418
10419 if (nparams == 1 && !FD->isInvalidDecl()) {
10420 Diag(FD->getLocation(), diag::warn_main_one_arg);
10421 }
10422
10423 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10424 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10425 FD->setInvalidDecl();
10426 }
10427}
10428
10429void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10430 QualType T = FD->getType();
10431 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10431, __PRETTY_FUNCTION__))
;
10432 const FunctionType *FT = T->castAs<FunctionType>();
10433
10434 // Set an implicit return of 'zero' if the function can return some integral,
10435 // enumeration, pointer or nullptr type.
10436 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10437 FT->getReturnType()->isAnyPointerType() ||
10438 FT->getReturnType()->isNullPtrType())
10439 // DllMain is exempt because a return value of zero means it failed.
10440 if (FD->getName() != "DllMain")
10441 FD->setHasImplicitReturnZero(true);
10442
10443 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10444 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10445 FD->setInvalidDecl();
10446 }
10447}
10448
10449bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10450 // FIXME: Need strict checking. In C89, we need to check for
10451 // any assignment, increment, decrement, function-calls, or
10452 // commas outside of a sizeof. In C99, it's the same list,
10453 // except that the aforementioned are allowed in unevaluated
10454 // expressions. Everything else falls under the
10455 // "may accept other forms of constant expressions" exception.
10456 // (We never end up here for C++, so the constant expression
10457 // rules there don't matter.)
10458 const Expr *Culprit;
10459 if (Init->isConstantInitializer(Context, false, &Culprit))
10460 return false;
10461 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10462 << Culprit->getSourceRange();
10463 return true;
10464}
10465
10466namespace {
10467 // Visits an initialization expression to see if OrigDecl is evaluated in
10468 // its own initialization and throws a warning if it does.
10469 class SelfReferenceChecker
10470 : public EvaluatedExprVisitor<SelfReferenceChecker> {
10471 Sema &S;
10472 Decl *OrigDecl;
10473 bool isRecordType;
10474 bool isPODType;
10475 bool isReferenceType;
10476
10477 bool isInitList;
10478 llvm::SmallVector<unsigned, 4> InitFieldIndex;
10479
10480 public:
10481 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10482
10483 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10484 S(S), OrigDecl(OrigDecl) {
10485 isPODType = false;
10486 isRecordType = false;
10487 isReferenceType = false;
10488 isInitList = false;
10489 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10490 isPODType = VD->getType().isPODType(S.Context);
10491 isRecordType = VD->getType()->isRecordType();
10492 isReferenceType = VD->getType()->isReferenceType();
10493 }
10494 }
10495
10496 // For most expressions, just call the visitor. For initializer lists,
10497 // track the index of the field being initialized since fields are
10498 // initialized in order allowing use of previously initialized fields.
10499 void CheckExpr(Expr *E) {
10500 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10501 if (!InitList) {
10502 Visit(E);
10503 return;
10504 }
10505
10506 // Track and increment the index here.
10507 isInitList = true;
10508 InitFieldIndex.push_back(0);
10509 for (auto Child : InitList->children()) {
10510 CheckExpr(cast<Expr>(Child));
10511 ++InitFieldIndex.back();
10512 }
10513 InitFieldIndex.pop_back();
10514 }
10515
10516 // Returns true if MemberExpr is checked and no further checking is needed.
10517 // Returns false if additional checking is required.
10518 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10519 llvm::SmallVector<FieldDecl*, 4> Fields;
10520 Expr *Base = E;
10521 bool ReferenceField = false;
10522
10523 // Get the field members used.
10524 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10525 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10526 if (!FD)
10527 return false;
10528 Fields.push_back(FD);
10529 if (FD->getType()->isReferenceType())
10530 ReferenceField = true;
10531 Base = ME->getBase()->IgnoreParenImpCasts();
10532 }
10533
10534 // Keep checking only if the base Decl is the same.
10535 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10536 if (!DRE || DRE->getDecl() != OrigDecl)
10537 return false;
10538
10539 // A reference field can be bound to an unininitialized field.
10540 if (CheckReference && !ReferenceField)
10541 return true;
10542
10543 // Convert FieldDecls to their index number.
10544 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10545 for (const FieldDecl *I : llvm::reverse(Fields))
10546 UsedFieldIndex.push_back(I->getFieldIndex());
10547
10548 // See if a warning is needed by checking the first difference in index
10549 // numbers. If field being used has index less than the field being
10550 // initialized, then the use is safe.
10551 for (auto UsedIter = UsedFieldIndex.begin(),
10552 UsedEnd = UsedFieldIndex.end(),
10553 OrigIter = InitFieldIndex.begin(),
10554 OrigEnd = InitFieldIndex.end();
10555 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10556 if (*UsedIter < *OrigIter)
10557 return true;
10558 if (*UsedIter > *OrigIter)
10559 break;
10560 }
10561
10562 // TODO: Add a different warning which will print the field names.
10563 HandleDeclRefExpr(DRE);
10564 return true;
10565 }
10566
10567 // For most expressions, the cast is directly above the DeclRefExpr.
10568 // For conditional operators, the cast can be outside the conditional
10569 // operator if both expressions are DeclRefExpr's.
10570 void HandleValue(Expr *E) {
10571 E = E->IgnoreParens();
10572 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10573 HandleDeclRefExpr(DRE);
10574 return;
10575 }
10576
10577 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10578 Visit(CO->getCond());
10579 HandleValue(CO->getTrueExpr());
10580 HandleValue(CO->getFalseExpr());
10581 return;
10582 }
10583
10584 if (BinaryConditionalOperator *BCO =
10585 dyn_cast<BinaryConditionalOperator>(E)) {
10586 Visit(BCO->getCond());
10587 HandleValue(BCO->getFalseExpr());
10588 return;
10589 }
10590
10591 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10592 HandleValue(OVE->getSourceExpr());
10593 return;
10594 }
10595
10596 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10597 if (BO->getOpcode() == BO_Comma) {
10598 Visit(BO->getLHS());
10599 HandleValue(BO->getRHS());
10600 return;
10601 }
10602 }
10603
10604 if (isa<MemberExpr>(E)) {
10605 if (isInitList) {
10606 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10607 false /*CheckReference*/))
10608 return;
10609 }
10610
10611 Expr *Base = E->IgnoreParenImpCasts();
10612 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10613 // Check for static member variables and don't warn on them.
10614 if (!isa<FieldDecl>(ME->getMemberDecl()))
10615 return;
10616 Base = ME->getBase()->IgnoreParenImpCasts();
10617 }
10618 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10619 HandleDeclRefExpr(DRE);
10620 return;
10621 }
10622
10623 Visit(E);
10624 }
10625
10626 // Reference types not handled in HandleValue are handled here since all
10627 // uses of references are bad, not just r-value uses.
10628 void VisitDeclRefExpr(DeclRefExpr *E) {
10629 if (isReferenceType)
10630 HandleDeclRefExpr(E);
10631 }
10632
10633 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10634 if (E->getCastKind() == CK_LValueToRValue) {
10635 HandleValue(E->getSubExpr());
10636 return;
10637 }
10638
10639 Inherited::VisitImplicitCastExpr(E);
10640 }
10641
10642 void VisitMemberExpr(MemberExpr *E) {
10643 if (isInitList) {
10644 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10645 return;
10646 }
10647
10648 // Don't warn on arrays since they can be treated as pointers.
10649 if (E->getType()->canDecayToPointerType()) return;
10650
10651 // Warn when a non-static method call is followed by non-static member
10652 // field accesses, which is followed by a DeclRefExpr.
10653 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10654 bool Warn = (MD && !MD->isStatic());
10655 Expr *Base = E->getBase()->IgnoreParenImpCasts();
10656 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10657 if (!isa<FieldDecl>(ME->getMemberDecl()))
10658 Warn = false;
10659 Base = ME->getBase()->IgnoreParenImpCasts();
10660 }
10661
10662 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10663 if (Warn)
10664 HandleDeclRefExpr(DRE);
10665 return;
10666 }
10667
10668 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10669 // Visit that expression.
10670 Visit(Base);
10671 }
10672
10673 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10674 Expr *Callee = E->getCallee();
10675
10676 if (isa<UnresolvedLookupExpr>(Callee))
10677 return Inherited::VisitCXXOperatorCallExpr(E);
10678
10679 Visit(Callee);
10680 for (auto Arg: E->arguments())
10681 HandleValue(Arg->IgnoreParenImpCasts());
10682 }
10683
10684 void VisitUnaryOperator(UnaryOperator *E) {
10685 // For POD record types, addresses of its own members are well-defined.
10686 if (E->getOpcode() == UO_AddrOf && isRecordType &&
10687 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10688 if (!isPODType)
10689 HandleValue(E->getSubExpr());
10690 return;
10691 }
10692
10693 if (E->isIncrementDecrementOp()) {
10694 HandleValue(E->getSubExpr());
10695 return;
10696 }
10697
10698 Inherited::VisitUnaryOperator(E);
10699 }
10700
10701 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10702
10703 void VisitCXXConstructExpr(CXXConstructExpr *E) {
10704 if (E->getConstructor()->isCopyConstructor()) {
10705 Expr *ArgExpr = E->getArg(0);
10706 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10707 if (ILE->getNumInits() == 1)
10708 ArgExpr = ILE->getInit(0);
10709 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10710 if (ICE->getCastKind() == CK_NoOp)
10711 ArgExpr = ICE->getSubExpr();
10712 HandleValue(ArgExpr);
10713 return;
10714 }
10715 Inherited::VisitCXXConstructExpr(E);
10716 }
10717
10718 void VisitCallExpr(CallExpr *E) {
10719 // Treat std::move as a use.
10720 if (E->isCallToStdMove()) {
10721 HandleValue(E->getArg(0));
10722 return;
10723 }
10724
10725 Inherited::VisitCallExpr(E);
10726 }
10727
10728 void VisitBinaryOperator(BinaryOperator *E) {
10729 if (E->isCompoundAssignmentOp()) {
10730 HandleValue(E->getLHS());
10731 Visit(E->getRHS());
10732 return;
10733 }
10734
10735 Inherited::VisitBinaryOperator(E);
10736 }
10737
10738 // A custom visitor for BinaryConditionalOperator is needed because the
10739 // regular visitor would check the condition and true expression separately
10740 // but both point to the same place giving duplicate diagnostics.
10741 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10742 Visit(E->getCond());
10743 Visit(E->getFalseExpr());
10744 }
10745
10746 void HandleDeclRefExpr(DeclRefExpr *DRE) {
10747 Decl* ReferenceDecl = DRE->getDecl();
10748 if (OrigDecl != ReferenceDecl) return;
10749 unsigned diag;
10750 if (isReferenceType) {
10751 diag = diag::warn_uninit_self_reference_in_reference_init;
10752 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10753 diag = diag::warn_static_self_reference_in_init;
10754 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10755 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10756 DRE->getDecl()->getType()->isRecordType()) {
10757 diag = diag::warn_uninit_self_reference_in_init;
10758 } else {
10759 // Local variables will be handled by the CFG analysis.
10760 return;
10761 }
10762
10763 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10764 S.PDiag(diag)
10765 << DRE->getDecl() << OrigDecl->getLocation()
10766 << DRE->getSourceRange());
10767 }
10768 };
10769
10770 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10771 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10772 bool DirectInit) {
10773 // Parameters arguments are occassionially constructed with itself,
10774 // for instance, in recursive functions. Skip them.
10775 if (isa<ParmVarDecl>(OrigDecl))
10776 return;
10777
10778 E = E->IgnoreParens();
10779
10780 // Skip checking T a = a where T is not a record or reference type.
10781 // Doing so is a way to silence uninitialized warnings.
10782 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10783 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10784 if (ICE->getCastKind() == CK_LValueToRValue)
10785 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10786 if (DRE->getDecl() == OrigDecl)
10787 return;
10788
10789 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10790 }
10791} // end anonymous namespace
10792
10793namespace {
10794 // Simple wrapper to add the name of a variable or (if no variable is
10795 // available) a DeclarationName into a diagnostic.
10796 struct VarDeclOrName {
10797 VarDecl *VDecl;
10798 DeclarationName Name;
10799
10800 friend const Sema::SemaDiagnosticBuilder &
10801 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10802 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10803 }
10804 };
10805} // end anonymous namespace
10806
10807QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10808 DeclarationName Name, QualType Type,
10809 TypeSourceInfo *TSI,
10810 SourceRange Range, bool DirectInit,
10811 Expr *Init) {
10812 bool IsInitCapture = !VDecl;
10813 assert((!VDecl || !VDecl->isInitCapture()) &&(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10814, __PRETTY_FUNCTION__))
10814 "init captures are expected to be deduced prior to initialization")(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10814, __PRETTY_FUNCTION__))
;
10815
10816 VarDeclOrName VN{VDecl, Name};
10817
10818 DeducedType *Deduced = Type->getContainedDeducedType();
10819 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")((Deduced && "deduceVarTypeFromInitializer for non-deduced type"
) ? static_cast<void> (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10819, __PRETTY_FUNCTION__))
;
10820
10821 // C++11 [dcl.spec.auto]p3
10822 if (!Init) {
10823 assert(VDecl && "no init for init capture deduction?")((VDecl && "no init for init capture deduction?") ? static_cast
<void> (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10823, __PRETTY_FUNCTION__))
;
10824
10825 // Except for class argument deduction, and then for an initializing
10826 // declaration only, i.e. no static at class scope or extern.
10827 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10828 VDecl->hasExternalStorage() ||
10829 VDecl->isStaticDataMember()) {
10830 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10831 << VDecl->getDeclName() << Type;
10832 return QualType();
10833 }
10834 }
10835
10836 ArrayRef<Expr*> DeduceInits;
10837 if (Init)
10838 DeduceInits = Init;
10839
10840 if (DirectInit) {
10841 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10842 DeduceInits = PL->exprs();
10843 }
10844
10845 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10846 assert(VDecl && "non-auto type for init capture deduction?")((VDecl && "non-auto type for init capture deduction?"
) ? static_cast<void> (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10846, __PRETTY_FUNCTION__))
;
10847 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10848 InitializationKind Kind = InitializationKind::CreateForInit(
10849 VDecl->getLocation(), DirectInit, Init);
10850 // FIXME: Initialization should not be taking a mutable list of inits.
10851 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10852 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10853 InitsCopy);
10854 }
10855
10856 if (DirectInit) {
10857 if (auto *IL = dyn_cast<InitListExpr>(Init))
10858 DeduceInits = IL->inits();
10859 }
10860
10861 // Deduction only works if we have exactly one source expression.
10862 if (DeduceInits.empty()) {
10863 // It isn't possible to write this directly, but it is possible to
10864 // end up in this situation with "auto x(some_pack...);"
10865 Diag(Init->getBeginLoc(), IsInitCapture
10866 ? diag::err_init_capture_no_expression
10867 : diag::err_auto_var_init_no_expression)
10868 << VN << Type << Range;
10869 return QualType();
10870 }
10871
10872 if (DeduceInits.size() > 1) {
10873 Diag(DeduceInits[1]->getBeginLoc(),
10874 IsInitCapture ? diag::err_init_capture_multiple_expressions
10875 : diag::err_auto_var_init_multiple_expressions)
10876 << VN << Type << Range;
10877 return QualType();
10878 }
10879
10880 Expr *DeduceInit = DeduceInits[0];
10881 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10882 Diag(Init->getBeginLoc(), IsInitCapture
10883 ? diag::err_init_capture_paren_braces
10884 : diag::err_auto_var_init_paren_braces)
10885 << isa<InitListExpr>(Init) << VN << Type << Range;
10886 return QualType();
10887 }
10888
10889 // Expressions default to 'id' when we're in a debugger.
10890 bool DefaultedAnyToId = false;
10891 if (getLangOpts().DebuggerCastResultToId &&
10892 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10893 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10894 if (Result.isInvalid()) {
10895 return QualType();
10896 }
10897 Init = Result.get();
10898 DefaultedAnyToId = true;
10899 }
10900
10901 // C++ [dcl.decomp]p1:
10902 // If the assignment-expression [...] has array type A and no ref-qualifier
10903 // is present, e has type cv A
10904 if (VDecl && isa<DecompositionDecl>(VDecl) &&
10905 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10906 DeduceInit->getType()->isConstantArrayType())
10907 return Context.getQualifiedType(DeduceInit->getType(),
10908 Type.getQualifiers());
10909
10910 QualType DeducedType;
10911 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10912 if (!IsInitCapture)
10913 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
10914 else if (isa<InitListExpr>(Init))
10915 Diag(Range.getBegin(),
10916 diag::err_init_capture_deduction_failure_from_init_list)
10917 << VN
10918 << (DeduceInit->getType().isNull() ? TSI->getType()
10919 : DeduceInit->getType())
10920 << DeduceInit->getSourceRange();
10921 else
10922 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
10923 << VN << TSI->getType()
10924 << (DeduceInit->getType().isNull() ? TSI->getType()
10925 : DeduceInit->getType())
10926 << DeduceInit->getSourceRange();
10927 }
10928
10929 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
10930 // 'id' instead of a specific object type prevents most of our usual
10931 // checks.
10932 // We only want to warn outside of template instantiations, though:
10933 // inside a template, the 'id' could have come from a parameter.
10934 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
10935 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
10936 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
10937 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
10938 }
10939
10940 return DeducedType;
10941}
10942
10943bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
10944 Expr *Init) {
10945 QualType DeducedType = deduceVarTypeFromInitializer(
10946 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
10947 VDecl->getSourceRange(), DirectInit, Init);
10948 if (DeducedType.isNull()) {
10949 VDecl->setInvalidDecl();
10950 return true;
10951 }
10952
10953 VDecl->setType(DeducedType);
10954 assert(VDecl->isLinkageValid())((VDecl->isLinkageValid()) ? static_cast<void> (0) :
__assert_fail ("VDecl->isLinkageValid()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10954, __PRETTY_FUNCTION__))
;
10955
10956 // In ARC, infer lifetime.
10957 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
10958 VDecl->setInvalidDecl();
10959
10960 // If this is a redeclaration, check that the type we just deduced matches
10961 // the previously declared type.
10962 if (VarDecl *Old = VDecl->getPreviousDecl()) {
10963 // We never need to merge the type, because we cannot form an incomplete
10964 // array of auto, nor deduce such a type.
10965 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
10966 }
10967
10968 // Check the deduced type is valid for a variable declaration.
10969 CheckVariableDeclarationType(VDecl);
10970 return VDecl->isInvalidDecl();
10971}
10972
10973/// AddInitializerToDecl - Adds the initializer Init to the
10974/// declaration dcl. If DirectInit is true, this is C++ direct
10975/// initialization rather than copy initialization.
10976void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
10977 // If there is no declaration, there was an error parsing it. Just ignore
10978 // the initializer.
10979 if (!RealDecl || RealDecl->isInvalidDecl()) {
10980 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
10981 return;
10982 }
10983
10984 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
10985 // Pure-specifiers are handled in ActOnPureSpecifier.
10986 Diag(Method->getLocation(), diag::err_member_function_initialization)
10987 << Method->getDeclName() << Init->getSourceRange();
10988 Method->setInvalidDecl();
10989 return;
10990 }
10991
10992 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
10993 if (!VDecl) {
10994 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")((!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 10994, __PRETTY_FUNCTION__))
;
10995 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
10996 RealDecl->setInvalidDecl();
10997 return;
10998 }
10999
11000 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11001 if (VDecl->getType()->isUndeducedType()) {
11002 // Attempt typo correction early so that the type of the init expression can
11003 // be deduced based on the chosen correction if the original init contains a
11004 // TypoExpr.
11005 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11006 if (!Res.isUsable()) {
11007 RealDecl->setInvalidDecl();
11008 return;
11009 }
11010 Init = Res.get();
11011
11012 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11013 return;
11014 }
11015
11016 // dllimport cannot be used on variable definitions.
11017 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11018 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11019 VDecl->setInvalidDecl();
11020 return;
11021 }
11022
11023 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11024 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11025 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11026 VDecl->setInvalidDecl();
11027 return;
11028 }
11029
11030 if (!VDecl->getType()->isDependentType()) {
11031 // A definition must end up with a complete type, which means it must be
11032 // complete with the restriction that an array type might be completed by
11033 // the initializer; note that later code assumes this restriction.
11034 QualType BaseDeclType = VDecl->getType();
11035 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11036 BaseDeclType = Array->getElementType();
11037 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11038 diag::err_typecheck_decl_incomplete_type)) {
11039 RealDecl->setInvalidDecl();
11040 return;
11041 }
11042
11043 // The variable can not have an abstract class type.
11044 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11045 diag::err_abstract_type_in_decl,
11046 AbstractVariableType))
11047 VDecl->setInvalidDecl();
11048 }
11049
11050 // If adding the initializer will turn this declaration into a definition,
11051 // and we already have a definition for this variable, diagnose or otherwise
11052 // handle the situation.
11053 VarDecl *Def;
11054 if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11055 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11056 !VDecl->isThisDeclarationADemotedDefinition() &&
11057 checkVarDeclRedefinition(Def, VDecl))
11058 return;
11059
11060 if (getLangOpts().CPlusPlus) {
11061 // C++ [class.static.data]p4
11062 // If a static data member is of const integral or const
11063 // enumeration type, its declaration in the class definition can
11064 // specify a constant-initializer which shall be an integral
11065 // constant expression (5.19). In that case, the member can appear
11066 // in integral constant expressions. The member shall still be
11067 // defined in a namespace scope if it is used in the program and the
11068 // namespace scope definition shall not contain an initializer.
11069 //
11070 // We already performed a redefinition check above, but for static
11071 // data members we also need to check whether there was an in-class
11072 // declaration with an initializer.
11073 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11074 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11075 << VDecl->getDeclName();
11076 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11077 diag::note_previous_initializer)
11078 << 0;
11079 return;
11080 }
11081
11082 if (VDecl->hasLocalStorage())
11083 setFunctionHasBranchProtectedScope();
11084
11085 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11086 VDecl->setInvalidDecl();
11087 return;
11088 }
11089 }
11090
11091 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11092 // a kernel function cannot be initialized."
11093 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11094 Diag(VDecl->getLocation(), diag::err_local_cant_init);
11095 VDecl->setInvalidDecl();
11096 return;
11097 }
11098
11099 // Get the decls type and save a reference for later, since
11100 // CheckInitializerTypes may change it.
11101 QualType DclT = VDecl->getType(), SavT = DclT;
11102
11103 // Expressions default to 'id' when we're in a debugger
11104 // and we are assigning it to a variable of Objective-C pointer type.
11105 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11106 Init->getType() == Context.UnknownAnyTy) {
11107 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11108 if (Result.isInvalid()) {
11109 VDecl->setInvalidDecl();
11110 return;
11111 }
11112 Init = Result.get();
11113 }
11114
11115 // Perform the initialization.
11116 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11117 if (!VDecl->isInvalidDecl()) {
11118 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11119 InitializationKind Kind = InitializationKind::CreateForInit(
11120 VDecl->getLocation(), DirectInit, Init);
11121
11122 MultiExprArg Args = Init;
11123 if (CXXDirectInit)
11124 Args = MultiExprArg(CXXDirectInit->getExprs(),
11125 CXXDirectInit->getNumExprs());
11126
11127 // Try to correct any TypoExprs in the initialization arguments.
11128 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11129 ExprResult Res = CorrectDelayedTyposInExpr(
11130 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11131 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11132 return Init.Failed() ? ExprError() : E;
11133 });
11134 if (Res.isInvalid()) {
11135 VDecl->setInvalidDecl();
11136 } else if (Res.get() != Args[Idx]) {
11137 Args[Idx] = Res.get();
11138 }
11139 }
11140 if (VDecl->isInvalidDecl())
11141 return;
11142
11143 InitializationSequence InitSeq(*this, Entity, Kind, Args,
11144 /*TopLevelOfInitList=*/false,
11145 /*TreatUnavailableAsInvalid=*/false);
11146 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11147 if (Result.isInvalid()) {
11148 VDecl->setInvalidDecl();
11149 return;
11150 }
11151
11152 Init = Result.getAs<Expr>();
11153 }
11154
11155 // Check for self-references within variable initializers.
11156 // Variables declared within a function/method body (except for references)
11157 // are handled by a dataflow analysis.
11158 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11159 VDecl->getType()->isReferenceType()) {
11160 CheckSelfReference(*this, RealDecl, Init, DirectInit);
11161 }
11162
11163 // If the type changed, it means we had an incomplete type that was
11164 // completed by the initializer. For example:
11165 // int ary[] = { 1, 3, 5 };
11166 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11167 if (!VDecl->isInvalidDecl() && (DclT != SavT))
11168 VDecl->setType(DclT);
11169
11170 if (!VDecl->isInvalidDecl()) {
11171 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11172
11173 if (VDecl->hasAttr<BlocksAttr>())
11174 checkRetainCycles(VDecl, Init);
11175
11176 // It is safe to assign a weak reference into a strong variable.
11177 // Although this code can still have problems:
11178 // id x = self.weakProp;
11179 // id y = self.weakProp;
11180 // we do not warn to warn spuriously when 'x' and 'y' are on separate
11181 // paths through the function. This should be revisited if
11182 // -Wrepeated-use-of-weak is made flow-sensitive.
11183 if (FunctionScopeInfo *FSI = getCurFunction())
11184 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11185 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11186 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11187 Init->getBeginLoc()))
11188 FSI->markSafeWeakUse(Init);
11189 }
11190
11191 // The initialization is usually a full-expression.
11192 //
11193 // FIXME: If this is a braced initialization of an aggregate, it is not
11194 // an expression, and each individual field initializer is a separate
11195 // full-expression. For instance, in:
11196 //
11197 // struct Temp { ~Temp(); };
11198 // struct S { S(Temp); };
11199 // struct T { S a, b; } t = { Temp(), Temp() }
11200 //
11201 // we should destroy the first Temp before constructing the second.
11202 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
11203 false,
11204 VDecl->isConstexpr());
11205 if (Result.isInvalid()) {
11206 VDecl->setInvalidDecl();
11207 return;
11208 }
11209 Init = Result.get();
11210
11211 // Attach the initializer to the decl.
11212 VDecl->setInit(Init);
11213
11214 if (VDecl->isLocalVarDecl()) {
11215 // Don't check the initializer if the declaration is malformed.
11216 if (VDecl->isInvalidDecl()) {
11217 // do nothing
11218
11219 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11220 // This is true even in OpenCL C++.
11221 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11222 CheckForConstantInitializer(Init, DclT);
11223
11224 // Otherwise, C++ does not restrict the initializer.
11225 } else if (getLangOpts().CPlusPlus) {
11226 // do nothing
11227
11228 // C99 6.7.8p4: All the expressions in an initializer for an object that has
11229 // static storage duration shall be constant expressions or string literals.
11230 } else if (VDecl->getStorageClass() == SC_Static) {
11231 CheckForConstantInitializer(Init, DclT);
11232
11233 // C89 is stricter than C99 for aggregate initializers.
11234 // C89 6.5.7p3: All the expressions [...] in an initializer list
11235 // for an object that has aggregate or union type shall be
11236 // constant expressions.
11237 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11238 isa<InitListExpr>(Init)) {
11239 const Expr *Culprit;
11240 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11241 Diag(Culprit->getExprLoc(),
11242 diag::ext_aggregate_init_not_constant)
11243 << Culprit->getSourceRange();
11244 }
11245 }
11246 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11247 VDecl->getLexicalDeclContext()->isRecord()) {
11248 // This is an in-class initialization for a static data member, e.g.,
11249 //
11250 // struct S {
11251 // static const int value = 17;
11252 // };
11253
11254 // C++ [class.mem]p4:
11255 // A member-declarator can contain a constant-initializer only
11256 // if it declares a static member (9.4) of const integral or
11257 // const enumeration type, see 9.4.2.
11258 //
11259 // C++11 [class.static.data]p3:
11260 // If a non-volatile non-inline const static data member is of integral
11261 // or enumeration type, its declaration in the class definition can
11262 // specify a brace-or-equal-initializer in which every initializer-clause
11263 // that is an assignment-expression is a constant expression. A static
11264 // data member of literal type can be declared in the class definition
11265 // with the constexpr specifier; if so, its declaration shall specify a
11266 // brace-or-equal-initializer in which every initializer-clause that is
11267 // an assignment-expression is a constant expression.
11268
11269 // Do nothing on dependent types.
11270 if (DclT->isDependentType()) {
11271
11272 // Allow any 'static constexpr' members, whether or not they are of literal
11273 // type. We separately check that every constexpr variable is of literal
11274 // type.
11275 } else if (VDecl->isConstexpr()) {
11276
11277 // Require constness.
11278 } else if (!DclT.isConstQualified()) {
11279 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11280 << Init->getSourceRange();
11281 VDecl->setInvalidDecl();
11282
11283 // We allow integer constant expressions in all cases.
11284 } else if (DclT->isIntegralOrEnumerationType()) {
11285 // Check whether the expression is a constant expression.
11286 SourceLocation Loc;
11287 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11288 // In C++11, a non-constexpr const static data member with an
11289 // in-class initializer cannot be volatile.
11290 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11291 else if (Init->isValueDependent())
11292 ; // Nothing to check.
11293 else if (Init->isIntegerConstantExpr(Context, &Loc))
11294 ; // Ok, it's an ICE!
11295 else if (Init->getType()->isScopedEnumeralType() &&
11296 Init->isCXX11ConstantExpr(Context))
11297 ; // Ok, it is a scoped-enum constant expression.
11298 else if (Init->isEvaluatable(Context)) {
11299 // If we can constant fold the initializer through heroics, accept it,
11300 // but report this as a use of an extension for -pedantic.
11301 Diag(Loc, diag::ext_in_class_initializer_non_constant)
11302 << Init->getSourceRange();
11303 } else {
11304 // Otherwise, this is some crazy unknown case. Report the issue at the
11305 // location provided by the isIntegerConstantExpr failed check.
11306 Diag(Loc, diag::err_in_class_initializer_non_constant)
11307 << Init->getSourceRange();
11308 VDecl->setInvalidDecl();
11309 }
11310
11311 // We allow foldable floating-point constants as an extension.
11312 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11313 // In C++98, this is a GNU extension. In C++11, it is not, but we support
11314 // it anyway and provide a fixit to add the 'constexpr'.
