Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 8465, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn359426/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn359426/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn359426=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-01-032957-29988-1 -x c++ /build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp -faddrsig
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for initializers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ExprObjC.h"
17#include "clang/AST/ExprOpenMP.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Sema/Designator.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_UTF8StringIntoPlainChar,
53 SIF_PlainStringIntoUTF8Char,
54 SIF_Other
55};
56
57/// Check whether the array of type AT can be initialized by the Init
58/// expression by means of string initialization. Returns SIF_None if so,
59/// otherwise returns a StringInitFailureKind that describes why the
60/// initialization would not work.
61static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62 ASTContext &Context) {
63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64 return SIF_Other;
65
66 // See if this is a string literal or @encode.
67 Init = Init->IgnoreParens();
68
69 // Handle @encode, which is a narrow string.
70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71 return SIF_None;
72
73 // Otherwise we can only handle string literals.
74 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75 if (!SL)
76 return SIF_Other;
77
78 const QualType ElemTy =
79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80
81 switch (SL->getKind()) {
82 case StringLiteral::UTF8:
83 // char8_t array can be initialized with a UTF-8 string.
84 if (ElemTy->isChar8Type())
85 return SIF_None;
86 LLVM_FALLTHROUGH[[clang::fallthrough]];
87 case StringLiteral::Ascii:
88 // char array can be initialized with a narrow string.
89 // Only allow char x[] = "foo"; not char x[] = L"foo";
90 if (ElemTy->isCharType())
91 return (SL->getKind() == StringLiteral::UTF8 &&
92 Context.getLangOpts().Char8)
93 ? SIF_UTF8StringIntoPlainChar
94 : SIF_None;
95 if (ElemTy->isChar8Type())
96 return SIF_PlainStringIntoUTF8Char;
97 if (IsWideCharCompatible(ElemTy, Context))
98 return SIF_NarrowStringIntoWideChar;
99 return SIF_Other;
100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101 // "An array with element type compatible with a qualified or unqualified
102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103 // string literal with the corresponding encoding prefix (L, u, or U,
104 // respectively), optionally enclosed in braces.
105 case StringLiteral::UTF16:
106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107 return SIF_None;
108 if (ElemTy->isCharType() || ElemTy->isChar8Type())
109 return SIF_WideStringIntoChar;
110 if (IsWideCharCompatible(ElemTy, Context))
111 return SIF_IncompatWideStringIntoWideChar;
112 return SIF_Other;
113 case StringLiteral::UTF32:
114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115 return SIF_None;
116 if (ElemTy->isCharType() || ElemTy->isChar8Type())
117 return SIF_WideStringIntoChar;
118 if (IsWideCharCompatible(ElemTy, Context))
119 return SIF_IncompatWideStringIntoWideChar;
120 return SIF_Other;
121 case StringLiteral::Wide:
122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123 return SIF_None;
124 if (ElemTy->isCharType() || ElemTy->isChar8Type())
125 return SIF_WideStringIntoChar;
126 if (IsWideCharCompatible(ElemTy, Context))
127 return SIF_IncompatWideStringIntoWideChar;
128 return SIF_Other;
129 }
130
131 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 131)
;
132}
133
134static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135 ASTContext &Context) {
136 const ArrayType *arrayType = Context.getAsArrayType(declType);
137 if (!arrayType)
138 return SIF_Other;
139 return IsStringInit(init, arrayType, Context);
140}
141
142/// Update the type of a string literal, including any surrounding parentheses,
143/// to match the type of the object which it is initializing.
144static void updateStringLiteralType(Expr *E, QualType Ty) {
145 while (true) {
146 E->setType(Ty);
147 E->setValueKind(VK_RValue);
148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149 break;
150 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151 E = PE->getSubExpr();
152 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153 assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 153, __PRETTY_FUNCTION__))
;
154 E = UO->getSubExpr();
155 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156 E = GSE->getResultExpr();
157 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158 E = CE->getChosenSubExpr();
159 } else {
160 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 160)
;
161 }
162 }
163}
164
165/// Fix a compound literal initializing an array so it's correctly marked
166/// as an rvalue.
167static void updateGNUCompoundLiteralRValue(Expr *E) {
168 while (true) {
169 E->setValueKind(VK_RValue);
170 if (isa<CompoundLiteralExpr>(E)) {
171 break;
172 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173 E = PE->getSubExpr();
174 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175 assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 175, __PRETTY_FUNCTION__))
;
176 E = UO->getSubExpr();
177 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178 E = GSE->getResultExpr();
179 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180 E = CE->getChosenSubExpr();
181 } else {
182 llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 182)
;
183 }
184 }
185}
186
187static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188 Sema &S) {
189 // Get the length of the string as parsed.
190 auto *ConstantArrayTy =
191 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193
194 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195 // C99 6.7.8p14. We have an array of character type with unknown size
196 // being initialized to a string literal.
197 llvm::APInt ConstVal(32, StrLength);
198 // Return a new array type (C99 6.7.8p22).
199 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200 ConstVal,
201 ArrayType::Normal, 0);
202 updateStringLiteralType(Str, DeclT);
203 return;
204 }
205
206 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207
208 // We have an array of character type with known size. However,
209 // the size may be smaller or larger than the string we are initializing.
210 // FIXME: Avoid truncation for 64-bit length strings.
211 if (S.getLangOpts().CPlusPlus) {
212 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213 // For Pascal strings it's OK to strip off the terminating null character,
214 // so the example below is valid:
215 //
216 // unsigned char a[2] = "\pa";
217 if (SL->isPascal())
218 StrLength--;
219 }
220
221 // [dcl.init.string]p2
222 if (StrLength > CAT->getSize().getZExtValue())
223 S.Diag(Str->getBeginLoc(),
224 diag::err_initializer_string_for_char_array_too_long)
225 << Str->getSourceRange();
226 } else {
227 // C99 6.7.8p14.
228 if (StrLength-1 > CAT->getSize().getZExtValue())
229 S.Diag(Str->getBeginLoc(),
230 diag::ext_initializer_string_for_char_array_too_long)
231 << Str->getSourceRange();
232 }
233
234 // Set the type to the actual size that we are initializing. If we have
235 // something like:
236 // char x[1] = "foo";
237 // then this will set the string literal's type to char[1].
238 updateStringLiteralType(Str, DeclT);
239}
240
241//===----------------------------------------------------------------------===//
242// Semantic checking for initializer lists.
243//===----------------------------------------------------------------------===//
244
245namespace {
246
247/// Semantic checking for initializer lists.
248///
249/// The InitListChecker class contains a set of routines that each
250/// handle the initialization of a certain kind of entity, e.g.,
251/// arrays, vectors, struct/union types, scalars, etc. The
252/// InitListChecker itself performs a recursive walk of the subobject
253/// structure of the type to be initialized, while stepping through
254/// the initializer list one element at a time. The IList and Index
255/// parameters to each of the Check* routines contain the active
256/// (syntactic) initializer list and the index into that initializer
257/// list that represents the current initializer. Each routine is
258/// responsible for moving that Index forward as it consumes elements.
259///
260/// Each Check* routine also has a StructuredList/StructuredIndex
261/// arguments, which contains the current "structured" (semantic)
262/// initializer list and the index into that initializer list where we
263/// are copying initializers as we map them over to the semantic
264/// list. Once we have completed our recursive walk of the subobject
265/// structure, we will have constructed a full semantic initializer
266/// list.
267///
268/// C99 designators cause changes in the initializer list traversal,
269/// because they make the initialization "jump" into a specific
270/// subobject and then continue the initialization from that
271/// point. CheckDesignatedInitializer() recursively steps into the
272/// designated subobject and manages backing out the recursion to
273/// initialize the subobjects after the one designated.
274class InitListChecker {
275 Sema &SemaRef;
276 bool hadError;
277 bool VerifyOnly; // no diagnostics, no structure building
278 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280 InitListExpr *FullyStructuredList;
281
282 void CheckImplicitInitList(const InitializedEntity &Entity,
283 InitListExpr *ParentIList, QualType T,
284 unsigned &Index, InitListExpr *StructuredList,
285 unsigned &StructuredIndex);
286 void CheckExplicitInitList(const InitializedEntity &Entity,
287 InitListExpr *IList, QualType &T,
288 InitListExpr *StructuredList,
289 bool TopLevelObject = false);
290 void CheckListElementTypes(const InitializedEntity &Entity,
291 InitListExpr *IList, QualType &DeclType,
292 bool SubobjectIsDesignatorContext,
293 unsigned &Index,
294 InitListExpr *StructuredList,
295 unsigned &StructuredIndex,
296 bool TopLevelObject = false);
297 void CheckSubElementType(const InitializedEntity &Entity,
298 InitListExpr *IList, QualType ElemType,
299 unsigned &Index,
300 InitListExpr *StructuredList,
301 unsigned &StructuredIndex);
302 void CheckComplexType(const InitializedEntity &Entity,
303 InitListExpr *IList, QualType DeclType,
304 unsigned &Index,
305 InitListExpr *StructuredList,
306 unsigned &StructuredIndex);
307 void CheckScalarType(const InitializedEntity &Entity,
308 InitListExpr *IList, QualType DeclType,
309 unsigned &Index,
310 InitListExpr *StructuredList,
311 unsigned &StructuredIndex);
312 void CheckReferenceType(const InitializedEntity &Entity,
313 InitListExpr *IList, QualType DeclType,
314 unsigned &Index,
315 InitListExpr *StructuredList,
316 unsigned &StructuredIndex);
317 void CheckVectorType(const InitializedEntity &Entity,
318 InitListExpr *IList, QualType DeclType, unsigned &Index,
319 InitListExpr *StructuredList,
320 unsigned &StructuredIndex);
321 void CheckStructUnionTypes(const InitializedEntity &Entity,
322 InitListExpr *IList, QualType DeclType,
323 CXXRecordDecl::base_class_range Bases,
324 RecordDecl::field_iterator Field,
325 bool SubobjectIsDesignatorContext, unsigned &Index,
326 InitListExpr *StructuredList,
327 unsigned &StructuredIndex,
328 bool TopLevelObject = false);
329 void CheckArrayType(const InitializedEntity &Entity,
330 InitListExpr *IList, QualType &DeclType,
331 llvm::APSInt elementIndex,
332 bool SubobjectIsDesignatorContext, unsigned &Index,
333 InitListExpr *StructuredList,
334 unsigned &StructuredIndex);
335 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336 InitListExpr *IList, DesignatedInitExpr *DIE,
337 unsigned DesigIdx,
338 QualType &CurrentObjectType,
339 RecordDecl::field_iterator *NextField,
340 llvm::APSInt *NextElementIndex,
341 unsigned &Index,
342 InitListExpr *StructuredList,
343 unsigned &StructuredIndex,
344 bool FinishSubobjectInit,
345 bool TopLevelObject);
346 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347 QualType CurrentObjectType,
348 InitListExpr *StructuredList,
349 unsigned StructuredIndex,
350 SourceRange InitRange,
351 bool IsFullyOverwritten = false);
352 void UpdateStructuredListElement(InitListExpr *StructuredList,
353 unsigned &StructuredIndex,
354 Expr *expr);
355 int numArrayElements(QualType DeclType);
356 int numStructUnionElements(QualType DeclType);
357
358 static ExprResult PerformEmptyInit(Sema &SemaRef,
359 SourceLocation Loc,
360 const InitializedEntity &Entity,
361 bool VerifyOnly,
362 bool TreatUnavailableAsInvalid);
363
364 // Explanation on the "FillWithNoInit" mode:
365 //
366 // Assume we have the following definitions (Case#1):
367 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369 //
370 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372 //
373 // But if we have (Case#2):
374 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375 //
376 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378 //
379 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381 // initializers but with special "NoInitExpr" place holders, which tells the
382 // CodeGen not to generate any initializers for these parts.
383 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384 const InitializedEntity &ParentEntity,
385 InitListExpr *ILE, bool &RequiresSecondPass,
386 bool FillWithNoInit);
387 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388 const InitializedEntity &ParentEntity,
389 InitListExpr *ILE, bool &RequiresSecondPass,
390 bool FillWithNoInit = false);
391 void FillInEmptyInitializations(const InitializedEntity &Entity,
392 InitListExpr *ILE, bool &RequiresSecondPass,
393 InitListExpr *OuterILE, unsigned OuterIndex,
394 bool FillWithNoInit = false);
395 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396 Expr *InitExpr, FieldDecl *Field,
397 bool TopLevelObject);
398 void CheckEmptyInitializable(const InitializedEntity &Entity,
399 SourceLocation Loc);
400
401public:
402 InitListChecker(Sema &S, const InitializedEntity &Entity,
403 InitListExpr *IL, QualType &T, bool VerifyOnly,
404 bool TreatUnavailableAsInvalid);
405 bool HadError() { return hadError; }
406
407 // Retrieves the fully-structured initializer list used for
408 // semantic analysis and code generation.
409 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410};
411
412} // end anonymous namespace
413
414ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415 SourceLocation Loc,
416 const InitializedEntity &Entity,
417 bool VerifyOnly,
418 bool TreatUnavailableAsInvalid) {
419 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420 true);
421 MultiExprArg SubInit;
422 Expr *InitExpr;
423 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424
425 // C++ [dcl.init.aggr]p7:
426 // If there are fewer initializer-clauses in the list than there are
427 // members in the aggregate, then each member not explicitly initialized
428 // ...
429 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431 if (EmptyInitList) {
432 // C++1y / DR1070:
433 // shall be initialized [...] from an empty initializer list.
434 //
435 // We apply the resolution of this DR to C++11 but not C++98, since C++98
436 // does not have useful semantics for initialization from an init list.
437 // We treat this as copy-initialization, because aggregate initialization
438 // always performs copy-initialization on its elements.
439 //
440 // Only do this if we're initializing a class type, to avoid filling in
441 // the initializer list where possible.
442 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443 InitListExpr(SemaRef.Context, Loc, None, Loc);
444 InitExpr->setType(SemaRef.Context.VoidTy);
445 SubInit = InitExpr;
446 Kind = InitializationKind::CreateCopy(Loc, Loc);
447 } else {
448 // C++03:
449 // shall be value-initialized.
450 }
451
452 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453 // libstdc++4.6 marks the vector default constructor as explicit in
454 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455 // stlport does so too. Look for std::__debug for libstdc++, and for
456 // std:: for stlport. This is effectively a compiler-side implementation of
457 // LWG2193.
458 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459 InitializationSequence::FK_ExplicitConstructor) {
460 OverloadCandidateSet::iterator Best;
461 OverloadingResult O =
462 InitSeq.getFailedCandidateSet()
463 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464 (void)O;
465 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 465, __PRETTY_FUNCTION__))
;
466 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467 CXXRecordDecl *R = CtorDecl->getParent();
468
469 if (CtorDecl->getMinRequiredArguments() == 0 &&
470 CtorDecl->isExplicit() && R->getDeclName() &&
471 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472 bool IsInStd = false;
473 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476 IsInStd = true;
477 }
478
479 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480 .Cases("basic_string", "deque", "forward_list", true)
481 .Cases("list", "map", "multimap", "multiset", true)
482 .Cases("priority_queue", "queue", "set", "stack", true)
483 .Cases("unordered_map", "unordered_set", "vector", true)
484 .Default(false)) {
485 InitSeq.InitializeFrom(
486 SemaRef, Entity,
487 InitializationKind::CreateValue(Loc, Loc, Loc, true),
488 MultiExprArg(), /*TopLevelOfInitList=*/false,
489 TreatUnavailableAsInvalid);
490 // Emit a warning for this. System header warnings aren't shown
491 // by default, but people working on system headers should see it.
492 if (!VerifyOnly) {
493 SemaRef.Diag(CtorDecl->getLocation(),
494 diag::warn_invalid_initializer_from_system_header);
495 if (Entity.getKind() == InitializedEntity::EK_Member)
496 SemaRef.Diag(Entity.getDecl()->getLocation(),
497 diag::note_used_in_initialization_here);
498 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500 }
501 }
502 }
503 }
504 if (!InitSeq) {
505 if (!VerifyOnly) {
506 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507 if (Entity.getKind() == InitializedEntity::EK_Member)
508 SemaRef.Diag(Entity.getDecl()->getLocation(),
509 diag::note_in_omitted_aggregate_initializer)
510 << /*field*/1 << Entity.getDecl();
511 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512 bool IsTrailingArrayNewMember =
513 Entity.getParent() &&
514 Entity.getParent()->isVariableLengthArrayNew();
515 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517 << Entity.getElementIndex();
518 }
519 }
520 return ExprError();
521 }
522
523 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525}
526
527void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528 SourceLocation Loc) {
529 assert(VerifyOnly &&((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 530, __PRETTY_FUNCTION__))
530 "CheckEmptyInitializable is only inteded for verification mode.")((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 530, __PRETTY_FUNCTION__))
;
531 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532 TreatUnavailableAsInvalid).isInvalid())
533 hadError = true;
534}
535
536void InitListChecker::FillInEmptyInitForBase(
537 unsigned Init, const CXXBaseSpecifier &Base,
538 const InitializedEntity &ParentEntity, InitListExpr *ILE,
539 bool &RequiresSecondPass, bool FillWithNoInit) {
540 assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 540, __PRETTY_FUNCTION__))
;
541
542 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543 SemaRef.Context, &Base, false, &ParentEntity);
544
545 if (!ILE->getInit(Init)) {
546 ExprResult BaseInit =
547 FillWithNoInit
548 ? new (SemaRef.Context) NoInitExpr(Base.getType())
549 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550 /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551 if (BaseInit.isInvalid()) {
552 hadError = true;
553 return;
554 }
555
556 ILE->setInit(Init, BaseInit.getAs<Expr>());
557 } else if (InitListExpr *InnerILE =
558 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560 ILE, Init, FillWithNoInit);
561 } else if (DesignatedInitUpdateExpr *InnerDIUE =
562 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564 RequiresSecondPass, ILE, Init,
565 /*FillWithNoInit =*/true);
566 }
567}
568
569void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570 const InitializedEntity &ParentEntity,
571 InitListExpr *ILE,
572 bool &RequiresSecondPass,
573 bool FillWithNoInit) {
574 SourceLocation Loc = ILE->getEndLoc();
575 unsigned NumInits = ILE->getNumInits();
576 InitializedEntity MemberEntity
577 = InitializedEntity::InitializeMember(Field, &ParentEntity);
578
579 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580 if (!RType->getDecl()->isUnion())
581 assert(Init < NumInits && "This ILE should have been expanded")((Init < NumInits && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 581, __PRETTY_FUNCTION__))
;
582
583 if (Init >= NumInits || !ILE->getInit(Init)) {
584 if (FillWithNoInit) {
585 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586 if (Init < NumInits)
587 ILE->setInit(Init, Filler);
588 else
589 ILE->updateInit(SemaRef.Context, Init, Filler);
590 return;
591 }
592 // C++1y [dcl.init.aggr]p7:
593 // If there are fewer initializer-clauses in the list than there are
594 // members in the aggregate, then each member not explicitly initialized
595 // shall be initialized from its brace-or-equal-initializer [...]
596 if (Field->hasInClassInitializer()) {
597 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598 if (DIE.isInvalid()) {
599 hadError = true;
600 return;
601 }
602 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603 if (Init < NumInits)
604 ILE->setInit(Init, DIE.get());
605 else {
606 ILE->updateInit(SemaRef.Context, Init, DIE.get());
607 RequiresSecondPass = true;
608 }
609 return;
610 }
611
612 if (Field->getType()->isReferenceType()) {
613 // C++ [dcl.init.aggr]p9:
614 // If an incomplete or empty initializer-list leaves a
615 // member of reference type uninitialized, the program is
616 // ill-formed.
617 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618 << Field->getType()
619 << ILE->getSyntacticForm()->getSourceRange();
620 SemaRef.Diag(Field->getLocation(),
621 diag::note_uninit_reference_member);
622 hadError = true;
623 return;
624 }
625
626 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627 /*VerifyOnly*/false,
628 TreatUnavailableAsInvalid);
629 if (MemberInit.isInvalid()) {
630 hadError = true;
631 return;
632 }
633
634 if (hadError) {
635 // Do nothing
636 } else if (Init < NumInits) {
637 ILE->setInit(Init, MemberInit.getAs<Expr>());
638 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639 // Empty initialization requires a constructor call, so
640 // extend the initializer list to include the constructor
641 // call and make a note that we'll need to take another pass
642 // through the initializer list.
643 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644 RequiresSecondPass = true;
645 }
646 } else if (InitListExpr *InnerILE
647 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648 FillInEmptyInitializations(MemberEntity, InnerILE,
649 RequiresSecondPass, ILE, Init, FillWithNoInit);
650 else if (DesignatedInitUpdateExpr *InnerDIUE
651 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653 RequiresSecondPass, ILE, Init,
654 /*FillWithNoInit =*/true);
655}
656
657/// Recursively replaces NULL values within the given initializer list
658/// with expressions that perform value-initialization of the
659/// appropriate type, and finish off the InitListExpr formation.
660void
661InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662 InitListExpr *ILE,
663 bool &RequiresSecondPass,
664 InitListExpr *OuterILE,
665 unsigned OuterIndex,
666 bool FillWithNoInit) {
667 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 668, __PRETTY_FUNCTION__))
668 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 668, __PRETTY_FUNCTION__))
;
669
670 // If this is a nested initializer list, we might have changed its contents
671 // (and therefore some of its properties, such as instantiation-dependence)
672 // while filling it in. Inform the outer initializer list so that its state
673 // can be updated to match.
674 // FIXME: We should fully build the inner initializers before constructing
675 // the outer InitListExpr instead of mutating AST nodes after they have
676 // been used as subexpressions of other nodes.
677 struct UpdateOuterILEWithUpdatedInit {
678 InitListExpr *Outer;
679 unsigned OuterIndex;
680 ~UpdateOuterILEWithUpdatedInit() {
681 if (Outer)
682 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683 }
684 } UpdateOuterRAII = {OuterILE, OuterIndex};
685
686 // A transparent ILE is not performing aggregate initialization and should
687 // not be filled in.
688 if (ILE->isTransparent())
689 return;
690
691 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692 const RecordDecl *RDecl = RType->getDecl();
693 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695 Entity, ILE, RequiresSecondPass, FillWithNoInit);
696 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698 for (auto *Field : RDecl->fields()) {
699 if (Field->hasInClassInitializer()) {
700 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701 FillWithNoInit);
702 break;
703 }
704 }
705 } else {
706 // The fields beyond ILE->getNumInits() are default initialized, so in
707 // order to leave them uninitialized, the ILE is expanded and the extra
708 // fields are then filled with NoInitExpr.
709 unsigned NumElems = numStructUnionElements(ILE->getType());
710 if (RDecl->hasFlexibleArrayMember())
711 ++NumElems;
712 if (ILE->getNumInits() < NumElems)
713 ILE->resizeInits(SemaRef.Context, NumElems);
714
715 unsigned Init = 0;
716
717 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718 for (auto &Base : CXXRD->bases()) {
719 if (hadError)
720 return;
721
722 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723 FillWithNoInit);
724 ++Init;
725 }
726 }
727
728 for (auto *Field : RDecl->fields()) {
729 if (Field->isUnnamedBitfield())
730 continue;
731
732 if (hadError)
733 return;
734
735 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736 FillWithNoInit);
737 if (hadError)
738 return;
739
740 ++Init;
741
742 // Only look at the first initialization of a union.
743 if (RDecl->isUnion())
744 break;
745 }
746 }
747
748 return;
749 }
750
751 QualType ElementType;
752
753 InitializedEntity ElementEntity = Entity;
754 unsigned NumInits = ILE->getNumInits();
755 unsigned NumElements = NumInits;
756 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757 ElementType = AType->getElementType();
758 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759 NumElements = CAType->getSize().getZExtValue();
760 // For an array new with an unknown bound, ask for one additional element
761 // in order to populate the array filler.
762 if (Entity.isVariableLengthArrayNew())
763 ++NumElements;
764 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765 0, Entity);
766 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767 ElementType = VType->getElementType();
768 NumElements = VType->getNumElements();
769 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770 0, Entity);
771 } else
772 ElementType = ILE->getType();
773
774 for (unsigned Init = 0; Init != NumElements; ++Init) {
775 if (hadError)
776 return;
777
778 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780 ElementEntity.setElementIndex(Init);
781
782 if (Init >= NumInits && ILE->hasArrayFiller())
783 return;
784
785 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787 ILE->setInit(Init, ILE->getArrayFiller());
788 else if (!InitExpr && !ILE->hasArrayFiller()) {
789 Expr *Filler = nullptr;
790
791 if (FillWithNoInit)
792 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793 else {
794 ExprResult ElementInit =
795 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796 /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797 if (ElementInit.isInvalid()) {
798 hadError = true;
799 return;
800 }
801
802 Filler = ElementInit.getAs<Expr>();
803 }
804
805 if (hadError) {
806 // Do nothing
807 } else if (Init < NumInits) {
808 // For arrays, just set the expression used for value-initialization
809 // of the "holes" in the array.