11315 if (getLangOpts().CPlusPlus11) {
11316 Diag(VDecl->getLocation(),
11317 diag::ext_in_class_initializer_float_type_cxx11)
11318 << DclT << Init->getSourceRange();
11319 Diag(VDecl->getBeginLoc(),
11320 diag::note_in_class_initializer_float_type_cxx11)
11321 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11322 } else {
11323 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11324 << DclT << Init->getSourceRange();
11325
11326 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11327 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11328 << Init->getSourceRange();
11329 VDecl->setInvalidDecl();
11330 }
11331 }
11332
11333 // Suggest adding 'constexpr' in C++11 for literal types.
11334 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11335 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11336 << DclT << Init->getSourceRange()
11337 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11338 VDecl->setConstexpr(true);
11339
11340 } else {
11341 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11342 << DclT << Init->getSourceRange();
11343 VDecl->setInvalidDecl();
11344 }
11345 } else if (VDecl->isFileVarDecl()) {
11346 // In C, extern is typically used to avoid tentative definitions when
11347 // declaring variables in headers, but adding an intializer makes it a
11348 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11349 // In C++, extern is often used to give implictly static const variables
11350 // external linkage, so don't warn in that case. If selectany is present,
11351 // this might be header code intended for C and C++ inclusion, so apply the
11352 // C++ rules.
11353 if (VDecl->getStorageClass() == SC_Extern &&
11354 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11355 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11356 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11357 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11358 Diag(VDecl->getLocation(), diag::warn_extern_init);
11359
11360 // C99 6.7.8p4. All file scoped initializers need to be constant.
11361 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11362 CheckForConstantInitializer(Init, DclT);
11363 }
11364
11365 // We will represent direct-initialization similarly to copy-initialization:
11366 // int x(1); -as-> int x = 1;
11367 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11368 //
11369 // Clients that want to distinguish between the two forms, can check for
11370 // direct initializer using VarDecl::getInitStyle().
11371 // A major benefit is that clients that don't particularly care about which
11372 // exactly form was it (like the CodeGen) can handle both cases without
11373 // special case code.
11374
11375 // C++ 8.5p11:
11376 // The form of initialization (using parentheses or '=') is generally
11377 // insignificant, but does matter when the entity being initialized has a
11378 // class type.
11379 if (CXXDirectInit) {
11380 assert(DirectInit && "Call-style initializer must be direct init.")((DirectInit && "Call-style initializer must be direct init."
) ? static_cast<void> (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 11380, __PRETTY_FUNCTION__))
;
11381 VDecl->setInitStyle(VarDecl::CallInit);
11382 } else if (DirectInit) {
11383 // This must be list-initialization. No other way is direct-initialization.
11384 VDecl->setInitStyle(VarDecl::ListInit);
11385 }
11386
11387 CheckCompleteVariableDeclaration(VDecl);
11388}
11389
11390/// ActOnInitializerError - Given that there was an error parsing an
11391/// initializer for the given declaration, try to return to some form
11392/// of sanity.
11393void Sema::ActOnInitializerError(Decl *D) {
11394 // Our main concern here is re-establishing invariants like "a
11395 // variable's type is either dependent or complete".
11396 if (!D || D->isInvalidDecl()) return;
11397
11398 VarDecl *VD = dyn_cast<VarDecl>(D);
11399 if (!VD) return;
11400
11401 // Bindings are not usable if we can't make sense of the initializer.
11402 if (auto *DD = dyn_cast<DecompositionDecl>(D))
11403 for (auto *BD : DD->bindings())
11404 BD->setInvalidDecl();
11405
11406 // Auto types are meaningless if we can't make sense of the initializer.
11407 if (ParsingInitForAutoVars.count(D)) {
11408 D->setInvalidDecl();
11409 return;
11410 }
11411
11412 QualType Ty = VD->getType();
11413 if (Ty->isDependentType()) return;
11414
11415 // Require a complete type.
11416 if (RequireCompleteType(VD->getLocation(),
11417 Context.getBaseElementType(Ty),
11418 diag::err_typecheck_decl_incomplete_type)) {
11419 VD->setInvalidDecl();
11420 return;
11421 }
11422
11423 // Require a non-abstract type.
11424 if (RequireNonAbstractType(VD->getLocation(), Ty,
11425 diag::err_abstract_type_in_decl,
11426 AbstractVariableType)) {
11427 VD->setInvalidDecl();
11428 return;
11429 }
11430
11431 // Don't bother complaining about constructors or destructors,
11432 // though.
11433}
11434
11435void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11436 // If there is no declaration, there was an error parsing it. Just ignore it.
11437 if (!RealDecl)
11438 return;
11439
11440 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11441 QualType Type = Var->getType();
11442
11443 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11444 if (isa<DecompositionDecl>(RealDecl)) {
11445 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11446 Var->setInvalidDecl();
11447 return;
11448 }
11449
11450 if (Type->isUndeducedType() &&
11451 DeduceVariableDeclarationType(Var, false, nullptr))
11452 return;
11453
11454 // C++11 [class.static.data]p3: A static data member can be declared with
11455 // the constexpr specifier; if so, its declaration shall specify
11456 // a brace-or-equal-initializer.
11457 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11458 // the definition of a variable [...] or the declaration of a static data
11459 // member.
11460 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11461 !Var->isThisDeclarationADemotedDefinition()) {
11462 if (Var->isStaticDataMember()) {
11463 // C++1z removes the relevant rule; the in-class declaration is always
11464 // a definition there.
11465 if (!getLangOpts().CPlusPlus17) {
11466 Diag(Var->getLocation(),
11467 diag::err_constexpr_static_mem_var_requires_init)
11468 << Var->getDeclName();
11469 Var->setInvalidDecl();
11470 return;
11471 }
11472 } else {
11473 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11474 Var->setInvalidDecl();
11475 return;
11476 }
11477 }
11478
11479 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11480 // be initialized.
11481 if (!Var->isInvalidDecl() &&
11482 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11483 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11484 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11485 Var->setInvalidDecl();
11486 return;
11487 }
11488
11489 switch (Var->isThisDeclarationADefinition()) {
11490 case VarDecl::Definition:
11491 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11492 break;
11493
11494 // We have an out-of-line definition of a static data member
11495 // that has an in-class initializer, so we type-check this like
11496 // a declaration.
11497 //
11498 LLVM_FALLTHROUGH[[clang::fallthrough]];
11499
11500 case VarDecl::DeclarationOnly:
11501 // It's only a declaration.
11502
11503 // Block scope. C99 6.7p7: If an identifier for an object is
11504 // declared with no linkage (C99 6.2.2p6), the type for the
11505 // object shall be complete.
11506 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11507 !Var->hasLinkage() && !Var->isInvalidDecl() &&
11508 RequireCompleteType(Var->getLocation(), Type,
11509 diag::err_typecheck_decl_incomplete_type))
11510 Var->setInvalidDecl();
11511
11512 // Make sure that the type is not abstract.
11513 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11514 RequireNonAbstractType(Var->getLocation(), Type,
11515 diag::err_abstract_type_in_decl,
11516 AbstractVariableType))
11517 Var->setInvalidDecl();
11518 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11519 Var->getStorageClass() == SC_PrivateExtern) {
11520 Diag(Var->getLocation(), diag::warn_private_extern);
11521 Diag(Var->getLocation(), diag::note_private_extern);
11522 }
11523
11524 return;
11525
11526 case VarDecl::TentativeDefinition:
11527 // File scope. C99 6.9.2p2: A declaration of an identifier for an
11528 // object that has file scope without an initializer, and without a
11529 // storage-class specifier or with the storage-class specifier "static",
11530 // constitutes a tentative definition. Note: A tentative definition with
11531 // external linkage is valid (C99 6.2.2p5).
11532 if (!Var->isInvalidDecl()) {
11533 if (const IncompleteArrayType *ArrayT
11534 = Context.getAsIncompleteArrayType(Type)) {
11535 if (RequireCompleteType(Var->getLocation(),
11536 ArrayT->getElementType(),
11537 diag::err_illegal_decl_array_incomplete_type))
11538 Var->setInvalidDecl();
11539 } else if (Var->getStorageClass() == SC_Static) {
11540 // C99 6.9.2p3: If the declaration of an identifier for an object is
11541 // a tentative definition and has internal linkage (C99 6.2.2p3), the
11542 // declared type shall not be an incomplete type.
11543 // NOTE: code such as the following
11544 // static struct s;
11545 // struct s { int a; };
11546 // is accepted by gcc. Hence here we issue a warning instead of
11547 // an error and we do not invalidate the static declaration.
11548 // NOTE: to avoid multiple warnings, only check the first declaration.
11549 if (Var->isFirstDecl())
11550 RequireCompleteType(Var->getLocation(), Type,
11551 diag::ext_typecheck_decl_incomplete_type);
11552 }
11553 }
11554
11555 // Record the tentative definition; we're done.
11556 if (!Var->isInvalidDecl())
11557 TentativeDefinitions.push_back(Var);
11558 return;
11559 }
11560
11561 // Provide a specific diagnostic for uninitialized variable
11562 // definitions with incomplete array type.
11563 if (Type->isIncompleteArrayType()) {
11564 Diag(Var->getLocation(),
11565 diag::err_typecheck_incomplete_array_needs_initializer);
11566 Var->setInvalidDecl();
11567 return;
11568 }
11569
11570 // Provide a specific diagnostic for uninitialized variable
11571 // definitions with reference type.
11572 if (Type->isReferenceType()) {
11573 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11574 << Var->getDeclName()
11575 << SourceRange(Var->getLocation(), Var->getLocation());
11576 Var->setInvalidDecl();
11577 return;
11578 }
11579
11580 // Do not attempt to type-check the default initializer for a
11581 // variable with dependent type.
11582 if (Type->isDependentType())
11583 return;
11584
11585 if (Var->isInvalidDecl())
11586 return;
11587
11588 if (!Var->hasAttr<AliasAttr>()) {
11589 if (RequireCompleteType(Var->getLocation(),
11590 Context.getBaseElementType(Type),
11591 diag::err_typecheck_decl_incomplete_type)) {
11592 Var->setInvalidDecl();
11593 return;
11594 }
11595 } else {
11596 return;
11597 }
11598
11599 // The variable can not have an abstract class type.
11600 if (RequireNonAbstractType(Var->getLocation(), Type,
11601 diag::err_abstract_type_in_decl,
11602 AbstractVariableType)) {
11603 Var->setInvalidDecl();
11604 return;
11605 }
11606
11607 // Check for jumps past the implicit initializer. C++0x
11608 // clarifies that this applies to a "variable with automatic
11609 // storage duration", not a "local variable".
11610 // C++11 [stmt.dcl]p3
11611 // A program that jumps from a point where a variable with automatic
11612 // storage duration is not in scope to a point where it is in scope is
11613 // ill-formed unless the variable has scalar type, class type with a
11614 // trivial default constructor and a trivial destructor, a cv-qualified
11615 // version of one of these types, or an array of one of the preceding
11616 // types and is declared without an initializer.
11617 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11618 if (const RecordType *Record
11619 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11620 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11621 // Mark the function (if we're in one) for further checking even if the
11622 // looser rules of C++11 do not require such checks, so that we can
11623 // diagnose incompatibilities with C++98.
11624 if (!CXXRecord->isPOD())
11625 setFunctionHasBranchProtectedScope();
11626 }
11627 }
11628
11629 // C++03 [dcl.init]p9:
11630 // If no initializer is specified for an object, and the
11631 // object is of (possibly cv-qualified) non-POD class type (or
11632 // array thereof), the object shall be default-initialized; if
11633 // the object is of const-qualified type, the underlying class
11634 // type shall have a user-declared default
11635 // constructor. Otherwise, if no initializer is specified for
11636 // a non- static object, the object and its subobjects, if
11637 // any, have an indeterminate initial value); if the object
11638 // or any of its subobjects are of const-qualified type, the
11639 // program is ill-formed.
11640 // C++0x [dcl.init]p11:
11641 // If no initializer is specified for an object, the object is
11642 // default-initialized; [...].
11643 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11644 InitializationKind Kind
11645 = InitializationKind::CreateDefault(Var->getLocation());
11646
11647 InitializationSequence InitSeq(*this, Entity, Kind, None);
11648 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11649 if (Init.isInvalid())
11650 Var->setInvalidDecl();
11651 else if (Init.get()) {
11652 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11653 // This is important for template substitution.
11654 Var->setInitStyle(VarDecl::CallInit);
11655 }
11656
11657 CheckCompleteVariableDeclaration(Var);
11658 }
11659}
11660
11661void Sema::ActOnCXXForRangeDecl(Decl *D) {
11662 // If there is no declaration, there was an error parsing it. Ignore it.
11663 if (!D)
11664 return;
11665
11666 VarDecl *VD = dyn_cast<VarDecl>(D);
11667 if (!VD) {
11668 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11669 D->setInvalidDecl();
11670 return;
11671 }
11672
11673 VD->setCXXForRangeDecl(true);
11674
11675 // for-range-declaration cannot be given a storage class specifier.
11676 int Error = -1;
11677 switch (VD->getStorageClass()) {
11678 case SC_None:
11679 break;
11680 case SC_Extern:
11681 Error = 0;
11682 break;
11683 case SC_Static:
11684 Error = 1;
11685 break;
11686 case SC_PrivateExtern:
11687 Error = 2;
11688 break;
11689 case SC_Auto:
11690 Error = 3;
11691 break;
11692 case SC_Register:
11693 Error = 4;
11694 break;
11695 }
11696 if (Error != -1) {
11697 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11698 << VD->getDeclName() << Error;
11699 D->setInvalidDecl();
11700 }
11701}
11702
11703StmtResult
11704Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11705 IdentifierInfo *Ident,
11706 ParsedAttributes &Attrs,
11707 SourceLocation AttrEnd) {
11708 // C++1y [stmt.iter]p1:
11709 // A range-based for statement of the form
11710 // for ( for-range-identifier : for-range-initializer ) statement
11711 // is equivalent to
11712 // for ( auto&& for-range-identifier : for-range-initializer ) statement
11713 DeclSpec DS(Attrs.getPool().getFactory());
11714
11715 const char *PrevSpec;
11716 unsigned DiagID;
11717 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11718 getPrintingPolicy());
11719
11720 Declarator D(DS, DeclaratorContext::ForContext);
11721 D.SetIdentifier(Ident, IdentLoc);
11722 D.takeAttributes(Attrs, AttrEnd);
11723
11724 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
11725 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
11726 IdentLoc);
11727 Decl *Var = ActOnDeclarator(S, D);
11728 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11729 FinalizeDeclaration(Var);
11730 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11731 AttrEnd.isValid() ? AttrEnd : IdentLoc);
11732}
11733
11734void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11735 if (var->isInvalidDecl()) return;
11736
11737 if (getLangOpts().OpenCL) {
11738 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11739 // initialiser
11740 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11741 !var->hasInit()) {
11742 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11743 << 1 /*Init*/;
11744 var->setInvalidDecl();
11745 return;
11746 }
11747 }
11748
11749 // In Objective-C, don't allow jumps past the implicit initialization of a
11750 // local retaining variable.
11751 if (getLangOpts().ObjC &&
11752 var->hasLocalStorage()) {
11753 switch (var->getType().getObjCLifetime()) {
11754 case Qualifiers::OCL_None:
11755 case Qualifiers::OCL_ExplicitNone:
11756 case Qualifiers::OCL_Autoreleasing:
11757 break;
11758
11759 case Qualifiers::OCL_Weak:
11760 case Qualifiers::OCL_Strong:
11761 setFunctionHasBranchProtectedScope();
11762 break;
11763 }
11764 }
11765
11766 if (var->hasLocalStorage() &&
11767 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11768 setFunctionHasBranchProtectedScope();
11769
11770 // Warn about externally-visible variables being defined without a
11771 // prior declaration. We only want to do this for global
11772 // declarations, but we also specifically need to avoid doing it for
11773 // class members because the linkage of an anonymous class can
11774 // change if it's later given a typedef name.
11775 if (var->isThisDeclarationADefinition() &&
11776 var->getDeclContext()->getRedeclContext()->isFileContext() &&
11777 var->isExternallyVisible() && var->hasLinkage() &&
11778 !var->isInline() && !var->getDescribedVarTemplate() &&
11779 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11780 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11781 var->getLocation())) {
11782 // Find a previous declaration that's not a definition.
11783 VarDecl *prev = var->getPreviousDecl();
11784 while (prev && prev->isThisDeclarationADefinition())
11785 prev = prev->getPreviousDecl();
11786
11787 if (!prev)
11788 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11789 }
11790
11791 // Cache the result of checking for constant initialization.
11792 Optional<bool> CacheHasConstInit;
11793 const Expr *CacheCulprit;
11794 auto checkConstInit = [&]() mutable {
11795 if (!CacheHasConstInit)
11796 CacheHasConstInit = var->getInit()->isConstantInitializer(
11797 Context, var->getType()->isReferenceType(), &CacheCulprit);
11798 return *CacheHasConstInit;
11799 };
11800
11801 if (var->getTLSKind() == VarDecl::TLS_Static) {
11802 if (var->getType().isDestructedType()) {
11803 // GNU C++98 edits for __thread, [basic.start.term]p3:
11804 // The type of an object with thread storage duration shall not
11805 // have a non-trivial destructor.
11806 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11807 if (getLangOpts().CPlusPlus11)
11808 Diag(var->getLocation(), diag::note_use_thread_local);
11809 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11810 if (!checkConstInit()) {
11811 // GNU C++98 edits for __thread, [basic.start.init]p4:
11812 // An object of thread storage duration shall not require dynamic
11813 // initialization.
11814 // FIXME: Need strict checking here.
11815 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11816 << CacheCulprit->getSourceRange();
11817 if (getLangOpts().CPlusPlus11)
11818 Diag(var->getLocation(), diag::note_use_thread_local);
11819 }
11820 }
11821 }
11822
11823 // Apply section attributes and pragmas to global variables.
11824 bool GlobalStorage = var->hasGlobalStorage();
11825 if (GlobalStorage && var->isThisDeclarationADefinition() &&
11826 !inTemplateInstantiation()) {
11827 PragmaStack<StringLiteral *> *Stack = nullptr;
11828 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11829 if (var->getType().isConstQualified())
11830 Stack = &ConstSegStack;
11831 else if (!var->getInit()) {
11832 Stack = &BSSSegStack;
11833 SectionFlags |= ASTContext::PSF_Write;
11834 } else {
11835 Stack = &DataSegStack;
11836 SectionFlags |= ASTContext::PSF_Write;
11837 }
11838 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11839 var->addAttr(SectionAttr::CreateImplicit(
11840 Context, SectionAttr::Declspec_allocate,
11841 Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11842 }
11843 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11844 if (UnifySection(SA->getName(), SectionFlags, var))
11845 var->dropAttr<SectionAttr>();
11846
11847 // Apply the init_seg attribute if this has an initializer. If the
11848 // initializer turns out to not be dynamic, we'll end up ignoring this
11849 // attribute.
11850 if (CurInitSeg && var->getInit())
11851 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11852 CurInitSegLoc));
11853 }
11854
11855 // All the following checks are C++ only.
11856 if (!getLangOpts().CPlusPlus) {
11857 // If this variable must be emitted, add it as an initializer for the
11858 // current module.
11859 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11860 Context.addModuleInitializer(ModuleScopes.back().Module, var);
11861 return;
11862 }
11863
11864 if (auto *DD = dyn_cast<DecompositionDecl>(var))
11865 CheckCompleteDecompositionDeclaration(DD);
11866
11867 QualType type = var->getType();
11868 if (type->isDependentType()) return;
11869
11870 if (var->hasAttr<BlocksAttr>())
11871 getCurFunction()->addByrefBlockVar(var);
11872
11873 Expr *Init = var->getInit();
11874 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11875 QualType baseType = Context.getBaseElementType(type);
11876
11877 if (Init && !Init->isValueDependent()) {
11878 if (var->isConstexpr()) {
11879 SmallVector<PartialDiagnosticAt, 8> Notes;
11880 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11881 SourceLocation DiagLoc = var->getLocation();
11882 // If the note doesn't add any useful information other than a source
11883 // location, fold it into the primary diagnostic.
11884 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11885 diag::note_invalid_subexpr_in_const_expr) {
11886 DiagLoc = Notes[0].first;
11887 Notes.clear();
11888 }
11889 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11890 << var << Init->getSourceRange();
11891 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11892 Diag(Notes[I].first, Notes[I].second);
11893 }
11894 } else if (var->isUsableInConstantExpressions(Context)) {
11895 // Check whether the initializer of a const variable of integral or
11896 // enumeration type is an ICE now, since we can't tell whether it was
11897 // initialized by a constant expression if we check later.
11898 var->checkInitIsICE();
11899 }
11900
11901 // Don't emit further diagnostics about constexpr globals since they
11902 // were just diagnosed.
11903 if (!var->isConstexpr() && GlobalStorage &&
11904 var->hasAttr<RequireConstantInitAttr>()) {
11905 // FIXME: Need strict checking in C++03 here.
11906 bool DiagErr = getLangOpts().CPlusPlus11
11907 ? !var->checkInitIsICE() : !checkConstInit();
11908 if (DiagErr) {
11909 auto attr = var->getAttr<RequireConstantInitAttr>();
11910 Diag(var->getLocation(), diag::err_require_constant_init_failed)
11911 << Init->getSourceRange();
11912 Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
11913 << attr->getRange();
11914 if (getLangOpts().CPlusPlus11) {
11915 APValue Value;
11916 SmallVector<PartialDiagnosticAt, 8> Notes;
11917 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
11918 for (auto &it : Notes)
11919 Diag(it.first, it.second);
11920 } else {
11921 Diag(CacheCulprit->getExprLoc(),
11922 diag::note_invalid_subexpr_in_const_expr)
11923 << CacheCulprit->getSourceRange();
11924 }
11925 }
11926 }
11927 else if (!var->isConstexpr() && IsGlobal &&
11928 !getDiagnostics().isIgnored(diag::warn_global_constructor,
11929 var->getLocation())) {
11930 // Warn about globals which don't have a constant initializer. Don't
11931 // warn about globals with a non-trivial destructor because we already
11932 // warned about them.
11933 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
11934 if (!(RD && !RD->hasTrivialDestructor())) {
11935 if (!checkConstInit())
11936 Diag(var->getLocation(), diag::warn_global_constructor)
11937 << Init->getSourceRange();
11938 }
11939 }
11940 }
11941
11942 // Require the destructor.
11943 if (const RecordType *recordType = baseType->getAs<RecordType>())
11944 FinalizeVarWithDestructor(var, recordType);
11945
11946 // If this variable must be emitted, add it as an initializer for the current
11947 // module.
11948 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11949 Context.addModuleInitializer(ModuleScopes.back().Module, var);
11950}
11951
11952/// Determines if a variable's alignment is dependent.
11953static bool hasDependentAlignment(VarDecl *VD) {
11954 if (VD->getType()->isDependentType())
11955 return true;
11956 for (auto *I : VD->specific_attrs<AlignedAttr>())
11957 if (I->isAlignmentDependent())
11958 return true;
11959 return false;
11960}
11961
11962/// Check if VD needs to be dllexport/dllimport due to being in a
11963/// dllexport/import function.
11964void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
11965 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 11965, __PRETTY_FUNCTION__))
;
11966
11967 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
11968
11969 // Find outermost function when VD is in lambda function.
11970 while (FD && !getDLLAttr(FD) &&
11971 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
11972 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
11973 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
11974 }
11975
11976 if (!FD)
11977 return;
11978
11979 // Static locals inherit dll attributes from their function.
11980 if (Attr *A = getDLLAttr(FD)) {
11981 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
11982 NewAttr->setInherited(true);
11983 VD->addAttr(NewAttr);
11984 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
11985 auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
11986 getASTContext(),
11987 A->getSpellingListIndex());
11988 NewAttr->setInherited(true);
11989 VD->addAttr(NewAttr);
11990
11991 // Export this function to enforce exporting this static variable even
11992 // if it is not used in this compilation unit.
11993 if (!FD->hasAttr<DLLExportAttr>())
11994 FD->addAttr(NewAttr);
11995
11996 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
11997 auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
11998 getASTContext(),
11999 A->getSpellingListIndex());
12000 NewAttr->setInherited(true);
12001 VD->addAttr(NewAttr);
12002 }
12003}
12004
12005/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12006/// any semantic actions necessary after any initializer has been attached.
12007void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12008 // Note that we are no longer parsing the initializer for this declaration.
12009 ParsingInitForAutoVars.erase(ThisDecl);
12010
12011 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12012 if (!VD)
12013 return;
12014
12015 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12016 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12017 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12018 if (PragmaClangBSSSection.Valid)
12019 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12020 PragmaClangBSSSection.SectionName,
12021 PragmaClangBSSSection.PragmaLocation));
12022 if (PragmaClangDataSection.Valid)
12023 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12024 PragmaClangDataSection.SectionName,
12025 PragmaClangDataSection.PragmaLocation));
12026 if (PragmaClangRodataSection.Valid)
12027 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12028 PragmaClangRodataSection.SectionName,
12029 PragmaClangRodataSection.PragmaLocation));
12030 }
12031
12032 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12033 for (auto *BD : DD->bindings()) {
12034 FinalizeDeclaration(BD);
12035 }
12036 }
12037
12038 checkAttributesAfterMerging(*this, *VD);
12039
12040 // Perform TLS alignment check here after attributes attached to the variable
12041 // which may affect the alignment have been processed. Only perform the check
12042 // if the target has a maximum TLS alignment (zero means no constraints).
12043 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12044 // Protect the check so that it's not performed on dependent types and
12045 // dependent alignments (we can't determine the alignment in that case).
12046 if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12047 !VD->isInvalidDecl()) {
12048 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12049 if (Context.getDeclAlign(VD) > MaxAlignChars) {
12050 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12051 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12052 << (unsigned)MaxAlignChars.getQuantity();
12053 }
12054 }
12055 }
12056
12057 if (VD->isStaticLocal()) {
12058 CheckStaticLocalForDllExport(VD);
12059
12060 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12061 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12062 // function, only __shared__ variables or variables without any device
12063 // memory qualifiers may be declared with static storage class.
12064 // Note: It is unclear how a function-scope non-const static variable
12065 // without device memory qualifier is implemented, therefore only static
12066 // const variable without device memory qualifier is allowed.
12067 [&]() {
12068 if (!getLangOpts().CUDA)
12069 return;
12070 if (VD->hasAttr<CUDASharedAttr>())
12071 return;
12072 if (VD->getType().isConstQualified() &&
12073 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12074 return;
12075 if (CUDADiagIfDeviceCode(VD->getLocation(),
12076 diag::err_device_static_local_var)
12077 << CurrentCUDATarget())
12078 VD->setInvalidDecl();
12079 }();
12080 }
12081 }
12082
12083 // Perform check for initializers of device-side global variables.
12084 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12085 // 7.5). We must also apply the same checks to all __shared__
12086 // variables whether they are local or not. CUDA also allows
12087 // constant initializers for __constant__ and __device__ variables.
12088 if (getLangOpts().CUDA)
12089 checkAllowedCUDAInitializer(VD);
12090
12091 // Grab the dllimport or dllexport attribute off of the VarDecl.
12092 const InheritableAttr *DLLAttr = getDLLAttr(VD);
12093
12094 // Imported static data members cannot be defined out-of-line.
12095 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12096 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12097 VD->isThisDeclarationADefinition()) {
12098 // We allow definitions of dllimport class template static data members
12099 // with a warning.
12100 CXXRecordDecl *Context =
12101 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12102 bool IsClassTemplateMember =
12103 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12104 Context->getDescribedClassTemplate();
12105
12106 Diag(VD->getLocation(),
12107 IsClassTemplateMember
12108 ? diag::warn_attribute_dllimport_static_field_definition
12109 : diag::err_attribute_dllimport_static_field_definition);
12110 Diag(IA->getLocation(), diag::note_attribute);
12111 if (!IsClassTemplateMember)
12112 VD->setInvalidDecl();
12113 }
12114 }
12115
12116 // dllimport/dllexport variables cannot be thread local, their TLS index
12117 // isn't exported with the variable.
12118 if (DLLAttr && VD->getTLSKind()) {
12119 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12120 if (F && getDLLAttr(F)) {
12121 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12121, __PRETTY_FUNCTION__))
;
12122 // But if this is a static local in a dlimport/dllexport function, the
12123 // function will never be inlined, which means the var would never be
12124 // imported, so having it marked import/export is safe.
12125 } else {
12126 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12127 << DLLAttr;
12128 VD->setInvalidDecl();
12129 }
12130 }
12131
12132 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12133 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12134 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12135 VD->dropAttr<UsedAttr>();
12136 }
12137 }
12138
12139 const DeclContext *DC = VD->getDeclContext();
12140 // If there's a #pragma GCC visibility in scope, and this isn't a class
12141 // member, set the visibility of this variable.
12142 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12143 AddPushedVisibilityAttribute(VD);
12144
12145 // FIXME: Warn on unused var template partial specializations.
12146 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12147 MarkUnusedFileScopedDecl(VD);
12148
12149 // Now we have parsed the initializer and can update the table of magic
12150 // tag values.
12151 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12152 !VD->getType()->isIntegralOrEnumerationType())
12153 return;
12154
12155 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12156 const Expr *MagicValueExpr = VD->getInit();
12157 if (!MagicValueExpr) {
12158 continue;
12159 }
12160 llvm::APSInt MagicValueInt;
12161 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12162 Diag(I->getRange().getBegin(),
12163 diag::err_type_tag_for_datatype_not_ice)
12164 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12165 continue;
12166 }
12167 if (MagicValueInt.getActiveBits() > 64) {
12168 Diag(I->getRange().getBegin(),
12169 diag::err_type_tag_for_datatype_too_large)
12170 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12171 continue;
12172 }
12173 uint64_t MagicValue = MagicValueInt.getZExtValue();
12174 RegisterTypeTagForDatatype(I->getArgumentKind(),
12175 MagicValue,
12176 I->getMatchingCType(),
12177 I->getLayoutCompatible(),
12178 I->getMustBeNull());
12179 }
12180}
12181
12182static bool hasDeducedAuto(DeclaratorDecl *DD) {
12183 auto *VD = dyn_cast<VarDecl>(DD);
12184 return VD && !VD->getType()->hasAutoForTrailingReturnType();
12185}
12186
12187Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12188 ArrayRef<Decl *> Group) {
12189 SmallVector<Decl*, 8> Decls;
12190
12191 if (DS.isTypeSpecOwned())
12192 Decls.push_back(DS.getRepAsDecl());
12193
12194 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12195 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12196 bool DiagnosedMultipleDecomps = false;
12197 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12198 bool DiagnosedNonDeducedAuto = false;
12199
12200 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12201 if (Decl *D = Group[i]) {
12202 // For declarators, there are some additional syntactic-ish checks we need
12203 // to perform.
12204 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12205 if (!FirstDeclaratorInGroup)
12206 FirstDeclaratorInGroup = DD;
12207 if (!FirstDecompDeclaratorInGroup)
12208 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12209 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12210 !hasDeducedAuto(DD))
12211 FirstNonDeducedAutoInGroup = DD;
12212
12213 if (FirstDeclaratorInGroup != DD) {
12214 // A decomposition declaration cannot be combined with any other
12215 // declaration in the same group.
12216 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12217 Diag(FirstDecompDeclaratorInGroup->getLocation(),
12218 diag::err_decomp_decl_not_alone)
12219 << FirstDeclaratorInGroup->getSourceRange()
12220 << DD->getSourceRange();
12221 DiagnosedMultipleDecomps = true;
12222 }
12223
12224 // A declarator that uses 'auto' in any way other than to declare a
12225 // variable with a deduced type cannot be combined with any other
12226 // declarator in the same group.
12227 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12228 Diag(FirstNonDeducedAutoInGroup->getLocation(),
12229 diag::err_auto_non_deduced_not_alone)
12230 << FirstNonDeducedAutoInGroup->getType()
12231 ->hasAutoForTrailingReturnType()
12232 << FirstDeclaratorInGroup->getSourceRange()
12233 << DD->getSourceRange();
12234 DiagnosedNonDeducedAuto = true;
12235 }
12236 }
12237 }
12238
12239 Decls.push_back(D);
12240 }
12241 }
12242
12243 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12244 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12245 handleTagNumbering(Tag, S);
12246 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12247 getLangOpts().CPlusPlus)
12248 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12249 }
12250 }
12251
12252 return BuildDeclaratorGroup(Decls);
12253}
12254
12255/// BuildDeclaratorGroup - convert a list of declarations into a declaration
12256/// group, performing any necessary semantic checking.
12257Sema::DeclGroupPtrTy
12258Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12259 // C++14 [dcl.spec.auto]p7: (DR1347)
12260 // If the type that replaces the placeholder type is not the same in each
12261 // deduction, the program is ill-formed.
12262 if (Group.size() > 1) {
12263 QualType Deduced;
12264 VarDecl *DeducedDecl = nullptr;
12265 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12266 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12267 if (!D || D->isInvalidDecl())
12268 break;
12269 DeducedType *DT = D->getType()->getContainedDeducedType();
12270 if (!DT || DT->getDeducedType().isNull())
12271 continue;
12272 if (Deduced.isNull()) {
12273 Deduced = DT->getDeducedType();
12274 DeducedDecl = D;
12275 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12276 auto *AT = dyn_cast<AutoType>(DT);
12277 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12278 diag::err_auto_different_deductions)
12279 << (AT ? (unsigned)AT->getKeyword() : 3)
12280 << Deduced << DeducedDecl->getDeclName()
12281 << DT->getDeducedType() << D->getDeclName()
12282 << DeducedDecl->getInit()->getSourceRange()
12283 << D->getInit()->getSourceRange();
12284 D->setInvalidDecl();
12285 break;
12286 }
12287 }
12288 }
12289
12290 ActOnDocumentableDecls(Group);
12291
12292 return DeclGroupPtrTy::make(
12293 DeclGroupRef::Create(Context, Group.data(), Group.size()));
12294}
12295
12296void Sema::ActOnDocumentableDecl(Decl *D) {
12297 ActOnDocumentableDecls(D);
12298}
12299
12300void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12301 // Don't parse the comment if Doxygen diagnostics are ignored.
12302 if (Group.empty() || !Group[0])
12303 return;
12304
12305 if (Diags.isIgnored(diag::warn_doc_param_not_found,
12306 Group[0]->getLocation()) &&
12307 Diags.isIgnored(diag::warn_unknown_comment_command_name,
12308 Group[0]->getLocation()))
12309 return;
12310
12311 if (Group.size() >= 2) {
12312 // This is a decl group. Normally it will contain only declarations
12313 // produced from declarator list. But in case we have any definitions or
12314 // additional declaration references:
12315 // 'typedef struct S {} S;'
12316 // 'typedef struct S *S;'
12317 // 'struct S *pS;'
12318 // FinalizeDeclaratorGroup adds these as separate declarations.
12319 Decl *MaybeTagDecl = Group[0];
12320 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12321 Group = Group.slice(1);
12322 }
12323 }
12324
12325 // See if there are any new comments that are not attached to a decl.
12326 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12327 if (!Comments.empty() &&
12328 !Comments.back()->isAttached()) {
12329 // There is at least one comment that not attached to a decl.
12330 // Maybe it should be attached to one of these decls?
12331 //
12332 // Note that this way we pick up not only comments that precede the
12333 // declaration, but also comments that *follow* the declaration -- thanks to
12334 // the lookahead in the lexer: we've consumed the semicolon and looked
12335 // ahead through comments.
12336 for (unsigned i = 0, e = Group.size(); i != e; ++i)
12337 Context.getCommentForDecl(Group[i], &PP);
12338 }
12339}
12340
12341/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12342/// to introduce parameters into function prototype scope.
12343Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12344 const DeclSpec &DS = D.getDeclSpec();
12345
12346 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12347
12348 // C++03 [dcl.stc]p2 also permits 'auto'.
12349 StorageClass SC = SC_None;
12350 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12351 SC = SC_Register;
12352 // In C++11, the 'register' storage class specifier is deprecated.
12353 // In C++17, it is not allowed, but we tolerate it as an extension.
12354 if (getLangOpts().CPlusPlus11) {
12355 Diag(DS.getStorageClassSpecLoc(),
12356 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12357 : diag::warn_deprecated_register)
12358 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12359 }
12360 } else if (getLangOpts().CPlusPlus &&
12361 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12362 SC = SC_Auto;
12363 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12364 Diag(DS.getStorageClassSpecLoc(),
12365 diag::err_invalid_storage_class_in_func_decl);
12366 D.getMutableDeclSpec().ClearStorageClassSpecs();
12367 }
12368
12369 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12370 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12371 << DeclSpec::getSpecifierName(TSCS);
12372 if (DS.isInlineSpecified())
12373 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12374 << getLangOpts().CPlusPlus17;
12375 if (DS.isConstexprSpecified())
12376 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12377 << 0;
12378
12379 DiagnoseFunctionSpecifiers(DS);
12380
12381 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12382 QualType parmDeclType = TInfo->getType();
12383
12384 if (getLangOpts().CPlusPlus) {
12385 // Check that there are no default arguments inside the type of this
12386 // parameter.
12387 CheckExtraCXXDefaultArguments(D);
12388
12389 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12390 if (D.getCXXScopeSpec().isSet()) {
12391 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12392 << D.getCXXScopeSpec().getRange();
12393 D.getCXXScopeSpec().clear();
12394 }
12395 }
12396
12397 // Ensure we have a valid name
12398 IdentifierInfo *II = nullptr;
12399 if (D.hasName()) {
12400 II = D.getIdentifier();
12401 if (!II) {
12402 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12403 << GetNameForDeclarator(D).getName();
12404 D.setInvalidType(true);
12405 }
12406 }
12407
12408 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12409 if (II) {
12410 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12411 ForVisibleRedeclaration);
12412 LookupName(R, S);
12413 if (R.isSingleResult()) {
12414 NamedDecl *PrevDecl = R.getFoundDecl();
12415 if (PrevDecl->isTemplateParameter()) {
12416 // Maybe we will complain about the shadowed template parameter.
12417 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12418 // Just pretend that we didn't see the previous declaration.
12419 PrevDecl = nullptr;
12420 } else if (S->isDeclScope(PrevDecl)) {
12421 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12422 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12423
12424 // Recover by removing the name
12425 II = nullptr;
12426 D.SetIdentifier(nullptr, D.getIdentifierLoc());
12427 D.setInvalidType(true);
12428 }
12429 }
12430 }
12431
12432 // Temporarily put parameter variables in the translation unit, not
12433 // the enclosing context. This prevents them from accidentally
12434 // looking like class members in C++.
12435 ParmVarDecl *New =
12436 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12437 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12438
12439 if (D.isInvalidType())
12440 New->setInvalidDecl();
12441
12442 assert(S->isFunctionPrototypeScope())((S->isFunctionPrototypeScope()) ? static_cast<void>
(0) : __assert_fail ("S->isFunctionPrototypeScope()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12442, __PRETTY_FUNCTION__))
;
12443 assert(S->getFunctionPrototypeDepth() >= 1)((S->getFunctionPrototypeDepth() >= 1) ? static_cast<
void> (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12443, __PRETTY_FUNCTION__))
;
12444 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12445 S->getNextFunctionPrototypeIndex());
12446
12447 // Add the parameter declaration into this scope.
12448 S->AddDecl(New);
12449 if (II)
12450 IdResolver.AddDecl(New);
12451
12452 ProcessDeclAttributes(S, New, D);
12453
12454 if (D.getDeclSpec().isModulePrivateSpecified())
12455 Diag(New->getLocation(), diag::err_module_private_local)
12456 << 1 << New->getDeclName()
12457 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12458 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12459
12460 if (New->hasAttr<BlocksAttr>()) {
12461 Diag(New->getLocation(), diag::err_block_on_nonlocal);
12462 }
12463 return New;
12464}
12465
12466/// Synthesizes a variable for a parameter arising from a
12467/// typedef.
12468ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12469 SourceLocation Loc,
12470 QualType T) {
12471 /* FIXME: setting StartLoc == Loc.
12472 Would it be worth to modify callers so as to provide proper source
12473 location for the unnamed parameters, embedding the parameter's type? */
12474 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12475 T, Context.getTrivialTypeSourceInfo(T, Loc),
12476 SC_None, nullptr);
12477 Param->setImplicit();
12478 return Param;
12479}
12480
12481void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12482 // Don't diagnose unused-parameter errors in template instantiations; we
12483 // will already have done so in the template itself.
12484 if (inTemplateInstantiation())
12485 return;
12486
12487 for (const ParmVarDecl *Parameter : Parameters) {
12488 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12489 !Parameter->hasAttr<UnusedAttr>()) {
12490 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12491 << Parameter->getDeclName();
12492 }
12493 }
12494}
12495
12496void Sema::DiagnoseSizeOfParametersAndReturnValue(
12497 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12498 if (LangOpts.NumLargeByValueCopy == 0) // No check.
12499 return;
12500
12501 // Warn if the return value is pass-by-value and larger than the specified
12502 // threshold.
12503 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12504 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12505 if (Size > LangOpts.NumLargeByValueCopy)
12506 Diag(D->getLocation(), diag::warn_return_value_size)
12507 << D->getDeclName() << Size;
12508 }
12509
12510 // Warn if any parameter is pass-by-value and larger than the specified
12511 // threshold.
12512 for (const ParmVarDecl *Parameter : Parameters) {
12513 QualType T = Parameter->getType();
12514 if (T->isDependentType() || !T.isPODType(Context))
12515 continue;
12516 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12517 if (Size > LangOpts.NumLargeByValueCopy)
12518 Diag(Parameter->getLocation(), diag::warn_parameter_size)
12519 << Parameter->getDeclName() << Size;
12520 }
12521}
12522
12523ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12524 SourceLocation NameLoc, IdentifierInfo *Name,
12525 QualType T, TypeSourceInfo *TSInfo,
12526 StorageClass SC) {
12527 // In ARC, infer a lifetime qualifier for appropriate parameter types.
12528 if (getLangOpts().ObjCAutoRefCount &&
12529 T.getObjCLifetime() == Qualifiers::OCL_None &&
12530 T->isObjCLifetimeType()) {
12531
12532 Qualifiers::ObjCLifetime lifetime;
12533
12534 // Special cases for arrays:
12535 // - if it's const, use __unsafe_unretained
12536 // - otherwise, it's an error
12537 if (T->isArrayType()) {
12538 if (!T.isConstQualified()) {
12539 DelayedDiagnostics.add(
12540 sema::DelayedDiagnostic::makeForbiddenType(
12541 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12542 }
12543 lifetime = Qualifiers::OCL_ExplicitNone;
12544 } else {
12545 lifetime = T->getObjCARCImplicitLifetime();
12546 }
12547 T = Context.getLifetimeQualifiedType(T, lifetime);
12548 }
12549
12550 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12551 Context.getAdjustedParameterType(T),
12552 TSInfo, SC, nullptr);
12553
12554 // Parameters can not be abstract class types.
12555 // For record types, this is done by the AbstractClassUsageDiagnoser once
12556 // the class has been completely parsed.
12557 if (!CurContext->isRecord() &&
12558 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12559 AbstractParamType))
12560 New->setInvalidDecl();
12561
12562 // Parameter declarators cannot be interface types. All ObjC objects are
12563 // passed by reference.
12564 if (T->isObjCObjectType()) {
12565 SourceLocation TypeEndLoc =
12566 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
12567 Diag(NameLoc,
12568 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12569 << FixItHint::CreateInsertion(TypeEndLoc, "*");
12570 T = Context.getObjCObjectPointerType(T);
12571 New->setType(T);
12572 }
12573
12574 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12575 // duration shall not be qualified by an address-space qualifier."
12576 // Since all parameters have automatic store duration, they can not have
12577 // an address space.
12578 if (T.getAddressSpace() != LangAS::Default &&
12579 // OpenCL allows function arguments declared to be an array of a type
12580 // to be qualified with an address space.
12581 !(getLangOpts().OpenCL &&
12582 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12583 Diag(NameLoc, diag::err_arg_with_address_space);
12584 New->setInvalidDecl();
12585 }
12586
12587 return New;
12588}
12589
12590void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12591 SourceLocation LocAfterDecls) {
12592 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12593
12594 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12595 // for a K&R function.
12596 if (!FTI.hasPrototype) {
12597 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12598 --i;
12599 if (FTI.Params[i].Param == nullptr) {
12600 SmallString<256> Code;
12601 llvm::raw_svector_ostream(Code)
12602 << " int " << FTI.Params[i].Ident->getName() << ";\n";
12603 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12604 << FTI.Params[i].Ident
12605 << FixItHint::CreateInsertion(LocAfterDecls, Code);
12606
12607 // Implicitly declare the argument as type 'int' for lack of a better
12608 // type.
12609 AttributeFactory attrs;
12610 DeclSpec DS(attrs);
12611 const char* PrevSpec; // unused
12612 unsigned DiagID; // unused
12613 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12614 DiagID, Context.getPrintingPolicy());
12615 // Use the identifier location for the type source range.
12616 DS.SetRangeStart(FTI.Params[i].IdentLoc);
12617 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12618 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12619 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12620 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12621 }
12622 }
12623 }
12624}
12625
12626Decl *
12627Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12628 MultiTemplateParamsArg TemplateParameterLists,
12629 SkipBodyInfo *SkipBody) {
12630 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")((getCurFunctionDecl() == nullptr && "Function parsing confused"
) ? static_cast<void> (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12630, __PRETTY_FUNCTION__))
;
12631 assert(D.isFunctionDeclarator() && "Not a function declarator!")((D.isFunctionDeclarator() && "Not a function declarator!"
) ? static_cast<void> (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12631, __PRETTY_FUNCTION__))
;
12632 Scope *ParentScope = FnBodyScope->getParent();
12633
12634 D.setFunctionDefinitionKind(FDK_Definition);
12635 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12636 return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12637}
12638
12639void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12640 Consumer.HandleInlineFunctionDefinition(D);
12641}
12642
12643static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12644 const FunctionDecl*& PossibleZeroParamPrototype) {
12645 // Don't warn about invalid declarations.
12646 if (FD->isInvalidDecl())
12647 return false;
12648
12649 // Or declarations that aren't global.
12650 if (!FD->isGlobal())
12651 return false;
12652
12653 // Don't warn about C++ member functions.
12654 if (isa<CXXMethodDecl>(FD))
12655 return false;
12656
12657 // Don't warn about 'main'.
12658 if (FD->isMain())
12659 return false;
12660
12661 // Don't warn about inline functions.
12662 if (FD->isInlined())
12663 return false;
12664
12665 // Don't warn about function templates.
12666 if (FD->getDescribedFunctionTemplate())
12667 return false;
12668
12669 // Don't warn about function template specializations.
12670 if (FD->isFunctionTemplateSpecialization())
12671 return false;
12672
12673 // Don't warn for OpenCL kernels.
12674 if (FD->hasAttr<OpenCLKernelAttr>())
12675 return false;
12676
12677 // Don't warn on explicitly deleted functions.
12678 if (FD->isDeleted())
12679 return false;
12680
12681 bool MissingPrototype = true;
12682 for (const FunctionDecl *Prev = FD->getPreviousDecl();
12683 Prev; Prev = Prev->getPreviousDecl()) {
12684 // Ignore any declarations that occur in function or method
12685 // scope, because they aren't visible from the header.
12686 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12687 continue;
12688
12689 MissingPrototype = !Prev->getType()->isFunctionProtoType();
12690 if (FD->getNumParams() == 0)
12691 PossibleZeroParamPrototype = Prev;
12692 break;
12693 }
12694
12695 return MissingPrototype;
12696}
12697
12698void
12699Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12700 const FunctionDecl *EffectiveDefinition,
12701 SkipBodyInfo *SkipBody) {
12702 const FunctionDecl *Definition = EffectiveDefinition;
12703 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12704 // If this is a friend function defined in a class template, it does not
12705 // have a body until it is used, nevertheless it is a definition, see
12706 // [temp.inst]p2:
12707 //
12708 // ... for the purpose of determining whether an instantiated redeclaration
12709 // is valid according to [basic.def.odr] and [class.mem], a declaration that
12710 // corresponds to a definition in the template is considered to be a
12711 // definition.
12712 //
12713 // The following code must produce redefinition error:
12714 //
12715 // template<typename T> struct C20 { friend void func_20() {} };
12716 // C20<int> c20i;
12717 // void func_20() {}
12718 //
12719 for (auto I : FD->redecls()) {
12720 if (I != FD && !I->isInvalidDecl() &&
12721 I->getFriendObjectKind() != Decl::FOK_None) {
12722 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12723 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12724 // A merged copy of the same function, instantiated as a member of
12725 // the same class, is OK.
12726 if (declaresSameEntity(OrigFD, Original) &&
12727 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12728 cast<Decl>(FD->getLexicalDeclContext())))
12729 continue;
12730 }
12731
12732 if (Original->isThisDeclarationADefinition()) {
12733 Definition = I;
12734 break;
12735 }
12736 }
12737 }
12738 }
12739 }
12740
12741 if (!Definition)
12742 // Similar to friend functions a friend function template may be a
12743 // definition and do not have a body if it is instantiated in a class
12744 // template.
12745 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
12746 for (auto I : FTD->redecls()) {
12747 auto D = cast<FunctionTemplateDecl>(I);
12748 if (D != FTD) {
12749 assert(!D->isThisDeclarationADefinition() &&((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12750, __PRETTY_FUNCTION__))
12750 "More than one definition in redeclaration chain")((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12750, __PRETTY_FUNCTION__))
;
12751 if (D->getFriendObjectKind() != Decl::FOK_None)
12752 if (FunctionTemplateDecl *FT =
12753 D->getInstantiatedFromMemberTemplate()) {
12754 if (FT->isThisDeclarationADefinition()) {
12755 Definition = D->getTemplatedDecl();
12756 break;
12757 }
12758 }
12759 }
12760 }
12761 }
12762
12763 if (!Definition)
12764 return;
12765
12766 if (canRedefineFunction(Definition, getLangOpts()))
12767 return;
12768
12769 // Don't emit an error when this is redefinition of a typo-corrected
12770 // definition.
12771 if (TypoCorrectedFunctionDefinitions.count(Definition))
12772 return;
12773
12774 // If we don't have a visible definition of the function, and it's inline or
12775 // a template, skip the new definition.
12776 if (SkipBody && !hasVisibleDefinition(Definition) &&
12777 (Definition->getFormalLinkage() == InternalLinkage ||
12778 Definition->isInlined() ||
12779 Definition->getDescribedFunctionTemplate() ||
12780 Definition->getNumTemplateParameterLists())) {
12781 SkipBody->ShouldSkip = true;
12782 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
12783 if (auto *TD = Definition->getDescribedFunctionTemplate())
12784 makeMergedDefinitionVisible(TD);
12785 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12786 return;
12787 }
12788
12789 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12790 Definition->getStorageClass() == SC_Extern)
12791 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12792 << FD->getDeclName() << getLangOpts().CPlusPlus;
12793 else
12794 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12795
12796 Diag(Definition->getLocation(), diag::note_previous_definition);
12797 FD->setInvalidDecl();
12798}
12799
12800static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12801 Sema &S) {
12802 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12803
12804 LambdaScopeInfo *LSI = S.PushLambdaScope();
12805 LSI->CallOperator = CallOperator;
12806 LSI->Lambda = LambdaClass;
12807 LSI->ReturnType = CallOperator->getReturnType();
12808 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12809
12810 if (LCD == LCD_None)
12811 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12812 else if (LCD == LCD_ByCopy)
12813 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12814 else if (LCD == LCD_ByRef)
12815 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12816 DeclarationNameInfo DNI = CallOperator->getNameInfo();
12817
12818 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12819 LSI->Mutable = !CallOperator->isConst();
12820
12821 // Add the captures to the LSI so they can be noted as already
12822 // captured within tryCaptureVar.
12823 auto I = LambdaClass->field_begin();
12824 for (const auto &C : LambdaClass->captures()) {
12825 if (C.capturesVariable()) {
12826 VarDecl *VD = C.getCapturedVar();
12827 if (VD->isInitCapture())
12828 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12829 QualType CaptureType = VD->getType();
12830 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12831 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12832 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12833 /*EllipsisLoc*/C.isPackExpansion()
12834 ? C.getEllipsisLoc() : SourceLocation(),
12835 CaptureType, /*Expr*/ nullptr);
12836
12837 } else if (C.capturesThis()) {
12838 LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
12839 /*Expr*/ nullptr,
12840 C.getCaptureKind() == LCK_StarThis);
12841 } else {
12842 LSI->addVLATypeCapture(C.getLocation(), I->getType());
12843 }
12844 ++I;
12845 }
12846}
12847
12848Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12849 SkipBodyInfo *SkipBody) {
12850 if (!D) {
12851 // Parsing the function declaration failed in some way. Push on a fake scope
12852 // anyway so we can try to parse the function body.
12853 PushFunctionScope();
12854 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12855 return D;
12856 }
12857
12858 FunctionDecl *FD = nullptr;
12859
12860 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12861 FD = FunTmpl->getTemplatedDecl();
12862 else
12863 FD = cast<FunctionDecl>(D);
12864
12865 // Do not push if it is a lambda because one is already pushed when building
12866 // the lambda in ActOnStartOfLambdaDefinition().
12867 if (!isLambdaCallOperator(FD))
12868 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12869
12870 // Check for defining attributes before the check for redefinition.
12871 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12872 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12873 FD->dropAttr<AliasAttr>();
12874 FD->setInvalidDecl();
12875 }
12876 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12877 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12878 FD->dropAttr<IFuncAttr>();
12879 FD->setInvalidDecl();
12880 }
12881
12882 // See if this is a redefinition. If 'will have body' is already set, then
12883 // these checks were already performed when it was set.
12884 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12885 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12886
12887 // If we're skipping the body, we're done. Don't enter the scope.
12888 if (SkipBody && SkipBody->ShouldSkip)
12889 return D;
12890 }
12891
12892 // Mark this function as "will have a body eventually". This lets users to
12893 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
12894 // this function.
12895 FD->setWillHaveBody();
12896
12897 // If we are instantiating a generic lambda call operator, push
12898 // a LambdaScopeInfo onto the function stack. But use the information
12899 // that's already been calculated (ActOnLambdaExpr) to prime the current
12900 // LambdaScopeInfo.
12901 // When the template operator is being specialized, the LambdaScopeInfo,
12902 // has to be properly restored so that tryCaptureVariable doesn't try
12903 // and capture any new variables. In addition when calculating potential
12904 // captures during transformation of nested lambdas, it is necessary to
12905 // have the LSI properly restored.
12906 if (isGenericLambdaCallOperatorSpecialization(FD)) {
12907 assert(inTemplateInstantiation() &&((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12909, __PRETTY_FUNCTION__))
12908 "There should be an active template instantiation on the stack "((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12909, __PRETTY_FUNCTION__))
12909 "when instantiating a generic lambda!")((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12909, __PRETTY_FUNCTION__))
;
12910 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
12911 } else {
12912 // Enter a new function scope
12913 PushFunctionScope();
12914 }
12915
12916 // Builtin functions cannot be defined.
12917 if (unsigned BuiltinID = FD->getBuiltinID()) {
12918 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
12919 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
12920 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
12921 FD->setInvalidDecl();
12922 }
12923 }
12924
12925 // The return type of a function definition must be complete
12926 // (C99 6.9.1p3, C++ [dcl.fct]p6).
12927 QualType ResultType = FD->getReturnType();
12928 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
12929 !FD->isInvalidDecl() &&
12930 RequireCompleteType(FD->getLocation(), ResultType,
12931 diag::err_func_def_incomplete_result))
12932 FD->setInvalidDecl();
12933
12934 if (FnBodyScope)
12935 PushDeclContext(FnBodyScope, FD);
12936
12937 // Check the validity of our function parameters
12938 CheckParmsForFunctionDef(FD->parameters(),
12939 /*CheckParameterNames=*/true);
12940
12941 // Add non-parameter declarations already in the function to the current
12942 // scope.
12943 if (FnBodyScope) {
12944 for (Decl *NPD : FD->decls()) {
12945 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
12946 if (!NonParmDecl)
12947 continue;
12948 assert(!isa<ParmVarDecl>(NonParmDecl) &&((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12949, __PRETTY_FUNCTION__))
12949 "parameters should not be in newly created FD yet")((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12949, __PRETTY_FUNCTION__))
;
12950
12951 // If the decl has a name, make it accessible in the current scope.
12952 if (NonParmDecl->getDeclName())
12953 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
12954
12955 // Similarly, dive into enums and fish their constants out, making them
12956 // accessible in this scope.
12957 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
12958 for (auto *EI : ED->enumerators())
12959 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
12960 }
12961 }
12962 }
12963
12964 // Introduce our parameters into the function scope
12965 for (auto Param : FD->parameters()) {
12966 Param->setOwningFunction(FD);
12967
12968 // If this has an identifier, add it to the scope stack.
12969 if (Param->getIdentifier() && FnBodyScope) {
12970 CheckShadow(FnBodyScope, Param);
12971
12972 PushOnScopeChains(Param, FnBodyScope);
12973 }
12974 }
12975
12976 // Ensure that the function's exception specification is instantiated.
12977 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
12978 ResolveExceptionSpec(D->getLocation(), FPT);
12979
12980 // dllimport cannot be applied to non-inline function definitions.
12981 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
12982 !FD->isTemplateInstantiation()) {
12983 assert(!FD->hasAttr<DLLExportAttr>())((!FD->hasAttr<DLLExportAttr>()) ? static_cast<void
> (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 12983, __PRETTY_FUNCTION__))
;
12984 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
12985 FD->setInvalidDecl();
12986 return D;
12987 }
12988 // We want to attach documentation to original Decl (which might be
12989 // a function template).
12990 ActOnDocumentableDecl(D);
12991 if (getCurLexicalContext()->isObjCContainer() &&
12992 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
12993 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
12994 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
12995
12996 return D;
12997}
12998
12999/// Given the set of return statements within a function body,
13000/// compute the variables that are subject to the named return value
13001/// optimization.
13002///
13003/// Each of the variables that is subject to the named return value
13004/// optimization will be marked as NRVO variables in the AST, and any
13005/// return statement that has a marked NRVO variable as its NRVO candidate can
13006/// use the named return value optimization.
13007///
13008/// This function applies a very simplistic algorithm for NRVO: if every return
13009/// statement in the scope of a variable has the same NRVO candidate, that
13010/// candidate is an NRVO variable.
13011void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13012 ReturnStmt **Returns = Scope->Returns.data();
13013
13014 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13015 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13016 if (!NRVOCandidate->isNRVOVariable())
13017 Returns[I]->setNRVOCandidate(nullptr);
13018 }
13019 }
13020}
13021
13022bool Sema::canDelayFunctionBody(const Declarator &D) {
13023 // We can't delay parsing the body of a constexpr function template (yet).
13024 if (D.getDeclSpec().isConstexprSpecified())
13025 return false;
13026
13027 // We can't delay parsing the body of a function template with a deduced
13028 // return type (yet).
13029 if (D.getDeclSpec().hasAutoTypeSpec()) {
13030 // If the placeholder introduces a non-deduced trailing return type,
13031 // we can still delay parsing it.
13032 if (D.getNumTypeObjects()) {
13033 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13034 if (Outer.Kind == DeclaratorChunk::Function &&
13035 Outer.Fun.hasTrailingReturnType()) {
13036 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13037 return Ty.isNull() || !Ty->isUndeducedType();
13038 }
13039 }
13040 return false;
13041 }
13042
13043 return true;
13044}
13045
13046bool Sema::canSkipFunctionBody(Decl *D) {
13047 // We cannot skip the body of a function (or function template) which is
13048 // constexpr, since we may need to evaluate its body in order to parse the
13049 // rest of the file.
13050 // We cannot skip the body of a function with an undeduced return type,
13051 // because any callers of that function need to know the type.
13052 if (const FunctionDecl *FD = D->getAsFunction()) {
13053 if (FD->isConstexpr())
13054 return false;
13055 // We can't simply call Type::isUndeducedType here, because inside template
13056 // auto can be deduced to a dependent type, which is not considered
13057 // "undeduced".
13058 if (FD->getReturnType()->getContainedDeducedType())
13059 return false;
13060 }
13061 return Consumer.shouldSkipFunctionBody(D);
13062}
13063
13064Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13065 if (!Decl)
13066 return nullptr;
13067 if (FunctionDecl *FD = Decl->getAsFunction())
13068 FD->setHasSkippedBody();
13069 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13070 MD->setHasSkippedBody();
13071 return Decl;
13072}
13073
13074Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13075 return ActOnFinishFunctionBody(D, BodyArg, false);
13076}
13077
13078/// RAII object that pops an ExpressionEvaluationContext when exiting a function
13079/// body.