810 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811 ILE->setArrayFiller(Filler);
812 else
813 ILE->setInit(Init, Filler);
814 } else {
815 // For arrays, just set the expression used for value-initialization
816 // of the rest of elements and exit.
817 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818 ILE->setArrayFiller(Filler);
819 return;
820 }
821
822 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823 // Empty initialization requires a constructor call, so
824 // extend the initializer list to include the constructor
825 // call and make a note that we'll need to take another pass
826 // through the initializer list.
827 ILE->updateInit(SemaRef.Context, Init, Filler);
828 RequiresSecondPass = true;
829 }
830 }
831 } else if (InitListExpr *InnerILE
832 = dyn_cast_or_null<InitListExpr>(InitExpr))
833 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834 ILE, Init, FillWithNoInit);
835 else if (DesignatedInitUpdateExpr *InnerDIUE
836 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838 RequiresSecondPass, ILE, Init,
839 /*FillWithNoInit =*/true);
840 }
841}
842
843InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844 InitListExpr *IL, QualType &T,
845 bool VerifyOnly,
846 bool TreatUnavailableAsInvalid)
847 : SemaRef(S), VerifyOnly(VerifyOnly),
848 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849 // FIXME: Check that IL isn't already the semantic form of some other
850 // InitListExpr. If it is, we'd create a broken AST.
851
852 hadError = false;
853
854 FullyStructuredList =
855 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857 /*TopLevelObject=*/true);
858
859 if (!hadError && !VerifyOnly) {
860 bool RequiresSecondPass = false;
861 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863 if (RequiresSecondPass && !hadError)
864 FillInEmptyInitializations(Entity, FullyStructuredList,
865 RequiresSecondPass, nullptr, 0);
866 }
867}
868
869int InitListChecker::numArrayElements(QualType DeclType) {
870 // FIXME: use a proper constant
871 int maxElements = 0x7FFFFFFF;
872 if (const ConstantArrayType *CAT =
873 SemaRef.Context.getAsConstantArrayType(DeclType)) {
874 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875 }
876 return maxElements;
877}
878
879int InitListChecker::numStructUnionElements(QualType DeclType) {
880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881 int InitializableMembers = 0;
882 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883 InitializableMembers += CXXRD->getNumBases();
884 for (const auto *Field : structDecl->fields())
885 if (!Field->isUnnamedBitfield())
886 ++InitializableMembers;
887
888 if (structDecl->isUnion())
889 return std::min(InitializableMembers, 1);
890 return InitializableMembers - structDecl->hasFlexibleArrayMember();
891}
892
893/// Determine whether Entity is an entity for which it is idiomatic to elide
894/// the braces in aggregate initialization.
895static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896 // Recursive initialization of the one and only field within an aggregate
897 // class is considered idiomatic. This case arises in particular for
898 // initialization of std::array, where the C++ standard suggests the idiom of
899 //
900 // std::array<T, N> arr = {1, 2, 3};
901 //
902 // (where std::array is an aggregate struct containing a single array field.
903
904 // FIXME: Should aggregate initialization of a struct with a single
905 // base class and no members also suppress the warning?
906 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907 return false;
908
909 auto *ParentRD =
910 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912 if (CXXRD->getNumBases())
913 return false;
914
915 auto FieldIt = ParentRD->field_begin();
916 assert(FieldIt != ParentRD->field_end() &&((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"
) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 917, __PRETTY_FUNCTION__))
917 "no fields but have initializer for member?")((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"
) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 917, __PRETTY_FUNCTION__))
;
918 return ++FieldIt == ParentRD->field_end();
919}
920
921/// Check whether the range of the initializer \p ParentIList from element
922/// \p Index onwards can be used to initialize an object of type \p T. Update
923/// \p Index to indicate how many elements of the list were consumed.
924///
925/// This also fills in \p StructuredList, from element \p StructuredIndex
926/// onwards, with the fully-braced, desugared form of the initialization.
927void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928 InitListExpr *ParentIList,
929 QualType T, unsigned &Index,
930 InitListExpr *StructuredList,
931 unsigned &StructuredIndex) {
932 int maxElements = 0;
933
934 if (T->isArrayType())
935 maxElements = numArrayElements(T);
936 else if (T->isRecordType())
937 maxElements = numStructUnionElements(T);
938 else if (T->isVectorType())
939 maxElements = T->getAs<VectorType>()->getNumElements();
940 else
941 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 941)
;
942
943 if (maxElements == 0) {
944 if (!VerifyOnly)
945 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946 diag::err_implicit_empty_initializer);
947 ++Index;
948 hadError = true;
949 return;
950 }
951
952 // Build a structured initializer list corresponding to this subobject.
953 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954 ParentIList, Index, T, StructuredList, StructuredIndex,
955 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956 ParentIList->getSourceRange().getEnd()));
957 unsigned StructuredSubobjectInitIndex = 0;
958
959 // Check the element types and build the structural subobject.
960 unsigned StartIndex = Index;
961 CheckListElementTypes(Entity, ParentIList, T,
962 /*SubobjectIsDesignatorContext=*/false, Index,
963 StructuredSubobjectInitList,
964 StructuredSubobjectInitIndex);
965
966 if (!VerifyOnly) {
967 StructuredSubobjectInitList->setType(T);
968
969 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970 // Update the structured sub-object initializer so that it's ending
971 // range corresponds with the end of the last initializer it used.
972 if (EndIndex < ParentIList->getNumInits() &&
973 ParentIList->getInit(EndIndex)) {
974 SourceLocation EndLoc
975 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977 }
978
979 // Complain about missing braces.
980 if ((T->isArrayType() || T->isRecordType()) &&
981 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982 !isIdiomaticBraceElisionEntity(Entity)) {
983 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984 diag::warn_missing_braces)
985 << StructuredSubobjectInitList->getSourceRange()
986 << FixItHint::CreateInsertion(
987 StructuredSubobjectInitList->getBeginLoc(), "{")
988 << FixItHint::CreateInsertion(
989 SemaRef.getLocForEndOfToken(
990 StructuredSubobjectInitList->getEndLoc()),
991 "}");
992 }
993
994 // Warn if this type won't be an aggregate in future versions of C++.
995 auto *CXXRD = T->getAsCXXRecordDecl();
996 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999 << StructuredSubobjectInitList->getSourceRange() << T;
1000 }
1001 }
1002}
1003
1004/// Warn that \p Entity was of scalar type and was initialized by a
1005/// single-element braced initializer list.
1006static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007 SourceRange Braces) {
1008 // Don't warn during template instantiation. If the initialization was
1009 // non-dependent, we warned during the initial parse; otherwise, the
1010 // type might not be scalar in some uses of the template.
1011 if (S.inTemplateInstantiation())
1012 return;
1013
1014 unsigned DiagID = 0;
1015
1016 switch (Entity.getKind()) {
1017 case InitializedEntity::EK_VectorElement:
1018 case InitializedEntity::EK_ComplexElement:
1019 case InitializedEntity::EK_ArrayElement:
1020 case InitializedEntity::EK_Parameter:
1021 case InitializedEntity::EK_Parameter_CF_Audited:
1022 case InitializedEntity::EK_Result:
1023 // Extra braces here are suspicious.
1024 DiagID = diag::warn_braces_around_scalar_init;
1025 break;
1026
1027 case InitializedEntity::EK_Member:
1028 // Warn on aggregate initialization but not on ctor init list or
1029 // default member initializer.
1030 if (Entity.getParent())
1031 DiagID = diag::warn_braces_around_scalar_init;
1032 break;
1033
1034 case InitializedEntity::EK_Variable:
1035 case InitializedEntity::EK_LambdaCapture:
1036 // No warning, might be direct-list-initialization.
1037 // FIXME: Should we warn for copy-list-initialization in these cases?
1038 break;
1039
1040 case InitializedEntity::EK_New:
1041 case InitializedEntity::EK_Temporary:
1042 case InitializedEntity::EK_CompoundLiteralInit:
1043 // No warning, braces are part of the syntax of the underlying construct.
1044 break;
1045
1046 case InitializedEntity::EK_RelatedResult:
1047 // No warning, we already warned when initializing the result.
1048 break;
1049
1050 case InitializedEntity::EK_Exception:
1051 case InitializedEntity::EK_Base:
1052 case InitializedEntity::EK_Delegating:
1053 case InitializedEntity::EK_BlockElement:
1054 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055 case InitializedEntity::EK_Binding:
1056 case InitializedEntity::EK_StmtExprResult:
1057 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1057)
;
1058 }
1059
1060 if (DiagID) {
1061 S.Diag(Braces.getBegin(), DiagID)
1062 << Braces
1063 << FixItHint::CreateRemoval(Braces.getBegin())
1064 << FixItHint::CreateRemoval(Braces.getEnd());
1065 }
1066}
1067
1068/// Check whether the initializer \p IList (that was written with explicit
1069/// braces) can be used to initialize an object of type \p T.
1070///
1071/// This also fills in \p StructuredList with the fully-braced, desugared
1072/// form of the initialization.
1073void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074 InitListExpr *IList, QualType &T,
1075 InitListExpr *StructuredList,
1076 bool TopLevelObject) {
1077 if (!VerifyOnly) {
1078 SyntacticToSemantic[IList] = StructuredList;
1079 StructuredList->setSyntacticForm(IList);
1080 }
1081
1082 unsigned Index = 0, StructuredIndex = 0;
1083 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084 Index, StructuredList, StructuredIndex, TopLevelObject);
1085 if (!VerifyOnly) {
1086 QualType ExprTy = T;
1087 if (!ExprTy->isArrayType())
1088 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089 IList->setType(ExprTy);
1090 StructuredList->setType(ExprTy);
1091 }
1092 if (hadError)
1093 return;
1094
1095 if (Index < IList->getNumInits()) {
1096 // We have leftover initializers
1097 if (VerifyOnly) {
1098 if (SemaRef.getLangOpts().CPlusPlus ||
1099 (SemaRef.getLangOpts().OpenCL &&
1100 IList->getType()->isVectorType())) {
1101 hadError = true;
1102 }
1103 return;
1104 }
1105
1106 if (StructuredIndex == 1 &&
1107 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108 SIF_None) {
1109 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110 if (SemaRef.getLangOpts().CPlusPlus) {
1111 DK = diag::err_excess_initializers_in_char_array_initializer;
1112 hadError = true;
1113 }
1114 // Special-case
1115 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116 << IList->getInit(Index)->getSourceRange();
1117 } else if (!T->isIncompleteType()) {
1118 // Don't complain for incomplete types, since we'll get an error
1119 // elsewhere
1120 QualType CurrentObjectType = StructuredList->getType();
1121 int initKind =
1122 CurrentObjectType->isArrayType()? 0 :
1123 CurrentObjectType->isVectorType()? 1 :
1124 CurrentObjectType->isScalarType()? 2 :
1125 CurrentObjectType->isUnionType()? 3 :
1126 4;
1127
1128 unsigned DK = diag::ext_excess_initializers;
1129 if (SemaRef.getLangOpts().CPlusPlus) {
1130 DK = diag::err_excess_initializers;
1131 hadError = true;
1132 }
1133 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134 DK = diag::err_excess_initializers;
1135 hadError = true;
1136 }
1137
1138 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139 << initKind << IList->getInit(Index)->getSourceRange();
1140 }
1141 }
1142
1143 if (!VerifyOnly) {
1144 if (T->isScalarType() && IList->getNumInits() == 1 &&
1145 !isa<InitListExpr>(IList->getInit(0)))
1146 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147
1148 // Warn if this is a class type that won't be an aggregate in future
1149 // versions of C++.
1150 auto *CXXRD = T->getAsCXXRecordDecl();
1151 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152 // Don't warn if there's an equivalent default constructor that would be
1153 // used instead.
1154 bool HasEquivCtor = false;
1155 if (IList->getNumInits() == 0) {
1156 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157 HasEquivCtor = CD && !CD->isDeleted();
1158 }
1159
1160 if (!HasEquivCtor) {
1161 SemaRef.Diag(IList->getBeginLoc(),
1162 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163 << IList->getSourceRange() << T;
1164 }
1165 }
1166 }
1167}
1168
1169void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170 InitListExpr *IList,
1171 QualType &DeclType,
1172 bool SubobjectIsDesignatorContext,
1173 unsigned &Index,
1174 InitListExpr *StructuredList,
1175 unsigned &StructuredIndex,
1176 bool TopLevelObject) {
1177 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178 // Explicitly braced initializer for complex type can be real+imaginary
1179 // parts.
1180 CheckComplexType(Entity, IList, DeclType, Index,
1181 StructuredList, StructuredIndex);
1182 } else if (DeclType->isScalarType()) {
1183 CheckScalarType(Entity, IList, DeclType, Index,
1184 StructuredList, StructuredIndex);
1185 } else if (DeclType->isVectorType()) {
1186 CheckVectorType(Entity, IList, DeclType, Index,
1187 StructuredList, StructuredIndex);
1188 } else if (DeclType->isRecordType()) {
1189 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1190, __PRETTY_FUNCTION__))
1190 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1190, __PRETTY_FUNCTION__))
;
1191 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192 auto Bases =
1193 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194 CXXRecordDecl::base_class_iterator());
1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196 Bases = CXXRD->bases();
1197 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198 SubobjectIsDesignatorContext, Index, StructuredList,
1199 StructuredIndex, TopLevelObject);
1200 } else if (DeclType->isArrayType()) {
1201 llvm::APSInt Zero(
1202 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203 false);
1204 CheckArrayType(Entity, IList, DeclType, Zero,
1205 SubobjectIsDesignatorContext, Index,
1206 StructuredList, StructuredIndex);
1207 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208 // This type is invalid, issue a diagnostic.
1209 ++Index;
1210 if (!VerifyOnly)
1211 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212 << DeclType;
1213 hadError = true;
1214 } else if (DeclType->isReferenceType()) {
1215 CheckReferenceType(Entity, IList, DeclType, Index,
1216 StructuredList, StructuredIndex);
1217 } else if (DeclType->isObjCObjectType()) {
1218 if (!VerifyOnly)
1219 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220 hadError = true;
1221 } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222 // Checks for scalar type are sufficient for these types too.
1223 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224 StructuredIndex);
1225 } else {
1226 if (!VerifyOnly)
1227 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228 << DeclType;
1229 hadError = true;
1230 }
1231}
1232
1233void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234 InitListExpr *IList,
1235 QualType ElemType,
1236 unsigned &Index,
1237 InitListExpr *StructuredList,
1238 unsigned &StructuredIndex) {
1239 Expr *expr = IList->getInit(Index);
1240
1241 if (ElemType->isReferenceType())
1242 return CheckReferenceType(Entity, IList, ElemType, Index,
1243 StructuredList, StructuredIndex);
1244
1245 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246 if (SubInitList->getNumInits() == 1 &&
1247 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248 SIF_None) {
1249 expr = SubInitList->getInit(0);
1250 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251 InitListExpr *InnerStructuredList
1252 = getStructuredSubobjectInit(IList, Index, ElemType,
1253 StructuredList, StructuredIndex,
1254 SubInitList->getSourceRange(), true);
1255 CheckExplicitInitList(Entity, SubInitList, ElemType,
1256 InnerStructuredList);
1257
1258 if (!hadError && !VerifyOnly) {
1259 bool RequiresSecondPass = false;
1260 FillInEmptyInitializations(Entity, InnerStructuredList,
1261 RequiresSecondPass, StructuredList,
1262 StructuredIndex);
1263 if (RequiresSecondPass && !hadError)
1264 FillInEmptyInitializations(Entity, InnerStructuredList,
1265 RequiresSecondPass, StructuredList,
1266 StructuredIndex);
1267 }
1268 ++StructuredIndex;
1269 ++Index;
1270 return;
1271 }
1272 // C++ initialization is handled later.
1273 } else if (isa<ImplicitValueInitExpr>(expr)) {
1274 // This happens during template instantiation when we see an InitListExpr
1275 // that we've already checked once.
1276 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1277, __PRETTY_FUNCTION__))
1277 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1277, __PRETTY_FUNCTION__))
;
1278 if (!VerifyOnly)
1279 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280 ++Index;
1281 return;
1282 }
1283
1284 if (SemaRef.getLangOpts().CPlusPlus) {
1285 // C++ [dcl.init.aggr]p2:
1286 // Each member is copy-initialized from the corresponding
1287 // initializer-clause.
1288
1289 // FIXME: Better EqualLoc?
1290 InitializationKind Kind =
1291 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293 /*TopLevelOfInitList*/ true);
1294
1295 // C++14 [dcl.init.aggr]p13:
1296 // If the assignment-expression can initialize a member, the member is
1297 // initialized. Otherwise [...] brace elision is assumed
1298 //
1299 // Brace elision is never performed if the element is not an
1300 // assignment-expression.
1301 if (Seq || isa<InitListExpr>(expr)) {
1302 if (!VerifyOnly) {
1303 ExprResult Result =
1304 Seq.Perform(SemaRef, Entity, Kind, expr);
1305 if (Result.isInvalid())
1306 hadError = true;
1307
1308 UpdateStructuredListElement(StructuredList, StructuredIndex,
1309 Result.getAs<Expr>());
1310 } else if (!Seq)
1311 hadError = true;
1312 ++Index;
1313 return;
1314 }
1315
1316 // Fall through for subaggregate initialization
1317 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319 return CheckScalarType(Entity, IList, ElemType, Index,
1320 StructuredList, StructuredIndex);
1321 } else if (const ArrayType *arrayType =
1322 SemaRef.Context.getAsArrayType(ElemType)) {
1323 // arrayType can be incomplete if we're initializing a flexible
1324 // array member. There's nothing we can do with the completed
1325 // type here, though.
1326
1327 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328 if (!VerifyOnly) {
1329 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331 }
1332 ++Index;
1333 return;
1334 }
1335
1336 // Fall through for subaggregate initialization.
1337
1338 } else {
1339 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1340, __PRETTY_FUNCTION__))
1340 ElemType->isOpenCLSpecificType()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1340, __PRETTY_FUNCTION__))
;
1341
1342 // C99 6.7.8p13:
1343 //
1344 // The initializer for a structure or union object that has
1345 // automatic storage duration shall be either an initializer
1346 // list as described below, or a single expression that has
1347 // compatible structure or union type. In the latter case, the
1348 // initial value of the object, including unnamed members, is
1349 // that of the expression.
1350 ExprResult ExprRes = expr;
1351 if (SemaRef.CheckSingleAssignmentConstraints(
1352 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353 if (ExprRes.isInvalid())
1354 hadError = true;
1355 else {
1356 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357 if (ExprRes.isInvalid())
1358 hadError = true;
1359 }
1360 UpdateStructuredListElement(StructuredList, StructuredIndex,
1361 ExprRes.getAs<Expr>());
1362 ++Index;
1363 return;
1364 }
1365 ExprRes.get();
1366 // Fall through for subaggregate initialization
1367 }
1368
1369 // C++ [dcl.init.aggr]p12:
1370 //
1371 // [...] Otherwise, if the member is itself a non-empty
1372 // subaggregate, brace elision is assumed and the initializer is
1373 // considered for the initialization of the first member of
1374 // the subaggregate.
1375 // OpenCL vector initializer is handled elsewhere.
1376 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377 ElemType->isAggregateType()) {
1378 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379 StructuredIndex);
1380 ++StructuredIndex;
1381 } else {
1382 if (!VerifyOnly) {
1383 // We cannot initialize this element, so let
1384 // PerformCopyInitialization produce the appropriate diagnostic.
1385 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386 /*TopLevelOfInitList=*/true);
1387 }
1388 hadError = true;
1389 ++Index;
1390 ++StructuredIndex;
1391 }
1392}
1393
1394void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395 InitListExpr *IList, QualType DeclType,
1396 unsigned &Index,
1397 InitListExpr *StructuredList,
1398 unsigned &StructuredIndex) {
1399 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1399, __PRETTY_FUNCTION__))
;
1400
1401 // As an extension, clang supports complex initializers, which initialize
1402 // a complex number component-wise. When an explicit initializer list for
1403 // a complex number contains two two initializers, this extension kicks in:
1404 // it exepcts the initializer list to contain two elements convertible to
1405 // the element type of the complex type. The first element initializes
1406 // the real part, and the second element intitializes the imaginary part.
1407
1408 if (IList->getNumInits() != 2)
1409 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410 StructuredIndex);
1411
1412 // This is an extension in C. (The builtin _Complex type does not exist
1413 // in the C++ standard.)
1414 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416 << IList->getSourceRange();
1417
1418 // Initialize the complex number.
1419 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420 InitializedEntity ElementEntity =
1421 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422
1423 for (unsigned i = 0; i < 2; ++i) {
1424 ElementEntity.setElementIndex(Index);
1425 CheckSubElementType(ElementEntity, IList, elementType, Index,
1426 StructuredList, StructuredIndex);
1427 }
1428}
1429
1430void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431 InitListExpr *IList, QualType DeclType,
1432 unsigned &Index,
1433 InitListExpr *StructuredList,
1434 unsigned &StructuredIndex) {
1435 if (Index >= IList->getNumInits()) {
1436 if (!VerifyOnly)
1437 SemaRef.Diag(IList->getBeginLoc(),
1438 SemaRef.getLangOpts().CPlusPlus11
1439 ? diag::warn_cxx98_compat_empty_scalar_initializer
1440 : diag::err_empty_scalar_initializer)
1441 << IList->getSourceRange();
1442 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443 ++Index;
1444 ++StructuredIndex;
1445 return;
1446 }
1447
1448 Expr *expr = IList->getInit(Index);
1449 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450 // FIXME: This is invalid, and accepting it causes overload resolution
1451 // to pick the wrong overload in some corner cases.
1452 if (!VerifyOnly)
1453 SemaRef.Diag(SubIList->getBeginLoc(),
1454 diag::ext_many_braces_around_scalar_init)
1455 << SubIList->getSourceRange();
1456
1457 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458 StructuredIndex);
1459 return;
1460 } else if (isa<DesignatedInitExpr>(expr)) {
1461 if (!VerifyOnly)
1462 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463 << DeclType << expr->getSourceRange();
1464 hadError = true;
1465 ++Index;
1466 ++StructuredIndex;
1467 return;
1468 }
1469
1470 if (VerifyOnly) {
1471 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472 hadError = true;
1473 ++Index;
1474 return;
1475 }
1476
1477 ExprResult Result =
1478 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479 /*TopLevelOfInitList=*/true);
1480
1481 Expr *ResultExpr = nullptr;
1482
1483 if (Result.isInvalid())
1484 hadError = true; // types weren't compatible.
1485 else {
1486 ResultExpr = Result.getAs<Expr>();
1487
1488 if (ResultExpr != expr) {
1489 // The type was promoted, update initializer list.
1490 IList->setInit(Index, ResultExpr);
1491 }
1492 }
1493 if (hadError)
1494 ++StructuredIndex;
1495 else
1496 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497 ++Index;
1498}
1499
1500void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501 InitListExpr *IList, QualType DeclType,
1502 unsigned &Index,
1503 InitListExpr *StructuredList,
1504 unsigned &StructuredIndex) {
1505 if (Index >= IList->getNumInits()) {
1506 // FIXME: It would be wonderful if we could point at the actual member. In
1507 // general, it would be useful to pass location information down the stack,
1508 // so that we know the location (or decl) of the "current object" being
1509 // initialized.
1510 if (!VerifyOnly)
1511 SemaRef.Diag(IList->getBeginLoc(),
1512 diag::err_init_reference_member_uninitialized)
1513 << DeclType << IList->getSourceRange();
1514 hadError = true;
1515 ++Index;
1516 ++StructuredIndex;
1517 return;
1518 }
1519
1520 Expr *expr = IList->getInit(Index);
1521 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522 if (!VerifyOnly)
1523 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524 << DeclType << IList->getSourceRange();
1525 hadError = true;
1526 ++Index;
1527 ++StructuredIndex;
1528 return;
1529 }
1530
1531 if (VerifyOnly) {
1532 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533 hadError = true;
1534 ++Index;
1535 return;
1536 }
1537
1538 ExprResult Result =
1539 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540 /*TopLevelOfInitList=*/true);
1541
1542 if (Result.isInvalid())
1543 hadError = true;
1544
1545 expr = Result.getAs<Expr>();
1546 IList->setInit(Index, expr);
1547
1548 if (hadError)
1549 ++StructuredIndex;
1550 else
1551 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552 ++Index;
1553}
1554
1555void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556 InitListExpr *IList, QualType DeclType,
1557 unsigned &Index,
1558 InitListExpr *StructuredList,
1559 unsigned &StructuredIndex) {
1560 const VectorType *VT = DeclType->getAs<VectorType>();
1561 unsigned maxElements = VT->getNumElements();
1562 unsigned numEltsInit = 0;
1563 QualType elementType = VT->getElementType();
1564
1565 if (Index >= IList->getNumInits()) {
1566 // Make sure the element type can be value-initialized.