13080class ExitFunctionBodyRAII {
13081public:
13082 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13083 ~ExitFunctionBodyRAII() {
13084 if (!IsLambda)
13085 S.PopExpressionEvaluationContext();
13086 }
13087
13088private:
13089 Sema &S;
13090 bool IsLambda = false;
13091};
13092
13093Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13094 bool IsInstantiation) {
13095 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13096
13097 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13098 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13099
13100 if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine())
13101 CheckCompletedCoroutineBody(FD, Body);
13102
13103 // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13104 // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13105 // meant to pop the context added in ActOnStartOfFunctionDef().
13106 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13107
13108 if (FD) {
13109 FD->setBody(Body);
13110 FD->setWillHaveBody(false);
13111
13112 if (getLangOpts().CPlusPlus14) {
13113 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13114 FD->getReturnType()->isUndeducedType()) {
13115 // If the function has a deduced result type but contains no 'return'
13116 // statements, the result type as written must be exactly 'auto', and
13117 // the deduced result type is 'void'.
13118 if (!FD->getReturnType()->getAs<AutoType>()) {
13119 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13120 << FD->getReturnType();
13121 FD->setInvalidDecl();
13122 } else {
13123 // Substitute 'void' for the 'auto' in the type.
13124 TypeLoc ResultType = getReturnTypeLoc(FD);
13125 Context.adjustDeducedFunctionResultType(
13126 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13127 }
13128 }
13129 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13130 // In C++11, we don't use 'auto' deduction rules for lambda call
13131 // operators because we don't support return type deduction.
13132 auto *LSI = getCurLambda();
13133 if (LSI->HasImplicitReturnType) {
13134 deduceClosureReturnType(*LSI);
13135
13136 // C++11 [expr.prim.lambda]p4:
13137 // [...] if there are no return statements in the compound-statement
13138 // [the deduced type is] the type void
13139 QualType RetType =
13140 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13141
13142 // Update the return type to the deduced type.
13143 const FunctionProtoType *Proto =
13144 FD->getType()->getAs<FunctionProtoType>();
13145 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13146 Proto->getExtProtoInfo()));
13147 }
13148 }
13149
13150 // If the function implicitly returns zero (like 'main') or is naked,
13151 // don't complain about missing return statements.
13152 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13153 WP.disableCheckFallThrough();
13154
13155 // MSVC permits the use of pure specifier (=0) on function definition,
13156 // defined at class scope, warn about this non-standard construct.
13157 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
13158 Diag(FD->getLocation(), diag::ext_pure_function_definition);
13159
13160 if (!FD->isInvalidDecl()) {
13161 // Don't diagnose unused parameters of defaulted or deleted functions.
13162 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13163 DiagnoseUnusedParameters(FD->parameters());
13164 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13165 FD->getReturnType(), FD);
13166
13167 // If this is a structor, we need a vtable.
13168 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13169 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13170 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13171 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13172
13173 // Try to apply the named return value optimization. We have to check
13174 // if we can do this here because lambdas keep return statements around
13175 // to deduce an implicit return type.
13176 if (FD->getReturnType()->isRecordType() &&
13177 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13178 computeNRVO(Body, getCurFunction());
13179 }
13180
13181 // GNU warning -Wmissing-prototypes:
13182 // Warn if a global function is defined without a previous
13183 // prototype declaration. This warning is issued even if the
13184 // definition itself provides a prototype. The aim is to detect
13185 // global functions that fail to be declared in header files.
13186 const FunctionDecl *PossibleZeroParamPrototype = nullptr;
13187 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
13188 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13189
13190 if (PossibleZeroParamPrototype) {
13191 // We found a declaration that is not a prototype,
13192 // but that could be a zero-parameter prototype
13193 if (TypeSourceInfo *TI =
13194 PossibleZeroParamPrototype->getTypeSourceInfo()) {
13195 TypeLoc TL = TI->getTypeLoc();
13196 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13197 Diag(PossibleZeroParamPrototype->getLocation(),
13198 diag::note_declaration_not_a_prototype)
13199 << PossibleZeroParamPrototype
13200 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
13201 }
13202 }
13203
13204 // GNU warning -Wstrict-prototypes
13205 // Warn if K&R function is defined without a previous declaration.
13206 // This warning is issued only if the definition itself does not provide
13207 // a prototype. Only K&R definitions do not provide a prototype.
13208 // An empty list in a function declarator that is part of a definition
13209 // of that function specifies that the function has no parameters
13210 // (C99 6.7.5.3p14)
13211 if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13212 !LangOpts.CPlusPlus) {
13213 TypeSourceInfo *TI = FD->getTypeSourceInfo();
13214 TypeLoc TL = TI->getTypeLoc();
13215 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13216 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13217 }
13218 }
13219
13220 // Warn on CPUDispatch with an actual body.
13221 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13222 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13223 if (!CmpndBody->body_empty())
13224 Diag(CmpndBody->body_front()->getBeginLoc(),
13225 diag::warn_dispatch_body_ignored);
13226
13227 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13228 const CXXMethodDecl *KeyFunction;
13229 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13230 MD->isVirtual() &&
13231 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13232 MD == KeyFunction->getCanonicalDecl()) {
13233 // Update the key-function state if necessary for this ABI.
13234 if (FD->isInlined() &&
13235 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13236 Context.setNonKeyFunction(MD);
13237
13238 // If the newly-chosen key function is already defined, then we
13239 // need to mark the vtable as used retroactively.
13240 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13241 const FunctionDecl *Definition;
13242 if (KeyFunction && KeyFunction->isDefined(Definition))
13243 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13244 } else {
13245 // We just defined they key function; mark the vtable as used.
13246 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13247 }
13248 }
13249 }
13250
13251 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13252, __PRETTY_FUNCTION__))
13252 "Function parsing confused")(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13252, __PRETTY_FUNCTION__))
;
13253 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13254 assert(MD == getCurMethodDecl() && "Method parsing confused")((MD == getCurMethodDecl() && "Method parsing confused"
) ? static_cast<void> (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13254, __PRETTY_FUNCTION__))
;
13255 MD->setBody(Body);
13256 if (!MD->isInvalidDecl()) {
13257 if (!MD->hasSkippedBody())
13258 DiagnoseUnusedParameters(MD->parameters());
13259 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13260 MD->getReturnType(), MD);
13261
13262 if (Body)
13263 computeNRVO(Body, getCurFunction());
13264 }
13265 if (getCurFunction()->ObjCShouldCallSuper) {
13266 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13267 << MD->getSelector().getAsString();
13268 getCurFunction()->ObjCShouldCallSuper = false;
13269 }
13270 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13271 const ObjCMethodDecl *InitMethod = nullptr;
13272 bool isDesignated =
13273 MD->isDesignatedInitializerForTheInterface(&InitMethod);
13274 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13274, __PRETTY_FUNCTION__))
;
13275 (void)isDesignated;
13276
13277 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13278 auto IFace = MD->getClassInterface();
13279 if (!IFace)
13280 return false;
13281 auto SuperD = IFace->getSuperClass();
13282 if (!SuperD)
13283 return false;
13284 return SuperD->getIdentifier() ==
13285 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13286 };
13287 // Don't issue this warning for unavailable inits or direct subclasses
13288 // of NSObject.
13289 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13290 Diag(MD->getLocation(),
13291 diag::warn_objc_designated_init_missing_super_call);
13292 Diag(InitMethod->getLocation(),
13293 diag::note_objc_designated_init_marked_here);
13294 }
13295 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13296 }
13297 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13298 // Don't issue this warning for unavaialable inits.
13299 if (!MD->isUnavailable())
13300 Diag(MD->getLocation(),
13301 diag::warn_objc_secondary_init_missing_init_call);
13302 getCurFunction()->ObjCWarnForNoInitDelegation = false;
13303 }
13304 } else {
13305 // Parsing the function declaration failed in some way. Pop the fake scope
13306 // we pushed on.
13307 PopFunctionScopeInfo(ActivePolicy, dcl);
13308 return nullptr;
13309 }
13310
13311 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13312 DiagnoseUnguardedAvailabilityViolations(dcl);
13313
13314 assert(!getCurFunction()->ObjCShouldCallSuper &&((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13316, __PRETTY_FUNCTION__))
13315 "This should only be set for ObjC methods, which should have been "((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13316, __PRETTY_FUNCTION__))
13316 "handled in the block above.")((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13316, __PRETTY_FUNCTION__))
;
13317
13318 // Verify and clean out per-function state.
13319 if (Body && (!FD || !FD->isDefaulted())) {
13320 // C++ constructors that have function-try-blocks can't have return
13321 // statements in the handlers of that block. (C++ [except.handle]p14)
13322 // Verify this.
13323 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13324 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13325
13326 // Verify that gotos and switch cases don't jump into scopes illegally.
13327 if (getCurFunction()->NeedsScopeChecking() &&
13328 !PP.isCodeCompletionEnabled())
13329 DiagnoseInvalidJumps(Body);
13330
13331 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13332 if (!Destructor->getParent()->isDependentType())
13333 CheckDestructor(Destructor);
13334
13335 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13336 Destructor->getParent());
13337 }
13338
13339 // If any errors have occurred, clear out any temporaries that may have
13340 // been leftover. This ensures that these temporaries won't be picked up for
13341 // deletion in some later function.
13342 if (getDiagnostics().hasErrorOccurred() ||
13343 getDiagnostics().getSuppressAllDiagnostics()) {
13344 DiscardCleanupsInEvaluationContext();
13345 }
13346 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13347 !isa<FunctionTemplateDecl>(dcl)) {
13348 // Since the body is valid, issue any analysis-based warnings that are
13349 // enabled.
13350 ActivePolicy = &WP;
13351 }
13352
13353 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13354 (!CheckConstexprFunctionDecl(FD) ||
13355 !CheckConstexprFunctionBody(FD, Body)))
13356 FD->setInvalidDecl();
13357
13358 if (FD && FD->hasAttr<NakedAttr>()) {
13359 for (const Stmt *S : Body->children()) {
13360 // Allow local register variables without initializer as they don't
13361 // require prologue.
13362 bool RegisterVariables = false;
13363 if (auto *DS = dyn_cast<DeclStmt>(S)) {
13364 for (const auto *Decl : DS->decls()) {
13365 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13366 RegisterVariables =
13367 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13368 if (!RegisterVariables)
13369 break;
13370 }
13371 }
13372 }
13373 if (RegisterVariables)
13374 continue;
13375 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13376 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13377 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13378 FD->setInvalidDecl();
13379 break;
13380 }
13381 }
13382 }
13383
13384 assert(ExprCleanupObjects.size() ==((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13386, __PRETTY_FUNCTION__))
13385 ExprEvalContexts.back().NumCleanupObjects &&((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13386, __PRETTY_FUNCTION__))
13386 "Leftover temporaries in function")((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13386, __PRETTY_FUNCTION__))
;
13387 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function")((!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13387, __PRETTY_FUNCTION__))
;
13388 assert(MaybeODRUseExprs.empty() &&((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13389, __PRETTY_FUNCTION__))
13389 "Leftover expressions for odr-use checking")((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13389, __PRETTY_FUNCTION__))
;
13390 }
13391
13392 if (!IsInstantiation)
13393 PopDeclContext();
13394
13395 PopFunctionScopeInfo(ActivePolicy, dcl);
13396 // If any errors have occurred, clear out any temporaries that may have
13397 // been leftover. This ensures that these temporaries won't be picked up for
13398 // deletion in some later function.
13399 if (getDiagnostics().hasErrorOccurred()) {
13400 DiscardCleanupsInEvaluationContext();
13401 }
13402
13403 return dcl;
13404}
13405
13406/// When we finish delayed parsing of an attribute, we must attach it to the
13407/// relevant Decl.
13408void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
13409 ParsedAttributes &Attrs) {
13410 // Always attach attributes to the underlying decl.
13411 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13412 D = TD->getTemplatedDecl();
13413 ProcessDeclAttributeList(S, D, Attrs);
13414
13415 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13416 if (Method->isStatic())
13417 checkThisInStaticMemberFunctionAttributes(Method);
13418}
13419
13420/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13421/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
13422NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
13423 IdentifierInfo &II, Scope *S) {
13424 // Find the scope in which the identifier is injected and the corresponding
13425 // DeclContext.
13426 // FIXME: C89 does not say what happens if there is no enclosing block scope.
13427 // In that case, we inject the declaration into the translation unit scope
13428 // instead.
13429 Scope *BlockScope = S;
13430 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13431 BlockScope = BlockScope->getParent();
13432
13433 Scope *ContextScope = BlockScope;
13434 while (!ContextScope->getEntity())
13435 ContextScope = ContextScope->getParent();
13436 ContextRAII SavedContext(*this, ContextScope->getEntity());
13437
13438 // Before we produce a declaration for an implicitly defined
13439 // function, see whether there was a locally-scoped declaration of
13440 // this name as a function or variable. If so, use that
13441 // (non-visible) declaration, and complain about it.
13442 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13443 if (ExternCPrev) {
13444 // We still need to inject the function into the enclosing block scope so
13445 // that later (non-call) uses can see it.
13446 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13447
13448 // C89 footnote 38:
13449 // If in fact it is not defined as having type "function returning int",
13450 // the behavior is undefined.
13451 if (!isa<FunctionDecl>(ExternCPrev) ||
13452 !Context.typesAreCompatible(
13453 cast<FunctionDecl>(ExternCPrev)->getType(),
13454 Context.getFunctionNoProtoType(Context.IntTy))) {
13455 Diag(Loc, diag::ext_use_out_of_scope_declaration)
13456 << ExternCPrev << !getLangOpts().C99;
13457 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13458 return ExternCPrev;
13459 }
13460 }
13461
13462 // Extension in C99. Legal in C90, but warn about it.
13463 unsigned diag_id;
13464 if (II.getName().startswith("__builtin_"))
13465 diag_id = diag::warn_builtin_unknown;
13466 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13467 else if (getLangOpts().OpenCL)
13468 diag_id = diag::err_opencl_implicit_function_decl;
13469 else if (getLangOpts().C99)
13470 diag_id = diag::ext_implicit_function_decl;
13471 else
13472 diag_id = diag::warn_implicit_function_decl;
13473 Diag(Loc, diag_id) << &II;
13474
13475 // If we found a prior declaration of this function, don't bother building
13476 // another one. We've already pushed that one into scope, so there's nothing
13477 // more to do.
13478 if (ExternCPrev)
13479 return ExternCPrev;
13480
13481 // Because typo correction is expensive, only do it if the implicit
13482 // function declaration is going to be treated as an error.
13483 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13484 TypoCorrection Corrected;
13485 if (S &&
13486 (Corrected = CorrectTypo(
13487 DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
13488 llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
13489 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13490 /*ErrorRecovery*/false);
13491 }
13492
13493 // Set a Declarator for the implicit definition: int foo();
13494 const char *Dummy;
13495 AttributeFactory attrFactory;
13496 DeclSpec DS(attrFactory);
13497 unsigned DiagID;
13498 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13499 Context.getPrintingPolicy());
13500 (void)Error; // Silence warning.
13501 assert(!Error && "Error setting up implicit decl!")((!Error && "Error setting up implicit decl!") ? static_cast
<void> (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13501, __PRETTY_FUNCTION__))
;
13502 SourceLocation NoLoc;
13503 Declarator D(DS, DeclaratorContext::BlockContext);
13504 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13505 /*IsAmbiguous=*/false,
13506 /*LParenLoc=*/NoLoc,
13507 /*Params=*/nullptr,
13508 /*NumParams=*/0,
13509 /*EllipsisLoc=*/NoLoc,
13510 /*RParenLoc=*/NoLoc,
13511 /*TypeQuals=*/0,
13512 /*RefQualifierIsLvalueRef=*/true,
13513 /*RefQualifierLoc=*/NoLoc,
13514 /*ConstQualifierLoc=*/NoLoc,
13515 /*VolatileQualifierLoc=*/NoLoc,
13516 /*RestrictQualifierLoc=*/NoLoc,
13517 /*MutableLoc=*/NoLoc, EST_None,
13518 /*ESpecRange=*/SourceRange(),
13519 /*Exceptions=*/nullptr,
13520 /*ExceptionRanges=*/nullptr,
13521 /*NumExceptions=*/0,
13522 /*NoexceptExpr=*/nullptr,
13523 /*ExceptionSpecTokens=*/nullptr,
13524 /*DeclsInPrototype=*/None, Loc,
13525 Loc, D),
13526 std::move(DS.getAttributes()), SourceLocation());
13527 D.SetIdentifier(&II, Loc);
13528
13529 // Insert this function into the enclosing block scope.
13530 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13531 FD->setImplicit();
13532
13533 AddKnownFunctionAttributes(FD);
13534
13535 return FD;
13536}
13537
13538/// Adds any function attributes that we know a priori based on
13539/// the declaration of this function.
13540///
13541/// These attributes can apply both to implicitly-declared builtins
13542/// (like __builtin___printf_chk) or to library-declared functions
13543/// like NSLog or printf.
13544///
13545/// We need to check for duplicate attributes both here and where user-written
13546/// attributes are applied to declarations.
13547void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13548 if (FD->isInvalidDecl())
13549 return;
13550
13551 // If this is a built-in function, map its builtin attributes to
13552 // actual attributes.
13553 if (unsigned BuiltinID = FD->getBuiltinID()) {
13554 // Handle printf-formatting attributes.
13555 unsigned FormatIdx;
13556 bool HasVAListArg;
13557 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13558 if (!FD->hasAttr<FormatAttr>()) {
13559 const char *fmt = "printf";
13560 unsigned int NumParams = FD->getNumParams();
13561 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13562 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13563 fmt = "NSString";
13564 FD->addAttr(FormatAttr::CreateImplicit(Context,
13565 &Context.Idents.get(fmt),
13566 FormatIdx+1,
13567 HasVAListArg ? 0 : FormatIdx+2,
13568 FD->getLocation()));
13569 }
13570 }
13571 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13572 HasVAListArg)) {
13573 if (!FD->hasAttr<FormatAttr>())
13574 FD->addAttr(FormatAttr::CreateImplicit(Context,
13575 &Context.Idents.get("scanf"),
13576 FormatIdx+1,
13577 HasVAListArg ? 0 : FormatIdx+2,
13578 FD->getLocation()));
13579 }
13580
13581 // Mark const if we don't care about errno and that is the only thing
13582 // preventing the function from being const. This allows IRgen to use LLVM
13583 // intrinsics for such functions.
13584 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13585 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13586 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13587
13588 // We make "fma" on some platforms const because we know it does not set
13589 // errno in those environments even though it could set errno based on the
13590 // C standard.
13591 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13592 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13593 !FD->hasAttr<ConstAttr>()) {
13594 switch (BuiltinID) {
13595 case Builtin::BI__builtin_fma:
13596 case Builtin::BI__builtin_fmaf:
13597 case Builtin::BI__builtin_fmal:
13598 case Builtin::BIfma:
13599 case Builtin::BIfmaf:
13600 case Builtin::BIfmal:
13601 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13602 break;
13603 default:
13604 break;
13605 }
13606 }
13607
13608 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13609 !FD->hasAttr<ReturnsTwiceAttr>())
13610 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13611 FD->getLocation()));
13612 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13613 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13614 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13615 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13616 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13617 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13618 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13619 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13620 // Add the appropriate attribute, depending on the CUDA compilation mode
13621 // and which target the builtin belongs to. For example, during host
13622 // compilation, aux builtins are __device__, while the rest are __host__.
13623 if (getLangOpts().CUDAIsDevice !=
13624 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13625 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13626 else
13627 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13628 }
13629 }
13630
13631 // If C++ exceptions are enabled but we are told extern "C" functions cannot
13632 // throw, add an implicit nothrow attribute to any extern "C" function we come
13633 // across.
13634 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13635 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13636 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13637 if (!FPT || FPT->getExceptionSpecType() == EST_None)
13638 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13639 }
13640
13641 IdentifierInfo *Name = FD->getIdentifier();
13642 if (!Name)
13643 return;
13644 if ((!getLangOpts().CPlusPlus &&
13645 FD->getDeclContext()->isTranslationUnit()) ||
13646 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13647 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13648 LinkageSpecDecl::lang_c)) {
13649 // Okay: this could be a libc/libm/Objective-C function we know
13650 // about.
13651 } else
13652 return;
13653
13654 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13655 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13656 // target-specific builtins, perhaps?
13657 if (!FD->hasAttr<FormatAttr>())
13658 FD->addAttr(FormatAttr::CreateImplicit(Context,
13659 &Context.Idents.get("printf"), 2,
13660 Name->isStr("vasprintf") ? 0 : 3,
13661 FD->getLocation()));
13662 }
13663
13664 if (Name->isStr("__CFStringMakeConstantString")) {
13665 // We already have a __builtin___CFStringMakeConstantString,
13666 // but builds that use -fno-constant-cfstrings don't go through that.
13667 if (!FD->hasAttr<FormatArgAttr>())
13668 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13669 FD->getLocation()));
13670 }
13671}
13672
13673TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13674 TypeSourceInfo *TInfo) {
13675 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")((D.getIdentifier() && "Wrong callback for declspec without declarator"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13675, __PRETTY_FUNCTION__))
;
13676 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")((!T.isNull() && "GetTypeForDeclarator() returned null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13676, __PRETTY_FUNCTION__))
;
13677
13678 if (!TInfo) {
13679 assert(D.isInvalidType() && "no declarator info for valid type")((D.isInvalidType() && "no declarator info for valid type"
) ? static_cast<void> (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13679, __PRETTY_FUNCTION__))
;
13680 TInfo = Context.getTrivialTypeSourceInfo(T);
13681 }
13682
13683 // Scope manipulation handled by caller.
13684 TypedefDecl *NewTD =
13685 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
13686 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
13687
13688 // Bail out immediately if we have an invalid declaration.
13689 if (D.isInvalidType()) {
13690 NewTD->setInvalidDecl();
13691 return NewTD;
13692 }
13693
13694 if (D.getDeclSpec().isModulePrivateSpecified()) {
13695 if (CurContext->isFunctionOrMethod())
13696 Diag(NewTD->getLocation(), diag::err_module_private_local)
13697 << 2 << NewTD->getDeclName()
13698 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13699 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13700 else
13701 NewTD->setModulePrivate();
13702 }
13703
13704 // C++ [dcl.typedef]p8:
13705 // If the typedef declaration defines an unnamed class (or
13706 // enum), the first typedef-name declared by the declaration
13707 // to be that class type (or enum type) is used to denote the
13708 // class type (or enum type) for linkage purposes only.
13709 // We need to check whether the type was declared in the declaration.
13710 switch (D.getDeclSpec().getTypeSpecType()) {
13711 case TST_enum:
13712 case TST_struct:
13713 case TST_interface:
13714 case TST_union:
13715 case TST_class: {
13716 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13717 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13718 break;
13719 }
13720
13721 default:
13722 break;
13723 }
13724
13725 return NewTD;
13726}
13727
13728/// Check that this is a valid underlying type for an enum declaration.
13729bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13730 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13731 QualType T = TI->getType();
13732
13733 if (T->isDependentType())
13734 return false;
13735
13736 if (const BuiltinType *BT = T->getAs<BuiltinType>())
13737 if (BT->isInteger())
13738 return false;
13739
13740 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13741 return true;
13742}
13743
13744/// Check whether this is a valid redeclaration of a previous enumeration.
13745/// \return true if the redeclaration was invalid.
13746bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13747 QualType EnumUnderlyingTy, bool IsFixed,
13748 const EnumDecl *Prev) {
13749 if (IsScoped != Prev->isScoped()) {
13750 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13751 << Prev->isScoped();
13752 Diag(Prev->getLocation(), diag::note_previous_declaration);
13753 return true;
13754 }
13755
13756 if (IsFixed && Prev->isFixed()) {
13757 if (!EnumUnderlyingTy->isDependentType() &&
13758 !Prev->getIntegerType()->isDependentType() &&
13759 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13760 Prev->getIntegerType())) {
13761 // TODO: Highlight the underlying type of the redeclaration.
13762 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13763 << EnumUnderlyingTy << Prev->getIntegerType();
13764 Diag(Prev->getLocation(), diag::note_previous_declaration)
13765 << Prev->getIntegerTypeRange();
13766 return true;
13767 }
13768 } else if (IsFixed != Prev->isFixed()) {
13769 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13770 << Prev->isFixed();
13771 Diag(Prev->getLocation(), diag::note_previous_declaration);
13772 return true;
13773 }
13774
13775 return false;
13776}
13777
13778/// Get diagnostic %select index for tag kind for
13779/// redeclaration diagnostic message.
13780/// WARNING: Indexes apply to particular diagnostics only!
13781///
13782/// \returns diagnostic %select index.
13783static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13784 switch (Tag) {
13785 case TTK_Struct: return 0;
13786 case TTK_Interface: return 1;
13787 case TTK_Class: return 2;
13788 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13788)
;
13789 }
13790}
13791
13792/// Determine if tag kind is a class-key compatible with
13793/// class for redeclaration (class, struct, or __interface).
13794///
13795/// \returns true iff the tag kind is compatible.
13796static bool isClassCompatTagKind(TagTypeKind Tag)
13797{
13798 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13799}
13800
13801Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13802 TagTypeKind TTK) {
13803 if (isa<TypedefDecl>(PrevDecl))
13804 return NTK_Typedef;
13805 else if (isa<TypeAliasDecl>(PrevDecl))
13806 return NTK_TypeAlias;
13807 else if (isa<ClassTemplateDecl>(PrevDecl))
13808 return NTK_Template;
13809 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13810 return NTK_TypeAliasTemplate;
13811 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13812 return NTK_TemplateTemplateArgument;
13813 switch (TTK) {
13814 case TTK_Struct:
13815 case TTK_Interface:
13816 case TTK_Class:
13817 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13818 case TTK_Union:
13819 return NTK_NonUnion;
13820 case TTK_Enum:
13821 return NTK_NonEnum;
13822 }
13823 llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 13823)
;
13824}
13825
13826/// Determine whether a tag with a given kind is acceptable
13827/// as a redeclaration of the given tag declaration.
13828///
13829/// \returns true if the new tag kind is acceptable, false otherwise.
13830bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13831 TagTypeKind NewTag, bool isDefinition,
13832 SourceLocation NewTagLoc,
13833 const IdentifierInfo *Name) {
13834 // C++ [dcl.type.elab]p3:
13835 // The class-key or enum keyword present in the
13836 // elaborated-type-specifier shall agree in kind with the
13837 // declaration to which the name in the elaborated-type-specifier
13838 // refers. This rule also applies to the form of
13839 // elaborated-type-specifier that declares a class-name or
13840 // friend class since it can be construed as referring to the
13841 // definition of the class. Thus, in any
13842 // elaborated-type-specifier, the enum keyword shall be used to
13843 // refer to an enumeration (7.2), the union class-key shall be
13844 // used to refer to a union (clause 9), and either the class or
13845 // struct class-key shall be used to refer to a class (clause 9)
13846 // declared using the class or struct class-key.
13847 TagTypeKind OldTag = Previous->getTagKind();
13848 if (OldTag != NewTag &&
13849 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
13850 return false;
13851
13852 // Tags are compatible, but we might still want to warn on mismatched tags.
13853 // Non-class tags can't be mismatched at this point.
13854 if (!isClassCompatTagKind(NewTag))
13855 return true;
13856
13857 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
13858 // by our warning analysis. We don't want to warn about mismatches with (eg)
13859 // declarations in system headers that are designed to be specialized, but if
13860 // a user asks us to warn, we should warn if their code contains mismatched
13861 // declarations.
13862 auto IsIgnoredLoc = [&](SourceLocation Loc) {
13863 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
13864 Loc);
13865 };
13866 if (IsIgnoredLoc(NewTagLoc))
13867 return true;
13868
13869 auto IsIgnored = [&](const TagDecl *Tag) {
13870 return IsIgnoredLoc(Tag->getLocation());
13871 };
13872 while (IsIgnored(Previous)) {
13873 Previous = Previous->getPreviousDecl();
13874 if (!Previous)
13875 return true;
13876 OldTag = Previous->getTagKind();
13877 }
13878
13879 bool isTemplate = false;
13880 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
13881 isTemplate = Record->getDescribedClassTemplate();
13882
13883 if (inTemplateInstantiation()) {
13884 if (OldTag != NewTag) {
13885 // In a template instantiation, do not offer fix-its for tag mismatches
13886 // since they usually mess up the template instead of fixing the problem.
13887 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13888 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13889 << getRedeclDiagFromTagKind(OldTag);
13890 // FIXME: Note previous location?
13891 }
13892 return true;
13893 }
13894
13895 if (isDefinition) {
13896 // On definitions, check all previous tags and issue a fix-it for each
13897 // one that doesn't match the current tag.
13898 if (Previous->getDefinition()) {
13899 // Don't suggest fix-its for redefinitions.
13900 return true;
13901 }
13902
13903 bool previousMismatch = false;
13904 for (const TagDecl *I : Previous->redecls()) {
13905 if (I->getTagKind() != NewTag) {
13906 // Ignore previous declarations for which the warning was disabled.
13907 if (IsIgnored(I))
13908 continue;
13909
13910 if (!previousMismatch) {
13911 previousMismatch = true;
13912 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
13913 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13914 << getRedeclDiagFromTagKind(I->getTagKind());
13915 }
13916 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
13917 << getRedeclDiagFromTagKind(NewTag)
13918 << FixItHint::CreateReplacement(I->getInnerLocStart(),
13919 TypeWithKeyword::getTagTypeKindName(NewTag));
13920 }
13921 }
13922 return true;
13923 }
13924
13925 // Identify the prevailing tag kind: this is the kind of the definition (if
13926 // there is a non-ignored definition), or otherwise the kind of the prior
13927 // (non-ignored) declaration.
13928 const TagDecl *PrevDef = Previous->getDefinition();
13929 if (PrevDef && IsIgnored(PrevDef))
13930 PrevDef = nullptr;
13931 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
13932 if (Redecl->getTagKind() != NewTag) {
13933 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13934 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13935 << getRedeclDiagFromTagKind(OldTag);
13936 Diag(Redecl->getLocation(), diag::note_previous_use);
13937
13938 // If there is a previous definition, suggest a fix-it.
13939 if (PrevDef) {
13940 Diag(NewTagLoc, diag::note_struct_class_suggestion)
13941 << getRedeclDiagFromTagKind(Redecl->getTagKind())
13942 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
13943 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
13944 }
13945 }
13946
13947 return true;
13948}
13949
13950/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
13951/// from an outer enclosing namespace or file scope inside a friend declaration.
13952/// This should provide the commented out code in the following snippet:
13953/// namespace N {
13954/// struct X;
13955/// namespace M {
13956/// struct Y { friend struct /*N::*/ X; };
13957/// }
13958/// }
13959static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
13960 SourceLocation NameLoc) {
13961 // While the decl is in a namespace, do repeated lookup of that name and see
13962 // if we get the same namespace back. If we do not, continue until
13963 // translation unit scope, at which point we have a fully qualified NNS.
13964 SmallVector<IdentifierInfo *, 4> Namespaces;
13965 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13966 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
13967 // This tag should be declared in a namespace, which can only be enclosed by
13968 // other namespaces. Bail if there's an anonymous namespace in the chain.
13969 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
13970 if (!Namespace || Namespace->isAnonymousNamespace())
13971 return FixItHint();
13972 IdentifierInfo *II = Namespace->getIdentifier();
13973 Namespaces.push_back(II);
13974 NamedDecl *Lookup = SemaRef.LookupSingleName(
13975 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
13976 if (Lookup == Namespace)
13977 break;
13978 }
13979
13980 // Once we have all the namespaces, reverse them to go outermost first, and
13981 // build an NNS.
13982 SmallString<64> Insertion;
13983 llvm::raw_svector_ostream OS(Insertion);
13984 if (DC->isTranslationUnit())
13985 OS << "::";
13986 std::reverse(Namespaces.begin(), Namespaces.end());
13987 for (auto *II : Namespaces)
13988 OS << II->getName() << "::";
13989 return FixItHint::CreateInsertion(NameLoc, Insertion);
13990}
13991
13992/// Determine whether a tag originally declared in context \p OldDC can
13993/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
13994/// found a declaration in \p OldDC as a previous decl, perhaps through a
13995/// using-declaration).
13996static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
13997 DeclContext *NewDC) {
13998 OldDC = OldDC->getRedeclContext();
13999 NewDC = NewDC->getRedeclContext();
14000
14001 if (OldDC->Equals(NewDC))
14002 return true;
14003
14004 // In MSVC mode, we allow a redeclaration if the contexts are related (either
14005 // encloses the other).
14006 if (S.getLangOpts().MSVCCompat &&
14007 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14008 return true;
14009
14010 return false;
14011}
14012
14013/// This is invoked when we see 'struct foo' or 'struct {'. In the
14014/// former case, Name will be non-null. In the later case, Name will be null.
14015/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14016/// reference/declaration/definition of a tag.
14017///
14018/// \param IsTypeSpecifier \c true if this is a type-specifier (or
14019/// trailing-type-specifier) other than one in an alias-declaration.
14020///
14021/// \param SkipBody If non-null, will be set to indicate if the caller should
14022/// skip the definition of this tag and treat it as if it were a declaration.
14023Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14024 SourceLocation KWLoc, CXXScopeSpec &SS,
14025 IdentifierInfo *Name, SourceLocation NameLoc,
14026 const ParsedAttributesView &Attrs, AccessSpecifier AS,
14027 SourceLocation ModulePrivateLoc,
14028 MultiTemplateParamsArg TemplateParameterLists,
14029 bool &OwnedDecl, bool &IsDependent,
14030 SourceLocation ScopedEnumKWLoc,
14031 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14032 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14033 SkipBodyInfo *SkipBody) {
14034 // If this is not a definition, it must have a name.
14035 IdentifierInfo *OrigName = Name;
14036 assert((Name != nullptr || TUK == TUK_Definition) &&(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14037, __PRETTY_FUNCTION__))
14037 "Nameless record must be a definition!")(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14037, __PRETTY_FUNCTION__))
;
14038 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)((TemplateParameterLists.size() == 0 || TUK != TUK_Reference)
? static_cast<void> (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14038, __PRETTY_FUNCTION__))
;
14039
14040 OwnedDecl = false;
14041 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14042 bool ScopedEnum = ScopedEnumKWLoc.isValid();
14043
14044 // FIXME: Check member specializations more carefully.
14045 bool isMemberSpecialization = false;
14046 bool Invalid = false;
14047
14048 // We only need to do this matching if we have template parameters
14049 // or a scope specifier, which also conveniently avoids this work
14050 // for non-C++ cases.
14051 if (TemplateParameterLists.size() > 0 ||
14052 (SS.isNotEmpty() && TUK != TUK_Reference)) {
14053 if (TemplateParameterList *TemplateParams =
14054 MatchTemplateParametersToScopeSpecifier(
14055 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14056 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14057 if (Kind == TTK_Enum) {
14058 Diag(KWLoc, diag::err_enum_template);
14059 return nullptr;
14060 }
14061
14062 if (TemplateParams->size() > 0) {
14063 // This is a declaration or definition of a class template (which may
14064 // be a member of another template).
14065
14066 if (Invalid)
14067 return nullptr;
14068
14069 OwnedDecl = false;
14070 DeclResult Result = CheckClassTemplate(
14071 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14072 AS, ModulePrivateLoc,
14073 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14074 TemplateParameterLists.data(), SkipBody);
14075 return Result.get();
14076 } else {
14077 // The "template<>" header is extraneous.
14078 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14079 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14080 isMemberSpecialization = true;
14081 }
14082 }
14083 }
14084
14085 // Figure out the underlying type if this a enum declaration. We need to do
14086 // this early, because it's needed to detect if this is an incompatible
14087 // redeclaration.
14088 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14089 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14090
14091 if (Kind == TTK_Enum) {
14092 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14093 // No underlying type explicitly specified, or we failed to parse the
14094 // type, default to int.
14095 EnumUnderlying = Context.IntTy.getTypePtr();
14096 } else if (UnderlyingType.get()) {
14097 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14098 // integral type; any cv-qualification is ignored.
14099 TypeSourceInfo *TI = nullptr;
14100 GetTypeFromParser(UnderlyingType.get(), &TI);
14101 EnumUnderlying = TI;
14102
14103 if (CheckEnumUnderlyingType(TI))
14104 // Recover by falling back to int.
14105 EnumUnderlying = Context.IntTy.getTypePtr();
14106
14107 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14108 UPPC_FixedUnderlyingType))
14109 EnumUnderlying = Context.IntTy.getTypePtr();
14110
14111 } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14112 // For MSVC ABI compatibility, unfixed enums must use an underlying type
14113 // of 'int'. However, if this is an unfixed forward declaration, don't set
14114 // the underlying type unless the user enables -fms-compatibility. This
14115 // makes unfixed forward declared enums incomplete and is more conforming.
14116 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14117 EnumUnderlying = Context.IntTy.getTypePtr();
14118 }
14119 }
14120
14121 DeclContext *SearchDC = CurContext;
14122 DeclContext *DC = CurContext;
14123 bool isStdBadAlloc = false;
14124 bool isStdAlignValT = false;
14125
14126 RedeclarationKind Redecl = forRedeclarationInCurContext();
14127 if (TUK == TUK_Friend || TUK == TUK_Reference)
14128 Redecl = NotForRedeclaration;
14129
14130 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14131 /// implemented asks for structural equivalence checking, the returned decl
14132 /// here is passed back to the parser, allowing the tag body to be parsed.
14133 auto createTagFromNewDecl = [&]() -> TagDecl * {
14134 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")((!getLangOpts().CPlusPlus && "not meant for C++ usage"
) ? static_cast<void> (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14134, __PRETTY_FUNCTION__))
;
14135 // If there is an identifier, use the location of the identifier as the
14136 // location of the decl, otherwise use the location of the struct/union
14137 // keyword.
14138 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14139 TagDecl *New = nullptr;
14140
14141 if (Kind == TTK_Enum) {
14142 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14143 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14144 // If this is an undefined enum, bail.
14145 if (TUK != TUK_Definition && !Invalid)
14146 return nullptr;
14147 if (EnumUnderlying) {
14148 EnumDecl *ED = cast<EnumDecl>(New);
14149 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14150 ED->setIntegerTypeSourceInfo(TI);
14151 else
14152 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14153 ED->setPromotionType(ED->getIntegerType());
14154 }
14155 } else { // struct/union
14156 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14157 nullptr);
14158 }
14159
14160 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14161 // Add alignment attributes if necessary; these attributes are checked
14162 // when the ASTContext lays out the structure.
14163 //
14164 // It is important for implementing the correct semantics that this
14165 // happen here (in ActOnTag). The #pragma pack stack is
14166 // maintained as a result of parser callbacks which can occur at
14167 // many points during the parsing of a struct declaration (because
14168 // the #pragma tokens are effectively skipped over during the
14169 // parsing of the struct).
14170 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14171 AddAlignmentAttributesForRecord(RD);
14172 AddMsStructLayoutForRecord(RD);
14173 }
14174 }
14175 New->setLexicalDeclContext(CurContext);
14176 return New;
14177 };
14178
14179 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14180 if (Name && SS.isNotEmpty()) {
14181 // We have a nested-name tag ('struct foo::bar').
14182
14183 // Check for invalid 'foo::'.
14184 if (SS.isInvalid()) {
14185 Name = nullptr;
14186 goto CreateNewDecl;
14187 }
14188
14189 // If this is a friend or a reference to a class in a dependent
14190 // context, don't try to make a decl for it.
14191 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14192 DC = computeDeclContext(SS, false);
14193 if (!DC) {
14194 IsDependent = true;
14195 return nullptr;
14196 }
14197 } else {
14198 DC = computeDeclContext(SS, true);
14199 if (!DC) {
14200 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14201 << SS.getRange();
14202 return nullptr;
14203 }
14204 }
14205
14206 if (RequireCompleteDeclContext(SS, DC))
14207 return nullptr;
14208
14209 SearchDC = DC;
14210 // Look-up name inside 'foo::'.
14211 LookupQualifiedName(Previous, DC);
14212
14213 if (Previous.isAmbiguous())
14214 return nullptr;
14215
14216 if (Previous.empty()) {
14217 // Name lookup did not find anything. However, if the
14218 // nested-name-specifier refers to the current instantiation,
14219 // and that current instantiation has any dependent base
14220 // classes, we might find something at instantiation time: treat
14221 // this as a dependent elaborated-type-specifier.
14222 // But this only makes any sense for reference-like lookups.
14223 if (Previous.wasNotFoundInCurrentInstantiation() &&
14224 (TUK == TUK_Reference || TUK == TUK_Friend)) {
14225 IsDependent = true;
14226 return nullptr;
14227 }
14228
14229 // A tag 'foo::bar' must already exist.
14230 Diag(NameLoc, diag::err_not_tag_in_scope)
14231 << Kind << Name << DC << SS.getRange();
14232 Name = nullptr;
14233 Invalid = true;
14234 goto CreateNewDecl;
14235 }
14236 } else if (Name) {
14237 // C++14 [class.mem]p14:
14238 // If T is the name of a class, then each of the following shall have a
14239 // name different from T:
14240 // -- every member of class T that is itself a type
14241 if (TUK != TUK_Reference && TUK != TUK_Friend &&
14242 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14243 return nullptr;
14244
14245 // If this is a named struct, check to see if there was a previous forward
14246 // declaration or definition.
14247 // FIXME: We're looking into outer scopes here, even when we
14248 // shouldn't be. Doing so can result in ambiguities that we
14249 // shouldn't be diagnosing.
14250 LookupName(Previous, S);
14251
14252 // When declaring or defining a tag, ignore ambiguities introduced
14253 // by types using'ed into this scope.
14254 if (Previous.isAmbiguous() &&
14255 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14256 LookupResult::Filter F = Previous.makeFilter();
14257 while (F.hasNext()) {
14258 NamedDecl *ND = F.next();
14259 if (!ND->getDeclContext()->getRedeclContext()->Equals(
14260 SearchDC->getRedeclContext()))
14261 F.erase();
14262 }
14263 F.done();
14264 }
14265
14266 // C++11 [namespace.memdef]p3:
14267 // If the name in a friend declaration is neither qualified nor
14268 // a template-id and the declaration is a function or an
14269 // elaborated-type-specifier, the lookup to determine whether
14270 // the entity has been previously declared shall not consider
14271 // any scopes outside the innermost enclosing namespace.
14272 //
14273 // MSVC doesn't implement the above rule for types, so a friend tag
14274 // declaration may be a redeclaration of a type declared in an enclosing
14275 // scope. They do implement this rule for friend functions.
14276 //
14277 // Does it matter that this should be by scope instead of by
14278 // semantic context?
14279 if (!Previous.empty() && TUK == TUK_Friend) {
14280 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14281 LookupResult::Filter F = Previous.makeFilter();
14282 bool FriendSawTagOutsideEnclosingNamespace = false;
14283 while (F.hasNext()) {
14284 NamedDecl *ND = F.next();
14285 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14286 if (DC->isFileContext() &&
14287 !EnclosingNS->Encloses(ND->getDeclContext())) {
14288 if (getLangOpts().MSVCCompat)
14289 FriendSawTagOutsideEnclosingNamespace = true;
14290 else
14291 F.erase();
14292 }
14293 }
14294 F.done();
14295
14296 // Diagnose this MSVC extension in the easy case where lookup would have
14297 // unambiguously found something outside the enclosing namespace.
14298 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14299 NamedDecl *ND = Previous.getFoundDecl();
14300 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14301 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14302 }
14303 }
14304
14305 // Note: there used to be some attempt at recovery here.
14306 if (Previous.isAmbiguous())
14307 return nullptr;
14308
14309 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14310 // FIXME: This makes sure that we ignore the contexts associated
14311 // with C structs, unions, and enums when looking for a matching
14312 // tag declaration or definition. See the similar lookup tweak
14313 // in Sema::LookupName; is there a better way to deal with this?
14314 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14315 SearchDC = SearchDC->getParent();
14316 }
14317 }
14318
14319 if (Previous.isSingleResult() &&
14320 Previous.getFoundDecl()->isTemplateParameter()) {
14321 // Maybe we will complain about the shadowed template parameter.
14322 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14323 // Just pretend that we didn't see the previous declaration.
14324 Previous.clear();
14325 }
14326
14327 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14328 DC->Equals(getStdNamespace())) {
14329 if (Name->isStr("bad_alloc")) {
14330 // This is a declaration of or a reference to "std::bad_alloc".
14331 isStdBadAlloc = true;
14332
14333 // If std::bad_alloc has been implicitly declared (but made invisible to
14334 // name lookup), fill in this implicit declaration as the previous
14335 // declaration, so that the declarations get chained appropriately.
14336 if (Previous.empty() && StdBadAlloc)
14337 Previous.addDecl(getStdBadAlloc());
14338 } else if (Name->isStr("align_val_t")) {
14339 isStdAlignValT = true;
14340 if (Previous.empty() && StdAlignValT)
14341 Previous.addDecl(getStdAlignValT());
14342 }
14343 }
14344
14345 // If we didn't find a previous declaration, and this is a reference
14346 // (or friend reference), move to the correct scope. In C++, we
14347 // also need to do a redeclaration lookup there, just in case
14348 // there's a shadow friend decl.
14349 if (Name && Previous.empty() &&
14350 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14351 if (Invalid) goto CreateNewDecl;
14352 assert(SS.isEmpty())((SS.isEmpty()) ? static_cast<void> (0) : __assert_fail
("SS.isEmpty()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14352, __PRETTY_FUNCTION__))
;
14353
14354 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14355 // C++ [basic.scope.pdecl]p5:
14356 // -- for an elaborated-type-specifier of the form
14357 //
14358 // class-key identifier
14359 //
14360 // if the elaborated-type-specifier is used in the
14361 // decl-specifier-seq or parameter-declaration-clause of a
14362 // function defined in namespace scope, the identifier is
14363 // declared as a class-name in the namespace that contains
14364 // the declaration; otherwise, except as a friend
14365 // declaration, the identifier is declared in the smallest
14366 // non-class, non-function-prototype scope that contains the
14367 // declaration.
14368 //
14369 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14370 // C structs and unions.
14371 //
14372 // It is an error in C++ to declare (rather than define) an enum
14373 // type, including via an elaborated type specifier. We'll
14374 // diagnose that later; for now, declare the enum in the same
14375 // scope as we would have picked for any other tag type.
14376 //
14377 // GNU C also supports this behavior as part of its incomplete
14378 // enum types extension, while GNU C++ does not.
14379 //
14380 // Find the context where we'll be declaring the tag.
14381 // FIXME: We would like to maintain the current DeclContext as the
14382 // lexical context,
14383 SearchDC = getTagInjectionContext(SearchDC);
14384
14385 // Find the scope where we'll be declaring the tag.
14386 S = getTagInjectionScope(S, getLangOpts());
14387 } else {
14388 assert(TUK == TUK_Friend)((TUK == TUK_Friend) ? static_cast<void> (0) : __assert_fail
("TUK == TUK_Friend", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14388, __PRETTY_FUNCTION__))
;
14389 // C++ [namespace.memdef]p3:
14390 // If a friend declaration in a non-local class first declares a
14391 // class or function, the friend class or function is a member of
14392 // the innermost enclosing namespace.
14393 SearchDC = SearchDC->getEnclosingNamespaceContext();
14394 }
14395
14396 // In C++, we need to do a redeclaration lookup to properly
14397 // diagnose some problems.
14398 // FIXME: redeclaration lookup is also used (with and without C++) to find a
14399 // hidden declaration so that we don't get ambiguity errors when using a
14400 // type declared by an elaborated-type-specifier. In C that is not correct
14401 // and we should instead merge compatible types found by lookup.
14402 if (getLangOpts().CPlusPlus) {
14403 Previous.setRedeclarationKind(forRedeclarationInCurContext());
14404 LookupQualifiedName(Previous, SearchDC);
14405 } else {
14406 Previous.setRedeclarationKind(forRedeclarationInCurContext());
14407 LookupName(Previous, S);
14408 }
14409 }
14410
14411 // If we have a known previous declaration to use, then use it.
14412 if (Previous.empty() && SkipBody && SkipBody->Previous)
14413 Previous.addDecl(SkipBody->Previous);
14414
14415 if (!Previous.empty()) {
14416 NamedDecl *PrevDecl = Previous.getFoundDecl();
14417 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14418
14419 // It's okay to have a tag decl in the same scope as a typedef
14420 // which hides a tag decl in the same scope. Finding this
14421 // insanity with a redeclaration lookup can only actually happen
14422 // in C++.
14423 //
14424 // This is also okay for elaborated-type-specifiers, which is
14425 // technically forbidden by the current standard but which is
14426 // okay according to the likely resolution of an open issue;
14427 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14428 if (getLangOpts().CPlusPlus) {
14429 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14430 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14431 TagDecl *Tag = TT->getDecl();
14432 if (Tag->getDeclName() == Name &&
14433 Tag->getDeclContext()->getRedeclContext()
14434 ->Equals(TD->getDeclContext()->getRedeclContext())) {
14435 PrevDecl = Tag;
14436 Previous.clear();
14437 Previous.addDecl(Tag);
14438 Previous.resolveKind();
14439 }
14440 }
14441 }
14442 }
14443
14444 // If this is a redeclaration of a using shadow declaration, it must
14445 // declare a tag in the same context. In MSVC mode, we allow a
14446 // redefinition if either context is within the other.
14447 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14448 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14449 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14450 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14451 !(OldTag && isAcceptableTagRedeclContext(
14452 *this, OldTag->getDeclContext(), SearchDC))) {
14453 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14454 Diag(Shadow->getTargetDecl()->getLocation(),
14455 diag::note_using_decl_target);
14456 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14457 << 0;
14458 // Recover by ignoring the old declaration.
14459 Previous.clear();
14460 goto CreateNewDecl;
14461 }
14462 }
14463
14464 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14465 // If this is a use of a previous tag, or if the tag is already declared
14466 // in the same scope (so that the definition/declaration completes or
14467 // rementions the tag), reuse the decl.
14468 if (TUK == TUK_Reference || TUK == TUK_Friend ||
14469 isDeclInScope(DirectPrevDecl, SearchDC, S,
14470 SS.isNotEmpty() || isMemberSpecialization)) {
14471 // Make sure that this wasn't declared as an enum and now used as a
14472 // struct or something similar.
14473 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14474 TUK == TUK_Definition, KWLoc,
14475 Name)) {
14476 bool SafeToContinue
14477 = (PrevTagDecl->getTagKind() != TTK_Enum &&
14478 Kind != TTK_Enum);
14479 if (SafeToContinue)
14480 Diag(KWLoc, diag::err_use_with_wrong_tag)
14481 << Name
14482 << FixItHint::CreateReplacement(SourceRange(KWLoc),
14483 PrevTagDecl->getKindName());
14484 else
14485 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14486 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14487
14488 if (SafeToContinue)
14489 Kind = PrevTagDecl->getTagKind();
14490 else {
14491 // Recover by making this an anonymous redefinition.
14492 Name = nullptr;
14493 Previous.clear();
14494 Invalid = true;
14495 }
14496 }
14497
14498 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14499 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14500
14501 // If this is an elaborated-type-specifier for a scoped enumeration,
14502 // the 'class' keyword is not necessary and not permitted.
14503 if (TUK == TUK_Reference || TUK == TUK_Friend) {
14504 if (ScopedEnum)
14505 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14506 << PrevEnum->isScoped()
14507 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14508 return PrevTagDecl;
14509 }
14510
14511 QualType EnumUnderlyingTy;
14512 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14513 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14514 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14515 EnumUnderlyingTy = QualType(T, 0);
14516
14517 // All conflicts with previous declarations are recovered by
14518 // returning the previous declaration, unless this is a definition,
14519 // in which case we want the caller to bail out.
14520 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14521 ScopedEnum, EnumUnderlyingTy,
14522 IsFixed, PrevEnum))
14523 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14524 }
14525
14526 // C++11 [class.mem]p1:
14527 // A member shall not be declared twice in the member-specification,
14528 // except that a nested class or member class template can be declared
14529 // and then later defined.
14530 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14531 S->isDeclScope(PrevDecl)) {
14532 Diag(NameLoc, diag::ext_member_redeclared);
14533 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14534 }
14535
14536 if (!Invalid) {
14537 // If this is a use, just return the declaration we found, unless
14538 // we have attributes.
14539 if (TUK == TUK_Reference || TUK == TUK_Friend) {
14540 if (!Attrs.empty()) {
14541 // FIXME: Diagnose these attributes. For now, we create a new
14542 // declaration to hold them.
14543 } else if (TUK == TUK_Reference &&
14544 (PrevTagDecl->getFriendObjectKind() ==
14545 Decl::FOK_Undeclared ||
14546 PrevDecl->getOwningModule() != getCurrentModule()) &&
14547 SS.isEmpty()) {
14548 // This declaration is a reference to an existing entity, but
14549 // has different visibility from that entity: it either makes
14550 // a friend visible or it makes a type visible in a new module.
14551 // In either case, create a new declaration. We only do this if
14552 // the declaration would have meant the same thing if no prior
14553 // declaration were found, that is, if it was found in the same
14554 // scope where we would have injected a declaration.
14555 if (!getTagInjectionContext(CurContext)->getRedeclContext()
14556 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14557 return PrevTagDecl;
14558 // This is in the injected scope, create a new declaration in
14559 // that scope.
14560 S = getTagInjectionScope(S, getLangOpts());
14561 } else {
14562 return PrevTagDecl;
14563 }
14564 }
14565
14566 // Diagnose attempts to redefine a tag.
14567 if (TUK == TUK_Definition) {
14568 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14569 // If we're defining a specialization and the previous definition
14570 // is from an implicit instantiation, don't emit an error
14571 // here; we'll catch this in the general case below.
14572 bool IsExplicitSpecializationAfterInstantiation = false;
14573 if (isMemberSpecialization) {
14574 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14575 IsExplicitSpecializationAfterInstantiation =
14576 RD->getTemplateSpecializationKind() !=
14577 TSK_ExplicitSpecialization;
14578 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14579 IsExplicitSpecializationAfterInstantiation =
14580 ED->getTemplateSpecializationKind() !=
14581 TSK_ExplicitSpecialization;
14582 }
14583
14584 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14585 // not keep more that one definition around (merge them). However,
14586 // ensure the decl passes the structural compatibility check in
14587 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14588 NamedDecl *Hidden = nullptr;
14589 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14590 // There is a definition of this tag, but it is not visible. We
14591 // explicitly make use of C++'s one definition rule here, and
14592 // assume that this definition is identical to the hidden one
14593 // we already have. Make the existing definition visible and
14594 // use it in place of this one.
14595 if (!getLangOpts().CPlusPlus) {
14596 // Postpone making the old definition visible until after we
14597 // complete parsing the new one and do the structural
14598 // comparison.
14599 SkipBody->CheckSameAsPrevious = true;
14600 SkipBody->New = createTagFromNewDecl();
14601 SkipBody->Previous = Def;
14602 return Def;
14603 } else {
14604 SkipBody->ShouldSkip = true;
14605 SkipBody->Previous = Def;
14606 makeMergedDefinitionVisible(Hidden);
14607 // Carry on and handle it like a normal definition. We'll
14608 // skip starting the definitiion later.
14609 }
14610 } else if (!IsExplicitSpecializationAfterInstantiation) {
14611 // A redeclaration in function prototype scope in C isn't
14612 // visible elsewhere, so merely issue a warning.
14613 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14614 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14615 else
14616 Diag(NameLoc, diag::err_redefinition) << Name;
14617 notePreviousDefinition(Def,
14618 NameLoc.isValid() ? NameLoc : KWLoc);
14619 // If this is a redefinition, recover by making this
14620 // struct be anonymous, which will make any later
14621 // references get the previous definition.
14622 Name = nullptr;
14623 Previous.clear();
14624 Invalid = true;
14625 }
14626 } else {
14627 // If the type is currently being defined, complain
14628 // about a nested redefinition.
14629 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14630 if (TD->isBeingDefined()) {
14631 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14632 Diag(PrevTagDecl->getLocation(),
14633 diag::note_previous_definition);
14634 Name = nullptr;
14635 Previous.clear();
14636 Invalid = true;
14637 }
14638 }
14639
14640 // Okay, this is definition of a previously declared or referenced
14641 // tag. We're going to create a new Decl for it.
14642 }
14643
14644 // Okay, we're going to make a redeclaration. If this is some kind
14645 // of reference, make sure we build the redeclaration in the same DC
14646 // as the original, and ignore the current access specifier.
14647 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14648 SearchDC = PrevTagDecl->getDeclContext();
14649 AS = AS_none;
14650 }
14651 }
14652 // If we get here we have (another) forward declaration or we
14653 // have a definition. Just create a new decl.
14654
14655 } else {
14656 // If we get here, this is a definition of a new tag type in a nested
14657 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14658 // new decl/type. We set PrevDecl to NULL so that the entities
14659 // have distinct types.
14660 Previous.clear();
14661 }
14662 // If we get here, we're going to create a new Decl. If PrevDecl
14663 // is non-NULL, it's a definition of the tag declared by
14664 // PrevDecl. If it's NULL, we have a new definition.
14665
14666 // Otherwise, PrevDecl is not a tag, but was found with tag
14667 // lookup. This is only actually possible in C++, where a few
14668 // things like templates still live in the tag namespace.
14669 } else {
14670 // Use a better diagnostic if an elaborated-type-specifier
14671 // found the wrong kind of type on the first
14672 // (non-redeclaration) lookup.
14673 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14674 !Previous.isForRedeclaration()) {
14675 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14676 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14677 << Kind;
14678 Diag(PrevDecl->getLocation(), diag::note_declared_at);
14679 Invalid = true;
14680
14681 // Otherwise, only diagnose if the declaration is in scope.
14682 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14683 SS.isNotEmpty() || isMemberSpecialization)) {
14684 // do nothing
14685
14686 // Diagnose implicit declarations introduced by elaborated types.
14687 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14688 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14689 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14690 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14691 Invalid = true;
14692
14693 // Otherwise it's a declaration. Call out a particularly common
14694 // case here.
14695 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14696 unsigned Kind = 0;
14697 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14698 Diag(NameLoc, diag::err_tag_definition_of_typedef)
14699 << Name << Kind << TND->getUnderlyingType();
14700 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14701 Invalid = true;
14702
14703 // Otherwise, diagnose.
14704 } else {
14705 // The tag name clashes with something else in the target scope,
14706 // issue an error and recover by making this tag be anonymous.
14707 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14708 notePreviousDefinition(PrevDecl, NameLoc);
14709 Name = nullptr;
14710 Invalid = true;
14711 }
14712
14713 // The existing declaration isn't relevant to us; we're in a
14714 // new scope, so clear out the previous declaration.
14715 Previous.clear();
14716 }
14717 }
14718
14719CreateNewDecl:
14720
14721 TagDecl *PrevDecl = nullptr;
14722 if (Previous.isSingleResult())
14723 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14724
14725 // If there is an identifier, use the location of the identifier as the
14726 // location of the decl, otherwise use the location of the struct/union
14727 // keyword.
14728 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14729
14730 // Otherwise, create a new declaration. If there is a previous
14731 // declaration of the same entity, the two will be linked via
14732 // PrevDecl.
14733 TagDecl *New;
14734
14735 if (Kind == TTK_Enum) {
14736 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14737 // enum X { A, B, C } D; D should chain to X.
14738 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14739 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14740 ScopedEnumUsesClassTag, IsFixed);
14741
14742 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14743 StdAlignValT = cast<EnumDecl>(New);
14744
14745 // If this is an undefined enum, warn.
14746 if (TUK != TUK_Definition && !Invalid) {
14747 TagDecl *Def;
14748 if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC) &&
14749 cast<EnumDecl>(New)->isFixed()) {
14750 // C++0x: 7.2p2: opaque-enum-declaration.
14751 // Conflicts are diagnosed above. Do nothing.