1567 if (VerifyOnly)
1568 CheckEmptyInitializable(
1569 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570 IList->getEndLoc());
1571 return;
1572 }
1573
1574 if (!SemaRef.getLangOpts().OpenCL) {
1575 // If the initializing element is a vector, try to copy-initialize
1576 // instead of breaking it apart (which is doomed to failure anyway).
1577 Expr *Init = IList->getInit(Index);
1578 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579 if (VerifyOnly) {
1580 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581 hadError = true;
1582 ++Index;
1583 return;
1584 }
1585
1586 ExprResult Result =
1587 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588 /*TopLevelOfInitList=*/true);
1589
1590 Expr *ResultExpr = nullptr;
1591 if (Result.isInvalid())
1592 hadError = true; // types weren't compatible.
1593 else {
1594 ResultExpr = Result.getAs<Expr>();
1595
1596 if (ResultExpr != Init) {
1597 // The type was promoted, update initializer list.
1598 IList->setInit(Index, ResultExpr);
1599 }
1600 }
1601 if (hadError)
1602 ++StructuredIndex;
1603 else
1604 UpdateStructuredListElement(StructuredList, StructuredIndex,
1605 ResultExpr);
1606 ++Index;
1607 return;
1608 }
1609
1610 InitializedEntity ElementEntity =
1611 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612
1613 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614 // Don't attempt to go past the end of the init list
1615 if (Index >= IList->getNumInits()) {
1616 if (VerifyOnly)
1617 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618 break;
1619 }
1620
1621 ElementEntity.setElementIndex(Index);
1622 CheckSubElementType(ElementEntity, IList, elementType, Index,
1623 StructuredList, StructuredIndex);
1624 }
1625
1626 if (VerifyOnly)
1627 return;
1628
1629 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630 const VectorType *T = Entity.getType()->getAs<VectorType>();
1631 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632 T->getVectorKind() == VectorType::NeonPolyVector)) {
1633 // The ability to use vector initializer lists is a GNU vector extension
1634 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635 // endian machines it works fine, however on big endian machines it
1636 // exhibits surprising behaviour:
1637 //
1638 // uint32x2_t x = {42, 64};
1639 // return vget_lane_u32(x, 0); // Will return 64.
1640 //
1641 // Because of this, explicitly call out that it is non-portable.
1642 //
1643 SemaRef.Diag(IList->getBeginLoc(),
1644 diag::warn_neon_vector_initializer_non_portable);
1645
1646 const char *typeCode;
1647 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648
1649 if (elementType->isFloatingType())
1650 typeCode = "f";
1651 else if (elementType->isSignedIntegerType())
1652 typeCode = "s";
1653 else if (elementType->isUnsignedIntegerType())
1654 typeCode = "u";
1655 else
1656 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 1656)
;
1657
1658 SemaRef.Diag(IList->getBeginLoc(),
1659 SemaRef.Context.getTypeSize(VT) > 64
1660 ? diag::note_neon_vector_initializer_non_portable_q
1661 : diag::note_neon_vector_initializer_non_portable)
1662 << typeCode << typeSize;
1663 }
1664
1665 return;
1666 }
1667
1668 InitializedEntity ElementEntity =
1669 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670
1671 // OpenCL initializers allows vectors to be constructed from vectors.
1672 for (unsigned i = 0; i < maxElements; ++i) {
1673 // Don't attempt to go past the end of the init list
1674 if (Index >= IList->getNumInits())
1675 break;
1676
1677 ElementEntity.setElementIndex(Index);
1678
1679 QualType IType = IList->getInit(Index)->getType();
1680 if (!IType->isVectorType()) {
1681 CheckSubElementType(ElementEntity, IList, elementType, Index,
1682 StructuredList, StructuredIndex);
1683 ++numEltsInit;
1684 } else {
1685 QualType VecType;
1686 const VectorType *IVT = IType->getAs<VectorType>();
1687 unsigned numIElts = IVT->getNumElements();
1688
1689 if (IType->isExtVectorType())
1690 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691 else
1692 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693 IVT->getVectorKind());
1694 CheckSubElementType(ElementEntity, IList, VecType, Index,
1695 StructuredList, StructuredIndex);
1696 numEltsInit += numIElts;
1697 }
1698 }
1699
1700 // OpenCL requires all elements to be initialized.
1701 if (numEltsInit != maxElements) {
1702 if (!VerifyOnly)
1703 SemaRef.Diag(IList->getBeginLoc(),
1704 diag::err_vector_incorrect_num_initializers)
1705 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706 hadError = true;
1707 }
1708}
1709
1710void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1711 InitListExpr *IList, QualType &DeclType,
1712 llvm::APSInt elementIndex,
1713 bool SubobjectIsDesignatorContext,
1714 unsigned &Index,
1715 InitListExpr *StructuredList,
1716 unsigned &StructuredIndex) {
1717 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1718
1719 // Check for the special-case of initializing an array with a string.
1720 if (Index < IList->getNumInits()) {
1721 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1722 SIF_None) {
1723 // We place the string literal directly into the resulting
1724 // initializer list. This is the only place where the structure
1725 // of the structured initializer list doesn't match exactly,
1726 // because doing so would involve allocating one character
1727 // constant for each string.
1728 if (!VerifyOnly) {
1729 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1730 UpdateStructuredListElement(StructuredList, StructuredIndex,
1731 IList->getInit(Index));
1732 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1733 }
1734 ++Index;
1735 return;
1736 }
1737 }
1738 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1739 // Check for VLAs; in standard C it would be possible to check this
1740 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1741 // them in all sorts of strange places).
1742 if (!VerifyOnly)
1743 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1744 diag::err_variable_object_no_init)
1745 << VAT->getSizeExpr()->getSourceRange();
1746 hadError = true;
1747 ++Index;
1748 ++StructuredIndex;
1749 return;
1750 }
1751
1752 // We might know the maximum number of elements in advance.
1753 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1754 elementIndex.isUnsigned());
1755 bool maxElementsKnown = false;
1756 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1757 maxElements = CAT->getSize();
1758 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1759 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1760 maxElementsKnown = true;
1761 }
1762
1763 QualType elementType = arrayType->getElementType();
1764 while (Index < IList->getNumInits()) {
1765 Expr *Init = IList->getInit(Index);
1766 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1767 // If we're not the subobject that matches up with the '{' for
1768 // the designator, we shouldn't be handling the
1769 // designator. Return immediately.
1770 if (!SubobjectIsDesignatorContext)
1771 return;
1772
1773 // Handle this designated initializer. elementIndex will be
1774 // updated to be the next array element we'll initialize.
1775 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1776 DeclType, nullptr, &elementIndex, Index,
1777 StructuredList, StructuredIndex, true,
1778 false)) {
1779 hadError = true;
1780 continue;
1781 }
1782
1783 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1784 maxElements = maxElements.extend(elementIndex.getBitWidth());
1785 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1786 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1787 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1788
1789 // If the array is of incomplete type, keep track of the number of
1790 // elements in the initializer.
1791 if (!maxElementsKnown && elementIndex > maxElements)
1792 maxElements = elementIndex;
1793
1794 continue;
1795 }
1796
1797 // If we know the maximum number of elements, and we've already
1798 // hit it, stop consuming elements in the initializer list.
1799 if (maxElementsKnown && elementIndex == maxElements)
1800 break;
1801
1802 InitializedEntity ElementEntity =
1803 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1804 Entity);
1805 // Check this element.
1806 CheckSubElementType(ElementEntity, IList, elementType, Index,
1807 StructuredList, StructuredIndex);
1808 ++elementIndex;
1809
1810 // If the array is of incomplete type, keep track of the number of
1811 // elements in the initializer.
1812 if (!maxElementsKnown && elementIndex > maxElements)
1813 maxElements = elementIndex;
1814 }
1815 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1816 // If this is an incomplete array type, the actual type needs to
1817 // be calculated here.
1818 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1819 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1820 // Sizing an array implicitly to zero is not allowed by ISO C,
1821 // but is supported by GNU.
1822 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1823 }
1824
1825 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1826 ArrayType::Normal, 0);
1827 }
1828 if (!hadError && VerifyOnly) {
1829 // If there are any members of the array that get value-initialized, check
1830 // that is possible. That happens if we know the bound and don't have
1831 // enough elements, or if we're performing an array new with an unknown
1832 // bound.
1833 // FIXME: This needs to detect holes left by designated initializers too.
1834 if ((maxElementsKnown && elementIndex < maxElements) ||
1835 Entity.isVariableLengthArrayNew())
1836 CheckEmptyInitializable(
1837 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1838 IList->getEndLoc());
1839 }
1840}
1841
1842bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1843 Expr *InitExpr,
1844 FieldDecl *Field,
1845 bool TopLevelObject) {
1846 // Handle GNU flexible array initializers.
1847 unsigned FlexArrayDiag;
1848 if (isa<InitListExpr>(InitExpr) &&
1849 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1850 // Empty flexible array init always allowed as an extension
1851 FlexArrayDiag = diag::ext_flexible_array_init;
1852 } else if (SemaRef.getLangOpts().CPlusPlus) {
1853 // Disallow flexible array init in C++; it is not required for gcc
1854 // compatibility, and it needs work to IRGen correctly in general.
1855 FlexArrayDiag = diag::err_flexible_array_init;
1856 } else if (!TopLevelObject) {
1857 // Disallow flexible array init on non-top-level object
1858 FlexArrayDiag = diag::err_flexible_array_init;
1859 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1860 // Disallow flexible array init on anything which is not a variable.
1861 FlexArrayDiag = diag::err_flexible_array_init;
1862 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1863 // Disallow flexible array init on local variables.
1864 FlexArrayDiag = diag::err_flexible_array_init;
1865 } else {
1866 // Allow other cases.
1867 FlexArrayDiag = diag::ext_flexible_array_init;
1868 }
1869
1870 if (!VerifyOnly) {
1871 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1872 << InitExpr->getBeginLoc();
1873 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1874 << Field;
1875 }
1876
1877 return FlexArrayDiag != diag::ext_flexible_array_init;
1878}
1879
1880/// Check if the type of a class element has an accessible destructor.
1881///
1882/// Aggregate initialization requires a class element's destructor be
1883/// accessible per 11.6.1 [dcl.init.aggr]:
1884///
1885/// The destructor for each element of class type is potentially invoked
1886/// (15.4 [class.dtor]) from the context where the aggregate initialization
1887/// occurs.
1888static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1889 Sema &SemaRef) {
1890 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1891 if (!CXXRD)
1892 return false;
1893
1894 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1895 SemaRef.CheckDestructorAccess(Loc, Destructor,
1896 SemaRef.PDiag(diag::err_access_dtor_temp)
1897 << ElementType);
1898 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1899 if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1900 return true;
1901 return false;
1902}
1903
1904void InitListChecker::CheckStructUnionTypes(
1905 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1906 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1907 bool SubobjectIsDesignatorContext, unsigned &Index,
1908 InitListExpr *StructuredList, unsigned &StructuredIndex,
1909 bool TopLevelObject) {
1910 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1911
1912 // If the record is invalid, some of it's members are invalid. To avoid
1913 // confusion, we forgo checking the intializer for the entire record.
1914 if (structDecl->isInvalidDecl()) {
1915 // Assume it was supposed to consume a single initializer.
1916 ++Index;
1917 hadError = true;
1918 return;
1919 }
1920
1921 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1922 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1923
1924 if (!VerifyOnly)
1925 for (FieldDecl *FD : RD->fields()) {
1926 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1927 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1928 hadError = true;
1929 return;
1930 }
1931 }
1932
1933 // If there's a default initializer, use it.
1934 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1935 if (VerifyOnly)
1936 return;
1937 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1938 Field != FieldEnd; ++Field) {
1939 if (Field->hasInClassInitializer()) {
1940 StructuredList->setInitializedFieldInUnion(*Field);
1941 // FIXME: Actually build a CXXDefaultInitExpr?
1942 return;
1943 }
1944 }
1945 }
1946
1947 // Value-initialize the first member of the union that isn't an unnamed
1948 // bitfield.
1949 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1950 Field != FieldEnd; ++Field) {
1951 if (!Field->isUnnamedBitfield()) {
1952 if (VerifyOnly)
1953 CheckEmptyInitializable(
1954 InitializedEntity::InitializeMember(*Field, &Entity),
1955 IList->getEndLoc());
1956 else
1957 StructuredList->setInitializedFieldInUnion(*Field);
1958 break;
1959 }
1960 }
1961 return;
1962 }
1963
1964 bool InitializedSomething = false;
1965
1966 // If we have any base classes, they are initialized prior to the fields.
1967 for (auto &Base : Bases) {
1968 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1969
1970 // Designated inits always initialize fields, so if we see one, all
1971 // remaining base classes have no explicit initializer.
1972 if (Init && isa<DesignatedInitExpr>(Init))
1973 Init = nullptr;
1974
1975 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1976 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1977 SemaRef.Context, &Base, false, &Entity);
1978 if (Init) {
1979 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1980 StructuredList, StructuredIndex);
1981 InitializedSomething = true;
1982 } else if (VerifyOnly) {
1983 CheckEmptyInitializable(BaseEntity, InitLoc);
1984 }
1985
1986 if (!VerifyOnly)
1987 if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1988 hadError = true;
1989 return;
1990 }
1991 }
1992
1993 // If structDecl is a forward declaration, this loop won't do
1994 // anything except look at designated initializers; That's okay,
1995 // because an error should get printed out elsewhere. It might be
1996 // worthwhile to skip over the rest of the initializer, though.
1997 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1998 RecordDecl::field_iterator FieldEnd = RD->field_end();
1999 bool CheckForMissingFields =
2000 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2001 bool HasDesignatedInit = false;
2002
2003 while (Index < IList->getNumInits()) {
2004 Expr *Init = IList->getInit(Index);
2005 SourceLocation InitLoc = Init->getBeginLoc();
2006
2007 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2008 // If we're not the subobject that matches up with the '{' for
2009 // the designator, we shouldn't be handling the
2010 // designator. Return immediately.
2011 if (!SubobjectIsDesignatorContext)
2012 return;
2013
2014 HasDesignatedInit = true;
2015
2016 // Handle this designated initializer. Field will be updated to
2017 // the next field that we'll be initializing.
2018 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2019 DeclType, &Field, nullptr, Index,
2020 StructuredList, StructuredIndex,
2021 true, TopLevelObject))
2022 hadError = true;
2023 else if (!VerifyOnly) {
2024 // Find the field named by the designated initializer.
2025 RecordDecl::field_iterator F = RD->field_begin();
2026 while (std::next(F) != Field)
2027 ++F;
2028 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2029 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2030 hadError = true;
2031 return;
2032 }
2033 }
2034
2035 InitializedSomething = true;
2036
2037 // Disable check for missing fields when designators are used.
2038 // This matches gcc behaviour.
2039 CheckForMissingFields = false;
2040 continue;
2041 }
2042
2043 if (Field == FieldEnd) {
2044 // We've run out of fields. We're done.
2045 break;
2046 }
2047
2048 // We've already initialized a member of a union. We're done.
2049 if (InitializedSomething && DeclType->isUnionType())
2050 break;
2051
2052 // If we've hit the flexible array member at the end, we're done.
2053 if (Field->getType()->isIncompleteArrayType())
2054 break;
2055
2056 if (Field->isUnnamedBitfield()) {
2057 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2058 ++Field;
2059 continue;
2060 }
2061
2062 // Make sure we can use this declaration.
2063 bool InvalidUse;
2064 if (VerifyOnly)
2065 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2066 else
2067 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2068 *Field, IList->getInit(Index)->getBeginLoc());
2069 if (InvalidUse) {
2070 ++Index;
2071 ++Field;
2072 hadError = true;
2073 continue;
2074 }
2075
2076 if (!VerifyOnly) {
2077 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2078 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2079 hadError = true;
2080 return;
2081 }
2082 }
2083
2084 InitializedEntity MemberEntity =
2085 InitializedEntity::InitializeMember(*Field, &Entity);
2086 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2087 StructuredList, StructuredIndex);
2088 InitializedSomething = true;
2089
2090 if (DeclType->isUnionType() && !VerifyOnly) {
2091 // Initialize the first field within the union.
2092 StructuredList->setInitializedFieldInUnion(*Field);
2093 }
2094
2095 ++Field;
2096 }
2097
2098 // Emit warnings for missing struct field initializers.
2099 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2100 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2101 !DeclType->isUnionType()) {
2102 // It is possible we have one or more unnamed bitfields remaining.
2103 // Find first (if any) named field and emit warning.
2104 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2105 it != end; ++it) {
2106 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2107 SemaRef.Diag(IList->getSourceRange().getEnd(),
2108 diag::warn_missing_field_initializers) << *it;
2109 break;
2110 }
2111 }
2112 }
2113
2114 // Check that any remaining fields can be value-initialized.
2115 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2116 !Field->getType()->isIncompleteArrayType()) {
2117 // FIXME: Should check for holes left by designated initializers too.
2118 for (; Field != FieldEnd && !hadError; ++Field) {
2119 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2120 CheckEmptyInitializable(
2121 InitializedEntity::InitializeMember(*Field, &Entity),
2122 IList->getEndLoc());
2123 }
2124 }
2125
2126 // Check that the types of the remaining fields have accessible destructors.
2127 if (!VerifyOnly) {
2128 // If the initializer expression has a designated initializer, check the
2129 // elements for which a designated initializer is not provided too.
2130 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2131 : Field;
2132 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2133 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2134 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2135 hadError = true;
2136 return;
2137 }
2138 }
2139 }
2140
2141 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2142 Index >= IList->getNumInits())
2143 return;
2144
2145 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2146 TopLevelObject)) {
2147 hadError = true;
2148 ++Index;
2149 return;
2150 }
2151
2152 InitializedEntity MemberEntity =
2153 InitializedEntity::InitializeMember(*Field, &Entity);
2154
2155 if (isa<InitListExpr>(IList->getInit(Index)))
2156 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2157 StructuredList, StructuredIndex);
2158 else
2159 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2160 StructuredList, StructuredIndex);
2161}
2162
2163/// Expand a field designator that refers to a member of an
2164/// anonymous struct or union into a series of field designators that
2165/// refers to the field within the appropriate subobject.
2166///
2167static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2168 DesignatedInitExpr *DIE,
2169 unsigned DesigIdx,
2170 IndirectFieldDecl *IndirectField) {
2171 typedef DesignatedInitExpr::Designator Designator;
2172
2173 // Build the replacement designators.
2174 SmallVector<Designator, 4> Replacements;
2175 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2176 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2177 if (PI + 1 == PE)
2178 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2179 DIE->getDesignator(DesigIdx)->getDotLoc(),
2180 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2181 else
2182 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2183 SourceLocation(), SourceLocation()));
2184 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2184, __PRETTY_FUNCTION__))
;
2185 Replacements.back().setField(cast<FieldDecl>(*PI));
2186 }
2187
2188 // Expand the current designator into the set of replacement
2189 // designators, so we have a full subobject path down to where the
2190 // member of the anonymous struct/union is actually stored.
2191 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2192 &Replacements[0] + Replacements.size());
2193}
2194
2195static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2196 DesignatedInitExpr *DIE) {
2197 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2198 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2199 for (unsigned I = 0; I < NumIndexExprs; ++I)
2200 IndexExprs[I] = DIE->getSubExpr(I + 1);
2201 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2202 IndexExprs,
2203 DIE->getEqualOrColonLoc(),
2204 DIE->usesGNUSyntax(), DIE->getInit());
2205}
2206
2207namespace {
2208
2209// Callback to only accept typo corrections that are for field members of
2210// the given struct or union.
2211class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2212 public:
2213 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2214 : Record(RD) {}
2215
2216 bool ValidateCandidate(const TypoCorrection &candidate) override {
2217 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2218 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2219 }
2220
2221 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2222 return llvm::make_unique<FieldInitializerValidatorCCC>(*this);
2223 }
2224
2225 private:
2226 RecordDecl *Record;
2227};
2228
2229} // end anonymous namespace
2230
2231/// Check the well-formedness of a C99 designated initializer.
2232///
2233/// Determines whether the designated initializer @p DIE, which
2234/// resides at the given @p Index within the initializer list @p
2235/// IList, is well-formed for a current object of type @p DeclType
2236/// (C99 6.7.8). The actual subobject that this designator refers to
2237/// within the current subobject is returned in either
2238/// @p NextField or @p NextElementIndex (whichever is appropriate).
2239///
2240/// @param IList The initializer list in which this designated
2241/// initializer occurs.
2242///
2243/// @param DIE The designated initializer expression.
2244///
2245/// @param DesigIdx The index of the current designator.
2246///
2247/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2248/// into which the designation in @p DIE should refer.
2249///
2250/// @param NextField If non-NULL and the first designator in @p DIE is
2251/// a field, this will be set to the field declaration corresponding
2252/// to the field named by the designator.
2253///
2254/// @param NextElementIndex If non-NULL and the first designator in @p
2255/// DIE is an array designator or GNU array-range designator, this
2256/// will be set to the last index initialized by this designator.
2257///
2258/// @param Index Index into @p IList where the designated initializer
2259/// @p DIE occurs.
2260///
2261/// @param StructuredList The initializer list expression that
2262/// describes all of the subobject initializers in the order they'll
2263/// actually be initialized.
2264///
2265/// @returns true if there was an error, false otherwise.
2266bool
2267InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2268 InitListExpr *IList,
2269 DesignatedInitExpr *DIE,
2270 unsigned DesigIdx,
2271 QualType &CurrentObjectType,
2272 RecordDecl::field_iterator *NextField,
2273 llvm::APSInt *NextElementIndex,
2274 unsigned &Index,
2275 InitListExpr *StructuredList,
2276 unsigned &StructuredIndex,
2277 bool FinishSubobjectInit,
2278 bool TopLevelObject) {
2279 if (DesigIdx == DIE->size()) {
2280 // Check the actual initialization for the designated object type.
2281 bool prevHadError = hadError;
2282
2283 // Temporarily remove the designator expression from the
2284 // initializer list that the child calls see, so that we don't try
2285 // to re-process the designator.
2286 unsigned OldIndex = Index;
2287 IList->setInit(OldIndex, DIE->getInit());
2288
2289 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2290 StructuredList, StructuredIndex);
2291
2292 // Restore the designated initializer expression in the syntactic
2293 // form of the initializer list.
2294 if (IList->getInit(OldIndex) != DIE->getInit())
2295 DIE->setInit(IList->getInit(OldIndex));
2296 IList->setInit(OldIndex, DIE);
2297
2298 return hadError && !prevHadError;
2299 }
2300
2301 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2302 bool IsFirstDesignator = (DesigIdx == 0);
2303 if (!VerifyOnly) {
2304 assert((IsFirstDesignator || StructuredList) &&(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2305, __PRETTY_FUNCTION__))
2305 "Need a non-designated initializer list to start from")(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2305, __PRETTY_FUNCTION__))
;
2306
2307 // Determine the structural initializer list that corresponds to the
2308 // current subobject.
2309 if (IsFirstDesignator)
2310 StructuredList = SyntacticToSemantic.lookup(IList);
2311 else {
2312 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2313 StructuredList->getInit(StructuredIndex) : nullptr;
2314 if (!ExistingInit && StructuredList->hasArrayFiller())
2315 ExistingInit = StructuredList->getArrayFiller();
2316
2317 if (!ExistingInit)
2318 StructuredList = getStructuredSubobjectInit(
2319 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2320 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2321 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2322 StructuredList = Result;
2323 else {
2324 if (DesignatedInitUpdateExpr *E =
2325 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2326 StructuredList = E->getUpdater();
2327 else {
2328 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2329 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2330 ExistingInit, DIE->getEndLoc());
2331 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2332 StructuredList = DIUE->getUpdater();
2333 }
2334
2335 // We need to check on source range validity because the previous
2336 // initializer does not have to be an explicit initializer. e.g.,
2337 //
2338 // struct P { int a, b; };
2339 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2340 //
2341 // There is an overwrite taking place because the first braced initializer
2342 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2343 if (ExistingInit->getSourceRange().isValid()) {
2344 // We are creating an initializer list that initializes the
2345 // subobjects of the current object, but there was already an
2346 // initialization that completely initialized the current
2347 // subobject, e.g., by a compound literal:
2348 //
2349 // struct X { int a, b; };
2350 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2351 //
2352 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2353 // designated initializer re-initializes the whole
2354 // subobject [0], overwriting previous initializers.
2355 SemaRef.Diag(D->getBeginLoc(),
2356 diag::warn_subobject_initializer_overrides)
2357 << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2358
2359 SemaRef.Diag(ExistingInit->getBeginLoc(),
2360 diag::note_previous_initializer)
2361 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2362 }
2363 }
2364 }
2365 assert(StructuredList && "Expected a structured initializer list")((StructuredList && "Expected a structured initializer list"
) ? static_cast<void> (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2365, __PRETTY_FUNCTION__))
;
2366 }
2367
2368 if (D->isFieldDesignator()) {
2369 // C99 6.7.8p7:
2370 //
2371 // If a designator has the form
2372 //
2373 // . identifier
2374 //
2375 // then the current object (defined below) shall have
2376 // structure or union type and the identifier shall be the
2377 // name of a member of that type.