14752 }
14753 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14754 Diag(Loc, diag::ext_forward_ref_enum_def)
14755 << New;
14756 Diag(Def->getLocation(), diag::note_previous_definition);
14757 } else {
14758 unsigned DiagID = diag::ext_forward_ref_enum;
14759 if (getLangOpts().MSVCCompat)
14760 DiagID = diag::ext_ms_forward_ref_enum;
14761 else if (getLangOpts().CPlusPlus)
14762 DiagID = diag::err_forward_ref_enum;
14763 Diag(Loc, DiagID);
14764 }
14765 }
14766
14767 if (EnumUnderlying) {
14768 EnumDecl *ED = cast<EnumDecl>(New);
14769 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14770 ED->setIntegerTypeSourceInfo(TI);
14771 else
14772 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14773 ED->setPromotionType(ED->getIntegerType());
14774 assert(ED->isComplete() && "enum with type should be complete")((ED->isComplete() && "enum with type should be complete"
) ? static_cast<void> (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14774, __PRETTY_FUNCTION__))
;
14775 }
14776 } else {
14777 // struct/union/class
14778
14779 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14780 // struct X { int A; } D; D should chain to X.
14781 if (getLangOpts().CPlusPlus) {
14782 // FIXME: Look for a way to use RecordDecl for simple structs.
14783 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14784 cast_or_null<CXXRecordDecl>(PrevDecl));
14785
14786 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14787 StdBadAlloc = cast<CXXRecordDecl>(New);
14788 } else
14789 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14790 cast_or_null<RecordDecl>(PrevDecl));
14791 }
14792
14793 // C++11 [dcl.type]p3:
14794 // A type-specifier-seq shall not define a class or enumeration [...].
14795 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14796 TUK == TUK_Definition) {
14797 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14798 << Context.getTagDeclType(New);
14799 Invalid = true;
14800 }
14801
14802 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14803 DC->getDeclKind() == Decl::Enum) {
14804 Diag(New->getLocation(), diag::err_type_defined_in_enum)
14805 << Context.getTagDeclType(New);
14806 Invalid = true;
14807 }
14808
14809 // Maybe add qualifier info.
14810 if (SS.isNotEmpty()) {
14811 if (SS.isSet()) {
14812 // If this is either a declaration or a definition, check the
14813 // nested-name-specifier against the current context.
14814 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14815 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14816 isMemberSpecialization))
14817 Invalid = true;
14818
14819 New->setQualifierInfo(SS.getWithLocInContext(Context));
14820 if (TemplateParameterLists.size() > 0) {
14821 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14822 }
14823 }
14824 else
14825 Invalid = true;
14826 }
14827
14828 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14829 // Add alignment attributes if necessary; these attributes are checked when
14830 // the ASTContext lays out the structure.
14831 //
14832 // It is important for implementing the correct semantics that this
14833 // happen here (in ActOnTag). The #pragma pack stack is
14834 // maintained as a result of parser callbacks which can occur at
14835 // many points during the parsing of a struct declaration (because
14836 // the #pragma tokens are effectively skipped over during the
14837 // parsing of the struct).
14838 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14839 AddAlignmentAttributesForRecord(RD);
14840 AddMsStructLayoutForRecord(RD);
14841 }
14842 }
14843
14844 if (ModulePrivateLoc.isValid()) {
14845 if (isMemberSpecialization)
14846 Diag(New->getLocation(), diag::err_module_private_specialization)
14847 << 2
14848 << FixItHint::CreateRemoval(ModulePrivateLoc);
14849 // __module_private__ does not apply to local classes. However, we only
14850 // diagnose this as an error when the declaration specifiers are
14851 // freestanding. Here, we just ignore the __module_private__.
14852 else if (!SearchDC->isFunctionOrMethod())
14853 New->setModulePrivate();
14854 }
14855
14856 // If this is a specialization of a member class (of a class template),
14857 // check the specialization.
14858 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14859 Invalid = true;
14860
14861 // If we're declaring or defining a tag in function prototype scope in C,
14862 // note that this type can only be used within the function and add it to
14863 // the list of decls to inject into the function definition scope.
14864 if ((Name || Kind == TTK_Enum) &&
14865 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
14866 if (getLangOpts().CPlusPlus) {
14867 // C++ [dcl.fct]p6:
14868 // Types shall not be defined in return or parameter types.
14869 if (TUK == TUK_Definition && !IsTypeSpecifier) {
14870 Diag(Loc, diag::err_type_defined_in_param_type)
14871 << Name;
14872 Invalid = true;
14873 }
14874 } else if (!PrevDecl) {
14875 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
14876 }
14877 }
14878
14879 if (Invalid)
14880 New->setInvalidDecl();
14881
14882 // Set the lexical context. If the tag has a C++ scope specifier, the
14883 // lexical context will be different from the semantic context.
14884 New->setLexicalDeclContext(CurContext);
14885
14886 // Mark this as a friend decl if applicable.
14887 // In Microsoft mode, a friend declaration also acts as a forward
14888 // declaration so we always pass true to setObjectOfFriendDecl to make
14889 // the tag name visible.
14890 if (TUK == TUK_Friend)
14891 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
14892
14893 // Set the access specifier.
14894 if (!Invalid && SearchDC->isRecord())
14895 SetMemberAccessSpecifier(New, PrevDecl, AS);
14896
14897 if (PrevDecl)
14898 CheckRedeclarationModuleOwnership(New, PrevDecl);
14899
14900 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
14901 New->startDefinition();
14902
14903 ProcessDeclAttributeList(S, New, Attrs);
14904 AddPragmaAttributes(S, New);
14905
14906 // If this has an identifier, add it to the scope stack.
14907 if (TUK == TUK_Friend) {
14908 // We might be replacing an existing declaration in the lookup tables;
14909 // if so, borrow its access specifier.
14910 if (PrevDecl)
14911 New->setAccess(PrevDecl->getAccess());
14912
14913 DeclContext *DC = New->getDeclContext()->getRedeclContext();
14914 DC->makeDeclVisibleInContext(New);
14915 if (Name) // can be null along some error paths
14916 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14917 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
14918 } else if (Name) {
14919 S = getNonFieldDeclScope(S);
14920 PushOnScopeChains(New, S, true);
14921 } else {
14922 CurContext->addDecl(New);
14923 }
14924
14925 // If this is the C FILE type, notify the AST context.
14926 if (IdentifierInfo *II = New->getIdentifier())
14927 if (!New->isInvalidDecl() &&
14928 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
14929 II->isStr("FILE"))
14930 Context.setFILEDecl(New);
14931
14932 if (PrevDecl)
14933 mergeDeclAttributes(New, PrevDecl);
14934
14935 // If there's a #pragma GCC visibility in scope, set the visibility of this
14936 // record.
14937 AddPushedVisibilityAttribute(New);
14938
14939 if (isMemberSpecialization && !New->isInvalidDecl())
14940 CompleteMemberSpecialization(New, Previous);
14941
14942 OwnedDecl = true;
14943 // In C++, don't return an invalid declaration. We can't recover well from
14944 // the cases where we make the type anonymous.
14945 if (Invalid && getLangOpts().CPlusPlus) {
14946 if (New->isBeingDefined())
14947 if (auto RD = dyn_cast<RecordDecl>(New))
14948 RD->completeDefinition();
14949 return nullptr;
14950 } else if (SkipBody && SkipBody->ShouldSkip) {
14951 return SkipBody->Previous;
14952 } else {
14953 return New;
14954 }
14955}
14956
14957void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
14958 AdjustDeclIfTemplate(TagD);
14959 TagDecl *Tag = cast<TagDecl>(TagD);
14960
14961 // Enter the tag context.
14962 PushDeclContext(S, Tag);
14963
14964 ActOnDocumentableDecl(TagD);
14965
14966 // If there's a #pragma GCC visibility in scope, set the visibility of this
14967 // record.
14968 AddPushedVisibilityAttribute(Tag);
14969}
14970
14971bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
14972 SkipBodyInfo &SkipBody) {
14973 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
14974 return false;
14975
14976 // Make the previous decl visible.
14977 makeMergedDefinitionVisible(SkipBody.Previous);
14978 return true;
14979}
14980
14981Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
14982 assert(isa<ObjCContainerDecl>(IDecl) &&((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14983, __PRETTY_FUNCTION__))
14983 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14983, __PRETTY_FUNCTION__))
;
14984 DeclContext *OCD = cast<DeclContext>(IDecl);
14985 assert(getContainingDC(OCD) == CurContext &&((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14986, __PRETTY_FUNCTION__))
14986 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 14986, __PRETTY_FUNCTION__))
;
14987 CurContext = OCD;
14988 return IDecl;
14989}
14990
14991void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
14992 SourceLocation FinalLoc,
14993 bool IsFinalSpelledSealed,
14994 SourceLocation LBraceLoc) {
14995 AdjustDeclIfTemplate(TagD);
14996 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
14997
14998 FieldCollector->StartClass();
14999
15000 if (!Record->getIdentifier())
15001 return;
15002
15003 if (FinalLoc.isValid())
15004 Record->addAttr(new (Context)
15005 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15006
15007 // C++ [class]p2:
15008 // [...] The class-name is also inserted into the scope of the
15009 // class itself; this is known as the injected-class-name. For
15010 // purposes of access checking, the injected-class-name is treated
15011 // as if it were a public member name.
15012 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15013 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15014 Record->getLocation(), Record->getIdentifier(),
15015 /*PrevDecl=*/nullptr,
15016 /*DelayTypeCreation=*/true);
15017 Context.getTypeDeclType(InjectedClassName, Record);
15018 InjectedClassName->setImplicit();
15019 InjectedClassName->setAccess(AS_public);
15020 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15021 InjectedClassName->setDescribedClassTemplate(Template);
15022 PushOnScopeChains(InjectedClassName, S);
15023 assert(InjectedClassName->isInjectedClassName() &&((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15024, __PRETTY_FUNCTION__))
15024 "Broken injected-class-name")((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15024, __PRETTY_FUNCTION__))
;
15025}
15026
15027void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15028 SourceRange BraceRange) {
15029 AdjustDeclIfTemplate(TagD);
15030 TagDecl *Tag = cast<TagDecl>(TagD);
15031 Tag->setBraceRange(BraceRange);
15032
15033 // Make sure we "complete" the definition even it is invalid.
15034 if (Tag->isBeingDefined()) {
15035 assert(Tag->isInvalidDecl() && "We should already have completed it")((Tag->isInvalidDecl() && "We should already have completed it"
) ? static_cast<void> (0) : __assert_fail ("Tag->isInvalidDecl() && \"We should already have completed it\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15035, __PRETTY_FUNCTION__))
;
15036 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15037 RD->completeDefinition();
15038 }
15039
15040 if (isa<CXXRecordDecl>(Tag)) {
15041 FieldCollector->FinishClass();
15042 }
15043
15044 // Exit this scope of this tag's definition.
15045 PopDeclContext();
15046
15047 if (getCurLexicalContext()->isObjCContainer() &&
15048 Tag->getDeclContext()->isFileContext())
15049 Tag->setTopLevelDeclInObjCContainer();
15050
15051 // Notify the consumer that we've defined a tag.
15052 if (!Tag->isInvalidDecl())
15053 Consumer.HandleTagDeclDefinition(Tag);
15054}
15055
15056void Sema::ActOnObjCContainerFinishDefinition() {
15057 // Exit this scope of this interface definition.
15058 PopDeclContext();
15059}
15060
15061void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15062 assert(DC == CurContext && "Mismatch of container contexts")((DC == CurContext && "Mismatch of container contexts"
) ? static_cast<void> (0) : __assert_fail ("DC == CurContext && \"Mismatch of container contexts\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15062, __PRETTY_FUNCTION__))
;
15063 OriginalLexicalContext = DC;
15064 ActOnObjCContainerFinishDefinition();
15065}
15066
15067void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15068 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15069 OriginalLexicalContext = nullptr;
15070}
15071
15072void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15073 AdjustDeclIfTemplate(TagD);
15074 TagDecl *Tag = cast<TagDecl>(TagD);
15075 Tag->setInvalidDecl();
15076
15077 // Make sure we "complete" the definition even it is invalid.
15078 if (Tag->isBeingDefined()) {
15079 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15080 RD->completeDefinition();
15081 }
15082
15083 // We're undoing ActOnTagStartDefinition here, not
15084 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15085 // the FieldCollector.
15086
15087 PopDeclContext();
15088}
15089
15090// Note that FieldName may be null for anonymous bitfields.
15091ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15092 IdentifierInfo *FieldName,
15093 QualType FieldTy, bool IsMsStruct,
15094 Expr *BitWidth, bool *ZeroWidth) {
15095 // Default to true; that shouldn't confuse checks for emptiness
15096 if (ZeroWidth)
15097 *ZeroWidth = true;
15098
15099 // C99 6.7.2.1p4 - verify the field type.
15100 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15101 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15102 // Handle incomplete types with specific error.
15103 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15104 return ExprError();
15105 if (FieldName)
15106 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15107 << FieldName << FieldTy << BitWidth->getSourceRange();
15108 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15109 << FieldTy << BitWidth->getSourceRange();
15110 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15111 UPPC_BitFieldWidth))
15112 return ExprError();
15113
15114 // If the bit-width is type- or value-dependent, don't try to check
15115 // it now.
15116 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15117 return BitWidth;
15118
15119 llvm::APSInt Value;
15120 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15121 if (ICE.isInvalid())
15122 return ICE;
15123 BitWidth = ICE.get();
15124
15125 if (Value != 0 && ZeroWidth)
15126 *ZeroWidth = false;
15127
15128 // Zero-width bitfield is ok for anonymous field.
15129 if (Value == 0 && FieldName)
15130 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15131
15132 if (Value.isSigned() && Value.isNegative()) {
15133 if (FieldName)
15134 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15135 << FieldName << Value.toString(10);
15136 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15137 << Value.toString(10);
15138 }
15139
15140 if (!FieldTy->isDependentType()) {
15141 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15142 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15143 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15144
15145 // Over-wide bitfields are an error in C or when using the MSVC bitfield
15146 // ABI.
15147 bool CStdConstraintViolation =
15148 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15149 bool MSBitfieldViolation =
15150 Value.ugt(TypeStorageSize) &&
15151 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15152 if (CStdConstraintViolation || MSBitfieldViolation) {
15153 unsigned DiagWidth =
15154 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15155 if (FieldName)
15156 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15157 << FieldName << (unsigned)Value.getZExtValue()
15158 << !CStdConstraintViolation << DiagWidth;
15159
15160 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15161 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15162 << DiagWidth;
15163 }
15164
15165 // Warn on types where the user might conceivably expect to get all
15166 // specified bits as value bits: that's all integral types other than
15167 // 'bool'.
15168 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15169 if (FieldName)
15170 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15171 << FieldName << (unsigned)Value.getZExtValue()
15172 << (unsigned)TypeWidth;
15173 else
15174 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15175 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15176 }
15177 }
15178
15179 return BitWidth;
15180}
15181
15182/// ActOnField - Each field of a C struct/union is passed into this in order
15183/// to create a FieldDecl object for it.
15184Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15185 Declarator &D, Expr *BitfieldWidth) {
15186 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15187 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15188 /*InitStyle=*/ICIS_NoInit, AS_public);
15189 return Res;
15190}
15191
15192/// HandleField - Analyze a field of a C struct or a C++ data member.
15193///
15194FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15195 SourceLocation DeclStart,
15196 Declarator &D, Expr *BitWidth,
15197 InClassInitStyle InitStyle,
15198 AccessSpecifier AS) {
15199 if (D.isDecompositionDeclarator()) {
15200 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15201 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15202 << Decomp.getSourceRange();
15203 return nullptr;
15204 }
15205
15206 IdentifierInfo *II = D.getIdentifier();
15207 SourceLocation Loc = DeclStart;
15208 if (II) Loc = D.getIdentifierLoc();
15209
15210 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15211 QualType T = TInfo->getType();
15212 if (getLangOpts().CPlusPlus) {
15213 CheckExtraCXXDefaultArguments(D);
15214
15215 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15216 UPPC_DataMemberType)) {
15217 D.setInvalidType();
15218 T = Context.IntTy;
15219 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15220 }
15221 }
15222
15223 DiagnoseFunctionSpecifiers(D.getDeclSpec());
15224
15225 if (D.getDeclSpec().isInlineSpecified())
15226 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15227 << getLangOpts().CPlusPlus17;
15228 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15229 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15230 diag::err_invalid_thread)
15231 << DeclSpec::getSpecifierName(TSCS);
15232
15233 // Check to see if this name was declared as a member previously
15234 NamedDecl *PrevDecl = nullptr;
15235 LookupResult Previous(*this, II, Loc, LookupMemberName,
15236 ForVisibleRedeclaration);
15237 LookupName(Previous, S);
15238 switch (Previous.getResultKind()) {
15239 case LookupResult::Found:
15240 case LookupResult::FoundUnresolvedValue:
15241 PrevDecl = Previous.getAsSingle<NamedDecl>();
15242 break;
15243
15244 case LookupResult::FoundOverloaded:
15245 PrevDecl = Previous.getRepresentativeDecl();
15246 break;
15247
15248 case LookupResult::NotFound:
15249 case LookupResult::NotFoundInCurrentInstantiation:
15250 case LookupResult::Ambiguous:
15251 break;
15252 }
15253 Previous.suppressDiagnostics();
15254
15255 if (PrevDecl && PrevDecl->isTemplateParameter()) {
15256 // Maybe we will complain about the shadowed template parameter.
15257 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15258 // Just pretend that we didn't see the previous declaration.
15259 PrevDecl = nullptr;
15260 }
15261
15262 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15263 PrevDecl = nullptr;
15264
15265 bool Mutable
15266 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15267 SourceLocation TSSL = D.getBeginLoc();
15268 FieldDecl *NewFD
15269 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15270 TSSL, AS, PrevDecl, &D);
15271
15272 if (NewFD->isInvalidDecl())
15273 Record->setInvalidDecl();
15274
15275 if (D.getDeclSpec().isModulePrivateSpecified())
15276 NewFD->setModulePrivate();
15277
15278 if (NewFD->isInvalidDecl() && PrevDecl) {
15279 // Don't introduce NewFD into scope; there's already something
15280 // with the same name in the same scope.
15281 } else if (II) {
15282 PushOnScopeChains(NewFD, S);
15283 } else
15284 Record->addDecl(NewFD);
15285
15286 return NewFD;
15287}
15288
15289/// Build a new FieldDecl and check its well-formedness.
15290///
15291/// This routine builds a new FieldDecl given the fields name, type,
15292/// record, etc. \p PrevDecl should refer to any previous declaration
15293/// with the same name and in the same scope as the field to be
15294/// created.
15295///
15296/// \returns a new FieldDecl.
15297///
15298/// \todo The Declarator argument is a hack. It will be removed once
15299FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15300 TypeSourceInfo *TInfo,
15301 RecordDecl *Record, SourceLocation Loc,
15302 bool Mutable, Expr *BitWidth,
15303 InClassInitStyle InitStyle,
15304 SourceLocation TSSL,
15305 AccessSpecifier AS, NamedDecl *PrevDecl,
15306 Declarator *D) {
15307 IdentifierInfo *II = Name.getAsIdentifierInfo();
15308 bool InvalidDecl = false;
15309 if (D) InvalidDecl = D->isInvalidType();
15310
15311 // If we receive a broken type, recover by assuming 'int' and
15312 // marking this declaration as invalid.
15313 if (T.isNull()) {
15314 InvalidDecl = true;
15315 T = Context.IntTy;
15316 }
15317
15318 QualType EltTy = Context.getBaseElementType(T);
15319 if (!EltTy->isDependentType()) {
15320 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15321 // Fields of incomplete type force their record to be invalid.
15322 Record->setInvalidDecl();
15323 InvalidDecl = true;
15324 } else {
15325 NamedDecl *Def;
15326 EltTy->isIncompleteType(&Def);
15327 if (Def && Def->isInvalidDecl()) {
15328 Record->setInvalidDecl();
15329 InvalidDecl = true;
15330 }
15331 }
15332 }
15333
15334 // TR 18037 does not allow fields to be declared with address space
15335 if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15336 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15337 Diag(Loc, diag::err_field_with_address_space);
15338 Record->setInvalidDecl();
15339 InvalidDecl = true;
15340 }
15341
15342 if (LangOpts.OpenCL) {
15343 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15344 // used as structure or union field: image, sampler, event or block types.
15345 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15346 T->isBlockPointerType()) {
15347 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15348 Record->setInvalidDecl();
15349 InvalidDecl = true;
15350 }
15351 // OpenCL v1.2 s6.9.c: bitfields are not supported.
15352 if (BitWidth) {
15353 Diag(Loc, diag::err_opencl_bitfields);
15354 InvalidDecl = true;
15355 }
15356 }
15357
15358 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15359 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15360 T.hasQualifiers()) {
15361 InvalidDecl = true;
15362 Diag(Loc, diag::err_anon_bitfield_qualifiers);
15363 }
15364
15365 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15366 // than a variably modified type.
15367 if (!InvalidDecl && T->isVariablyModifiedType()) {
15368 bool SizeIsNegative;
15369 llvm::APSInt Oversized;
15370
15371 TypeSourceInfo *FixedTInfo =
15372 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
15373 SizeIsNegative,
15374 Oversized);
15375 if (FixedTInfo) {
15376 Diag(Loc, diag::warn_illegal_constant_array_size);
15377 TInfo = FixedTInfo;
15378 T = FixedTInfo->getType();
15379 } else {
15380 if (SizeIsNegative)
15381 Diag(Loc, diag::err_typecheck_negative_array_size);
15382 else if (Oversized.getBoolValue())
15383 Diag(Loc, diag::err_array_too_large)
15384 << Oversized.toString(10);
15385 else
15386 Diag(Loc, diag::err_typecheck_field_variable_size);
15387 InvalidDecl = true;
15388 }
15389 }
15390
15391 // Fields can not have abstract class types
15392 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15393 diag::err_abstract_type_in_decl,
15394 AbstractFieldType))
15395 InvalidDecl = true;
15396
15397 bool ZeroWidth = false;
15398 if (InvalidDecl)
15399 BitWidth = nullptr;
15400 // If this is declared as a bit-field, check the bit-field.
15401 if (BitWidth) {
15402 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15403 &ZeroWidth).get();
15404 if (!BitWidth) {
15405 InvalidDecl = true;
15406 BitWidth = nullptr;
15407 ZeroWidth = false;
15408 }
15409 }
15410
15411 // Check that 'mutable' is consistent with the type of the declaration.
15412 if (!InvalidDecl && Mutable) {
15413 unsigned DiagID = 0;
15414 if (T->isReferenceType())
15415 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15416 : diag::err_mutable_reference;
15417 else if (T.isConstQualified())
15418 DiagID = diag::err_mutable_const;
15419
15420 if (DiagID) {
15421 SourceLocation ErrLoc = Loc;
15422 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15423 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15424 Diag(ErrLoc, DiagID);
15425 if (DiagID != diag::ext_mutable_reference) {
15426 Mutable = false;
15427 InvalidDecl = true;
15428 }
15429 }
15430 }
15431
15432 // C++11 [class.union]p8 (DR1460):
15433 // At most one variant member of a union may have a
15434 // brace-or-equal-initializer.
15435 if (InitStyle != ICIS_NoInit)
15436 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15437
15438 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15439 BitWidth, Mutable, InitStyle);
15440 if (InvalidDecl)
15441 NewFD->setInvalidDecl();
15442
15443 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15444 Diag(Loc, diag::err_duplicate_member) << II;
15445 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15446 NewFD->setInvalidDecl();
15447 }
15448
15449 if (!InvalidDecl && getLangOpts().CPlusPlus) {
15450 if (Record->isUnion()) {
15451 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15452 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15453 if (RDecl->getDefinition()) {
15454 // C++ [class.union]p1: An object of a class with a non-trivial
15455 // constructor, a non-trivial copy constructor, a non-trivial
15456 // destructor, or a non-trivial copy assignment operator
15457 // cannot be a member of a union, nor can an array of such
15458 // objects.
15459 if (CheckNontrivialField(NewFD))
15460 NewFD->setInvalidDecl();
15461 }
15462 }
15463
15464 // C++ [class.union]p1: If a union contains a member of reference type,
15465 // the program is ill-formed, except when compiling with MSVC extensions
15466 // enabled.
15467 if (EltTy->isReferenceType()) {
15468 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15469 diag::ext_union_member_of_reference_type :
15470 diag::err_union_member_of_reference_type)
15471 << NewFD->getDeclName() << EltTy;
15472 if (!getLangOpts().MicrosoftExt)
15473 NewFD->setInvalidDecl();
15474 }
15475 }
15476 }
15477
15478 // FIXME: We need to pass in the attributes given an AST
15479 // representation, not a parser representation.
15480 if (D) {
15481 // FIXME: The current scope is almost... but not entirely... correct here.
15482 ProcessDeclAttributes(getCurScope(), NewFD, *D);
15483
15484 if (NewFD->hasAttrs())
15485 CheckAlignasUnderalignment(NewFD);
15486 }
15487
15488 // In auto-retain/release, infer strong retension for fields of
15489 // retainable type.
15490 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15491 NewFD->setInvalidDecl();
15492
15493 if (T.isObjCGCWeak())
15494 Diag(Loc, diag::warn_attribute_weak_on_field);
15495
15496 NewFD->setAccess(AS);
15497 return NewFD;
15498}
15499
15500bool Sema::CheckNontrivialField(FieldDecl *FD) {
15501 assert(FD)((FD) ? static_cast<void> (0) : __assert_fail ("FD", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15501, __PRETTY_FUNCTION__))
;
15502 assert(getLangOpts().CPlusPlus && "valid check only for C++")((getLangOpts().CPlusPlus && "valid check only for C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15502, __PRETTY_FUNCTION__))
;
15503
15504 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15505 return false;
15506
15507 QualType EltTy = Context.getBaseElementType(FD->getType());
15508 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15509 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15510 if (RDecl->getDefinition()) {
15511 // We check for copy constructors before constructors
15512 // because otherwise we'll never get complaints about
15513 // copy constructors.
15514
15515 CXXSpecialMember member = CXXInvalid;
15516 // We're required to check for any non-trivial constructors. Since the
15517 // implicit default constructor is suppressed if there are any
15518 // user-declared constructors, we just need to check that there is a
15519 // trivial default constructor and a trivial copy constructor. (We don't
15520 // worry about move constructors here, since this is a C++98 check.)
15521 if (RDecl->hasNonTrivialCopyConstructor())
15522 member = CXXCopyConstructor;
15523 else if (!RDecl->hasTrivialDefaultConstructor())
15524 member = CXXDefaultConstructor;
15525 else if (RDecl->hasNonTrivialCopyAssignment())
15526 member = CXXCopyAssignment;
15527 else if (RDecl->hasNonTrivialDestructor())
15528 member = CXXDestructor;
15529
15530 if (member != CXXInvalid) {
15531 if (!getLangOpts().CPlusPlus11 &&
15532 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15533 // Objective-C++ ARC: it is an error to have a non-trivial field of
15534 // a union. However, system headers in Objective-C programs
15535 // occasionally have Objective-C lifetime objects within unions,
15536 // and rather than cause the program to fail, we make those
15537 // members unavailable.
15538 SourceLocation Loc = FD->getLocation();
15539 if (getSourceManager().isInSystemHeader(Loc)) {
15540 if (!FD->hasAttr<UnavailableAttr>())
15541 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15542 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15543 return false;
15544 }
15545 }
15546
15547 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15548 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15549 diag::err_illegal_union_or_anon_struct_member)
15550 << FD->getParent()->isUnion() << FD->getDeclName() << member;
15551 DiagnoseNontrivial(RDecl, member);
15552 return !getLangOpts().CPlusPlus11;
15553 }
15554 }
15555 }
15556
15557 return false;
15558}
15559
15560/// TranslateIvarVisibility - Translate visibility from a token ID to an
15561/// AST enum value.
15562static ObjCIvarDecl::AccessControl
15563TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15564 switch (ivarVisibility) {
15565 default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15565)
;
15566 case tok::objc_private: return ObjCIvarDecl::Private;
15567 case tok::objc_public: return ObjCIvarDecl::Public;
15568 case tok::objc_protected: return ObjCIvarDecl::Protected;
15569 case tok::objc_package: return ObjCIvarDecl::Package;
15570 }
15571}
15572
15573/// ActOnIvar - Each ivar field of an objective-c class is passed into this
15574/// in order to create an IvarDecl object for it.
15575Decl *Sema::ActOnIvar(Scope *S,
15576 SourceLocation DeclStart,
15577 Declarator &D, Expr *BitfieldWidth,
15578 tok::ObjCKeywordKind Visibility) {
15579
15580 IdentifierInfo *II = D.getIdentifier();
15581 Expr *BitWidth = (Expr*)BitfieldWidth;
15582 SourceLocation Loc = DeclStart;
15583 if (II) Loc = D.getIdentifierLoc();
15584
15585 // FIXME: Unnamed fields can be handled in various different ways, for
15586 // example, unnamed unions inject all members into the struct namespace!
15587
15588 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15589 QualType T = TInfo->getType();
15590
15591 if (BitWidth) {
15592 // 6.7.2.1p3, 6.7.2.1p4
15593 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15594 if (!BitWidth)
15595 D.setInvalidType();
15596 } else {
15597 // Not a bitfield.
15598
15599 // validate II.
15600
15601 }
15602 if (T->isReferenceType()) {
15603 Diag(Loc, diag::err_ivar_reference_type);
15604 D.setInvalidType();
15605 }
15606 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15607 // than a variably modified type.
15608 else if (T->isVariablyModifiedType()) {
15609 Diag(Loc, diag::err_typecheck_ivar_variable_size);
15610 D.setInvalidType();
15611 }
15612
15613 // Get the visibility (access control) for this ivar.
15614 ObjCIvarDecl::AccessControl ac =
15615 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15616 : ObjCIvarDecl::None;
15617 // Must set ivar's DeclContext to its enclosing interface.
15618 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15619 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15620 return nullptr;
15621 ObjCContainerDecl *EnclosingContext;
15622 if (ObjCImplementationDecl *IMPDecl =
15623 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15624 if (LangOpts.ObjCRuntime.isFragile()) {
15625 // Case of ivar declared in an implementation. Context is that of its class.
15626 EnclosingContext = IMPDecl->getClassInterface();
15627 assert(EnclosingContext && "Implementation has no class interface!")((EnclosingContext && "Implementation has no class interface!"
) ? static_cast<void> (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15627, __PRETTY_FUNCTION__))
;
15628 }
15629 else
15630 EnclosingContext = EnclosingDecl;
15631 } else {
15632 if (ObjCCategoryDecl *CDecl =
15633 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15634 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15635 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15636 return nullptr;
15637 }
15638 }
15639 EnclosingContext = EnclosingDecl;
15640 }
15641
15642 // Construct the decl.
15643 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15644 DeclStart, Loc, II, T,
15645 TInfo, ac, (Expr *)BitfieldWidth);
15646
15647 if (II) {
15648 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15649 ForVisibleRedeclaration);
15650 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15651 && !isa<TagDecl>(PrevDecl)) {
15652 Diag(Loc, diag::err_duplicate_member) << II;
15653 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15654 NewID->setInvalidDecl();
15655 }
15656 }
15657
15658 // Process attributes attached to the ivar.
15659 ProcessDeclAttributes(S, NewID, D);
15660
15661 if (D.isInvalidType())
15662 NewID->setInvalidDecl();
15663
15664 // In ARC, infer 'retaining' for ivars of retainable type.
15665 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15666 NewID->setInvalidDecl();
15667
15668 if (D.getDeclSpec().isModulePrivateSpecified())
15669 NewID->setModulePrivate();
15670
15671 if (II) {
15672 // FIXME: When interfaces are DeclContexts, we'll need to add
15673 // these to the interface.
15674 S->AddDecl(NewID);
15675 IdResolver.AddDecl(NewID);
15676 }
15677
15678 if (LangOpts.ObjCRuntime.isNonFragile() &&
15679 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15680 Diag(Loc, diag::warn_ivars_in_interface);
15681
15682 return NewID;
15683}
15684
15685/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15686/// class and class extensions. For every class \@interface and class
15687/// extension \@interface, if the last ivar is a bitfield of any type,
15688/// then add an implicit `char :0` ivar to the end of that interface.
15689void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15690 SmallVectorImpl<Decl *> &AllIvarDecls) {
15691 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15692 return;
15693
15694 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15695 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15696
15697 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15698 return;
15699 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15700 if (!ID) {
15701 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15702 if (!CD->IsClassExtension())
15703 return;
15704 }
15705 // No need to add this to end of @implementation.
15706 else
15707 return;
15708 }
15709 // All conditions are met. Add a new bitfield to the tail end of ivars.
15710 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15711 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15712
15713 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15714 DeclLoc, DeclLoc, nullptr,
15715 Context.CharTy,
15716 Context.getTrivialTypeSourceInfo(Context.CharTy,
15717 DeclLoc),
15718 ObjCIvarDecl::Private, BW,
15719 true);
15720 AllIvarDecls.push_back(Ivar);
15721}
15722
15723void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15724 ArrayRef<Decl *> Fields, SourceLocation LBrac,
15725 SourceLocation RBrac,
15726 const ParsedAttributesView &Attrs) {
15727 assert(EnclosingDecl && "missing record or interface decl")((EnclosingDecl && "missing record or interface decl"
) ? static_cast<void> (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 15727, __PRETTY_FUNCTION__))
;
15728
15729 // If this is an Objective-C @implementation or category and we have
15730 // new fields here we should reset the layout of the interface since
15731 // it will now change.
15732 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15733 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15734 switch (DC->getKind()) {
15735 default: break;
15736 case Decl::ObjCCategory:
15737 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15738 break;
15739 case Decl::ObjCImplementation:
15740 Context.
15741 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15742 break;
15743 }
15744 }
15745
15746 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15747 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
15748
15749 // Start counting up the number of named members; make sure to include
15750 // members of anonymous structs and unions in the total.
15751 unsigned NumNamedMembers = 0;
15752 if (Record) {
15753 for (const auto *I : Record->decls()) {
15754 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15755 if (IFD->getDeclName())
15756 ++NumNamedMembers;
15757 }
15758 }
15759
15760 // Verify that all the fields are okay.
15761 SmallVector<FieldDecl*, 32> RecFields;
15762
15763 bool ObjCFieldLifetimeErrReported = false;
15764 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15765 i != end; ++i) {
15766 FieldDecl *FD = cast<FieldDecl>(*i);
15767
15768 // Get the type for the field.
15769 const Type *FDTy = FD->getType().getTypePtr();
15770
15771 if (!FD->isAnonymousStructOrUnion()) {
15772 // Remember all fields written by the user.
15773 RecFields.push_back(FD);
15774 }
15775
15776 // If the field is already invalid for some reason, don't emit more
15777 // diagnostics about it.
15778 if (FD->isInvalidDecl()) {
15779 EnclosingDecl->setInvalidDecl();
15780 continue;
15781 }
15782
15783 // C99 6.7.2.1p2:
15784 // A structure or union shall not contain a member with
15785 // incomplete or function type (hence, a structure shall not
15786 // contain an instance of itself, but may contain a pointer to
15787 // an instance of itself), except that the last member of a
15788 // structure with more than one named member may have incomplete
15789 // array type; such a structure (and any union containing,
15790 // possibly recursively, a member that is such a structure)
15791 // shall not be a member of a structure or an element of an
15792 // array.
15793 bool IsLastField = (i + 1 == Fields.end());
15794 if (FDTy->isFunctionType()) {
15795 // Field declared as a function.
15796 Diag(FD->getLocation(), diag::err_field_declared_as_function)
15797 << FD->getDeclName();
15798 FD->setInvalidDecl();
15799 EnclosingDecl->setInvalidDecl();
15800 continue;
15801 } else if (FDTy->isIncompleteArrayType() &&
15802 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15803 if (Record) {
15804 // Flexible array member.
15805 // Microsoft and g++ is more permissive regarding flexible array.
15806 // It will accept flexible array in union and also
15807 // as the sole element of a struct/class.
15808 unsigned DiagID = 0;
15809 if (!Record->isUnion() && !IsLastField) {
15810 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15811 << FD->getDeclName() << FD->getType() << Record->getTagKind();
15812 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15813 FD->setInvalidDecl();
15814 EnclosingDecl->setInvalidDecl();
15815 continue;
15816 } else if (Record->isUnion())
15817 DiagID = getLangOpts().MicrosoftExt
15818 ? diag::ext_flexible_array_union_ms
15819 : getLangOpts().CPlusPlus
15820 ? diag::ext_flexible_array_union_gnu
15821 : diag::err_flexible_array_union;
15822 else if (NumNamedMembers < 1)
15823 DiagID = getLangOpts().MicrosoftExt
15824 ? diag::ext_flexible_array_empty_aggregate_ms
15825 : getLangOpts().CPlusPlus
15826 ? diag::ext_flexible_array_empty_aggregate_gnu
15827 : diag::err_flexible_array_empty_aggregate;
15828
15829 if (DiagID)
15830 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15831 << Record->getTagKind();
15832 // While the layout of types that contain virtual bases is not specified
15833 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15834 // virtual bases after the derived members. This would make a flexible
15835 // array member declared at the end of an object not adjacent to the end
15836 // of the type.
15837 if (CXXRecord && CXXRecord->getNumVBases() != 0)
15838 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15839 << FD->getDeclName() << Record->getTagKind();
15840 if (!getLangOpts().C99)
15841 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15842 << FD->getDeclName() << Record->getTagKind();
15843
15844 // If the element type has a non-trivial destructor, we would not
15845 // implicitly destroy the elements, so disallow it for now.
15846 //
15847 // FIXME: GCC allows this. We should probably either implicitly delete
15848 // the destructor of the containing class, or just allow this.
15849 QualType BaseElem = Context.getBaseElementType(FD->getType());
15850 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15851 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15852 << FD->getDeclName() << FD->getType();
15853 FD->setInvalidDecl();
15854 EnclosingDecl->setInvalidDecl();
15855 continue;
15856 }
15857 // Okay, we have a legal flexible array member at the end of the struct.
15858 Record->setHasFlexibleArrayMember(true);
15859 } else {
15860 // In ObjCContainerDecl ivars with incomplete array type are accepted,
15861 // unless they are followed by another ivar. That check is done
15862 // elsewhere, after synthesized ivars are known.
15863 }
15864 } else if (!FDTy->isDependentType() &&
15865 RequireCompleteType(FD->getLocation(), FD->getType(),
15866 diag::err_field_incomplete)) {
15867 // Incomplete type
15868 FD->setInvalidDecl();
15869 EnclosingDecl->setInvalidDecl();
15870 continue;
15871 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
15872 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
15873 // A type which contains a flexible array member is considered to be a
15874 // flexible array member.
15875 Record->setHasFlexibleArrayMember(true);
15876 if (!Record->isUnion()) {
15877 // If this is a struct/class and this is not the last element, reject
15878 // it. Note that GCC supports variable sized arrays in the middle of
15879 // structures.
15880 if (!IsLastField)
15881 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
15882 << FD->getDeclName() << FD->getType();
15883 else {
15884 // We support flexible arrays at the end of structs in
15885 // other structs as an extension.
15886 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
15887 << FD->getDeclName();
15888 }
15889 }
15890 }
15891 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
15892 RequireNonAbstractType(FD->getLocation(), FD->getType(),
15893 diag::err_abstract_type_in_decl,
15894 AbstractIvarType)) {
15895 // Ivars can not have abstract class types
15896 FD->setInvalidDecl();
15897 }
15898 if (Record && FDTTy->getDecl()->hasObjectMember())
15899 Record->setHasObjectMember(true);
15900 if (Record && FDTTy->getDecl()->hasVolatileMember())
15901 Record->setHasVolatileMember(true);
15902 } else if (FDTy->isObjCObjectType()) {
15903 /// A field cannot be an Objective-c object
15904 Diag(FD->getLocation(), diag::err_statically_allocated_object)
15905 << FixItHint::CreateInsertion(FD->getLocation(), "*");
15906 QualType T = Context.getObjCObjectPointerType(FD->getType());
15907 FD->setType(T);
15908 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
15909 Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) {
15910 // It's an error in ARC or Weak if a field has lifetime.
15911 // We don't want to report this in a system header, though,
15912 // so we just make the field unavailable.
15913 // FIXME: that's really not sufficient; we need to make the type
15914 // itself invalid to, say, initialize or copy.
15915 QualType T = FD->getType();
15916 if (T.hasNonTrivialObjCLifetime()) {
15917 SourceLocation loc = FD->getLocation();
15918 if (getSourceManager().isInSystemHeader(loc)) {
15919 if (!FD->hasAttr<UnavailableAttr>()) {
15920 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15921 UnavailableAttr::IR_ARCFieldWithOwnership, loc));
15922 }
15923 } else {
15924 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
15925 << T->isBlockPointerType() << Record->getTagKind();
15926 }
15927 ObjCFieldLifetimeErrReported = true;
15928 }
15929 } else if (getLangOpts().ObjC &&
15930 getLangOpts().getGC() != LangOptions::NonGC &&
15931 Record && !Record->hasObjectMember()) {
15932 if (FD->getType()->isObjCObjectPointerType() ||
15933 FD->getType().isObjCGCStrong())
15934 Record->setHasObjectMember(true);
15935 else if (Context.getAsArrayType(FD->getType())) {
15936 QualType BaseType = Context.getBaseElementType(FD->getType());
15937 if (BaseType->isRecordType() &&
15938 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
15939 Record->setHasObjectMember(true);
15940 else if (BaseType->isObjCObjectPointerType() ||
15941 BaseType.isObjCGCStrong())
15942 Record->setHasObjectMember(true);
15943 }
15944 }
15945
15946 if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
15947 QualType FT = FD->getType();
15948 if (FT.isNonTrivialToPrimitiveDefaultInitialize())
15949 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
15950 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
15951 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
15952 Record->setNonTrivialToPrimitiveCopy(true);
15953 if (FT.isDestructedType()) {
15954 Record->setNonTrivialToPrimitiveDestroy(true);
15955 Record->setParamDestroyedInCallee(true);
15956 }
15957
15958 if (const auto *RT = FT->getAs<RecordType>()) {
15959 if (RT->getDecl()->getArgPassingRestrictions() ==
15960 RecordDecl::APK_CanNeverPassInRegs)
15961 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15962 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
15963 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15964 }
15965
15966 if (Record && FD->getType().isVolatileQualified())
15967 Record->setHasVolatileMember(true);
15968 // Keep track of the number of named members.
15969 if (FD->getIdentifier())
15970 ++NumNamedMembers;
15971 }
15972
15973 // Okay, we successfully defined 'Record'.
15974 if (Record) {
15975 bool Completed = false;
15976 if (CXXRecord) {
15977 if (!CXXRecord->isInvalidDecl()) {
15978 // Set access bits correctly on the directly-declared conversions.
15979 for (CXXRecordDecl::conversion_iterator
15980 I = CXXRecord->conversion_begin(),
15981 E = CXXRecord->conversion_end(); I != E; ++I)
15982 I.setAccess((*I)->getAccess());
15983 }
15984
15985 if (!CXXRecord->isDependentType()) {
15986 // Add any implicitly-declared members to this class.
15987 AddImplicitlyDeclaredMembersToClass(CXXRecord);
15988
15989 if (!CXXRecord->isInvalidDecl()) {
15990 // If we have virtual base classes, we may end up finding multiple
15991 // final overriders for a given virtual function. Check for this
15992 // problem now.
15993 if (CXXRecord->getNumVBases()) {
15994 CXXFinalOverriderMap FinalOverriders;
15995 CXXRecord->getFinalOverriders(FinalOverriders);
15996
15997 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
15998 MEnd = FinalOverriders.end();
15999 M != MEnd; ++M) {
16000 for (OverridingMethods::iterator SO = M->second.begin(),
16001 SOEnd = M->second.end();
16002 SO != SOEnd; ++SO) {
16003 assert(SO->second.size() > 0 &&((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16004, __PRETTY_FUNCTION__))
16004 "Virtual function without overriding functions?")((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16004, __PRETTY_FUNCTION__))
;
16005 if (SO->second.size() == 1)
16006 continue;
16007
16008 // C++ [class.virtual]p2:
16009 // In a derived class, if a virtual member function of a base
16010 // class subobject has more than one final overrider the
16011 // program is ill-formed.
16012 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16013 << (const NamedDecl *)M->first << Record;
16014 Diag(M->first->getLocation(),
16015 diag::note_overridden_virtual_function);
16016 for (OverridingMethods::overriding_iterator
16017 OM = SO->second.begin(),
16018 OMEnd = SO->second.end();
16019 OM != OMEnd; ++OM)
16020 Diag(OM->Method->getLocation(), diag::note_final_overrider)
16021 << (const NamedDecl *)M->first << OM->Method->getParent();
16022
16023 Record->setInvalidDecl();
16024 }
16025 }
16026 CXXRecord->completeDefinition(&FinalOverriders);
16027 Completed = true;
16028 }
16029 }
16030 }
16031 }
16032
16033 if (!Completed)
16034 Record->completeDefinition();
16035
16036 // Handle attributes before checking the layout.
16037 ProcessDeclAttributeList(S, Record, Attrs);
16038
16039 // We may have deferred checking for a deleted destructor. Check now.
16040 if (CXXRecord) {
16041 auto *Dtor = CXXRecord->getDestructor();
16042 if (Dtor && Dtor->isImplicit() &&
16043 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16044 CXXRecord->setImplicitDestructorIsDeleted();
16045 SetDeclDeleted(Dtor, CXXRecord->getLocation());
16046 }
16047 }
16048
16049 if (Record->hasAttrs()) {
16050 CheckAlignasUnderalignment(Record);
16051
16052 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16053 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16054 IA->getRange(), IA->getBestCase(),
16055 IA->getSemanticSpelling());
16056 }
16057
16058 // Check if the structure/union declaration is a type that can have zero
16059 // size in C. For C this is a language extension, for C++ it may cause
16060 // compatibility problems.
16061 bool CheckForZeroSize;
16062 if (!getLangOpts().CPlusPlus) {
16063 CheckForZeroSize = true;
16064 } else {
16065 // For C++ filter out types that cannot be referenced in C code.
16066 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16067 CheckForZeroSize =
16068 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16069 !CXXRecord->isDependentType() &&
16070 CXXRecord->isCLike();
16071 }
16072 if (CheckForZeroSize) {
16073 bool ZeroSize = true;
16074 bool IsEmpty = true;
16075 unsigned NonBitFields = 0;
16076 for (RecordDecl::field_iterator I = Record->field_begin(),
16077 E = Record->field_end();
16078 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16079 IsEmpty = false;
16080 if (I->isUnnamedBitfield()) {
16081 if (!I->isZeroLengthBitField(Context))
16082 ZeroSize = false;
16083 } else {
16084 ++NonBitFields;
16085 QualType FieldType = I->getType();
16086 if (FieldType->isIncompleteType() ||
16087 !Context.getTypeSizeInChars(FieldType).isZero())
16088 ZeroSize = false;
16089 }
16090 }
16091
16092 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16093 // allowed in C++, but warn if its declaration is inside
16094 // extern "C" block.
16095 if (ZeroSize) {
16096 Diag(RecLoc, getLangOpts().CPlusPlus ?
16097 diag::warn_zero_size_struct_union_in_extern_c :
16098 diag::warn_zero_size_struct_union_compat)
16099 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16100 }
16101
16102 // Structs without named members are extension in C (C99 6.7.2.1p7),
16103 // but are accepted by GCC.
16104 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16105 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16106 diag::ext_no_named_members_in_struct_union)
16107 << Record->isUnion();
16108 }
16109 }
16110 } else {
16111 ObjCIvarDecl **ClsFields =
16112 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16113 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16114 ID->setEndOfDefinitionLoc(RBrac);
16115 // Add ivar's to class's DeclContext.
16116 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16117 ClsFields[i]->setLexicalDeclContext(ID);
16118 ID->addDecl(ClsFields[i]);
16119 }
16120 // Must enforce the rule that ivars in the base classes may not be
16121 // duplicates.
16122 if (ID->getSuperClass())
16123 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16124 } else if (ObjCImplementationDecl *IMPDecl =
16125 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16126 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")((IMPDecl && "ActOnFields - missing ObjCImplementationDecl"
) ? static_cast<void> (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16126, __PRETTY_FUNCTION__))
;
16127 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16128 // Ivar declared in @implementation never belongs to the implementation.
16129 // Only it is in implementation's lexical context.
16130 ClsFields[I]->setLexicalDeclContext(IMPDecl);
16131 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16132 IMPDecl->setIvarLBraceLoc(LBrac);
16133 IMPDecl->setIvarRBraceLoc(RBrac);
16134 } else if (ObjCCategoryDecl *CDecl =
16135 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16136 // case of ivars in class extension; all other cases have been
16137 // reported as errors elsewhere.
16138 // FIXME. Class extension does not have a LocEnd field.
16139 // CDecl->setLocEnd(RBrac);
16140 // Add ivar's to class extension's DeclContext.
16141 // Diagnose redeclaration of private ivars.
16142 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16143 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16144 if (IDecl) {
16145 if (const ObjCIvarDecl *ClsIvar =
16146 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16147 Diag(ClsFields[i]->getLocation(),
16148 diag::err_duplicate_ivar_declaration);
16149 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16150 continue;
16151 }
16152 for (const auto *Ext : IDecl->known_extensions()) {
16153 if (const ObjCIvarDecl *ClsExtIvar
16154 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16155 Diag(ClsFields[i]->getLocation(),
16156 diag::err_duplicate_ivar_declaration);
16157 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16158 continue;
16159 }
16160 }
16161 }
16162 ClsFields[i]->setLexicalDeclContext(CDecl);
16163 CDecl->addDecl(ClsFields[i]);
16164 }
16165 CDecl->setIvarLBraceLoc(LBrac);
16166 CDecl->setIvarRBraceLoc(RBrac);
16167 }
16168 }
16169}
16170
16171/// Determine whether the given integral value is representable within
16172/// the given type T.
16173static bool isRepresentableIntegerValue(ASTContext &Context,
16174 llvm::APSInt &Value,
16175 QualType T) {
16176 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16177, __PRETTY_FUNCTION__))
16177 "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16177, __PRETTY_FUNCTION__))
;
16178 unsigned BitWidth = Context.getIntWidth(T);
16179
16180 if (Value.isUnsigned() || Value.isNonNegative()) {
16181 if (T->isSignedIntegerOrEnumerationType())
16182 --BitWidth;
16183 return Value.getActiveBits() <= BitWidth;
16184 }
16185 return Value.getMinSignedBits() <= BitWidth;
16186}
16187
16188// Given an integral type, return the next larger integral type
16189// (or a NULL type of no such type exists).
16190static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16191 // FIXME: Int128/UInt128 support, which also needs to be introduced into
16192 // enum checking below.
16193 assert((T->isIntegralType(Context) ||(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16194, __PRETTY_FUNCTION__))
16194 T->isEnumeralType()) && "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16194, __PRETTY_FUNCTION__))
;
16195 const unsigned NumTypes = 4;
16196 QualType SignedIntegralTypes[NumTypes] = {
16197 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16198 };
16199 QualType UnsignedIntegralTypes[NumTypes] = {
16200 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16201 Context.UnsignedLongLongTy
16202 };
16203
16204 unsigned BitWidth = Context.getTypeSize(T);
16205 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16206 : UnsignedIntegralTypes;
16207 for (unsigned I = 0; I != NumTypes; ++I)
16208 if (Context.getTypeSize(Types[I]) > BitWidth)
16209 return Types[I];
16210
16211 return QualType();
16212}
16213
16214EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16215 EnumConstantDecl *LastEnumConst,
16216 SourceLocation IdLoc,
16217 IdentifierInfo *Id,
16218 Expr *Val) {
16219 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16220 llvm::APSInt EnumVal(IntWidth);
16221 QualType EltTy;
16222
16223 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16224 Val = nullptr;
16225
16226 if (Val)
16227 Val = DefaultLvalueConversion(Val).get();
16228
16229 if (Val) {
16230 if (Enum->isDependentType() || Val->isTypeDependent())
16231 EltTy = Context.DependentTy;
16232 else {
16233 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16234 !getLangOpts().MSVCCompat) {
16235 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16236 // constant-expression in the enumerator-definition shall be a converted
16237 // constant expression of the underlying type.
16238 EltTy = Enum->getIntegerType();
16239 ExprResult Converted =
16240 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16241 CCEK_Enumerator);
16242 if (Converted.isInvalid())
16243 Val = nullptr;
16244 else
16245 Val = Converted.get();
16246 } else if (!Val->isValueDependent() &&
16247 !(Val = VerifyIntegerConstantExpression(Val,
16248 &EnumVal).get())) {
16249 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16250 } else {
16251 if (Enum->isComplete()) {
16252 EltTy = Enum->getIntegerType();
16253
16254 // In Obj-C and Microsoft mode, require the enumeration value to be
16255 // representable in the underlying type of the enumeration. In C++11,
16256 // we perform a non-narrowing conversion as part of converted constant
16257 // expression checking.
16258 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16259 if (getLangOpts().MSVCCompat) {
16260 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16261 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16262 } else
16263 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16264 } else
16265 Val = ImpCastExprToType(Val, EltTy,
16266 EltTy->isBooleanType() ?
16267 CK_IntegralToBoolean : CK_IntegralCast)
16268 .get();
16269 } else if (getLangOpts().CPlusPlus) {
16270 // C++11 [dcl.enum]p5:
16271 // If the underlying type is not fixed, the type of each enumerator
16272 // is the type of its initializing value:
16273 // - If an initializer is specified for an enumerator, the
16274 // initializing value has the same type as the expression.
16275 EltTy = Val->getType();
16276 } else {
16277 // C99 6.7.2.2p2:
16278 // The expression that defines the value of an enumeration constant
16279 // shall be an integer constant expression that has a value
16280 // representable as an int.
16281
16282 // Complain if the value is not representable in an int.
16283 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16284 Diag(IdLoc, diag::ext_enum_value_not_int)
16285 << EnumVal.toString(10) << Val->getSourceRange()
16286 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16287 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16288 // Force the type of the expression to 'int'.
16289 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16290 }
16291 EltTy = Val->getType();
16292 }
16293 }
16294 }
16295 }
16296
16297 if (!Val) {
16298 if (Enum->isDependentType())
16299 EltTy = Context.DependentTy;
16300 else if (!LastEnumConst) {
16301 // C++0x [dcl.enum]p5:
16302 // If the underlying type is not fixed, the type of each enumerator
16303 // is the type of its initializing value:
16304 // - If no initializer is specified for the first enumerator, the
16305 // initializing value has an unspecified integral type.
16306 //
16307 // GCC uses 'int' for its unspecified integral type, as does
16308 // C99 6.7.2.2p3.
16309 if (Enum->isFixed()) {
16310 EltTy = Enum->getIntegerType();
16311 }
16312 else {
16313 EltTy = Context.IntTy;
16314 }
16315 } else {
16316 // Assign the last value + 1.
16317 EnumVal = LastEnumConst->getInitVal();
16318 ++EnumVal;
16319 EltTy = LastEnumConst->getType();
16320
16321 // Check for overflow on increment.
16322 if (EnumVal < LastEnumConst->getInitVal()) {
16323 // C++0x [dcl.enum]p5:
16324 // If the underlying type is not fixed, the type of each enumerator
16325 // is the type of its initializing value:
16326 //
16327 // - Otherwise the type of the initializing value is the same as
16328 // the type of the initializing value of the preceding enumerator
16329 // unless the incremented value is not representable in that type,
16330 // in which case the type is an unspecified integral type
16331 // sufficient to contain the incremented value. If no such type
16332 // exists, the program is ill-formed.
16333 QualType T = getNextLargerIntegralType(Context, EltTy);
16334 if (T.isNull() || Enum->isFixed()) {
16335 // There is no integral type larger enough to represent this
16336 // value. Complain, then allow the value to wrap around.
16337 EnumVal = LastEnumConst->getInitVal();
16338 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16339 ++EnumVal;
16340 if (Enum->isFixed())
16341 // When the underlying type is fixed, this is ill-formed.
16342 Diag(IdLoc, diag::err_enumerator_wrapped)
16343 << EnumVal.toString(10)
16344 << EltTy;
16345 else
16346 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16347 << EnumVal.toString(10);
16348 } else {
16349 EltTy = T;
16350 }
16351
16352 // Retrieve the last enumerator's value, extent that type to the
16353 // type that is supposed to be large enough to represent the incremented
16354 // value, then increment.
16355 EnumVal = LastEnumConst->getInitVal();
16356 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16357 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16358 ++EnumVal;
16359
16360 // If we're not in C++, diagnose the overflow of enumerator values,
16361 // which in C99 means that the enumerator value is not representable in
16362 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16363 // permits enumerator values that are representable in some larger
16364 // integral type.
16365 if (!getLangOpts().CPlusPlus && !T.isNull())
16366 Diag(IdLoc, diag::warn_enum_value_overflow);
16367 } else if (!getLangOpts().CPlusPlus &&
16368 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16369 // Enforce C99 6.7.2.2p2 even when we compute the next value.
16370 Diag(IdLoc, diag::ext_enum_value_not_int)
16371 << EnumVal.toString(10) << 1;
16372 }
16373 }
16374 }
16375
16376 if (!EltTy->isDependentType()) {
16377 // Make the enumerator value match the signedness and size of the
16378 // enumerator's type.
16379 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16380 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16381 }
16382
16383 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16384 Val, EnumVal);
16385}
16386
16387Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
16388 SourceLocation IILoc) {
16389 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16390 !getLangOpts().CPlusPlus)
16391 return SkipBodyInfo();
16392
16393 // We have an anonymous enum definition. Look up the first enumerator to
16394 // determine if we should merge the definition with an existing one and
16395 // skip the body.
16396 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16397 forRedeclarationInCurContext());
16398 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16399 if (!PrevECD)
16400 return SkipBodyInfo();
16401
16402 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16403 NamedDecl *Hidden;
16404 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16405 SkipBodyInfo Skip;
16406 Skip.Previous = Hidden;
16407 return Skip;
16408 }
16409
16410 return SkipBodyInfo();
16411}
16412
16413Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16414 SourceLocation IdLoc, IdentifierInfo *Id,
16415 const ParsedAttributesView &Attrs,
16416 SourceLocation EqualLoc, Expr *Val) {
16417 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16418 EnumConstantDecl *LastEnumConst =
16419 cast_or_null<EnumConstantDecl>(lastEnumConst);
16420
16421 // The scope passed in may not be a decl scope. Zip up the scope tree until
16422 // we find one that is.
16423 S = getNonFieldDeclScope(S);
16424
16425 // Verify that there isn't already something declared with this name in this
16426 // scope.
16427 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16428 LookupName(R, S);
16429 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16430
16431 if (PrevDecl && PrevDecl->isTemplateParameter()) {
16432 // Maybe we will complain about the shadowed template parameter.
16433 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16434 // Just pretend that we didn't see the previous declaration.
16435 PrevDecl = nullptr;
16436 }
16437
16438 // C++ [class.mem]p15:
16439 // If T is the name of a class, then each of the following shall have a name
16440 // different from T:
16441 // - every enumerator of every member of class T that is an unscoped
16442 // enumerated type
16443 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16444 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16445 DeclarationNameInfo(Id, IdLoc));
16446
16447 EnumConstantDecl *New =
16448 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16449 if (!New)
16450 return nullptr;
16451
16452 if (PrevDecl) {
16453 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16454 // Check for other kinds of shadowing not already handled.
16455 CheckShadow(New, PrevDecl, R);
16456 }
16457
16458 // When in C++, we may get a TagDecl with the same name; in this case the
16459 // enum constant will 'hide' the tag.
16460 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16461, __PRETTY_FUNCTION__))
16461 "Received TagDecl when not in C++!")(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16461, __PRETTY_FUNCTION__))
;
16462 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16463 if (isa<EnumConstantDecl>(PrevDecl))
16464 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16465 else
16466 Diag(IdLoc, diag::err_redefinition) << Id;
16467 notePreviousDefinition(PrevDecl, IdLoc);
16468 return nullptr;
16469 }
16470 }
16471
16472 // Process attributes.
16473 ProcessDeclAttributeList(S, New, Attrs);
16474 AddPragmaAttributes(S, New);
16475
16476 // Register this decl in the current scope stack.
16477 New->setAccess(TheEnumDecl->getAccess());
16478 PushOnScopeChains(New, S);
16479
16480 ActOnDocumentableDecl(New);
16481
16482 return New;
16483}
16484
16485// Returns true when the enum initial expression does not trigger the
16486// duplicate enum warning. A few common cases are exempted as follows:
16487// Element2 = Element1
16488// Element2 = Element1 + 1
16489// Element2 = Element1 - 1
16490// Where Element2 and Element1 are from the same enum.