2378 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2379 if (!RT) {
2380 SourceLocation Loc = D->getDotLoc();
2381 if (Loc.isInvalid())
2382 Loc = D->getFieldLoc();
2383 if (!VerifyOnly)
2384 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2385 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2386 ++Index;
2387 return true;
2388 }
2389
2390 FieldDecl *KnownField = D->getField();
2391 if (!KnownField) {
2392 IdentifierInfo *FieldName = D->getFieldName();
2393 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2394 for (NamedDecl *ND : Lookup) {
2395 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2396 KnownField = FD;
2397 break;
2398 }
2399 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2400 // In verify mode, don't modify the original.
2401 if (VerifyOnly)
2402 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2403 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2404 D = DIE->getDesignator(DesigIdx);
2405 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2406 break;
2407 }
2408 }
2409 if (!KnownField) {
2410 if (VerifyOnly) {
2411 ++Index;
2412 return true; // No typo correction when just trying this out.
2413 }
2414
2415 // Name lookup found something, but it wasn't a field.
2416 if (!Lookup.empty()) {
2417 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2418 << FieldName;
2419 SemaRef.Diag(Lookup.front()->getLocation(),
2420 diag::note_field_designator_found);
2421 ++Index;
2422 return true;
2423 }
2424
2425 // Name lookup didn't find anything.
2426 // Determine whether this was a typo for another field name.
2427 FieldInitializerValidatorCCC CCC(RT->getDecl());
2428 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2429 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2430 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2431 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2432 SemaRef.diagnoseTypo(
2433 Corrected,
2434 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2435 << FieldName << CurrentObjectType);
2436 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2437 hadError = true;
2438 } else {
2439 // Typo correction didn't find anything.
2440 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2441 << FieldName << CurrentObjectType;
2442 ++Index;
2443 return true;
2444 }
2445 }
2446 }
2447
2448 unsigned FieldIndex = 0;
2449
2450 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2451 FieldIndex = CXXRD->getNumBases();
2452
2453 for (auto *FI : RT->getDecl()->fields()) {
2454 if (FI->isUnnamedBitfield())
2455 continue;
2456 if (declaresSameEntity(KnownField, FI)) {
2457 KnownField = FI;
2458 break;
2459 }
2460 ++FieldIndex;
2461 }
2462
2463 RecordDecl::field_iterator Field =
2464 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2465
2466 // All of the fields of a union are located at the same place in
2467 // the initializer list.
2468 if (RT->getDecl()->isUnion()) {
2469 FieldIndex = 0;
2470 if (!VerifyOnly) {
2471 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2472 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2473 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2474, __PRETTY_FUNCTION__))
2474 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2474, __PRETTY_FUNCTION__))
;
2475
2476 Expr *ExistingInit = StructuredList->getInit(0);
2477 if (ExistingInit) {
2478 // We're about to throw away an initializer, emit warning.
2479 SemaRef.Diag(D->getFieldLoc(),
2480 diag::warn_initializer_overrides)
2481 << D->getSourceRange();
2482 SemaRef.Diag(ExistingInit->getBeginLoc(),
2483 diag::note_previous_initializer)
2484 << /*FIXME:has side effects=*/0
2485 << ExistingInit->getSourceRange();
2486 }
2487
2488 // remove existing initializer
2489 StructuredList->resizeInits(SemaRef.Context, 0);
2490 StructuredList->setInitializedFieldInUnion(nullptr);
2491 }
2492
2493 StructuredList->setInitializedFieldInUnion(*Field);
2494 }
2495 }
2496
2497 // Make sure we can use this declaration.
2498 bool InvalidUse;
2499 if (VerifyOnly)
2500 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2501 else
2502 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2503 if (InvalidUse) {
2504 ++Index;
2505 return true;
2506 }
2507
2508 if (!VerifyOnly) {
2509 // Update the designator with the field declaration.
2510 D->setField(*Field);
2511
2512 // Make sure that our non-designated initializer list has space
2513 // for a subobject corresponding to this field.
2514 if (FieldIndex >= StructuredList->getNumInits())
2515 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2516 }
2517
2518 // This designator names a flexible array member.
2519 if (Field->getType()->isIncompleteArrayType()) {
2520 bool Invalid = false;
2521 if ((DesigIdx + 1) != DIE->size()) {
2522 // We can't designate an object within the flexible array
2523 // member (because GCC doesn't allow it).
2524 if (!VerifyOnly) {
2525 DesignatedInitExpr::Designator *NextD
2526 = DIE->getDesignator(DesigIdx + 1);
2527 SemaRef.Diag(NextD->getBeginLoc(),
2528 diag::err_designator_into_flexible_array_member)
2529 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2530 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2531 << *Field;
2532 }
2533 Invalid = true;
2534 }
2535
2536 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2537 !isa<StringLiteral>(DIE->getInit())) {
2538 // The initializer is not an initializer list.
2539 if (!VerifyOnly) {
2540 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2541 diag::err_flexible_array_init_needs_braces)
2542 << DIE->getInit()->getSourceRange();
2543 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2544 << *Field;
2545 }
2546 Invalid = true;
2547 }
2548
2549 // Check GNU flexible array initializer.
2550 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2551 TopLevelObject))
2552 Invalid = true;
2553
2554 if (Invalid) {
2555 ++Index;
2556 return true;
2557 }
2558
2559 // Initialize the array.
2560 bool prevHadError = hadError;
2561 unsigned newStructuredIndex = FieldIndex;
2562 unsigned OldIndex = Index;
2563 IList->setInit(Index, DIE->getInit());
2564
2565 InitializedEntity MemberEntity =
2566 InitializedEntity::InitializeMember(*Field, &Entity);
2567 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2568 StructuredList, newStructuredIndex);
2569
2570 IList->setInit(OldIndex, DIE);
2571 if (hadError && !prevHadError) {
2572 ++Field;
2573 ++FieldIndex;
2574 if (NextField)
2575 *NextField = Field;
2576 StructuredIndex = FieldIndex;
2577 return true;
2578 }
2579 } else {
2580 // Recurse to check later designated subobjects.
2581 QualType FieldType = Field->getType();
2582 unsigned newStructuredIndex = FieldIndex;
2583
2584 InitializedEntity MemberEntity =
2585 InitializedEntity::InitializeMember(*Field, &Entity);
2586 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2587 FieldType, nullptr, nullptr, Index,
2588 StructuredList, newStructuredIndex,
2589 FinishSubobjectInit, false))
2590 return true;
2591 }
2592
2593 // Find the position of the next field to be initialized in this
2594 // subobject.
2595 ++Field;
2596 ++FieldIndex;
2597
2598 // If this the first designator, our caller will continue checking
2599 // the rest of this struct/class/union subobject.
2600 if (IsFirstDesignator) {
2601 if (NextField)
2602 *NextField = Field;
2603 StructuredIndex = FieldIndex;
2604 return false;
2605 }
2606
2607 if (!FinishSubobjectInit)
2608 return false;
2609
2610 // We've already initialized something in the union; we're done.
2611 if (RT->getDecl()->isUnion())
2612 return hadError;
2613
2614 // Check the remaining fields within this class/struct/union subobject.
2615 bool prevHadError = hadError;
2616
2617 auto NoBases =
2618 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2619 CXXRecordDecl::base_class_iterator());
2620 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2621 false, Index, StructuredList, FieldIndex);
2622 return hadError && !prevHadError;
2623 }
2624
2625 // C99 6.7.8p6:
2626 //
2627 // If a designator has the form
2628 //
2629 // [ constant-expression ]
2630 //
2631 // then the current object (defined below) shall have array
2632 // type and the expression shall be an integer constant
2633 // expression. If the array is of unknown size, any
2634 // nonnegative value is valid.
2635 //
2636 // Additionally, cope with the GNU extension that permits
2637 // designators of the form
2638 //
2639 // [ constant-expression ... constant-expression ]
2640 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2641 if (!AT) {
2642 if (!VerifyOnly)
2643 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2644 << CurrentObjectType;
2645 ++Index;
2646 return true;
2647 }
2648
2649 Expr *IndexExpr = nullptr;
2650 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2651 if (D->isArrayDesignator()) {
2652 IndexExpr = DIE->getArrayIndex(*D);
2653 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2654 DesignatedEndIndex = DesignatedStartIndex;
2655 } else {
2656 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 2656, __PRETTY_FUNCTION__))
;
2657
2658 DesignatedStartIndex =
2659 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2660 DesignatedEndIndex =
2661 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2662 IndexExpr = DIE->getArrayRangeEnd(*D);
2663
2664 // Codegen can't handle evaluating array range designators that have side
2665 // effects, because we replicate the AST value for each initialized element.
2666 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2667 // elements with something that has a side effect, so codegen can emit an
2668 // "error unsupported" error instead of miscompiling the app.
2669 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2670 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2671 FullyStructuredList->sawArrayRangeDesignator();
2672 }
2673
2674 if (isa<ConstantArrayType>(AT)) {
2675 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2676 DesignatedStartIndex
2677 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2678 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2679 DesignatedEndIndex
2680 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2681 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2682 if (DesignatedEndIndex >= MaxElements) {
2683 if (!VerifyOnly)
2684 SemaRef.Diag(IndexExpr->getBeginLoc(),
2685 diag::err_array_designator_too_large)
2686 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2687 << IndexExpr->getSourceRange();
2688 ++Index;
2689 return true;
2690 }
2691 } else {
2692 unsigned DesignatedIndexBitWidth =
2693 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2694 DesignatedStartIndex =
2695 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2696 DesignatedEndIndex =
2697 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2698 DesignatedStartIndex.setIsUnsigned(true);
2699 DesignatedEndIndex.setIsUnsigned(true);
2700 }
2701
2702 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2703 // We're modifying a string literal init; we have to decompose the string
2704 // so we can modify the individual characters.
2705 ASTContext &Context = SemaRef.Context;
2706 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2707
2708 // Compute the character type
2709 QualType CharTy = AT->getElementType();
2710
2711 // Compute the type of the integer literals.
2712 QualType PromotedCharTy = CharTy;
2713 if (CharTy->isPromotableIntegerType())
2714 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2715 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2716
2717 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2718 // Get the length of the string.
2719 uint64_t StrLen = SL->getLength();
2720 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2721 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2722 StructuredList->resizeInits(Context, StrLen);
2723
2724 // Build a literal for each character in the string, and put them into
2725 // the init list.
2726 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2727 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2728 Expr *Init = new (Context) IntegerLiteral(
2729 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2730 if (CharTy != PromotedCharTy)
2731 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2732 Init, nullptr, VK_RValue);
2733 StructuredList->updateInit(Context, i, Init);
2734 }
2735 } else {
2736 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2737 std::string Str;
2738 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2739
2740 // Get the length of the string.
2741 uint64_t StrLen = Str.size();
2742 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2743 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2744 StructuredList->resizeInits(Context, StrLen);
2745
2746 // Build a literal for each character in the string, and put them into
2747 // the init list.
2748 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2749 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2750 Expr *Init = new (Context) IntegerLiteral(
2751 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2752 if (CharTy != PromotedCharTy)
2753 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2754 Init, nullptr, VK_RValue);
2755 StructuredList->updateInit(Context, i, Init);
2756 }
2757 }
2758 }
2759
2760 // Make sure that our non-designated initializer list has space
2761 // for a subobject corresponding to this array element.
2762 if (!VerifyOnly &&
2763 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2764 StructuredList->resizeInits(SemaRef.Context,
2765 DesignatedEndIndex.getZExtValue() + 1);
2766
2767 // Repeatedly perform subobject initializations in the range
2768 // [DesignatedStartIndex, DesignatedEndIndex].
2769
2770 // Move to the next designator
2771 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2772 unsigned OldIndex = Index;
2773
2774 InitializedEntity ElementEntity =
2775 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2776
2777 while (DesignatedStartIndex <= DesignatedEndIndex) {
2778 // Recurse to check later designated subobjects.
2779 QualType ElementType = AT->getElementType();
2780 Index = OldIndex;
2781
2782 ElementEntity.setElementIndex(ElementIndex);
2783 if (CheckDesignatedInitializer(
2784 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2785 nullptr, Index, StructuredList, ElementIndex,
2786 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2787 false))
2788 return true;
2789
2790 // Move to the next index in the array that we'll be initializing.
2791 ++DesignatedStartIndex;
2792 ElementIndex = DesignatedStartIndex.getZExtValue();
2793 }
2794
2795 // If this the first designator, our caller will continue checking
2796 // the rest of this array subobject.
2797 if (IsFirstDesignator) {
2798 if (NextElementIndex)
2799 *NextElementIndex = DesignatedStartIndex;
2800 StructuredIndex = ElementIndex;
2801 return false;
2802 }
2803
2804 if (!FinishSubobjectInit)
2805 return false;
2806
2807 // Check the remaining elements within this array subobject.
2808 bool prevHadError = hadError;
2809 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2810 /*SubobjectIsDesignatorContext=*/false, Index,
2811 StructuredList, ElementIndex);
2812 return hadError && !prevHadError;
2813}
2814
2815// Get the structured initializer list for a subobject of type
2816// @p CurrentObjectType.
2817InitListExpr *
2818InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2819 QualType CurrentObjectType,
2820 InitListExpr *StructuredList,
2821 unsigned StructuredIndex,
2822 SourceRange InitRange,
2823 bool IsFullyOverwritten) {
2824 if (VerifyOnly)
2825 return nullptr; // No structured list in verification-only mode.
2826 Expr *ExistingInit = nullptr;
2827 if (!StructuredList)
2828 ExistingInit = SyntacticToSemantic.lookup(IList);
2829 else if (StructuredIndex < StructuredList->getNumInits())
2830 ExistingInit = StructuredList->getInit(StructuredIndex);
2831
2832 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2833 // There might have already been initializers for subobjects of the current
2834 // object, but a subsequent initializer list will overwrite the entirety
2835 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2836 //
2837 // struct P { char x[6]; };
2838 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2839 //
2840 // The first designated initializer is ignored, and l.x is just "f".
2841 if (!IsFullyOverwritten)
2842 return Result;
2843
2844 if (ExistingInit) {
2845 // We are creating an initializer list that initializes the
2846 // subobjects of the current object, but there was already an
2847 // initialization that completely initialized the current
2848 // subobject, e.g., by a compound literal:
2849 //
2850 // struct X { int a, b; };
2851 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2852 //
2853 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2854 // designated initializer re-initializes the whole
2855 // subobject [0], overwriting previous initializers.
2856 SemaRef.Diag(InitRange.getBegin(),
2857 diag::warn_subobject_initializer_overrides)
2858 << InitRange;
2859 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2860 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2861 }
2862
2863 InitListExpr *Result
2864 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2865 InitRange.getBegin(), None,
2866 InitRange.getEnd());
2867
2868 QualType ResultType = CurrentObjectType;
2869 if (!ResultType->isArrayType())
2870 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2871 Result->setType(ResultType);
2872
2873 // Pre-allocate storage for the structured initializer list.
2874 unsigned NumElements = 0;
2875 unsigned NumInits = 0;
2876 bool GotNumInits = false;
2877 if (!StructuredList) {
2878 NumInits = IList->getNumInits();
2879 GotNumInits = true;
2880 } else if (Index < IList->getNumInits()) {
2881 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2882 NumInits = SubList->getNumInits();
2883 GotNumInits = true;
2884 }
2885 }
2886
2887 if (const ArrayType *AType
2888 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2889 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2890 NumElements = CAType->getSize().getZExtValue();
2891 // Simple heuristic so that we don't allocate a very large
2892 // initializer with many empty entries at the end.
2893 if (GotNumInits && NumElements > NumInits)
2894 NumElements = 0;
2895 }
2896 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2897 NumElements = VType->getNumElements();
2898 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2899 RecordDecl *RDecl = RType->getDecl();
2900 if (RDecl->isUnion())
2901 NumElements = 1;
2902 else
2903 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2904 }
2905
2906 Result->reserveInits(SemaRef.Context, NumElements);
2907
2908 // Link this new initializer list into the structured initializer
2909 // lists.
2910 if (StructuredList)
2911 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2912 else {
2913 Result->setSyntacticForm(IList);
2914 SyntacticToSemantic[IList] = Result;
2915 }
2916
2917 return Result;
2918}
2919
2920/// Update the initializer at index @p StructuredIndex within the
2921/// structured initializer list to the value @p expr.
2922void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2923 unsigned &StructuredIndex,
2924 Expr *expr) {
2925 // No structured initializer list to update
2926 if (!StructuredList)
2927 return;
2928
2929 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2930 StructuredIndex, expr)) {
2931 // This initializer overwrites a previous initializer. Warn.
2932 // We need to check on source range validity because the previous
2933 // initializer does not have to be an explicit initializer.
2934 // struct P { int a, b; };
2935 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2936 // There is an overwrite taking place because the first braced initializer
2937 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2938 if (PrevInit->getSourceRange().isValid()) {
2939 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2940 << expr->getSourceRange();
2941
2942 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2943 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2944 }
2945 }
2946
2947 ++StructuredIndex;
2948}
2949
2950/// Check that the given Index expression is a valid array designator
2951/// value. This is essentially just a wrapper around
2952/// VerifyIntegerConstantExpression that also checks for negative values
2953/// and produces a reasonable diagnostic if there is a
2954/// failure. Returns the index expression, possibly with an implicit cast
2955/// added, on success. If everything went okay, Value will receive the
2956/// value of the constant expression.
2957static ExprResult
2958CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2959 SourceLocation Loc = Index->getBeginLoc();
2960
2961 // Make sure this is an integer constant expression.
2962 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2963 if (Result.isInvalid())
2964 return Result;
2965
2966 if (Value.isSigned() && Value.isNegative())
2967 return S.Diag(Loc, diag::err_array_designator_negative)
2968 << Value.toString(10) << Index->getSourceRange();
2969
2970 Value.setIsUnsigned(true);
2971 return Result;
2972}
2973
2974ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2975 SourceLocation Loc,
2976 bool GNUSyntax,
2977 ExprResult Init) {
2978 typedef DesignatedInitExpr::Designator ASTDesignator;
2979
2980 bool Invalid = false;
2981 SmallVector<ASTDesignator, 32> Designators;
2982 SmallVector<Expr *, 32> InitExpressions;
2983
2984 // Build designators and check array designator expressions.
2985 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2986 const Designator &D = Desig.getDesignator(Idx);
2987 switch (D.getKind()) {
2988 case Designator::FieldDesignator:
2989 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2990 D.getFieldLoc()));
2991 break;
2992
2993 case Designator::ArrayDesignator: {
2994 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2995 llvm::APSInt IndexValue;
2996 if (!Index->isTypeDependent() && !Index->isValueDependent())
2997 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2998 if (!Index)
2999 Invalid = true;
3000 else {
3001 Designators.push_back(ASTDesignator(InitExpressions.size(),
3002 D.getLBracketLoc(),
3003 D.getRBracketLoc()));
3004 InitExpressions.push_back(Index);
3005 }
3006 break;
3007 }
3008
3009 case Designator::ArrayRangeDesignator: {
3010 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3011 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3012 llvm::APSInt StartValue;
3013 llvm::APSInt EndValue;
3014 bool StartDependent = StartIndex->isTypeDependent() ||
3015 StartIndex->isValueDependent();
3016 bool EndDependent = EndIndex->isTypeDependent() ||
3017 EndIndex->isValueDependent();
3018 if (!StartDependent)
3019 StartIndex =
3020 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3021 if (!EndDependent)
3022 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3023
3024 if (!StartIndex || !EndIndex)
3025 Invalid = true;
3026 else {
3027 // Make sure we're comparing values with the same bit width.
3028 if (StartDependent || EndDependent) {
3029 // Nothing to compute.
3030 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3031 EndValue = EndValue.extend(StartValue.getBitWidth());
3032 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3033 StartValue = StartValue.extend(EndValue.getBitWidth());
3034
3035 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3036 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3037 << StartValue.toString(10) << EndValue.toString(10)
3038 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3039 Invalid = true;
3040 } else {
3041 Designators.push_back(ASTDesignator(InitExpressions.size(),
3042 D.getLBracketLoc(),
3043 D.getEllipsisLoc(),
3044 D.getRBracketLoc()));
3045 InitExpressions.push_back(StartIndex);
3046 InitExpressions.push_back(EndIndex);
3047 }
3048 }
3049 break;
3050 }
3051 }
3052 }
3053
3054 if (Invalid || Init.isInvalid())
3055 return ExprError();
3056
3057 // Clear out the expressions within the designation.
3058 Desig.ClearExprs(*this);
3059
3060 DesignatedInitExpr *DIE
3061 = DesignatedInitExpr::Create(Context,
3062 Designators,
3063 InitExpressions, Loc, GNUSyntax,
3064 Init.getAs<Expr>());
3065
3066 if (!getLangOpts().C99)
3067 Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3068 << DIE->getSourceRange();
3069
3070 return DIE;
3071}
3072
3073//===----------------------------------------------------------------------===//
3074// Initialization entity
3075//===----------------------------------------------------------------------===//
3076
3077InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3078 const InitializedEntity &Parent)
3079 : Parent(&Parent), Index(Index)
3080{
3081 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3082 Kind = EK_ArrayElement;
3083 Type = AT->getElementType();
3084 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3085 Kind = EK_VectorElement;
3086 Type = VT->getElementType();
3087 } else {
3088 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3089 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3089, __PRETTY_FUNCTION__))
;
3090 Kind = EK_ComplexElement;
3091 Type = CT->getElementType();
3092 }
3093}
3094
3095InitializedEntity
3096InitializedEntity::InitializeBase(ASTContext &Context,
3097 const CXXBaseSpecifier *Base,
3098 bool IsInheritedVirtualBase,
3099 const InitializedEntity *Parent) {
3100 InitializedEntity Result;
3101 Result.Kind = EK_Base;
3102 Result.Parent = Parent;
3103 Result.Base = reinterpret_cast<uintptr_t>(Base);
3104 if (IsInheritedVirtualBase)
3105 Result.Base |= 0x01;
3106
3107 Result.Type = Base->getType();
3108 return Result;
3109}
3110
3111DeclarationName InitializedEntity::getName() const {
3112 switch (getKind()) {
3113 case EK_Parameter:
3114 case EK_Parameter_CF_Audited: {
3115 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3116 return (D ? D->getDeclName() : DeclarationName());
3117 }
3118
3119 case EK_Variable:
3120 case EK_Member:
3121 case EK_Binding:
3122 return Variable.VariableOrMember->getDeclName();
3123
3124 case EK_LambdaCapture:
3125 return DeclarationName(Capture.VarID);
3126
3127 case EK_Result:
3128 case EK_StmtExprResult:
3129 case EK_Exception:
3130 case EK_New:
3131 case EK_Temporary:
3132 case EK_Base:
3133 case EK_Delegating:
3134 case EK_ArrayElement:
3135 case EK_VectorElement:
3136 case EK_ComplexElement:
3137 case EK_BlockElement:
3138 case EK_LambdaToBlockConversionBlockElement:
3139 case EK_CompoundLiteralInit:
3140 case EK_RelatedResult:
3141 return DeclarationName();
3142 }
3143
3144 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3144)
;
3145}
3146
3147ValueDecl *InitializedEntity::getDecl() const {
3148 switch (getKind()) {
3149 case EK_Variable:
3150 case EK_Member:
3151 case EK_Binding:
3152 return Variable.VariableOrMember;
3153
3154 case EK_Parameter:
3155 case EK_Parameter_CF_Audited:
3156 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3157
3158 case EK_Result:
3159 case EK_StmtExprResult:
3160 case EK_Exception:
3161 case EK_New:
3162 case EK_Temporary:
3163 case EK_Base:
3164 case EK_Delegating:
3165 case EK_ArrayElement:
3166 case EK_VectorElement:
3167 case EK_ComplexElement:
3168 case EK_BlockElement:
3169 case EK_LambdaToBlockConversionBlockElement:
3170 case EK_LambdaCapture:
3171 case EK_CompoundLiteralInit:
3172 case EK_RelatedResult:
3173 return nullptr;
3174 }
3175
3176 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3176)
;
3177}
3178
3179bool InitializedEntity::allowsNRVO() const {
3180 switch (getKind()) {
3181 case EK_Result:
3182 case EK_Exception:
3183 return LocAndNRVO.NRVO;
3184
3185 case EK_StmtExprResult:
3186 case EK_Variable:
3187 case EK_Parameter:
3188 case EK_Parameter_CF_Audited:
3189 case EK_Member:
3190 case EK_Binding:
3191 case EK_New:
3192 case EK_Temporary:
3193 case EK_CompoundLiteralInit:
3194 case EK_Base:
3195 case EK_Delegating:
3196 case EK_ArrayElement:
3197 case EK_VectorElement:
3198 case EK_ComplexElement:
3199 case EK_BlockElement:
3200 case EK_LambdaToBlockConversionBlockElement:
3201 case EK_LambdaCapture:
3202 case EK_RelatedResult:
3203 break;
3204 }
3205
3206 return false;
3207}
3208
3209unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3210 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3210, __PRETTY_FUNCTION__))
;
3211 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3212 for (unsigned I = 0; I != Depth; ++I)
3213 OS << "`-";
3214
3215 switch (getKind()) {
3216 case EK_Variable: OS << "Variable"; break;
3217 case EK_Parameter: OS << "Parameter"; break;
3218 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3219 break;
3220 case EK_Result: OS << "Result"; break;
3221 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3222 case EK_Exception: OS << "Exception"; break;
3223 case EK_Member: OS << "Member"; break;
3224 case EK_Binding: OS << "Binding"; break;
3225 case EK_New: OS << "New"; break;
3226 case EK_Temporary: OS << "Temporary"; break;
3227 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3228 case EK_RelatedResult: OS << "RelatedResult"; break;
3229 case EK_Base: OS << "Base"; break;
3230 case EK_Delegating: OS << "Delegating"; break;
3231 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3232 case EK_VectorElement: OS << "VectorElement " << Index; break;
3233 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3234 case EK_BlockElement: OS << "Block"; break;
3235 case EK_LambdaToBlockConversionBlockElement:
3236 OS << "Block (lambda)";
3237 break;
3238 case EK_LambdaCapture:
3239 OS << "LambdaCapture ";
3240 OS << DeclarationName(Capture.VarID);
3241 break;
3242 }
3243
3244 if (auto *D = getDecl()) {
3245 OS << " ";
3246 D->printQualifiedName(OS);
3247 }
3248
3249 OS << " '" << getType().getAsString() << "'\n";
3250
3251 return Depth + 1;
3252}
3253
3254LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3255 dumpImpl(llvm::errs());
3256}
3257
3258//===----------------------------------------------------------------------===//
3259// Initialization sequence
3260//===----------------------------------------------------------------------===//
3261
3262void InitializationSequence::Step::Destroy() {
3263 switch (Kind) {
3264 case SK_ResolveAddressOfOverloadedFunction:
3265 case SK_CastDerivedToBaseRValue:
3266 case SK_CastDerivedToBaseXValue:
3267 case SK_CastDerivedToBaseLValue:
3268 case SK_BindReference:
3269 case SK_BindReferenceToTemporary:
3270 case SK_FinalCopy:
3271 case SK_ExtraneousCopyToTemporary:
3272 case SK_UserConversion:
3273 case SK_QualificationConversionRValue:
3274 case SK_QualificationConversionXValue:
3275 case SK_QualificationConversionLValue:
3276 case SK_AtomicConversion:
3277 case SK_LValueToRValue:
3278 case SK_ListInitialization:
3279 case SK_UnwrapInitList:
3280 case SK_RewrapInitList:
3281 case SK_ConstructorInitialization:
3282 case SK_ConstructorInitializationFromList:
3283 case SK_ZeroInitialization:
3284 case SK_CAssignment:
3285 case SK_StringInit:
3286 case SK_ObjCObjectConversion:
3287 case SK_ArrayLoopIndex:
3288 case SK_ArrayLoopInit:
3289 case SK_ArrayInit:
3290 case SK_GNUArrayInit:
3291 case SK_ParenthesizedArrayInit:
3292 case SK_PassByIndirectCopyRestore:
3293 case SK_PassByIndirectRestore:
3294 case SK_ProduceObjCObject:
3295 case SK_StdInitializerList:
3296 case SK_StdInitializerListConstructorCall:
3297 case SK_OCLSamplerInit:
3298 case SK_OCLZeroOpaqueType:
3299 break;
3300
3301 case SK_ConversionSequence:
3302 case SK_ConversionSequenceNoNarrowing:
3303 delete ICS;
3304 }
3305}
3306
3307bool InitializationSequence::isDirectReferenceBinding() const {
3308 // There can be some lvalue adjustments after the SK_BindReference step.