16491static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16492 Expr *InitExpr = ECD->getInitExpr();
16493 if (!InitExpr)
16494 return true;
16495 InitExpr = InitExpr->IgnoreImpCasts();
16496
16497 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16498 if (!BO->isAdditiveOp())
16499 return true;
16500 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16501 if (!IL)
16502 return true;
16503 if (IL->getValue() != 1)
16504 return true;
16505
16506 InitExpr = BO->getLHS();
16507 }
16508
16509 // This checks if the elements are from the same enum.
16510 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16511 if (!DRE)
16512 return true;
16513
16514 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16515 if (!EnumConstant)
16516 return true;
16517
16518 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16519 Enum)
16520 return true;
16521
16522 return false;
16523}
16524
16525// Emits a warning when an element is implicitly set a value that
16526// a previous element has already been set to.
16527static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16528 EnumDecl *Enum, QualType EnumType) {
16529 // Avoid anonymous enums
16530 if (!Enum->getIdentifier())
16531 return;
16532
16533 // Only check for small enums.
16534 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16535 return;
16536
16537 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16538 return;
16539
16540 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16541 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16542
16543 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16544 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
16545
16546 // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16547 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16548 llvm::APSInt Val = D->getInitVal();
16549 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16550 };
16551
16552 DuplicatesVector DupVector;
16553 ValueToVectorMap EnumMap;
16554
16555 // Populate the EnumMap with all values represented by enum constants without
16556 // an initializer.
16557 for (auto *Element : Elements) {
16558 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16559
16560 // Null EnumConstantDecl means a previous diagnostic has been emitted for
16561 // this constant. Skip this enum since it may be ill-formed.
16562 if (!ECD) {
16563 return;
16564 }
16565
16566 // Constants with initalizers are handled in the next loop.
16567 if (ECD->getInitExpr())
16568 continue;
16569
16570 // Duplicate values are handled in the next loop.
16571 EnumMap.insert({EnumConstantToKey(ECD), ECD});
16572 }
16573
16574 if (EnumMap.size() == 0)
16575 return;
16576
16577 // Create vectors for any values that has duplicates.
16578 for (auto *Element : Elements) {
16579 // The last loop returned if any constant was null.
16580 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16581 if (!ValidDuplicateEnum(ECD, Enum))
16582 continue;
16583
16584 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16585 if (Iter == EnumMap.end())
16586 continue;
16587
16588 DeclOrVector& Entry = Iter->second;
16589 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16590 // Ensure constants are different.
16591 if (D == ECD)
16592 continue;
16593
16594 // Create new vector and push values onto it.
16595 auto Vec = llvm::make_unique<ECDVector>();
16596 Vec->push_back(D);
16597 Vec->push_back(ECD);
16598
16599 // Update entry to point to the duplicates vector.
16600 Entry = Vec.get();
16601
16602 // Store the vector somewhere we can consult later for quick emission of
16603 // diagnostics.
16604 DupVector.emplace_back(std::move(Vec));
16605 continue;
16606 }
16607
16608 ECDVector *Vec = Entry.get<ECDVector*>();
16609 // Make sure constants are not added more than once.
16610 if (*Vec->begin() == ECD)
16611 continue;
16612
16613 Vec->push_back(ECD);
16614 }
16615
16616 // Emit diagnostics.
16617 for (const auto &Vec : DupVector) {
16618 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")((Vec->size() > 1 && "ECDVector should have at least 2 elements."
) ? static_cast<void> (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16618, __PRETTY_FUNCTION__))
;
16619
16620 // Emit warning for one enum constant.
16621 auto *FirstECD = Vec->front();
16622 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16623 << FirstECD << FirstECD->getInitVal().toString(10)
16624 << FirstECD->getSourceRange();
16625
16626 // Emit one note for each of the remaining enum constants with
16627 // the same value.
16628 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16629 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16630 << ECD << ECD->getInitVal().toString(10)
16631 << ECD->getSourceRange();
16632 }
16633}
16634
16635bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16636 bool AllowMask) const {
16637 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")((ED->isClosedFlag() && "looking for value in non-flag or open enum"
) ? static_cast<void> (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16637, __PRETTY_FUNCTION__))
;
16638 assert(ED->isCompleteDefinition() && "expected enum definition")((ED->isCompleteDefinition() && "expected enum definition"
) ? static_cast<void> (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16638, __PRETTY_FUNCTION__))
;
16639
16640 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16641 llvm::APInt &FlagBits = R.first->second;
16642
16643 if (R.second) {
16644 for (auto *E : ED->enumerators()) {
16645 const auto &EVal = E->getInitVal();
16646 // Only single-bit enumerators introduce new flag values.
16647 if (EVal.isPowerOf2())
16648 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16649 }
16650 }
16651
16652 // A value is in a flag enum if either its bits are a subset of the enum's
16653 // flag bits (the first condition) or we are allowing masks and the same is
16654 // true of its complement (the second condition). When masks are allowed, we
16655 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16656 //
16657 // While it's true that any value could be used as a mask, the assumption is
16658 // that a mask will have all of the insignificant bits set. Anything else is
16659 // likely a logic error.
16660 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16661 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16662}
16663
16664void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16665 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
16666 const ParsedAttributesView &Attrs) {
16667 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16668 QualType EnumType = Context.getTypeDeclType(Enum);
16669
16670 ProcessDeclAttributeList(S, Enum, Attrs);
16671
16672 if (Enum->isDependentType()) {
16673 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16674 EnumConstantDecl *ECD =
16675 cast_or_null<EnumConstantDecl>(Elements[i]);
16676 if (!ECD) continue;
16677
16678 ECD->setType(EnumType);
16679 }
16680
16681 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16682 return;
16683 }
16684
16685 // TODO: If the result value doesn't fit in an int, it must be a long or long
16686 // long value. ISO C does not support this, but GCC does as an extension,
16687 // emit a warning.
16688 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16689 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16690 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16691
16692 // Verify that all the values are okay, compute the size of the values, and
16693 // reverse the list.
16694 unsigned NumNegativeBits = 0;
16695 unsigned NumPositiveBits = 0;
16696
16697 // Keep track of whether all elements have type int.
16698 bool AllElementsInt = true;
16699
16700 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16701 EnumConstantDecl *ECD =
16702 cast_or_null<EnumConstantDecl>(Elements[i]);
16703 if (!ECD) continue; // Already issued a diagnostic.
16704
16705 const llvm::APSInt &InitVal = ECD->getInitVal();
16706
16707 // Keep track of the size of positive and negative values.
16708 if (InitVal.isUnsigned() || InitVal.isNonNegative())
16709 NumPositiveBits = std::max(NumPositiveBits,
16710 (unsigned)InitVal.getActiveBits());
16711 else
16712 NumNegativeBits = std::max(NumNegativeBits,
16713 (unsigned)InitVal.getMinSignedBits());
16714
16715 // Keep track of whether every enum element has type int (very common).
16716 if (AllElementsInt)
16717 AllElementsInt = ECD->getType() == Context.IntTy;
16718 }
16719
16720 // Figure out the type that should be used for this enum.
16721 QualType BestType;
16722 unsigned BestWidth;
16723
16724 // C++0x N3000 [conv.prom]p3:
16725 // An rvalue of an unscoped enumeration type whose underlying
16726 // type is not fixed can be converted to an rvalue of the first
16727 // of the following types that can represent all the values of
16728 // the enumeration: int, unsigned int, long int, unsigned long
16729 // int, long long int, or unsigned long long int.
16730 // C99 6.4.4.3p2:
16731 // An identifier declared as an enumeration constant has type int.
16732 // The C99 rule is modified by a gcc extension
16733 QualType BestPromotionType;
16734
16735 bool Packed = Enum->hasAttr<PackedAttr>();
16736 // -fshort-enums is the equivalent to specifying the packed attribute on all
16737 // enum definitions.
16738 if (LangOpts.ShortEnums)
16739 Packed = true;
16740
16741 // If the enum already has a type because it is fixed or dictated by the
16742 // target, promote that type instead of analyzing the enumerators.
16743 if (Enum->isComplete()) {
16744 BestType = Enum->getIntegerType();
16745 if (BestType->isPromotableIntegerType())
16746 BestPromotionType = Context.getPromotedIntegerType(BestType);
16747 else
16748 BestPromotionType = BestType;
16749
16750 BestWidth = Context.getIntWidth(BestType);
16751 }
16752 else if (NumNegativeBits) {
16753 // If there is a negative value, figure out the smallest integer type (of
16754 // int/long/longlong) that fits.
16755 // If it's packed, check also if it fits a char or a short.
16756 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16757 BestType = Context.SignedCharTy;
16758 BestWidth = CharWidth;
16759 } else if (Packed && NumNegativeBits <= ShortWidth &&
16760 NumPositiveBits < ShortWidth) {
16761 BestType = Context.ShortTy;
16762 BestWidth = ShortWidth;
16763 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16764 BestType = Context.IntTy;
16765 BestWidth = IntWidth;
16766 } else {
16767 BestWidth = Context.getTargetInfo().getLongWidth();
16768
16769 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16770 BestType = Context.LongTy;
16771 } else {
16772 BestWidth = Context.getTargetInfo().getLongLongWidth();
16773
16774 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16775 Diag(Enum->getLocation(), diag::ext_enum_too_large);
16776 BestType = Context.LongLongTy;
16777 }
16778 }
16779 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16780 } else {
16781 // If there is no negative value, figure out the smallest type that fits
16782 // all of the enumerator values.
16783 // If it's packed, check also if it fits a char or a short.
16784 if (Packed && NumPositiveBits <= CharWidth) {
16785 BestType = Context.UnsignedCharTy;
16786 BestPromotionType = Context.IntTy;
16787 BestWidth = CharWidth;
16788 } else if (Packed && NumPositiveBits <= ShortWidth) {
16789 BestType = Context.UnsignedShortTy;
16790 BestPromotionType = Context.IntTy;
16791 BestWidth = ShortWidth;
16792 } else if (NumPositiveBits <= IntWidth) {
16793 BestType = Context.UnsignedIntTy;
16794 BestWidth = IntWidth;
16795 BestPromotionType
16796 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16797 ? Context.UnsignedIntTy : Context.IntTy;
16798 } else if (NumPositiveBits <=
16799 (BestWidth = Context.getTargetInfo().getLongWidth())) {
16800 BestType = Context.UnsignedLongTy;
16801 BestPromotionType
16802 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16803 ? Context.UnsignedLongTy : Context.LongTy;
16804 } else {
16805 BestWidth = Context.getTargetInfo().getLongLongWidth();
16806 assert(NumPositiveBits <= BestWidth &&((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16807, __PRETTY_FUNCTION__))
16807 "How could an initializer get larger than ULL?")((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16807, __PRETTY_FUNCTION__))
;
16808 BestType = Context.UnsignedLongLongTy;
16809 BestPromotionType
16810 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16811 ? Context.UnsignedLongLongTy : Context.LongLongTy;
16812 }
16813 }
16814
16815 // Loop over all of the enumerator constants, changing their types to match
16816 // the type of the enum if needed.
16817 for (auto *D : Elements) {
16818 auto *ECD = cast_or_null<EnumConstantDecl>(D);
16819 if (!ECD) continue; // Already issued a diagnostic.
16820
16821 // Standard C says the enumerators have int type, but we allow, as an
16822 // extension, the enumerators to be larger than int size. If each
16823 // enumerator value fits in an int, type it as an int, otherwise type it the
16824 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
16825 // that X has type 'int', not 'unsigned'.
16826
16827 // Determine whether the value fits into an int.
16828 llvm::APSInt InitVal = ECD->getInitVal();
16829
16830 // If it fits into an integer type, force it. Otherwise force it to match
16831 // the enum decl type.
16832 QualType NewTy;
16833 unsigned NewWidth;
16834 bool NewSign;
16835 if (!getLangOpts().CPlusPlus &&
16836 !Enum->isFixed() &&
16837 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16838 NewTy = Context.IntTy;
16839 NewWidth = IntWidth;
16840 NewSign = true;
16841 } else if (ECD->getType() == BestType) {
16842 // Already the right type!
16843 if (getLangOpts().CPlusPlus)
16844 // C++ [dcl.enum]p4: Following the closing brace of an
16845 // enum-specifier, each enumerator has the type of its
16846 // enumeration.
16847 ECD->setType(EnumType);
16848 continue;
16849 } else {
16850 NewTy = BestType;
16851 NewWidth = BestWidth;
16852 NewSign = BestType->isSignedIntegerOrEnumerationType();
16853 }
16854
16855 // Adjust the APSInt value.
16856 InitVal = InitVal.extOrTrunc(NewWidth);
16857 InitVal.setIsSigned(NewSign);
16858 ECD->setInitVal(InitVal);
16859
16860 // Adjust the Expr initializer and type.
16861 if (ECD->getInitExpr() &&
16862 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
16863 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
16864 CK_IntegralCast,
16865 ECD->getInitExpr(),
16866 /*base paths*/ nullptr,
16867 VK_RValue));
16868 if (getLangOpts().CPlusPlus)
16869 // C++ [dcl.enum]p4: Following the closing brace of an
16870 // enum-specifier, each enumerator has the type of its
16871 // enumeration.
16872 ECD->setType(EnumType);
16873 else
16874 ECD->setType(NewTy);
16875 }
16876
16877 Enum->completeDefinition(BestType, BestPromotionType,
16878 NumPositiveBits, NumNegativeBits);
16879
16880 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
16881
16882 if (Enum->isClosedFlag()) {
16883 for (Decl *D : Elements) {
16884 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
16885 if (!ECD) continue; // Already issued a diagnostic.
16886
16887 llvm::APSInt InitVal = ECD->getInitVal();
16888 if (InitVal != 0 && !InitVal.isPowerOf2() &&
16889 !IsValueInFlagEnum(Enum, InitVal, true))
16890 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
16891 << ECD << Enum;
16892 }
16893 }
16894
16895 // Now that the enum type is defined, ensure it's not been underaligned.
16896 if (Enum->hasAttrs())
16897 CheckAlignasUnderalignment(Enum);
16898}
16899
16900Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
16901 SourceLocation StartLoc,
16902 SourceLocation EndLoc) {
16903 StringLiteral *AsmString = cast<StringLiteral>(expr);
16904
16905 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
16906 AsmString, StartLoc,
16907 EndLoc);
16908 CurContext->addDecl(New);
16909 return New;
16910}
16911
16912static void checkModuleImportContext(Sema &S, Module *M,
16913 SourceLocation ImportLoc, DeclContext *DC,
16914 bool FromInclude = false) {
16915 SourceLocation ExternCLoc;
16916
16917 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
16918 switch (LSD->getLanguage()) {
16919 case LinkageSpecDecl::lang_c:
16920 if (ExternCLoc.isInvalid())
16921 ExternCLoc = LSD->getBeginLoc();
16922 break;
16923 case LinkageSpecDecl::lang_cxx:
16924 break;
16925 }
16926 DC = LSD->getParent();
16927 }
16928
16929 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
16930 DC = DC->getParent();
16931
16932 if (!isa<TranslationUnitDecl>(DC)) {
16933 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
16934 ? diag::ext_module_import_not_at_top_level_noop
16935 : diag::err_module_import_not_at_top_level_fatal)
16936 << M->getFullModuleName() << DC;
16937 S.Diag(cast<Decl>(DC)->getBeginLoc(),
16938 diag::note_module_import_not_at_top_level)
16939 << DC;
16940 } else if (!M->IsExternC && ExternCLoc.isValid()) {
16941 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
16942 << M->getFullModuleName();
16943 S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
16944 }
16945}
16946
16947Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc,
16948 SourceLocation ModuleLoc,
16949 ModuleDeclKind MDK,
16950 ModuleIdPath Path) {
16951 assert(getLangOpts().ModulesTS &&((getLangOpts().ModulesTS && "should only have module decl in modules TS"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().ModulesTS && \"should only have module decl in modules TS\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16952, __PRETTY_FUNCTION__))
16952 "should only have module decl in modules TS")((getLangOpts().ModulesTS && "should only have module decl in modules TS"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().ModulesTS && \"should only have module decl in modules TS\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16952, __PRETTY_FUNCTION__))
;
16953
16954 // A module implementation unit requires that we are not compiling a module
16955 // of any kind. A module interface unit requires that we are not compiling a
16956 // module map.
16957 switch (getLangOpts().getCompilingModule()) {
16958 case LangOptions::CMK_None:
16959 // It's OK to compile a module interface as a normal translation unit.
16960 break;
16961
16962 case LangOptions::CMK_ModuleInterface:
16963 if (MDK != ModuleDeclKind::Implementation)
16964 break;
16965
16966 // We were asked to compile a module interface unit but this is a module
16967 // implementation unit. That indicates the 'export' is missing.
16968 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
16969 << FixItHint::CreateInsertion(ModuleLoc, "export ");
16970 MDK = ModuleDeclKind::Interface;
16971 break;
16972
16973 case LangOptions::CMK_ModuleMap:
16974 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
16975 return nullptr;
16976
16977 case LangOptions::CMK_HeaderModule:
16978 Diag(ModuleLoc, diag::err_module_decl_in_header_module);
16979 return nullptr;
16980 }
16981
16982 assert(ModuleScopes.size() == 1 && "expected to be at global module scope")((ModuleScopes.size() == 1 && "expected to be at global module scope"
) ? static_cast<void> (0) : __assert_fail ("ModuleScopes.size() == 1 && \"expected to be at global module scope\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 16982, __PRETTY_FUNCTION__))
;
16983
16984 // FIXME: Most of this work should be done by the preprocessor rather than
16985 // here, in order to support macro import.
16986
16987 // Only one module-declaration is permitted per source file.
16988 if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) {
16989 Diag(ModuleLoc, diag::err_module_redeclaration);
16990 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
16991 diag::note_prev_module_declaration);
16992 return nullptr;
16993 }
16994
16995 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
16996 // modules, the dots here are just another character that can appear in a
16997 // module name.
16998 std::string ModuleName;
16999 for (auto &Piece : Path) {
17000 if (!ModuleName.empty())
17001 ModuleName += ".";
17002 ModuleName += Piece.first->getName();
17003 }
17004
17005 // If a module name was explicitly specified on the command line, it must be
17006 // correct.
17007 if (!getLangOpts().CurrentModule.empty() &&
17008 getLangOpts().CurrentModule != ModuleName) {
17009 Diag(Path.front().second, diag::err_current_module_name_mismatch)
17010 << SourceRange(Path.front().second, Path.back().second)
17011 << getLangOpts().CurrentModule;
17012 return nullptr;
17013 }
17014 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
17015
17016 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
17017 Module *Mod;
17018
17019 switch (MDK) {
17020 case ModuleDeclKind::Interface: {
17021 // We can't have parsed or imported a definition of this module or parsed a
17022 // module map defining it already.
17023 if (auto *M = Map.findModule(ModuleName)) {
17024 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
17025 if (M->DefinitionLoc.isValid())
17026 Diag(M->DefinitionLoc, diag::note_prev_module_definition);
17027 else if (const auto *FE = M->getASTFile())
17028 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
17029 << FE->getName();
17030 Mod = M;
17031 break;
17032 }
17033
17034 // Create a Module for the module that we're defining.
17035 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
17036 ModuleScopes.front().Module);
17037 assert(Mod && "module creation should not fail")((Mod && "module creation should not fail") ? static_cast
<void> (0) : __assert_fail ("Mod && \"module creation should not fail\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 17037, __PRETTY_FUNCTION__))
;
17038 break;
17039 }
17040
17041 case ModuleDeclKind::Partition:
17042 // FIXME: Check we are in a submodule of the named module.
17043 return nullptr;
17044
17045 case ModuleDeclKind::Implementation:
17046 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
17047 PP.getIdentifierInfo(ModuleName), Path[0].second);
17048 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
17049 Module::AllVisible,
17050 /*IsIncludeDirective=*/false);
17051 if (!Mod) {
17052 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
17053 // Create an empty module interface unit for error recovery.
17054 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
17055 ModuleScopes.front().Module);
17056 }
17057 break;
17058 }
17059
17060 // Switch from the global module to the named module.
17061 ModuleScopes.back().Module = Mod;
17062 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
17063 VisibleModules.setVisible(Mod, ModuleLoc);
17064
17065 // From now on, we have an owning module for all declarations we see.
17066 // However, those declarations are module-private unless explicitly
17067 // exported.
17068 auto *TU = Context.getTranslationUnitDecl();
17069 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
17070 TU->setLocalOwningModule(Mod);
17071
17072 // FIXME: Create a ModuleDecl.
17073 return nullptr;
17074}
17075
17076DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
17077 SourceLocation ImportLoc,
17078 ModuleIdPath Path) {
17079 // Flatten the module path for a Modules TS module name.
17080 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
17081 if (getLangOpts().ModulesTS) {
17082 std::string ModuleName;
17083 for (auto &Piece : Path) {
17084 if (!ModuleName.empty())
17085 ModuleName += ".";
17086 ModuleName += Piece.first->getName();
17087 }
17088 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
17089 Path = ModuleIdPath(ModuleNameLoc);
17090 }
17091
17092 Module *Mod =
17093 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
17094 /*IsIncludeDirective=*/false);
17095 if (!Mod)
17096 return true;
17097
17098 VisibleModules.setVisible(Mod, ImportLoc);
17099
17100 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
17101
17102 // FIXME: we should support importing a submodule within a different submodule
17103 // of the same top-level module. Until we do, make it an error rather than
17104 // silently ignoring the import.
17105 // Import-from-implementation is valid in the Modules TS. FIXME: Should we
17106 // warn on a redundant import of the current module?
17107 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
17108 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS))
17109 Diag(ImportLoc, getLangOpts().isCompilingModule()
17110 ? diag::err_module_self_import
17111 : diag::err_module_import_in_implementation)
17112 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
17113
17114 SmallVector<SourceLocation, 2> IdentifierLocs;
17115 Module *ModCheck = Mod;
17116 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
17117 // If we've run out of module parents, just drop the remaining identifiers.
17118 // We need the length to be consistent.
17119 if (!ModCheck)
17120 break;
17121 ModCheck = ModCheck->Parent;
17122
17123 IdentifierLocs.push_back(Path[I].second);
17124 }
17125
17126 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
17127 Mod, IdentifierLocs);
17128 if (!ModuleScopes.empty())
17129 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
17130 CurContext->addDecl(Import);
17131
17132 // Re-export the module if needed.
17133 if (Import->isExported() &&
17134 !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface)
17135 getCurrentModule()->Exports.emplace_back(Mod, false);
17136
17137 return Import;
17138}
17139
17140void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
17141 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
17142 BuildModuleInclude(DirectiveLoc, Mod);
17143}
17144
17145void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
17146 // Determine whether we're in the #include buffer for a module. The #includes
17147 // in that buffer do not qualify as module imports; they're just an
17148 // implementation detail of us building the module.
17149 //
17150 // FIXME: Should we even get ActOnModuleInclude calls for those?
17151 bool IsInModuleIncludes =
17152 TUKind == TU_Module &&
17153 getSourceManager().isWrittenInMainFile(DirectiveLoc);
17154
17155 bool ShouldAddImport = !IsInModuleIncludes;
17156
17157 // If this module import was due to an inclusion directive, create an
17158 // implicit import declaration to capture it in the AST.
17159 if (ShouldAddImport) {
17160 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
17161 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
17162 DirectiveLoc, Mod,
17163 DirectiveLoc);
17164 if (!ModuleScopes.empty())
17165 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
17166 TU->addDecl(ImportD);
17167 Consumer.HandleImplicitImportDecl(ImportD);
17168 }
17169
17170 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
17171 VisibleModules.setVisible(Mod, DirectiveLoc);
17172}
17173
17174void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
17175 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
17176
17177 ModuleScopes.push_back({});
17178 ModuleScopes.back().Module = Mod;
17179 if (getLangOpts().ModulesLocalVisibility)
17180 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
17181
17182 VisibleModules.setVisible(Mod, DirectiveLoc);
17183
17184 // The enclosing context is now part of this module.
17185 // FIXME: Consider creating a child DeclContext to hold the entities
17186 // lexically within the module.
17187 if (getLangOpts().trackLocalOwningModule()) {
17188 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
17189 cast<Decl>(DC)->setModuleOwnershipKind(
17190 getLangOpts().ModulesLocalVisibility
17191 ? Decl::ModuleOwnershipKind::VisibleWhenImported
17192 : Decl::ModuleOwnershipKind::Visible);
17193 cast<Decl>(DC)->setLocalOwningModule(Mod);
17194 }
17195 }
17196}
17197
17198void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
17199 if (getLangOpts().ModulesLocalVisibility) {
17200 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
17201 // Leaving a module hides namespace names, so our visible namespace cache
17202 // is now out of date.
17203 VisibleNamespaceCache.clear();
17204 }
17205
17206 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&((!ModuleScopes.empty() && ModuleScopes.back().Module
== Mod && "left the wrong module scope") ? static_cast
<void> (0) : __assert_fail ("!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && \"left the wrong module scope\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 17207, __PRETTY_FUNCTION__))
17207 "left the wrong module scope")((!ModuleScopes.empty() && ModuleScopes.back().Module
== Mod && "left the wrong module scope") ? static_cast
<void> (0) : __assert_fail ("!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && \"left the wrong module scope\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 17207, __PRETTY_FUNCTION__))
;
17208 ModuleScopes.pop_back();
17209
17210 // We got to the end of processing a local module. Create an
17211 // ImportDecl as we would for an imported module.
17212 FileID File = getSourceManager().getFileID(EomLoc);
17213 SourceLocation DirectiveLoc;
17214 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
17215 // We reached the end of a #included module header. Use the #include loc.
17216 assert(File != getSourceManager().getMainFileID() &&((File != getSourceManager().getMainFileID() && "end of submodule in main source file"
) ? static_cast<void> (0) : __assert_fail ("File != getSourceManager().getMainFileID() && \"end of submodule in main source file\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 17217, __PRETTY_FUNCTION__))
17217 "end of submodule in main source file")((File != getSourceManager().getMainFileID() && "end of submodule in main source file"
) ? static_cast<void> (0) : __assert_fail ("File != getSourceManager().getMainFileID() && \"end of submodule in main source file\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaDecl.cpp"
, 17217, __PRETTY_FUNCTION__))
;
17218 DirectiveLoc = getSourceManager().getIncludeLoc(File);
17219 } else {
17220 // We reached an EOM pragma. Use the pragma location.
17221 DirectiveLoc = EomLoc;
17222 }
17223 BuildModuleInclude(DirectiveLoc, Mod);
17224
17225 // Any further declarations are in whatever module we returned to.
17226 if (getLangOpts().trackLocalOwningModule()) {
17227 // The parser guarantees that this is the same context that we entered
17228 // the module within.
17229 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
17230 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
17231 if (!getCurrentModule())
17232 cast<Decl>(DC)->setModuleOwnershipKind(
17233 Decl::ModuleOwnershipKind::Unowned);
17234 }
17235 }
17236}
17237
17238void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
17239 Module *Mod) {
17240 // Bail if we're not allowed to implicitly import a module here.
17241 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
17242 VisibleModules.isVisible(Mod))
17243 return;
17244
17245 // Create the implicit import declaration.
17246 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
17247 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
17248 Loc, Mod, Loc);
17249 TU->addDecl(ImportD);
17250 Consumer.HandleImplicitImportDecl(ImportD);
17251
17252 // Make the module visible.
17253 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
17254 VisibleModules.setVisible(Mod, Loc);
17255}
17256
17257/// We have parsed the start of an export declaration, including the '{'
17258/// (if present).
17259Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
17260 SourceLocation LBraceLoc) {
17261 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
17262
17263 // C++ Modules TS draft:
17264 // An export-declaration shall appear in the purview of a module other than
17265 // the global module.
17266 if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface)
17267 Diag(ExportLoc, diag::err_export_not_in_module_interface);
17268
17269 // An export-declaration [...] shall not contain more than one
17270 // export keyword.
17271 //
17272 // The intent here is that an export-declaration cannot appear within another
17273 // export-declaration.
17274 if (D->isExported())
17275 Diag(ExportLoc, diag::err_export_within_export);
17276
17277 CurContext->addDecl(D);
17278 PushDeclContext(S, D);
17279 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
17280 return D;
17281}
17282
17283/// Complete the definition of an export declaration.
17284Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
17285 auto *ED = cast<ExportDecl>(D);
17286 if (RBraceLoc.isValid())
17287 ED->setRBraceLoc(RBraceLoc);
17288
17289 // FIXME: Diagnose export of internal-linkage declaration (including
17290 // anonymous namespace).
17291
17292 PopDeclContext();
17293 return D;
17294}
17295
17296void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17297 IdentifierInfo* AliasName,
17298 SourceLocation PragmaLoc,
17299 SourceLocation NameLoc,
17300 SourceLocation AliasNameLoc) {
17301 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17302 LookupOrdinaryName);
17303 AsmLabelAttr *Attr =
17304 AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17305
17306 // If a declaration that:
17307 // 1) declares a function or a variable
17308 // 2) has external linkage
17309 // already exists, add a label attribute to it.
17310 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17311 if (isDeclExternC(PrevDecl))
17312 PrevDecl->addAttr(Attr);
17313 else
17314 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17315 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17316 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17317 } else
17318 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17319}
17320
17321void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17322 SourceLocation PragmaLoc,
17323 SourceLocation NameLoc) {
17324 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17325
17326 if (PrevDecl) {
17327 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17328 } else {
17329 (void)WeakUndeclaredIdentifiers.insert(
17330 std::pair<IdentifierInfo*,WeakInfo>
17331 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17332 }
17333}
17334
17335void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17336 IdentifierInfo* AliasName,
17337 SourceLocation PragmaLoc,
17338 SourceLocation NameLoc,
17339 SourceLocation AliasNameLoc) {
17340 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17341 LookupOrdinaryName);
17342 WeakInfo W = WeakInfo(Name, NameLoc);
17343
17344 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17345 if (!PrevDecl->hasAttr<AliasAttr>())
17346 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17347 DeclApplyPragmaWeak(TUScope, ND, W);
17348 } else {
17349 (void)WeakUndeclaredIdentifiers.insert(
17350 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17351 }
17352}
17353
17354Decl *Sema::getObjCDeclContext() const {
17355 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17356}