3309 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3310 if (I->Kind == SK_BindReference)
3311 return true;
3312 if (I->Kind == SK_BindReferenceToTemporary)
3313 return false;
3314 }
3315 return false;
3316}
3317
3318bool InitializationSequence::isAmbiguous() const {
3319 if (!Failed())
3320 return false;
3321
3322 switch (getFailureKind()) {
3323 case FK_TooManyInitsForReference:
3324 case FK_ParenthesizedListInitForReference:
3325 case FK_ArrayNeedsInitList:
3326 case FK_ArrayNeedsInitListOrStringLiteral:
3327 case FK_ArrayNeedsInitListOrWideStringLiteral:
3328 case FK_NarrowStringIntoWideCharArray:
3329 case FK_WideStringIntoCharArray:
3330 case FK_IncompatWideStringIntoWideChar:
3331 case FK_PlainStringIntoUTF8Char:
3332 case FK_UTF8StringIntoPlainChar:
3333 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3334 case FK_NonConstLValueReferenceBindingToTemporary:
3335 case FK_NonConstLValueReferenceBindingToBitfield:
3336 case FK_NonConstLValueReferenceBindingToVectorElement:
3337 case FK_NonConstLValueReferenceBindingToUnrelated:
3338 case FK_RValueReferenceBindingToLValue:
3339 case FK_ReferenceInitDropsQualifiers:
3340 case FK_ReferenceInitFailed:
3341 case FK_ConversionFailed:
3342 case FK_ConversionFromPropertyFailed:
3343 case FK_TooManyInitsForScalar:
3344 case FK_ParenthesizedListInitForScalar:
3345 case FK_ReferenceBindingToInitList:
3346 case FK_InitListBadDestinationType:
3347 case FK_DefaultInitOfConst:
3348 case FK_Incomplete:
3349 case FK_ArrayTypeMismatch:
3350 case FK_NonConstantArrayInit:
3351 case FK_ListInitializationFailed:
3352 case FK_VariableLengthArrayHasInitializer:
3353 case FK_PlaceholderType:
3354 case FK_ExplicitConstructor:
3355 case FK_AddressOfUnaddressableFunction:
3356 return false;
3357
3358 case FK_ReferenceInitOverloadFailed:
3359 case FK_UserConversionOverloadFailed:
3360 case FK_ConstructorOverloadFailed:
3361 case FK_ListConstructorOverloadFailed:
3362 return FailedOverloadResult == OR_Ambiguous;
3363 }
3364
3365 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3365)
;
3366}
3367
3368bool InitializationSequence::isConstructorInitialization() const {
3369 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3370}
3371
3372void
3373InitializationSequence
3374::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3375 DeclAccessPair Found,
3376 bool HadMultipleCandidates) {
3377 Step S;
3378 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3379 S.Type = Function->getType();
3380 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3381 S.Function.Function = Function;
3382 S.Function.FoundDecl = Found;
3383 Steps.push_back(S);
3384}
3385
3386void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3387 ExprValueKind VK) {
3388 Step S;
3389 switch (VK) {
3390 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3391 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3392 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3393 }
3394 S.Type = BaseType;
3395 Steps.push_back(S);
3396}
3397
3398void InitializationSequence::AddReferenceBindingStep(QualType T,
3399 bool BindingTemporary) {
3400 Step S;
3401 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3402 S.Type = T;
3403 Steps.push_back(S);
3404}
3405
3406void InitializationSequence::AddFinalCopy(QualType T) {
3407 Step S;
3408 S.Kind = SK_FinalCopy;
3409 S.Type = T;
3410 Steps.push_back(S);
3411}
3412
3413void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3414 Step S;
3415 S.Kind = SK_ExtraneousCopyToTemporary;
3416 S.Type = T;
3417 Steps.push_back(S);
3418}
3419
3420void
3421InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3422 DeclAccessPair FoundDecl,
3423 QualType T,
3424 bool HadMultipleCandidates) {
3425 Step S;
3426 S.Kind = SK_UserConversion;
3427 S.Type = T;
3428 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3429 S.Function.Function = Function;
3430 S.Function.FoundDecl = FoundDecl;
3431 Steps.push_back(S);
3432}
3433
3434void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3435 ExprValueKind VK) {
3436 Step S;
3437 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3438 switch (VK) {
3439 case VK_RValue:
3440 S.Kind = SK_QualificationConversionRValue;
3441 break;
3442 case VK_XValue:
3443 S.Kind = SK_QualificationConversionXValue;
3444 break;
3445 case VK_LValue:
3446 S.Kind = SK_QualificationConversionLValue;
3447 break;
3448 }
3449 S.Type = Ty;
3450 Steps.push_back(S);
3451}
3452
3453void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3454 Step S;
3455 S.Kind = SK_AtomicConversion;
3456 S.Type = Ty;
3457 Steps.push_back(S);
3458}
3459
3460void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3461 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")((!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3461, __PRETTY_FUNCTION__))
;
3462
3463 Step S;
3464 S.Kind = SK_LValueToRValue;
3465 S.Type = Ty;
3466 Steps.push_back(S);
3467}
3468
3469void InitializationSequence::AddConversionSequenceStep(
3470 const ImplicitConversionSequence &ICS, QualType T,
3471 bool TopLevelOfInitList) {
3472 Step S;
3473 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3474 : SK_ConversionSequence;
3475 S.Type = T;
3476 S.ICS = new ImplicitConversionSequence(ICS);
3477 Steps.push_back(S);
3478}
3479
3480void InitializationSequence::AddListInitializationStep(QualType T) {
3481 Step S;
3482 S.Kind = SK_ListInitialization;
3483 S.Type = T;
3484 Steps.push_back(S);
3485}
3486
3487void InitializationSequence::AddConstructorInitializationStep(
3488 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3489 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3490 Step S;
3491 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3492 : SK_ConstructorInitializationFromList
3493 : SK_ConstructorInitialization;
3494 S.Type = T;
3495 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3496 S.Function.Function = Constructor;
3497 S.Function.FoundDecl = FoundDecl;
3498 Steps.push_back(S);
3499}
3500
3501void InitializationSequence::AddZeroInitializationStep(QualType T) {
3502 Step S;
3503 S.Kind = SK_ZeroInitialization;
3504 S.Type = T;
3505 Steps.push_back(S);
3506}
3507
3508void InitializationSequence::AddCAssignmentStep(QualType T) {
3509 Step S;
3510 S.Kind = SK_CAssignment;
3511 S.Type = T;
3512 Steps.push_back(S);
3513}
3514
3515void InitializationSequence::AddStringInitStep(QualType T) {
3516 Step S;
3517 S.Kind = SK_StringInit;
3518 S.Type = T;
3519 Steps.push_back(S);
3520}
3521
3522void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3523 Step S;
3524 S.Kind = SK_ObjCObjectConversion;
3525 S.Type = T;
3526 Steps.push_back(S);
3527}
3528
3529void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3530 Step S;
3531 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3532 S.Type = T;
3533 Steps.push_back(S);
3534}
3535
3536void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3537 Step S;
3538 S.Kind = SK_ArrayLoopIndex;
3539 S.Type = EltT;
3540 Steps.insert(Steps.begin(), S);
3541
3542 S.Kind = SK_ArrayLoopInit;
3543 S.Type = T;
3544 Steps.push_back(S);
3545}
3546
3547void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3548 Step S;
3549 S.Kind = SK_ParenthesizedArrayInit;
3550 S.Type = T;
3551 Steps.push_back(S);
3552}
3553
3554void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3555 bool shouldCopy) {
3556 Step s;
3557 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3558 : SK_PassByIndirectRestore);
3559 s.Type = type;
3560 Steps.push_back(s);
3561}
3562
3563void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3564 Step S;
3565 S.Kind = SK_ProduceObjCObject;
3566 S.Type = T;
3567 Steps.push_back(S);
3568}
3569
3570void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3571 Step S;
3572 S.Kind = SK_StdInitializerList;
3573 S.Type = T;
3574 Steps.push_back(S);
3575}
3576
3577void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3578 Step S;
3579 S.Kind = SK_OCLSamplerInit;
3580 S.Type = T;
3581 Steps.push_back(S);
3582}
3583
3584void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3585 Step S;
3586 S.Kind = SK_OCLZeroOpaqueType;
3587 S.Type = T;
3588 Steps.push_back(S);
3589}
3590
3591void InitializationSequence::RewrapReferenceInitList(QualType T,
3592 InitListExpr *Syntactic) {
3593 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3594, __PRETTY_FUNCTION__))
3594 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3594, __PRETTY_FUNCTION__))
;
3595 Step S;
3596 S.Kind = SK_UnwrapInitList;
3597 S.Type = Syntactic->getInit(0)->getType();
3598 Steps.insert(Steps.begin(), S);
3599
3600 S.Kind = SK_RewrapInitList;
3601 S.Type = T;
3602 S.WrappingSyntacticList = Syntactic;
3603 Steps.push_back(S);
3604}
3605
3606void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3607 OverloadingResult Result) {
3608 setSequenceKind(FailedSequence);
3609 this->Failure = Failure;
3610 this->FailedOverloadResult = Result;
3611}
3612
3613//===----------------------------------------------------------------------===//
3614// Attempt initialization
3615//===----------------------------------------------------------------------===//
3616
3617/// Tries to add a zero initializer. Returns true if that worked.
3618static bool
3619maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3620 const InitializedEntity &Entity) {
3621 if (Entity.getKind() != InitializedEntity::EK_Variable)
3622 return false;
3623
3624 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3625 if (VD->getInit() || VD->getEndLoc().isMacroID())
3626 return false;
3627
3628 QualType VariableTy = VD->getType().getCanonicalType();
3629 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3630 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3631 if (!Init.empty()) {
3632 Sequence.AddZeroInitializationStep(Entity.getType());
3633 Sequence.SetZeroInitializationFixit(Init, Loc);
3634 return true;
3635 }
3636 return false;
3637}
3638
3639static void MaybeProduceObjCObject(Sema &S,
3640 InitializationSequence &Sequence,
3641 const InitializedEntity &Entity) {
3642 if (!S.getLangOpts().ObjCAutoRefCount) return;
3643
3644 /// When initializing a parameter, produce the value if it's marked
3645 /// __attribute__((ns_consumed)).
3646 if (Entity.isParameterKind()) {
3647 if (!Entity.isParameterConsumed())
3648 return;
3649
3650 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3651, __PRETTY_FUNCTION__))
3651 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3651, __PRETTY_FUNCTION__))
;
3652 Sequence.AddProduceObjCObjectStep(Entity.getType());
3653
3654 /// When initializing a return value, if the return type is a
3655 /// retainable type, then returns need to immediately retain the
3656 /// object. If an autorelease is required, it will be done at the
3657 /// last instant.
3658 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3659 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3660 if (!Entity.getType()->isObjCRetainableType())
3661 return;
3662
3663 Sequence.AddProduceObjCObjectStep(Entity.getType());
3664 }
3665}
3666
3667static void TryListInitialization(Sema &S,
3668 const InitializedEntity &Entity,
3669 const InitializationKind &Kind,
3670 InitListExpr *InitList,
3671 InitializationSequence &Sequence,
3672 bool TreatUnavailableAsInvalid);
3673
3674/// When initializing from init list via constructor, handle
3675/// initialization of an object of type std::initializer_list<T>.
3676///
3677/// \return true if we have handled initialization of an object of type
3678/// std::initializer_list<T>, false otherwise.
3679static bool TryInitializerListConstruction(Sema &S,
3680 InitListExpr *List,
3681 QualType DestType,
3682 InitializationSequence &Sequence,
3683 bool TreatUnavailableAsInvalid) {
3684 QualType E;
3685 if (!S.isStdInitializerList(DestType, &E))
3686 return false;
3687
3688 if (!S.isCompleteType(List->getExprLoc(), E)) {
3689 Sequence.setIncompleteTypeFailure(E);
3690 return true;
3691 }
3692
3693 // Try initializing a temporary array from the init list.
3694 QualType ArrayType = S.Context.getConstantArrayType(
3695 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3696 List->getNumInits()),
3697 clang::ArrayType::Normal, 0);
3698 InitializedEntity HiddenArray =
3699 InitializedEntity::InitializeTemporary(ArrayType);
3700 InitializationKind Kind = InitializationKind::CreateDirectList(
3701 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3702 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3703 TreatUnavailableAsInvalid);
3704 if (Sequence)
3705 Sequence.AddStdInitializerListConstructionStep(DestType);
3706 return true;
3707}
3708
3709/// Determine if the constructor has the signature of a copy or move
3710/// constructor for the type T of the class in which it was found. That is,
3711/// determine if its first parameter is of type T or reference to (possibly
3712/// cv-qualified) T.
3713static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3714 const ConstructorInfo &Info) {
3715 if (Info.Constructor->getNumParams() == 0)
3716 return false;
3717
3718 QualType ParmT =
3719 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3720 QualType ClassT =
3721 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3722
3723 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3724}
3725
3726static OverloadingResult
3727ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3728 MultiExprArg Args,
3729 OverloadCandidateSet &CandidateSet,
3730 QualType DestType,
3731 DeclContext::lookup_result Ctors,
3732 OverloadCandidateSet::iterator &Best,
3733 bool CopyInitializing, bool AllowExplicit,
3734 bool OnlyListConstructors, bool IsListInit,
3735 bool SecondStepOfCopyInit = false) {
3736 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3737
3738 for (NamedDecl *D : Ctors) {
3739 auto Info = getConstructorInfo(D);
3740 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3741 continue;
3742
3743 if (!AllowExplicit && Info.Constructor->isExplicit())
3744 continue;
3745
3746 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3747 continue;
3748
3749 // C++11 [over.best.ics]p4:
3750 // ... and the constructor or user-defined conversion function is a
3751 // candidate by
3752 // - 13.3.1.3, when the argument is the temporary in the second step
3753 // of a class copy-initialization, or
3754 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3755 // - the second phase of 13.3.1.7 when the initializer list has exactly
3756 // one element that is itself an initializer list, and the target is
3757 // the first parameter of a constructor of class X, and the conversion
3758 // is to X or reference to (possibly cv-qualified X),
3759 // user-defined conversion sequences are not considered.
3760 bool SuppressUserConversions =
3761 SecondStepOfCopyInit ||
3762 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3763 hasCopyOrMoveCtorParam(S.Context, Info));
3764
3765 if (Info.ConstructorTmpl)
3766 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3767 /*ExplicitArgs*/ nullptr, Args,
3768 CandidateSet, SuppressUserConversions);
3769 else {
3770 // C++ [over.match.copy]p1:
3771 // - When initializing a temporary to be bound to the first parameter
3772 // of a constructor [for type T] that takes a reference to possibly
3773 // cv-qualified T as its first argument, called with a single
3774 // argument in the context of direct-initialization, explicit
3775 // conversion functions are also considered.
3776 // FIXME: What if a constructor template instantiates to such a signature?
3777 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3778 Args.size() == 1 &&
3779 hasCopyOrMoveCtorParam(S.Context, Info);
3780 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3781 CandidateSet, SuppressUserConversions,
3782 /*PartialOverloading=*/false,
3783 /*AllowExplicit=*/AllowExplicitConv);
3784 }
3785 }
3786
3787 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3788 //
3789 // When initializing an object of class type T by constructor
3790 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3791 // from a single expression of class type U, conversion functions of
3792 // U that convert to the non-reference type cv T are candidates.
3793 // Explicit conversion functions are only candidates during
3794 // direct-initialization.
3795 //
3796 // Note: SecondStepOfCopyInit is only ever true in this case when
3797 // evaluating whether to produce a C++98 compatibility warning.
3798 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3799 !SecondStepOfCopyInit) {
3800 Expr *Initializer = Args[0];
3801 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3802 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3803 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3804 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3805 NamedDecl *D = *I;
3806 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3807 D = D->getUnderlyingDecl();
3808
3809 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3810 CXXConversionDecl *Conv;
3811 if (ConvTemplate)
3812 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3813 else
3814 Conv = cast<CXXConversionDecl>(D);
3815
3816 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3817 if (ConvTemplate)
3818 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3819 ActingDC, Initializer, DestType,
3820 CandidateSet, AllowExplicit,
3821 /*AllowResultConversion*/false);
3822 else
3823 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3824 DestType, CandidateSet, AllowExplicit,
3825 /*AllowResultConversion*/false);
3826 }
3827 }
3828 }
3829 }
3830
3831 // Perform overload resolution and return the result.
3832 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3833}
3834
3835/// Attempt initialization by constructor (C++ [dcl.init]), which
3836/// enumerates the constructors of the initialized entity and performs overload
3837/// resolution to select the best.
3838/// \param DestType The destination class type.
3839/// \param DestArrayType The destination type, which is either DestType or
3840/// a (possibly multidimensional) array of DestType.
3841/// \param IsListInit Is this list-initialization?
3842/// \param IsInitListCopy Is this non-list-initialization resulting from a
3843/// list-initialization from {x} where x is the same
3844/// type as the entity?
3845static void TryConstructorInitialization(Sema &S,
3846 const InitializedEntity &Entity,
3847 const InitializationKind &Kind,
3848 MultiExprArg Args, QualType DestType,
3849 QualType DestArrayType,
3850 InitializationSequence &Sequence,
3851 bool IsListInit = false,
3852 bool IsInitListCopy = false) {
3853 assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3856, __PRETTY_FUNCTION__))
3854 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3856, __PRETTY_FUNCTION__))
3855 "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3856, __PRETTY_FUNCTION__))
3856 "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3856, __PRETTY_FUNCTION__))
;
3857 InitListExpr *ILE =
3858 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3859 MultiExprArg UnwrappedArgs =
3860 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3861
3862 // The type we're constructing needs to be complete.
3863 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3864 Sequence.setIncompleteTypeFailure(DestType);
3865 return;
3866 }
3867
3868 // C++17 [dcl.init]p17:
3869 // - If the initializer expression is a prvalue and the cv-unqualified
3870 // version of the source type is the same class as the class of the
3871 // destination, the initializer expression is used to initialize the
3872 // destination object.
3873 // Per DR (no number yet), this does not apply when initializing a base
3874 // class or delegating to another constructor from a mem-initializer.
3875 // ObjC++: Lambda captured by the block in the lambda to block conversion
3876 // should avoid copy elision.
3877 if (S.getLangOpts().CPlusPlus17 &&
3878 Entity.getKind() != InitializedEntity::EK_Base &&
3879 Entity.getKind() != InitializedEntity::EK_Delegating &&
3880 Entity.getKind() !=
3881 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3882 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3883 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3884 // Convert qualifications if necessary.
3885 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3886 if (ILE)
3887 Sequence.RewrapReferenceInitList(DestType, ILE);
3888 return;
3889 }
3890
3891 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3892 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3892, __PRETTY_FUNCTION__))
;
3893 CXXRecordDecl *DestRecordDecl
3894 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3895
3896 // Build the candidate set directly in the initialization sequence
3897 // structure, so that it will persist if we fail.
3898 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3899
3900 // Determine whether we are allowed to call explicit constructors or
3901 // explicit conversion operators.
3902 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3903 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3904
3905 // - Otherwise, if T is a class type, constructors are considered. The
3906 // applicable constructors are enumerated, and the best one is chosen
3907 // through overload resolution.
3908 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3909
3910 OverloadingResult Result = OR_No_Viable_Function;
3911 OverloadCandidateSet::iterator Best;
3912 bool AsInitializerList = false;
3913
3914 // C++11 [over.match.list]p1, per DR1467:
3915 // When objects of non-aggregate type T are list-initialized, such that
3916 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3917 // according to the rules in this section, overload resolution selects
3918 // the constructor in two phases:
3919 //
3920 // - Initially, the candidate functions are the initializer-list
3921 // constructors of the class T and the argument list consists of the
3922 // initializer list as a single argument.
3923 if (IsListInit) {
3924 AsInitializerList = true;
3925
3926 // If the initializer list has no elements and T has a default constructor,
3927 // the first phase is omitted.
3928 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3929 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3930 CandidateSet, DestType, Ctors, Best,
3931 CopyInitialization, AllowExplicit,
3932 /*OnlyListConstructor=*/true,
3933 IsListInit);
3934 }
3935
3936 // C++11 [over.match.list]p1:
3937 // - If no viable initializer-list constructor is found, overload resolution
3938 // is performed again, where the candidate functions are all the
3939 // constructors of the class T and the argument list consists of the
3940 // elements of the initializer list.
3941 if (Result == OR_No_Viable_Function) {
3942 AsInitializerList = false;
3943 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3944 CandidateSet, DestType, Ctors, Best,
3945 CopyInitialization, AllowExplicit,
3946 /*OnlyListConstructors=*/false,
3947 IsListInit);
3948 }
3949 if (Result) {
3950 Sequence.SetOverloadFailure(IsListInit ?
3951 InitializationSequence::FK_ListConstructorOverloadFailed :
3952 InitializationSequence::FK_ConstructorOverloadFailed,
3953 Result);
3954 return;
3955 }
3956
3957 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3958
3959 // In C++17, ResolveConstructorOverload can select a conversion function
3960 // instead of a constructor.
3961 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3962 // Add the user-defined conversion step that calls the conversion function.
3963 QualType ConvType = CD->getConversionType();
3964 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
"should not have selected this conversion function") ? static_cast
<void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3965, __PRETTY_FUNCTION__))
3965 "should not have selected this conversion function")((S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
"should not have selected this conversion function") ? static_cast
<void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 3965, __PRETTY_FUNCTION__))
;
3966 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3967 HadMultipleCandidates);
3968 if (!S.Context.hasSameType(ConvType, DestType))
3969 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3970 if (IsListInit)
3971 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3972 return;
3973 }
3974
3975 // C++11 [dcl.init]p6:
3976 // If a program calls for the default initialization of an object
3977 // of a const-qualified type T, T shall be a class type with a
3978 // user-provided default constructor.
3979 // C++ core issue 253 proposal:
3980 // If the implicit default constructor initializes all subobjects, no
3981 // initializer should be required.
3982 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3983 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3984 if (Kind.getKind() == InitializationKind::IK_Default &&
3985 Entity.getType().isConstQualified()) {
3986 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3987 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3988 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3989 return;
3990 }
3991 }
3992
3993 // C++11 [over.match.list]p1:
3994 // In copy-list-initialization, if an explicit constructor is chosen, the
3995 // initializer is ill-formed.
3996 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3997 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3998 return;
3999 }
4000
4001 // Add the constructor initialization step. Any cv-qualification conversion is
4002 // subsumed by the initialization.
4003 Sequence.AddConstructorInitializationStep(
4004 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4005 IsListInit | IsInitListCopy, AsInitializerList);
4006}
4007
4008static bool
4009ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4010 Expr *Initializer,
4011 QualType &SourceType,
4012 QualType &UnqualifiedSourceType,
4013 QualType UnqualifiedTargetType,
4014 InitializationSequence &Sequence) {
4015 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4016 S.Context.OverloadTy) {
4017 DeclAccessPair Found;
4018 bool HadMultipleCandidates = false;
4019 if (FunctionDecl *Fn
4020 = S.ResolveAddressOfOverloadedFunction(Initializer,
4021 UnqualifiedTargetType,
4022 false, Found,
4023 &HadMultipleCandidates)) {
4024 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4025 HadMultipleCandidates);
4026 SourceType = Fn->getType();
4027 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4028 } else if (!UnqualifiedTargetType->isRecordType()) {
4029 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4030 return true;
4031 }
4032 }
4033 return false;
4034}
4035
4036static void TryReferenceInitializationCore(Sema &S,
4037 const InitializedEntity &Entity,
4038 const InitializationKind &Kind,
4039 Expr *Initializer,
4040 QualType cv1T1, QualType T1,
4041 Qualifiers T1Quals,
4042 QualType cv2T2, QualType T2,
4043 Qualifiers T2Quals,
4044 InitializationSequence &Sequence);
4045
4046static void TryValueInitialization(Sema &S,
4047 const InitializedEntity &Entity,
4048 const InitializationKind &Kind,
4049 InitializationSequence &Sequence,
4050 InitListExpr *InitList = nullptr);
4051
4052/// Attempt list initialization of a reference.
4053static void TryReferenceListInitialization(Sema &S,
4054 const InitializedEntity &Entity,
4055 const InitializationKind &Kind,
4056 InitListExpr *InitList,
4057 InitializationSequence &Sequence,
4058 bool TreatUnavailableAsInvalid) {
4059 // First, catch C++03 where this isn't possible.
4060 if (!S.getLangOpts().CPlusPlus11) {
4061 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4062 return;
4063 }
4064 // Can't reference initialize a compound literal.
4065 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4066 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4067 return;
4068 }
4069
4070 QualType DestType = Entity.getType();
4071 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4072 Qualifiers T1Quals;
4073 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4074
4075 // Reference initialization via an initializer list works thus:
4076 // If the initializer list consists of a single element that is
4077 // reference-related to the referenced type, bind directly to that element
4078 // (possibly creating temporaries).
4079 // Otherwise, initialize a temporary with the initializer list and
4080 // bind to that.
4081 if (InitList->getNumInits() == 1) {
4082 Expr *Initializer = InitList->getInit(0);
4083 QualType cv2T2 = Initializer->getType();
4084 Qualifiers T2Quals;
4085 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4086
4087 // If this fails, creating a temporary wouldn't work either.
4088 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4089 T1, Sequence))
4090 return;
4091
4092 SourceLocation DeclLoc = Initializer->getBeginLoc();
4093 bool dummy1, dummy2, dummy3;
4094 Sema::ReferenceCompareResult RefRelationship
4095 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4096 dummy2, dummy3);
4097 if (RefRelationship >= Sema::Ref_Related) {
4098 // Try to bind the reference here.
4099 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4100 T1Quals, cv2T2, T2, T2Quals, Sequence);
4101 if (Sequence)
4102 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4103 return;
4104 }
4105
4106 // Update the initializer if we've resolved an overloaded function.
4107 if (Sequence.step_begin() != Sequence.step_end())
4108 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4109 }
4110
4111 // Not reference-related. Create a temporary and bind to that.
4112 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4113
4114 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4115 TreatUnavailableAsInvalid);
4116 if (Sequence) {
4117 if (DestType->isRValueReferenceType() ||
4118 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4119 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4120 else
4121 Sequence.SetFailed(
4122 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4123 }
4124}
4125
4126/// Attempt list initialization (C++0x [dcl.init.list])
4127static void TryListInitialization(Sema &S,
4128 const InitializedEntity &Entity,
4129 const InitializationKind &Kind,
4130 InitListExpr *InitList,
4131 InitializationSequence &Sequence,
4132 bool TreatUnavailableAsInvalid) {
4133 QualType DestType = Entity.getType();
4134
4135 // C++ doesn't allow scalar initialization with more than one argument.
4136 // But C99 complex numbers are scalars and it makes sense there.
4137 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4138 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4139 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4140 return;
4141 }
4142 if (DestType->isReferenceType()) {
4143 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4144 TreatUnavailableAsInvalid);
4145 return;
4146 }
4147
4148 if (DestType->isRecordType() &&
4149 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4150 Sequence.setIncompleteTypeFailure(DestType);
4151 return;
4152 }
4153
4154 // C++11 [dcl.init.list]p3, per DR1467:
4155 // - If T is a class type and the initializer list has a single element of
4156 // type cv U, where U is T or a class derived from T, the object is
4157 // initialized from that element (by copy-initialization for
4158 // copy-list-initialization, or by direct-initialization for
4159 // direct-list-initialization).
4160 // - Otherwise, if T is a character array and the initializer list has a
4161 // single element that is an appropriately-typed string literal
4162 // (8.5.2 [dcl.init.string]), initialization is performed as described
4163 // in that section.
4164 // - Otherwise, if T is an aggregate, [...] (continue below).
4165 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4166 if (DestType->isRecordType()) {
4167 QualType InitType = InitList->getInit(0)->getType();
4168 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4169 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4170 Expr *InitListAsExpr = InitList;
4171 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4172 DestType, Sequence,
4173 /*InitListSyntax*/false,
4174 /*IsInitListCopy*/true);
4175 return;
4176 }
4177 }
4178 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4179 Expr *SubInit[1] = {InitList->getInit(0)};
4180 if (!isa<VariableArrayType>(DestAT) &&
4181 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4182 InitializationKind SubKind =
4183 Kind.getKind() == InitializationKind::IK_DirectList
4184 ? InitializationKind::CreateDirect(Kind.getLocation(),
4185 InitList->getLBraceLoc(),
4186 InitList->getRBraceLoc())
4187 : Kind;
4188 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4189 /*TopLevelOfInitList*/ true,
4190 TreatUnavailableAsInvalid);
4191
4192 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4193 // the element is not an appropriately-typed string literal, in which
4194 // case we should proceed as in C++11 (below).
4195 if (Sequence) {
4196 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4197 return;
4198 }
4199 }
4200 }
4201 }
4202
4203 // C++11 [dcl.init.list]p3:
4204 // - If T is an aggregate, aggregate initialization is performed.
4205 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4206 (S.getLangOpts().CPlusPlus11 &&
4207 S.isStdInitializerList(DestType, nullptr))) {
4208 if (S.getLangOpts().CPlusPlus11) {
4209 // - Otherwise, if the initializer list has no elements and T is a
4210 // class type with a default constructor, the object is
4211 // value-initialized.
4212 if (InitList->getNumInits() == 0) {
4213 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4214 if (RD->hasDefaultConstructor()) {
4215 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4216 return;
4217 }
4218 }
4219
4220 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4221 // an initializer_list object constructed [...]
4222 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4223 TreatUnavailableAsInvalid))
4224 return;
4225
4226 // - Otherwise, if T is a class type, constructors are considered.
4227 Expr *InitListAsExpr = InitList;
4228 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4229 DestType, Sequence, /*InitListSyntax*/true);
4230 } else
4231 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4232 return;
4233 }
4234
4235 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4236 InitList->getNumInits() == 1) {
4237 Expr *E = InitList->getInit(0);
4238
4239 // - Otherwise, if T is an enumeration with a fixed underlying type,
4240 // the initializer-list has a single element v, and the initialization
4241 // is direct-list-initialization, the object is initialized with the
4242 // value T(v); if a narrowing conversion is required to convert v to
4243 // the underlying type of T, the program is ill-formed.
4244 auto *ET = DestType->getAs<EnumType>();
4245 if (S.getLangOpts().CPlusPlus17 &&
4246 Kind.getKind() == InitializationKind::IK_DirectList &&
4247 ET && ET->getDecl()->isFixed() &&
4248 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4249 (E->getType()->isIntegralOrEnumerationType() ||
4250 E->getType()->isFloatingType())) {
4251 // There are two ways that T(v) can work when T is an enumeration type.
4252 // If there is either an implicit conversion sequence from v to T or
4253 // a conversion function that can convert from v to T, then we use that.
4254 // Otherwise, if v is of integral, enumeration, or floating-point type,
4255 // it is converted to the enumeration type via its underlying type.
4256 // There is no overlap possible between these two cases (except when the
4257 // source value is already of the destination type), and the first
4258 // case is handled by the general case for single-element lists below.
4259 ImplicitConversionSequence ICS;
4260 ICS.setStandard();
4261 ICS.Standard.setAsIdentityConversion();
4262 if (!E->isRValue())
4263 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4264 // If E is of a floating-point type, then the conversion is ill-formed
4265 // due to narrowing, but go through the motions in order to produce the
4266 // right diagnostic.
4267 ICS.Standard.Second = E->getType()->isFloatingType()
4268 ? ICK_Floating_Integral
4269 : ICK_Integral_Conversion;
4270 ICS.Standard.setFromType(E->getType());
4271 ICS.Standard.setToType(0, E->getType());
4272 ICS.Standard.setToType(1, DestType);
4273 ICS.Standard.setToType(2, DestType);
4274 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4275 /*TopLevelOfInitList*/true);
4276 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4277 return;
4278 }
4279
4280 // - Otherwise, if the initializer list has a single element of type E
4281 // [...references are handled above...], the object or reference is
4282 // initialized from that element (by copy-initialization for
4283 // copy-list-initialization, or by direct-initialization for
4284 // direct-list-initialization); if a narrowing conversion is required
4285 // to convert the element to T, the program is ill-formed.
4286 //
4287 // Per core-24034, this is direct-initialization if we were performing
4288 // direct-list-initialization and copy-initialization otherwise.
4289 // We can't use InitListChecker for this, because it always performs
4290 // copy-initialization. This only matters if we might use an 'explicit'
4291 // conversion operator, so we only need to handle the cases where the source
4292 // is of record type.
4293 if (InitList->getInit(0)->getType()->isRecordType()) {
4294 InitializationKind SubKind =
4295 Kind.getKind() == InitializationKind::IK_DirectList
4296 ? InitializationKind::CreateDirect(Kind.getLocation(),
4297 InitList->getLBraceLoc(),
4298 InitList->getRBraceLoc())
4299 : Kind;
4300 Expr *SubInit[1] = { InitList->getInit(0) };
4301 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4302 /*TopLevelOfInitList*/true,
4303 TreatUnavailableAsInvalid);
4304 if (Sequence)
4305 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4306 return;
4307 }
4308 }
4309
4310 InitListChecker CheckInitList(S, Entity, InitList,
4311 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4312 if (CheckInitList.HadError()) {
4313 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4314 return;
4315 }
4316
4317 // Add the list initialization step with the built init list.
4318 Sequence.AddListInitializationStep(DestType);
4319}
4320
4321/// Try a reference initialization that involves calling a conversion
4322/// function.
4323static OverloadingResult TryRefInitWithConversionFunction(
4324 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4325 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4326 InitializationSequence &Sequence) {
4327 QualType DestType = Entity.getType();
4328 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4329 QualType T1 = cv1T1.getUnqualifiedType();
4330 QualType cv2T2 = Initializer->getType();
4331 QualType T2 = cv2T2.getUnqualifiedType();
4332
4333 bool DerivedToBase;
4334 bool ObjCConversion;
4335 bool ObjCLifetimeConversion;
4336 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4339, __PRETTY_FUNCTION__))
4337 DerivedToBase, ObjCConversion,((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4339, __PRETTY_FUNCTION__))
4338 ObjCLifetimeConversion) &&((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4339, __PRETTY_FUNCTION__))
4339 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4339, __PRETTY_FUNCTION__))
;
4340 (void)DerivedToBase;
4341 (void)ObjCConversion;
4342 (void)ObjCLifetimeConversion;
4343
4344 // Build the candidate set directly in the initialization sequence
4345 // structure, so that it will persist if we fail.
4346 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4347 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4348
4349 // Determine whether we are allowed to call explicit conversion operators.
4350 // Note that none of [over.match.copy], [over.match.conv], nor
4351 // [over.match.ref] permit an explicit constructor to be chosen when
4352 // initializing a reference, not even for direct-initialization.
4353 bool AllowExplicitCtors = false;
4354 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4355
4356 const RecordType *T1RecordType = nullptr;
4357 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4358 S.isCompleteType(Kind.getLocation(), T1)) {
4359 // The type we're converting to is a class type. Enumerate its constructors
4360 // to see if there is a suitable conversion.
4361 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4362
4363 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4364 auto Info = getConstructorInfo(D);
4365 if (!Info.Constructor)
4366 continue;
4367
4368 if (!Info.Constructor->isInvalidDecl() &&
4369 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4370 if (Info.ConstructorTmpl)
4371 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4372 /*ExplicitArgs*/ nullptr,
4373 Initializer, CandidateSet,
4374 /*SuppressUserConversions=*/true);
4375 else
4376 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4377 Initializer, CandidateSet,
4378 /*SuppressUserConversions=*/true);
4379 }
4380 }
4381 }
4382 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4383 return OR_No_Viable_Function;
4384
4385 const RecordType *T2RecordType = nullptr;
4386 if ((T2RecordType = T2->getAs<RecordType>()) &&
4387 S.isCompleteType(Kind.getLocation(), T2)) {
4388 // The type we're converting from is a class type, enumerate its conversion
4389 // functions.
4390 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4391
4392 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4393 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4394 NamedDecl *D = *I;
4395 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4396 if (isa<UsingShadowDecl>(D))
4397 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4398
4399 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4400 CXXConversionDecl *Conv;
4401 if (ConvTemplate)
4402 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4403 else
4404 Conv = cast<CXXConversionDecl>(D);
4405
4406 // If the conversion function doesn't return a reference type,
4407 // it can't be considered for this conversion unless we're allowed to
4408 // consider rvalues.
4409 // FIXME: Do we need to make sure that we only consider conversion
4410 // candidates with reference-compatible results? That might be needed to
4411 // break recursion.
4412 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4413 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4414 if (ConvTemplate)
4415 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4416 ActingDC, Initializer,
4417 DestType, CandidateSet,
4418 /*AllowObjCConversionOnExplicit=*/
4419 false);
4420 else
4421 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4422 Initializer, DestType, CandidateSet,
4423 /*AllowObjCConversionOnExplicit=*/false);
4424 }
4425 }
4426 }
4427 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4428 return OR_No_Viable_Function;
4429
4430 SourceLocation DeclLoc = Initializer->getBeginLoc();
4431
4432 // Perform overload resolution. If it fails, return the failed result.
4433 OverloadCandidateSet::iterator Best;
4434 if (OverloadingResult Result
4435 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4436 return Result;
4437
4438 FunctionDecl *Function = Best->Function;
4439 // This is the overload that will be used for this initialization step if we
4440 // use this initialization. Mark it as referenced.
4441 Function->setReferenced();
4442
4443 // Compute the returned type and value kind of the conversion.
4444 QualType cv3T3;
4445 if (isa<CXXConversionDecl>(Function))
4446 cv3T3 = Function->getReturnType();
4447 else
4448 cv3T3 = T1;
4449
4450 ExprValueKind VK = VK_RValue;
4451 if (cv3T3->isLValueReferenceType())
4452 VK = VK_LValue;
4453 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4454 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4455 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4456
4457 // Add the user-defined conversion step.
4458 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4459 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4460 HadMultipleCandidates);
4461
4462 // Determine whether we'll need to perform derived-to-base adjustments or
4463 // other conversions.
4464 bool NewDerivedToBase = false;
4465 bool NewObjCConversion = false;
4466 bool NewObjCLifetimeConversion = false;
4467 Sema::ReferenceCompareResult NewRefRelationship
4468 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4469 NewDerivedToBase, NewObjCConversion,
4470 NewObjCLifetimeConversion);
4471
4472 // Add the final conversion sequence, if necessary.
4473 if (NewRefRelationship == Sema::Ref_Incompatible) {
4474 assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4475, __PRETTY_FUNCTION__))
4475 "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4475, __PRETTY_FUNCTION__))
;
4476
4477 ImplicitConversionSequence ICS;
4478 ICS.setStandard();
4479 ICS.Standard = Best->FinalConversion;
4480 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4481
4482 // Every implicit conversion results in a prvalue, except for a glvalue
4483 // derived-to-base conversion, which we handle below.
4484 cv3T3 = ICS.Standard.getToType(2);
4485 VK = VK_RValue;
4486 }
4487
4488 // If the converted initializer is a prvalue, its type T4 is adjusted to
4489 // type "cv1 T4" and the temporary materialization conversion is applied.
4490 //
4491 // We adjust the cv-qualifications to match the reference regardless of
4492 // whether we have a prvalue so that the AST records the change. In this
4493 // case, T4 is "cv3 T3".
4494 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4495 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4496 Sequence.AddQualificationConversionStep(cv1T4, VK);
4497 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4498 VK = IsLValueRef ? VK_LValue : VK_XValue;
4499
4500 if (NewDerivedToBase)
4501 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4502 else if (NewObjCConversion)
4503 Sequence.AddObjCObjectConversionStep(cv1T1);
4504
4505 return OR_Success;
4506}
4507
4508static void CheckCXX98CompatAccessibleCopy(Sema &S,
4509 const InitializedEntity &Entity,
4510 Expr *CurInitExpr);
4511
4512/// Attempt reference initialization (C++0x [dcl.init.ref])
4513static void TryReferenceInitialization(Sema &S,
4514 const InitializedEntity &Entity,
4515 const InitializationKind &Kind,
4516 Expr *Initializer,
4517 InitializationSequence &Sequence) {
4518 QualType DestType = Entity.getType();
4519 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4520 Qualifiers T1Quals;
4521 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4522 QualType cv2T2 = Initializer->getType();
4523 Qualifiers T2Quals;
4524 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4525
4526 // If the initializer is the address of an overloaded function, try
4527 // to resolve the overloaded function. If all goes well, T2 is the
4528 // type of the resulting function.
4529 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4530 T1, Sequence))
4531 return;
4532
4533 // Delegate everything else to a subfunction.
4534 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4535 T1Quals, cv2T2, T2, T2Quals, Sequence);
4536}
4537
4538/// Determine whether an expression is a non-referenceable glvalue (one to
4539/// which a reference can never bind). Attempting to bind a reference to
4540/// such a glvalue will always create a temporary.
4541static bool isNonReferenceableGLValue(Expr *E) {
4542 return E->refersToBitField() || E->refersToVectorElement();
4543}
4544
4545/// Reference initialization without resolving overloaded functions.
4546static void TryReferenceInitializationCore(Sema &S,
4547 const InitializedEntity &Entity,
4548 const InitializationKind &Kind,
4549 Expr *Initializer,
4550 QualType cv1T1, QualType T1,
4551 Qualifiers T1Quals,
4552 QualType cv2T2, QualType T2,
4553 Qualifiers T2Quals,
4554 InitializationSequence &Sequence) {
4555 QualType DestType = Entity.getType();
4556 SourceLocation DeclLoc = Initializer->getBeginLoc();
4557 // Compute some basic properties of the types and the initializer.
4558 bool isLValueRef = DestType->isLValueReferenceType();
4559 bool isRValueRef = !isLValueRef;
4560 bool DerivedToBase = false;
4561 bool ObjCConversion = false;
4562 bool ObjCLifetimeConversion = false;
4563 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4564 Sema::ReferenceCompareResult RefRelationship
4565 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4566 ObjCConversion, ObjCLifetimeConversion);
4567
4568 // C++0x [dcl.init.ref]p5:
4569 // A reference to type "cv1 T1" is initialized by an expression of type
4570 // "cv2 T2" as follows:
4571 //
4572 // - If the reference is an lvalue reference and the initializer
4573 // expression
4574 // Note the analogous bullet points for rvalue refs to functions. Because
4575 // there are no function rvalues in C++, rvalue refs to functions are treated
4576 // like lvalue refs.
4577 OverloadingResult ConvOvlResult = OR_Success;
4578 bool T1Function = T1->isFunctionType();
4579 if (isLValueRef || T1Function) {
4580 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4581 (RefRelationship == Sema::Ref_Compatible ||
4582 (Kind.isCStyleOrFunctionalCast() &&
4583 RefRelationship == Sema::Ref_Related))) {
4584 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4585 // reference-compatible with "cv2 T2," or
4586 if (T1Quals != T2Quals)
4587 // Convert to cv1 T2. This should only add qualifiers unless this is a
4588 // c-style cast. The removal of qualifiers in that case notionally
4589 // happens after the reference binding, but that doesn't matter.
4590 Sequence.AddQualificationConversionStep(
4591 S.Context.getQualifiedType(T2, T1Quals),
4592 Initializer->getValueKind());
4593 if (DerivedToBase)
4594 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4595 else if (ObjCConversion)
4596 Sequence.AddObjCObjectConversionStep(cv1T1);
4597
4598 // We only create a temporary here when binding a reference to a
4599 // bit-field or vector element. Those cases are't supposed to be
4600 // handled by this bullet, but the outcome is the same either way.
4601 Sequence.AddReferenceBindingStep(cv1T1, false);
4602 return;
4603 }
4604
4605 // - has a class type (i.e., T2 is a class type), where T1 is not
4606 // reference-related to T2, and can be implicitly converted to an
4607 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4608 // with "cv3 T3" (this conversion is selected by enumerating the
4609 // applicable conversion functions (13.3.1.6) and choosing the best
4610 // one through overload resolution (13.3)),
4611 // If we have an rvalue ref to function type here, the rhs must be
4612 // an rvalue. DR1287 removed the "implicitly" here.
4613 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4614 (isLValueRef || InitCategory.isRValue())) {
4615 ConvOvlResult = TryRefInitWithConversionFunction(
4616 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4617 /*IsLValueRef*/ isLValueRef, Sequence);
4618 if (ConvOvlResult == OR_Success)
4619 return;
4620 if (ConvOvlResult != OR_No_Viable_Function)
4621 Sequence.SetOverloadFailure(
4622 InitializationSequence::FK_ReferenceInitOverloadFailed,
4623 ConvOvlResult);
4624 }
4625 }
4626
4627 // - Otherwise, the reference shall be an lvalue reference to a
4628 // non-volatile const type (i.e., cv1 shall be const), or the reference
4629 // shall be an rvalue reference.
4630 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4631 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4632 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4633 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4634 Sequence.SetOverloadFailure(
4635 InitializationSequence::FK_ReferenceInitOverloadFailed,
4636 ConvOvlResult);
4637 else if (!InitCategory.isLValue())
4638 Sequence.SetFailed(
4639 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4640 else {
4641 InitializationSequence::FailureKind FK;
4642 switch (RefRelationship) {
4643 case Sema::Ref_Compatible:
4644 if (Initializer->refersToBitField())
4645 FK = InitializationSequence::
4646 FK_NonConstLValueReferenceBindingToBitfield;
4647 else if (Initializer->refersToVectorElement())
4648 FK = InitializationSequence::
4649 FK_NonConstLValueReferenceBindingToVectorElement;
4650 else
4651 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4651)
;
4652 break;
4653 case Sema::Ref_Related:
4654 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4655 break;
4656 case Sema::Ref_Incompatible:
4657 FK = InitializationSequence::
4658 FK_NonConstLValueReferenceBindingToUnrelated;
4659 break;
4660 }
4661 Sequence.SetFailed(FK);
4662 }
4663 return;
4664 }
4665
4666 // - If the initializer expression
4667 // - is an
4668 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4669 // [1z] rvalue (but not a bit-field) or
4670 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4671 //
4672 // Note: functions are handled above and below rather than here...
4673 if (!T1Function &&
4674 (RefRelationship == Sema::Ref_Compatible ||
4675 (Kind.isCStyleOrFunctionalCast() &&
4676 RefRelationship == Sema::Ref_Related)) &&
4677 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4678 (InitCategory.isPRValue() &&
4679 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4680 T2->isArrayType())))) {
4681 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4682 if (InitCategory.isPRValue() && T2->isRecordType()) {
4683 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4684 // compiler the freedom to perform a copy here or bind to the
4685 // object, while C++0x requires that we bind directly to the
4686 // object. Hence, we always bind to the object without making an
4687 // extra copy. However, in C++03 requires that we check for the
4688 // presence of a suitable copy constructor:
4689 //
4690 // The constructor that would be used to make the copy shall
4691 // be callable whether or not the copy is actually done.
4692 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4693 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4694 else if (S.getLangOpts().CPlusPlus11)
4695 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4696 }
4697
4698 // C++1z [dcl.init.ref]/5.2.1.2:
4699 // If the converted initializer is a prvalue, its type T4 is adjusted
4700 // to type "cv1 T4" and the temporary materialization conversion is
4701 // applied.
4702 // Postpone address space conversions to after the temporary materialization
4703 // conversion to allow creating temporaries in the alloca address space.
4704 auto T1QualsIgnoreAS = T1Quals;
4705 auto T2QualsIgnoreAS = T2Quals;
4706 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4707 T1QualsIgnoreAS.removeAddressSpace();
4708 T2QualsIgnoreAS.removeAddressSpace();
4709 }
4710 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4711 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4712 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4713 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4714 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4715 // Add addr space conversion if required.
4716 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4717 auto T4Quals = cv1T4.getQualifiers();
4718 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4719 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4720 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4721 }
4722
4723 // In any case, the reference is bound to the resulting glvalue (or to
4724 // an appropriate base class subobject).
4725 if (DerivedToBase)
4726 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4727 else if (ObjCConversion)
4728 Sequence.AddObjCObjectConversionStep(cv1T1);
4729 return;
4730 }
4731
4732 // - has a class type (i.e., T2 is a class type), where T1 is not
4733 // reference-related to T2, and can be implicitly converted to an
4734 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4735 // where "cv1 T1" is reference-compatible with "cv3 T3",
4736 //
4737 // DR1287 removes the "implicitly" here.
4738 if (T2->isRecordType()) {
4739 if (RefRelationship == Sema::Ref_Incompatible) {
4740 ConvOvlResult = TryRefInitWithConversionFunction(
4741 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4742 /*IsLValueRef*/ isLValueRef, Sequence);
4743 if (ConvOvlResult)
4744 Sequence.SetOverloadFailure(
4745 InitializationSequence::FK_ReferenceInitOverloadFailed,
4746 ConvOvlResult);
4747
4748 return;
4749 }
4750
4751 if (RefRelationship == Sema::Ref_Compatible &&
4752 isRValueRef && InitCategory.isLValue()) {
4753 Sequence.SetFailed(
4754 InitializationSequence::FK_RValueReferenceBindingToLValue);
4755 return;
4756 }
4757
4758 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4759 return;
4760 }
4761
4762 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4763 // from the initializer expression using the rules for a non-reference
4764 // copy-initialization (8.5). The reference is then bound to the
4765 // temporary. [...]
4766
4767 // Ignore address space of reference type at this point and perform address
4768 // space conversion after the reference binding step.
4769 QualType cv1T1IgnoreAS =
4770 T1Quals.hasAddressSpace()
4771 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4772 : cv1T1;
4773
4774 InitializedEntity TempEntity =
4775 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4776
4777 // FIXME: Why do we use an implicit conversion here rather than trying
4778 // copy-initialization?
4779 ImplicitConversionSequence ICS
4780 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4781 /*SuppressUserConversions=*/false,
4782 /*AllowExplicit=*/false,
4783 /*FIXME:InOverloadResolution=*/false,
4784 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4785 /*AllowObjCWritebackConversion=*/false);
4786
4787 if (ICS.isBad()) {
4788 // FIXME: Use the conversion function set stored in ICS to turn
4789 // this into an overloading ambiguity diagnostic. However, we need
4790 // to keep that set as an OverloadCandidateSet rather than as some
4791 // other kind of set.
4792 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4793 Sequence.SetOverloadFailure(
4794 InitializationSequence::FK_ReferenceInitOverloadFailed,
4795 ConvOvlResult);
4796 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4797 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4798 else
4799 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4800 return;
4801 } else {
4802 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4803 }
4804
4805 // [...] If T1 is reference-related to T2, cv1 must be the
4806 // same cv-qualification as, or greater cv-qualification
4807 // than, cv2; otherwise, the program is ill-formed.
4808 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4809 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4810 if ((RefRelationship == Sema::Ref_Related &&
4811 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4812 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4813 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4814 return;
4815 }
4816
4817 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4818 // reference, the initializer expression shall not be an lvalue.
4819 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4820 InitCategory.isLValue()) {
4821 Sequence.SetFailed(
4822 InitializationSequence::FK_RValueReferenceBindingToLValue);
4823 return;
4824 }
4825
4826 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true);
4827
4828 if (T1Quals.hasAddressSpace())
4829 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4830 : VK_XValue);
4831}
4832
4833/// Attempt character array initialization from a string literal
4834/// (C++ [dcl.init.string], C99 6.7.8).
4835static void TryStringLiteralInitialization(Sema &S,
4836 const InitializedEntity &Entity,
4837 const InitializationKind &Kind,
4838 Expr *Initializer,
4839 InitializationSequence &Sequence) {
4840 Sequence.AddStringInitStep(Entity.getType());
4841}
4842
4843/// Attempt value initialization (C++ [dcl.init]p7).
4844static void TryValueInitialization(Sema &S,
4845 const InitializedEntity &Entity,
4846 const InitializationKind &Kind,
4847 InitializationSequence &Sequence,
4848 InitListExpr *InitList) {
4849 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4850, __PRETTY_FUNCTION__))
4850 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4850, __PRETTY_FUNCTION__))
;
4851
4852 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4853 //
4854 // To value-initialize an object of type T means:
4855 QualType T = Entity.getType();
4856
4857 // -- if T is an array type, then each element is value-initialized;
4858 T = S.Context.getBaseElementType(T);
4859
4860 if (const RecordType *RT = T->getAs<RecordType>()) {
4861 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4862 bool NeedZeroInitialization = true;
4863 // C++98:
4864 // -- if T is a class type (clause 9) with a user-declared constructor
4865 // (12.1), then the default constructor for T is called (and the
4866 // initialization is ill-formed if T has no accessible default
4867 // constructor);
4868 // C++11:
4869 // -- if T is a class type (clause 9) with either no default constructor
4870 // (12.1 [class.ctor]) or a default constructor that is user-provided
4871 // or deleted, then the object is default-initialized;
4872 //
4873 // Note that the C++11 rule is the same as the C++98 rule if there are no
4874 // defaulted or deleted constructors, so we just use it unconditionally.
4875 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4876 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4877 NeedZeroInitialization = false;
4878
4879 // -- if T is a (possibly cv-qualified) non-union class type without a
4880 // user-provided or deleted default constructor, then the object is
4881 // zero-initialized and, if T has a non-trivial default constructor,
4882 // default-initialized;
4883 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4884 // constructor' part was removed by DR1507.
4885 if (NeedZeroInitialization)
4886 Sequence.AddZeroInitializationStep(Entity.getType());
4887
4888 // C++03:
4889 // -- if T is a non-union class type without a user-declared constructor,
4890 // then every non-static data member and base class component of T is
4891 // value-initialized;
4892 // [...] A program that calls for [...] value-initialization of an
4893 // entity of reference type is ill-formed.
4894 //
4895 // C++11 doesn't need this handling, because value-initialization does not
4896 // occur recursively there, and the implicit default constructor is
4897 // defined as deleted in the problematic cases.
4898 if (!S.getLangOpts().CPlusPlus11 &&
4899 ClassDecl->hasUninitializedReferenceMember()) {
4900 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4901 return;
4902 }
4903
4904 // If this is list-value-initialization, pass the empty init list on when
4905 // building the constructor call. This affects the semantics of a few
4906 // things (such as whether an explicit default constructor can be called).
4907 Expr *InitListAsExpr = InitList;
4908 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4909 bool InitListSyntax = InitList;
4910
4911 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4912 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4913 return TryConstructorInitialization(
4914 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4915 }
4916 }
4917
4918 Sequence.AddZeroInitializationStep(Entity.getType());
4919}
4920
4921/// Attempt default initialization (C++ [dcl.init]p6).
4922static void TryDefaultInitialization(Sema &S,
4923 const InitializedEntity &Entity,
4924 const InitializationKind &Kind,
4925 InitializationSequence &Sequence) {
4926 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4926, __PRETTY_FUNCTION__))
;
4927
4928 // C++ [dcl.init]p6:
4929 // To default-initialize an object of type T means:
4930 // - if T is an array type, each element is default-initialized;
4931 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4932
4933 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4934 // constructor for T is called (and the initialization is ill-formed if
4935 // T has no accessible default constructor);
4936 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4937 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4938 Entity.getType(), Sequence);
4939 return;
4940 }
4941
4942 // - otherwise, no initialization is performed.
4943
4944 // If a program calls for the default initialization of an object of
4945 // a const-qualified type T, T shall be a class type with a user-provided
4946 // default constructor.
4947 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4948 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4949 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4950 return;
4951 }
4952
4953 // If the destination type has a lifetime property, zero-initialize it.
4954 if (DestType.getQualifiers().hasObjCLifetime()) {
4955 Sequence.AddZeroInitializationStep(Entity.getType());
4956 return;
4957 }
4958}
4959
4960/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4961/// which enumerates all conversion functions and performs overload resolution
4962/// to select the best.
4963static void TryUserDefinedConversion(Sema &S,
4964 QualType DestType,
4965 const InitializationKind &Kind,
4966 Expr *Initializer,
4967 InitializationSequence &Sequence,
4968 bool TopLevelOfInitList) {
4969 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4969, __PRETTY_FUNCTION__))
;
4970 QualType SourceType = Initializer->getType();
4971 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4972, __PRETTY_FUNCTION__))
4972 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 4972, __PRETTY_FUNCTION__))
;
4973
4974 // Build the candidate set directly in the initialization sequence
4975 // structure, so that it will persist if we fail.
4976 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4977 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4978
4979 // Determine whether we are allowed to call explicit constructors or
4980 // explicit conversion operators.
4981 bool AllowExplicit = Kind.AllowExplicit();
4982
4983 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4984 // The type we're converting to is a class type. Enumerate its constructors
4985 // to see if there is a suitable conversion.
4986 CXXRecordDecl *DestRecordDecl
4987 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4988
4989 // Try to complete the type we're converting to.
4990 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4991 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4992 auto Info = getConstructorInfo(D);
4993 if (!Info.Constructor)
4994 continue;
4995
4996 if (!Info.Constructor->isInvalidDecl() &&
4997 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4998 if (Info.ConstructorTmpl)
4999 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
5000 /*ExplicitArgs*/ nullptr,
5001 Initializer, CandidateSet,
5002 /*SuppressUserConversions=*/true);
5003 else
5004 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5005 Initializer, CandidateSet,
5006 /*SuppressUserConversions=*/true);
5007 }
5008 }
5009 }
5010 }
5011
5012 SourceLocation DeclLoc = Initializer->getBeginLoc();
5013
5014 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5015 // The type we're converting from is a class type, enumerate its conversion
5016 // functions.
5017
5018 // We can only enumerate the conversion functions for a complete type; if
5019 // the type isn't complete, simply skip this step.
5020 if (S.isCompleteType(DeclLoc, SourceType)) {
5021 CXXRecordDecl *SourceRecordDecl
5022 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5023
5024 const auto &Conversions =
5025 SourceRecordDecl->getVisibleConversionFunctions();
5026 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5027 NamedDecl *D = *I;
5028 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5029 if (isa<UsingShadowDecl>(D))
5030 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5031
5032 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5033 CXXConversionDecl *Conv;
5034 if (ConvTemplate)
5035 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5036 else
5037 Conv = cast<CXXConversionDecl>(D);
5038
5039 if (AllowExplicit || !Conv->isExplicit()) {
5040 if (ConvTemplate)
5041 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
5042 ActingDC, Initializer, DestType,
5043 CandidateSet, AllowExplicit);
5044 else
5045 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
5046 Initializer, DestType, CandidateSet,
5047 AllowExplicit);
5048 }
5049 }
5050 }
5051 }
5052
5053 // Perform overload resolution. If it fails, return the failed result.
5054 OverloadCandidateSet::iterator Best;
5055 if (OverloadingResult Result
5056 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5057 Sequence.SetOverloadFailure(
5058 InitializationSequence::FK_UserConversionOverloadFailed,
5059 Result);
5060 return;
5061 }
5062
5063 FunctionDecl *Function = Best->Function;
5064 Function->setReferenced();
5065 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5066
5067 if (isa<CXXConstructorDecl>(Function)) {
5068 // Add the user-defined conversion step. Any cv-qualification conversion is
5069 // subsumed by the initialization. Per DR5, the created temporary is of the
5070 // cv-unqualified type of the destination.
5071 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5072 DestType.getUnqualifiedType(),
5073 HadMultipleCandidates);
5074
5075 // C++14 and before:
5076 // - if the function is a constructor, the call initializes a temporary
5077 // of the cv-unqualified version of the destination type. The [...]
5078 // temporary [...] is then used to direct-initialize, according to the
5079 // rules above, the object that is the destination of the
5080 // copy-initialization.
5081 // Note that this just performs a simple object copy from the temporary.
5082 //
5083 // C++17:
5084 // - if the function is a constructor, the call is a prvalue of the
5085 // cv-unqualified version of the destination type whose return object
5086 // is initialized by the constructor. The call is used to
5087 // direct-initialize, according to the rules above, the object that
5088 // is the destination of the copy-initialization.
5089 // Therefore we need to do nothing further.
5090 //
5091 // FIXME: Mark this copy as extraneous.
5092 if (!S.getLangOpts().CPlusPlus17)
5093 Sequence.AddFinalCopy(DestType);
5094 else if (DestType.hasQualifiers())
5095 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5096 return;
5097 }
5098
5099 // Add the user-defined conversion step that calls the conversion function.
5100 QualType ConvType = Function->getCallResultType();
5101 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5102 HadMultipleCandidates);
5103
5104 if (ConvType->getAs<RecordType>()) {
5105 // The call is used to direct-initialize [...] the object that is the
5106 // destination of the copy-initialization.
5107 //
5108 // In C++17, this does not call a constructor if we enter /17.6.1:
5109 // - If the initializer expression is a prvalue and the cv-unqualified
5110 // version of the source type is the same as the class of the
5111 // destination [... do not make an extra copy]
5112 //
5113 // FIXME: Mark this copy as extraneous.
5114 if (!S.getLangOpts().CPlusPlus17 ||
5115 Function->getReturnType()->isReferenceType() ||
5116 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5117 Sequence.AddFinalCopy(DestType);
5118 else if (!S.Context.hasSameType(ConvType, DestType))
5119 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5120 return;
5121 }
5122
5123 // If the conversion following the call to the conversion function
5124 // is interesting, add it as a separate step.
5125 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5126 Best->FinalConversion.Third) {
5127 ImplicitConversionSequence ICS;
5128 ICS.setStandard();
5129 ICS.Standard = Best->FinalConversion;
5130 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5131 }
5132}
5133
5134/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5135/// a function with a pointer return type contains a 'return false;' statement.
5136/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5137/// code using that header.
5138///
5139/// Work around this by treating 'return false;' as zero-initializing the result
5140/// if it's used in a pointer-returning function in a system header.
5141static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5142 const InitializedEntity &Entity,
5143 const Expr *Init) {
5144 return S.getLangOpts().CPlusPlus11 &&
5145 Entity.getKind() == InitializedEntity::EK_Result &&
5146 Entity.getType()->isPointerType() &&
5147 isa<CXXBoolLiteralExpr>(Init) &&
5148 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5149 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5150}
5151
5152/// The non-zero enum values here are indexes into diagnostic alternatives.
5153enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5154
5155/// Determines whether this expression is an acceptable ICR source.
5156static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5157 bool isAddressOf, bool &isWeakAccess) {
5158 // Skip parens.
5159 e = e->IgnoreParens();
5160
5161 // Skip address-of nodes.
5162 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5163 if (op->getOpcode() == UO_AddrOf)
5164 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5165 isWeakAccess);
5166
5167 // Skip certain casts.
5168 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5169 switch (ce->getCastKind()) {
5170 case CK_Dependent:
5171 case CK_BitCast:
5172 case CK_LValueBitCast:
5173 case CK_NoOp:
5174 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5175
5176 case CK_ArrayToPointerDecay:
5177 return IIK_nonscalar;
5178
5179 case CK_NullToPointer:
5180 return IIK_okay;
5181
5182 default:
5183 break;
5184 }
5185
5186 // If we have a declaration reference, it had better be a local variable.
5187 } else if (isa<DeclRefExpr>(e)) {
5188 // set isWeakAccess to true, to mean that there will be an implicit
5189 // load which requires a cleanup.
5190 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5191 isWeakAccess = true;
5192
5193 if (!isAddressOf) return IIK_nonlocal;
5194
5195 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5196 if (!var) return IIK_nonlocal;
5197
5198 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5199
5200 // If we have a conditional operator, check both sides.
5201 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5202 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5203 isWeakAccess))
5204 return iik;
5205
5206 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5207
5208 // These are never scalar.
5209 } else if (isa<ArraySubscriptExpr>(e)) {
5210 return IIK_nonscalar;
5211
5212 // Otherwise, it needs to be a null pointer constant.
5213 } else {
5214 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5215 ? IIK_okay : IIK_nonlocal);
5216 }
5217
5218 return IIK_nonlocal;
5219}
5220
5221/// Check whether the given expression is a valid operand for an
5222/// indirect copy/restore.
5223static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5224 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5224, __PRETTY_FUNCTION__))
;
5225 bool isWeakAccess = false;
5226 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5227 // If isWeakAccess to true, there will be an implicit
5228 // load which requires a cleanup.
5229 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5230 S.Cleanup.setExprNeedsCleanups(true);
5231
5232 if (iik == IIK_okay) return;
5233
5234 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5235 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5236 << src->getSourceRange();
5237}
5238
5239/// Determine whether we have compatible array types for the
5240/// purposes of GNU by-copy array initialization.
5241static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5242 const ArrayType *Source) {
5243 // If the source and destination array types are equivalent, we're
5244 // done.
5245 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5246 return true;
5247
5248 // Make sure that the element types are the same.
5249 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5250 return false;
5251
5252 // The only mismatch we allow is when the destination is an
5253 // incomplete array type and the source is a constant array type.
5254 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5255}
5256
5257static bool tryObjCWritebackConversion(Sema &S,
5258 InitializationSequence &Sequence,
5259 const InitializedEntity &Entity,
5260 Expr *Initializer) {
5261 bool ArrayDecay = false;
5262 QualType ArgType = Initializer->getType();
5263 QualType ArgPointee;
5264 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5265 ArrayDecay = true;
5266 ArgPointee = ArgArrayType->getElementType();
5267 ArgType = S.Context.getPointerType(ArgPointee);
5268 }
5269
5270 // Handle write-back conversion.
5271 QualType ConvertedArgType;
5272 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5273 ConvertedArgType))
5274 return false;
5275
5276 // We should copy unless we're passing to an argument explicitly
5277 // marked 'out'.
5278 bool ShouldCopy = true;
5279 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5280 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5281
5282 // Do we need an lvalue conversion?
5283 if (ArrayDecay || Initializer->isGLValue()) {
5284 ImplicitConversionSequence ICS;
5285 ICS.setStandard();
5286 ICS.Standard.setAsIdentityConversion();
5287
5288 QualType ResultType;
5289 if (ArrayDecay) {
5290 ICS.Standard.First = ICK_Array_To_Pointer;
5291 ResultType = S.Context.getPointerType(ArgPointee);
5292 } else {
5293 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5294 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5295 }
5296
5297 Sequence.AddConversionSequenceStep(ICS, ResultType);
5298 }
5299
5300 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5301 return true;
5302}
5303
5304static bool TryOCLSamplerInitialization(Sema &S,
5305 InitializationSequence &Sequence,
5306 QualType DestType,
5307 Expr *Initializer) {
5308 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5309 (!Initializer->isIntegerConstantExpr(S.Context) &&
5310 !Initializer->getType()->isSamplerT()))
5311 return false;
5312
5313 Sequence.AddOCLSamplerInitStep(DestType);
5314 return true;
5315}
5316
5317static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5318 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5319 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5320}
5321
5322static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5323 InitializationSequence &Sequence,
5324 QualType DestType,
5325 Expr *Initializer) {
5326 if (!S.getLangOpts().OpenCL)
5327 return false;
5328
5329 //
5330 // OpenCL 1.2 spec, s6.12.10
5331 //
5332 // The event argument can also be used to associate the
5333 // async_work_group_copy with a previous async copy allowing
5334 // an event to be shared by multiple async copies; otherwise
5335 // event should be zero.
5336 //
5337 if (DestType->isEventT() || DestType->isQueueT()) {
5338 if (!IsZeroInitializer(Initializer, S))
5339 return false;
5340
5341 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5342 return true;
5343 }
5344
5345 // We should allow zero initialization for all types defined in the
5346 // cl_intel_device_side_avc_motion_estimation extension, except
5347 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5348 if (S.getOpenCLOptions().isEnabled(
5349 "cl_intel_device_side_avc_motion_estimation") &&
5350 DestType->isOCLIntelSubgroupAVCType()) {
5351 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5352 DestType->isOCLIntelSubgroupAVCMceResultType())
5353 return false;
5354 if (!IsZeroInitializer(Initializer, S))
5355 return false;
5356
5357 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5358 return true;
5359 }
5360
5361 return false;
5362}
5363
5364InitializationSequence::InitializationSequence(Sema &S,
5365 const InitializedEntity &Entity,
5366 const InitializationKind &Kind,
5367 MultiExprArg Args,
5368 bool TopLevelOfInitList,
5369 bool TreatUnavailableAsInvalid)
5370 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5371 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5372 TreatUnavailableAsInvalid);
5373}
5374
5375/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5376/// address of that function, this returns true. Otherwise, it returns false.
5377static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5378 auto *DRE = dyn_cast<DeclRefExpr>(E);
5379 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5380 return false;
5381
5382 return !S.checkAddressOfFunctionIsAvailable(
5383 cast<FunctionDecl>(DRE->getDecl()));
5384}
5385
5386/// Determine whether we can perform an elementwise array copy for this kind
5387/// of entity.
5388static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5389 switch (Entity.getKind()) {
5390 case InitializedEntity::EK_LambdaCapture:
5391 // C++ [expr.prim.lambda]p24:
5392 // For array members, the array elements are direct-initialized in
5393 // increasing subscript order.
5394 return true;
5395
5396 case InitializedEntity::EK_Variable:
5397 // C++ [dcl.decomp]p1:
5398 // [...] each element is copy-initialized or direct-initialized from the
5399 // corresponding element of the assignment-expression [...]
5400 return isa<DecompositionDecl>(Entity.getDecl());
5401
5402 case InitializedEntity::EK_Member:
5403 // C++ [class.copy.ctor]p14:
5404 // - if the member is an array, each element is direct-initialized with
5405 // the corresponding subobject of x
5406 return Entity.isImplicitMemberInitializer();
5407
5408 case InitializedEntity::EK_ArrayElement:
5409 // All the above cases are intended to apply recursively, even though none
5410 // of them actually say that.
5411 if (auto *E = Entity.getParent())
5412 return canPerformArrayCopy(*E);
5413 break;
5414
5415 default:
5416 break;
5417 }
5418
5419 return false;
5420}
5421
5422void InitializationSequence::InitializeFrom(Sema &S,
5423 const InitializedEntity &Entity,
5424 const InitializationKind &Kind,
5425 MultiExprArg Args,
5426 bool TopLevelOfInitList,
5427 bool TreatUnavailableAsInvalid) {
5428 ASTContext &Context = S.Context;
5429
5430 // Eliminate non-overload placeholder types in the arguments. We
5431 // need to do this before checking whether types are dependent
5432 // because lowering a pseudo-object expression might well give us
5433 // something of dependent type.
5434 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5435 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5436 // FIXME: should we be doing this here?
5437 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5438 if (result.isInvalid()) {
5439 SetFailed(FK_PlaceholderType);
5440 return;
5441 }
5442 Args[I] = result.get();
5443 }
5444
5445 // C++0x [dcl.init]p16:
5446 // The semantics of initializers are as follows. The destination type is
5447 // the type of the object or reference being initialized and the source
5448 // type is the type of the initializer expression. The source type is not
5449 // defined when the initializer is a braced-init-list or when it is a
5450 // parenthesized list of expressions.
5451 QualType DestType = Entity.getType();
5452
5453 if (DestType->isDependentType() ||
5454 Expr::hasAnyTypeDependentArguments(Args)) {
5455 SequenceKind = DependentSequence;
5456 return;
5457 }
5458
5459 // Almost everything is a normal sequence.
5460 setSequenceKind(NormalSequence);
5461
5462 QualType SourceType;
5463 Expr *Initializer = nullptr;
5464 if (Args.size() == 1) {
5465 Initializer = Args[0];
5466 if (S.getLangOpts().ObjC) {
5467 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5468 DestType, Initializer->getType(),
5469 Initializer) ||
5470 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5471 Args[0] = Initializer;
5472 }
5473 if (!isa<InitListExpr>(Initializer))
5474 SourceType = Initializer->getType();
5475 }
5476
5477 // - If the initializer is a (non-parenthesized) braced-init-list, the
5478 // object is list-initialized (8.5.4).
5479 if (Kind.getKind() != InitializationKind::IK_Direct) {
5480 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5481 TryListInitialization(S, Entity, Kind, InitList, *this,
5482 TreatUnavailableAsInvalid);
5483 return;
5484 }
5485 }
5486
5487 // - If the destination type is a reference type, see 8.5.3.
5488 if (DestType->isReferenceType()) {
5489 // C++0x [dcl.init.ref]p1:
5490 // A variable declared to be a T& or T&&, that is, "reference to type T"
5491 // (8.3.2), shall be initialized by an object, or function, of type T or
5492 // by an object that can be converted into a T.
5493 // (Therefore, multiple arguments are not permitted.)
5494 if (Args.size() != 1)
5495 SetFailed(FK_TooManyInitsForReference);
5496 // C++17 [dcl.init.ref]p5:
5497 // A reference [...] is initialized by an expression [...] as follows:
5498 // If the initializer is not an expression, presumably we should reject,
5499 // but the standard fails to actually say so.
5500 else if (isa<InitListExpr>(Args[0]))
5501 SetFailed(FK_ParenthesizedListInitForReference);
5502 else
5503 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5504 return;
5505 }
5506
5507 // - If the initializer is (), the object is value-initialized.
5508 if (Kind.getKind() == InitializationKind::IK_Value ||
5509 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5510 TryValueInitialization(S, Entity, Kind, *this);
5511 return;
5512 }
5513
5514 // Handle default initialization.
5515 if (Kind.getKind() == InitializationKind::IK_Default) {
5516 TryDefaultInitialization(S, Entity, Kind, *this);
5517 return;
5518 }
5519
5520 // - If the destination type is an array of characters, an array of
5521 // char16_t, an array of char32_t, or an array of wchar_t, and the
5522 // initializer is a string literal, see 8.5.2.
5523 // - Otherwise, if the destination type is an array, the program is
5524 // ill-formed.
5525 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5526 if (Initializer && isa<VariableArrayType>(DestAT)) {
5527 SetFailed(FK_VariableLengthArrayHasInitializer);
5528 return;
5529 }
5530
5531 if (Initializer) {
5532 switch (IsStringInit(Initializer, DestAT, Context)) {
5533 case SIF_None:
5534 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5535 return;
5536 case SIF_NarrowStringIntoWideChar:
5537 SetFailed(FK_NarrowStringIntoWideCharArray);
5538 return;
5539 case SIF_WideStringIntoChar:
5540 SetFailed(FK_WideStringIntoCharArray);
5541 return;
5542 case SIF_IncompatWideStringIntoWideChar:
5543 SetFailed(FK_IncompatWideStringIntoWideChar);
5544 return;
5545 case SIF_PlainStringIntoUTF8Char:
5546 SetFailed(FK_PlainStringIntoUTF8Char);
5547 return;
5548 case SIF_UTF8StringIntoPlainChar:
5549 SetFailed(FK_UTF8StringIntoPlainChar);
5550 return;
5551 case SIF_Other:
5552 break;
5553 }
5554 }
5555
5556 // Some kinds of initialization permit an array to be initialized from
5557 // another array of the same type, and perform elementwise initialization.
5558 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5559 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5560 Entity.getType()) &&
5561 canPerformArrayCopy(Entity)) {
5562 // If source is a prvalue, use it directly.
5563 if (Initializer->getValueKind() == VK_RValue) {
5564 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5565 return;
5566 }
5567
5568 // Emit element-at-a-time copy loop.
5569 InitializedEntity Element =
5570 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5571 QualType InitEltT =
5572 Context.getAsArrayType(Initializer->getType())->getElementType();
5573 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5574 Initializer->getValueKind(),
5575 Initializer->getObjectKind());
5576 Expr *OVEAsExpr = &OVE;
5577 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5578 TreatUnavailableAsInvalid);
5579 if (!Failed())
5580 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5581 return;
5582 }
5583
5584 // Note: as an GNU C extension, we allow initialization of an
5585 // array from a compound literal that creates an array of the same
5586 // type, so long as the initializer has no side effects.
5587 if (!S.getLangOpts().CPlusPlus && Initializer &&
5588 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5589 Initializer->getType()->isArrayType()) {
5590 const ArrayType *SourceAT
5591 = Context.getAsArrayType(Initializer->getType());
5592 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5593 SetFailed(FK_ArrayTypeMismatch);
5594 else if (Initializer->HasSideEffects(S.Context))
5595 SetFailed(FK_NonConstantArrayInit);
5596 else {
5597 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5598 }
5599 }
5600 // Note: as a GNU C++ extension, we allow list-initialization of a
5601 // class member of array type from a parenthesized initializer list.
5602 else if (S.getLangOpts().CPlusPlus &&
5603 Entity.getKind() == InitializedEntity::EK_Member &&
5604 Initializer && isa<InitListExpr>(Initializer)) {
5605 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5606 *this, TreatUnavailableAsInvalid);
5607 AddParenthesizedArrayInitStep(DestType);
5608 } else if (DestAT->getElementType()->isCharType())
5609 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5610 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5611 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5612 else
5613 SetFailed(FK_ArrayNeedsInitList);
5614
5615 return;
5616 }
5617
5618 // Determine whether we should consider writeback conversions for
5619 // Objective-C ARC.
5620 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5621 Entity.isParameterKind();
5622
5623 // We're at the end of the line for C: it's either a write-back conversion
5624 // or it's a C assignment. There's no need to check anything else.
5625 if (!S.getLangOpts().CPlusPlus) {
5626 // If allowed, check whether this is an Objective-C writeback conversion.
5627 if (allowObjCWritebackConversion &&
5628 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5629 return;
5630 }
5631
5632 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5633 return;
5634
5635 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5636 return;
5637
5638 // Handle initialization in C
5639 AddCAssignmentStep(DestType);
5640 MaybeProduceObjCObject(S, *this, Entity);
5641 return;
5642 }
5643
5644 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5644, __PRETTY_FUNCTION__))
;
5645
5646 // - If the destination type is a (possibly cv-qualified) class type:
5647 if (DestType->isRecordType()) {
5648 // - If the initialization is direct-initialization, or if it is
5649 // copy-initialization where the cv-unqualified version of the
5650 // source type is the same class as, or a derived class of, the
5651 // class of the destination, constructors are considered. [...]
5652 if (Kind.getKind() == InitializationKind::IK_Direct ||
5653 (Kind.getKind() == InitializationKind::IK_Copy &&
5654 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5655 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5656 TryConstructorInitialization(S, Entity, Kind, Args,
5657 DestType, DestType, *this);
5658 // - Otherwise (i.e., for the remaining copy-initialization cases),
5659 // user-defined conversion sequences that can convert from the source
5660 // type to the destination type or (when a conversion function is
5661 // used) to a derived class thereof are enumerated as described in
5662 // 13.3.1.4, and the best one is chosen through overload resolution
5663 // (13.3).
5664 else
5665 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5666 TopLevelOfInitList);
5667 return;
5668 }
5669
5670 assert(Args.size() >= 1 && "Zero-argument case handled above")((Args.size() >= 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5670, __PRETTY_FUNCTION__))
;
5671
5672 // The remaining cases all need a source type.
5673 if (Args.size() > 1) {
5674 SetFailed(FK_TooManyInitsForScalar);
5675 return;
5676 } else if (isa<InitListExpr>(Args[0])) {
5677 SetFailed(FK_ParenthesizedListInitForScalar);
5678 return;
5679 }
5680
5681 // - Otherwise, if the source type is a (possibly cv-qualified) class
5682 // type, conversion functions are considered.
5683 if (!SourceType.isNull() && SourceType->isRecordType()) {
5684 // For a conversion to _Atomic(T) from either T or a class type derived
5685 // from T, initialize the T object then convert to _Atomic type.
5686 bool NeedAtomicConversion = false;
5687 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5688 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5689 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5690 Atomic->getValueType())) {
5691 DestType = Atomic->getValueType();
5692 NeedAtomicConversion = true;
5693 }
5694 }
5695
5696 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5697 TopLevelOfInitList);
5698 MaybeProduceObjCObject(S, *this, Entity);
5699 if (!Failed() && NeedAtomicConversion)
5700 AddAtomicConversionStep(Entity.getType());
5701 return;
5702 }
5703
5704 // - Otherwise, the initial value of the object being initialized is the
5705 // (possibly converted) value of the initializer expression. Standard
5706 // conversions (Clause 4) will be used, if necessary, to convert the
5707 // initializer expression to the cv-unqualified version of the
5708 // destination type; no user-defined conversions are considered.
5709
5710 ImplicitConversionSequence ICS
5711 = S.TryImplicitConversion(Initializer, DestType,
5712 /*SuppressUserConversions*/true,
5713 /*AllowExplicitConversions*/ false,
5714 /*InOverloadResolution*/ false,
5715 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5716 allowObjCWritebackConversion);
5717
5718 if (ICS.isStandard() &&
5719 ICS.Standard.Second == ICK_Writeback_Conversion) {
5720 // Objective-C ARC writeback conversion.
5721
5722 // We should copy unless we're passing to an argument explicitly
5723 // marked 'out'.
5724 bool ShouldCopy = true;
5725 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5726 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5727
5728 // If there was an lvalue adjustment, add it as a separate conversion.
5729 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5730 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5731 ImplicitConversionSequence LvalueICS;
5732 LvalueICS.setStandard();
5733 LvalueICS.Standard.setAsIdentityConversion();
5734 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5735 LvalueICS.Standard.First = ICS.Standard.First;
5736 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5737 }
5738
5739 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5740 } else if (ICS.isBad()) {
5741 DeclAccessPair dap;
5742 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5743 AddZeroInitializationStep(Entity.getType());
5744 } else if (Initializer->getType() == Context.OverloadTy &&
5745 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5746 false, dap))
5747 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5748 else if (Initializer->getType()->isFunctionType() &&
5749 isExprAnUnaddressableFunction(S, Initializer))
5750 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5751 else
5752 SetFailed(InitializationSequence::FK_ConversionFailed);
5753 } else {
5754 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5755
5756 MaybeProduceObjCObject(S, *this, Entity);
5757 }
5758}
5759
5760InitializationSequence::~InitializationSequence() {
5761 for (auto &S : Steps)
5762 S.Destroy();
5763}
5764
5765//===----------------------------------------------------------------------===//
5766// Perform initialization
5767//===----------------------------------------------------------------------===//
5768static Sema::AssignmentAction
5769getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5770 switch(Entity.getKind()) {
5771 case InitializedEntity::EK_Variable:
5772 case InitializedEntity::EK_New:
5773 case InitializedEntity::EK_Exception:
5774 case InitializedEntity::EK_Base:
5775 case InitializedEntity::EK_Delegating:
5776 return Sema::AA_Initializing;
5777
5778 case InitializedEntity::EK_Parameter:
5779 if (Entity.getDecl() &&
5780 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5781 return Sema::AA_Sending;
5782
5783 return Sema::AA_Passing;
5784
5785 case InitializedEntity::EK_Parameter_CF_Audited:
5786 if (Entity.getDecl() &&
5787 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5788 return Sema::AA_Sending;
5789
5790 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5791
5792 case InitializedEntity::EK_Result:
5793 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5794 return Sema::AA_Returning;
5795
5796 case InitializedEntity::EK_Temporary:
5797 case InitializedEntity::EK_RelatedResult:
5798 // FIXME: Can we tell apart casting vs. converting?
5799 return Sema::AA_Casting;
5800
5801 case InitializedEntity::EK_Member:
5802 case InitializedEntity::EK_Binding:
5803 case InitializedEntity::EK_ArrayElement:
5804 case InitializedEntity::EK_VectorElement:
5805 case InitializedEntity::EK_ComplexElement:
5806 case InitializedEntity::EK_BlockElement:
5807 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5808 case InitializedEntity::EK_LambdaCapture:
5809 case InitializedEntity::EK_CompoundLiteralInit:
5810 return Sema::AA_Initializing;
5811 }
5812
5813 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5813)
;
5814}
5815
5816/// Whether we should bind a created object as a temporary when
5817/// initializing the given entity.
5818static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5819 switch (Entity.getKind()) {
5820 case InitializedEntity::EK_ArrayElement:
5821 case InitializedEntity::EK_Member:
5822 case InitializedEntity::EK_Result:
5823 case InitializedEntity::EK_StmtExprResult:
5824 case InitializedEntity::EK_New:
5825 case InitializedEntity::EK_Variable:
5826 case InitializedEntity::EK_Base:
5827 case InitializedEntity::EK_Delegating:
5828 case InitializedEntity::EK_VectorElement:
5829 case InitializedEntity::EK_ComplexElement:
5830 case InitializedEntity::EK_Exception:
5831 case InitializedEntity::EK_BlockElement:
5832 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5833 case InitializedEntity::EK_LambdaCapture:
5834 case InitializedEntity::EK_CompoundLiteralInit:
5835 return false;
5836
5837 case InitializedEntity::EK_Parameter:
5838 case InitializedEntity::EK_Parameter_CF_Audited:
5839 case InitializedEntity::EK_Temporary:
5840 case InitializedEntity::EK_RelatedResult:
5841 case InitializedEntity::EK_Binding:
5842 return true;
5843 }
5844
5845 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5845)
;
5846}
5847
5848/// Whether the given entity, when initialized with an object
5849/// created for that initialization, requires destruction.
5850static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5851 switch (Entity.getKind()) {
5852 case InitializedEntity::EK_Result:
5853 case InitializedEntity::EK_StmtExprResult:
5854 case InitializedEntity::EK_New:
5855 case InitializedEntity::EK_Base:
5856 case InitializedEntity::EK_Delegating:
5857 case InitializedEntity::EK_VectorElement:
5858 case InitializedEntity::EK_ComplexElement:
5859 case InitializedEntity::EK_BlockElement:
5860 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5861 case InitializedEntity::EK_LambdaCapture:
5862 return false;
5863
5864 case InitializedEntity::EK_Member:
5865 case InitializedEntity::EK_Binding:
5866 case InitializedEntity::EK_Variable:
5867 case InitializedEntity::EK_Parameter:
5868 case InitializedEntity::EK_Parameter_CF_Audited:
5869 case InitializedEntity::EK_Temporary:
5870 case InitializedEntity::EK_ArrayElement:
5871 case InitializedEntity::EK_Exception:
5872 case InitializedEntity::EK_CompoundLiteralInit:
5873 case InitializedEntity::EK_RelatedResult:
5874 return true;
5875 }
5876
5877 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5877)
;
5878}
5879
5880/// Get the location at which initialization diagnostics should appear.
5881static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5882 Expr *Initializer) {
5883 switch (Entity.getKind()) {
5884 case InitializedEntity::EK_Result:
5885 case InitializedEntity::EK_StmtExprResult:
5886 return Entity.getReturnLoc();
5887
5888 case InitializedEntity::EK_Exception:
5889 return Entity.getThrowLoc();
5890
5891 case InitializedEntity::EK_Variable:
5892 case InitializedEntity::EK_Binding:
5893 return Entity.getDecl()->getLocation();
5894
5895 case InitializedEntity::EK_LambdaCapture:
5896 return Entity.getCaptureLoc();
5897
5898 case InitializedEntity::EK_ArrayElement:
5899 case InitializedEntity::EK_Member:
5900 case InitializedEntity::EK_Parameter:
5901 case InitializedEntity::EK_Parameter_CF_Audited:
5902 case InitializedEntity::EK_Temporary:
5903 case InitializedEntity::EK_New:
5904 case InitializedEntity::EK_Base:
5905 case InitializedEntity::EK_Delegating:
5906 case InitializedEntity::EK_VectorElement:
5907 case InitializedEntity::EK_ComplexElement:
5908 case InitializedEntity::EK_BlockElement:
5909 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5910 case InitializedEntity::EK_CompoundLiteralInit:
5911 case InitializedEntity::EK_RelatedResult:
5912 return Initializer->getBeginLoc();
5913 }
5914 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 5914)
;
5915}
5916
5917/// Make a (potentially elidable) temporary copy of the object
5918/// provided by the given initializer by calling the appropriate copy
5919/// constructor.
5920///
5921/// \param S The Sema object used for type-checking.
5922///
5923/// \param T The type of the temporary object, which must either be
5924/// the type of the initializer expression or a superclass thereof.
5925///
5926/// \param Entity The entity being initialized.
5927///
5928/// \param CurInit The initializer expression.
5929///
5930/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5931/// is permitted in C++03 (but not C++0x) when binding a reference to
5932/// an rvalue.
5933///
5934/// \returns An expression that copies the initializer expression into
5935/// a temporary object, or an error expression if a copy could not be
5936/// created.
5937static ExprResult CopyObject(Sema &S,
5938 QualType T,
5939 const InitializedEntity &Entity,
5940 ExprResult CurInit,
5941 bool IsExtraneousCopy) {
5942 if (CurInit.isInvalid())
5943 return CurInit;
5944 // Determine which class type we're copying to.
5945 Expr *CurInitExpr = (Expr *)CurInit.get();
5946 CXXRecordDecl *Class = nullptr;
5947 if (const RecordType *Record = T->getAs<RecordType>())
5948 Class = cast<CXXRecordDecl>(Record->getDecl());
5949 if (!Class)
5950 return CurInit;
5951
5952 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5953
5954 // Make sure that the type we are copying is complete.
5955 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5956 return CurInit;
5957
5958 // Perform overload resolution using the class's constructors. Per
5959 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5960 // is direct-initialization.
5961 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5962 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5963
5964 OverloadCandidateSet::iterator Best;
5965 switch (ResolveConstructorOverload(
5966 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5967 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5968 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5969 /*SecondStepOfCopyInit=*/true)) {
5970 case OR_Success:
5971 break;
5972
5973 case OR_No_Viable_Function:
5974 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5975 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5976 : diag::err_temp_copy_no_viable)
5977 << (int)Entity.getKind() << CurInitExpr->getType()
5978 << CurInitExpr->getSourceRange();
5979 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5980 if (!IsExtraneousCopy || S.isSFINAEContext())
5981 return ExprError();
5982 return CurInit;
5983
5984 case OR_Ambiguous:
5985 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5986 << (int)Entity.getKind() << CurInitExpr->getType()
5987 << CurInitExpr->getSourceRange();
5988 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5989 return ExprError();
5990
5991 case OR_Deleted:
5992 S.Diag(Loc, diag::err_temp_copy_deleted)
5993 << (int)Entity.getKind() << CurInitExpr->getType()
5994 << CurInitExpr->getSourceRange();
5995 S.NoteDeletedFunction(Best->Function);
5996 return ExprError();
5997 }
5998
5999 bool HadMultipleCandidates = CandidateSet.size() > 1;
6000
6001 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6002 SmallVector<Expr*, 8> ConstructorArgs;
6003 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6004
6005 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6006 IsExtraneousCopy);
6007
6008 if (IsExtraneousCopy) {
6009 // If this is a totally extraneous copy for C++03 reference
6010 // binding purposes, just return the original initialization
6011 // expression. We don't generate an (elided) copy operation here
6012 // because doing so would require us to pass down a flag to avoid
6013 // infinite recursion, where each step adds another extraneous,
6014 // elidable copy.
6015
6016 // Instantiate the default arguments of any extra parameters in
6017 // the selected copy constructor, as if we were going to create a
6018 // proper call to the copy constructor.
6019 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6020 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6021 if (S.RequireCompleteType(Loc, Parm->getType(),
6022 diag::err_call_incomplete_argument))
6023 break;
6024
6025 // Build the default argument expression; we don't actually care
6026 // if this succeeds or not, because this routine will complain
6027 // if there was a problem.
6028 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6029 }
6030
6031 return CurInitExpr;
6032 }
6033
6034 // Determine the arguments required to actually perform the
6035 // constructor call (we might have derived-to-base conversions, or
6036 // the copy constructor may have default arguments).
6037 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6038 return ExprError();
6039
6040 // C++0x [class.copy]p32:
6041 // When certain criteria are met, an implementation is allowed to
6042 // omit the copy/move construction of a class object, even if the
6043 // copy/move constructor and/or destructor for the object have
6044 // side effects. [...]
6045 // - when a temporary class object that has not been bound to a
6046 // reference (12.2) would be copied/moved to a class object
6047 // with the same cv-unqualified type, the copy/move operation
6048 // can be omitted by constructing the temporary object
6049 // directly into the target of the omitted copy/move
6050 //
6051 // Note that the other three bullets are handled elsewhere. Copy
6052 // elision for return statements and throw expressions are handled as part
6053 // of constructor initialization, while copy elision for exception handlers
6054 // is handled by the run-time.
6055 //
6056 // FIXME: If the function parameter is not the same type as the temporary, we
6057 // should still be able to elide the copy, but we don't have a way to
6058 // represent in the AST how much should be elided in this case.
6059 bool Elidable =
6060 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6061 S.Context.hasSameUnqualifiedType(
6062 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6063 CurInitExpr->getType());
6064
6065 // Actually perform the constructor call.
6066 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6067 Elidable,
6068 ConstructorArgs,
6069 HadMultipleCandidates,
6070 /*ListInit*/ false,
6071 /*StdInitListInit*/ false,
6072 /*ZeroInit*/ false,
6073 CXXConstructExpr::CK_Complete,
6074 SourceRange());
6075
6076 // If we're supposed to bind temporaries, do so.
6077 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6078 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6079 return CurInit;
6080}
6081
6082/// Check whether elidable copy construction for binding a reference to
6083/// a temporary would have succeeded if we were building in C++98 mode, for
6084/// -Wc++98-compat.
6085static void CheckCXX98CompatAccessibleCopy(Sema &S,
6086 const InitializedEntity &Entity,
6087 Expr *CurInitExpr) {
6088 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 6088, __PRETTY_FUNCTION__))
;
6089
6090 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6091 if (!Record)
6092 return;
6093
6094 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6095 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6096 return;
6097
6098 // Find constructors which would have been considered.
6099 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6100 DeclContext::lookup_result Ctors =
6101 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6102
6103 // Perform overload resolution.
6104 OverloadCandidateSet::iterator Best;
6105 OverloadingResult OR = ResolveConstructorOverload(
6106 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6107 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6108 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6109 /*SecondStepOfCopyInit=*/true);
6110
6111 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6112 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6113 << CurInitExpr->getSourceRange();
6114
6115 switch (OR) {
6116 case OR_Success:
6117 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6118 Best->FoundDecl, Entity, Diag);
6119 // FIXME: Check default arguments as far as that's possible.
6120 break;
6121
6122 case OR_No_Viable_Function:
6123 S.Diag(Loc, Diag);
6124 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6125 break;
6126
6127 case OR_Ambiguous:
6128 S.Diag(Loc, Diag);
6129 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6130 break;
6131
6132 case OR_Deleted:
6133 S.Diag(Loc, Diag);
6134 S.NoteDeletedFunction(Best->Function);
6135 break;
6136 }
6137}
6138
6139void InitializationSequence::PrintInitLocationNote(Sema &S,
6140 const InitializedEntity &Entity) {
6141 if (Entity.isParameterKind() && Entity.getDecl()) {
6142 if (Entity.getDecl()->getLocation().isInvalid())
6143 return;
6144
6145 if (Entity.getDecl()->getDeclName())
6146 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6147 << Entity.getDecl()->getDeclName();
6148 else
6149 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6150 }
6151 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6152 Entity.getMethodDecl())
6153 S.Diag(Entity.getMethodDecl()->getLocation(),
6154 diag::note_method_return_type_change)
6155 << Entity.getMethodDecl()->getDeclName();
6156}
6157
6158/// Returns true if the parameters describe a constructor initialization of
6159/// an explicit temporary object, e.g. "Point(x, y)".
6160static bool isExplicitTemporary(const InitializedEntity &Entity,
6161 const InitializationKind &Kind,
6162 unsigned NumArgs) {
6163 switch (Entity.getKind()) {
6164 case InitializedEntity::EK_Temporary:
6165 case InitializedEntity::EK_CompoundLiteralInit:
6166 case InitializedEntity::EK_RelatedResult:
6167 break;
6168 default:
6169 return false;
6170 }
6171
6172 switch (Kind.getKind()) {
6173 case InitializationKind::IK_DirectList:
6174 return true;
6175 // FIXME: Hack to work around cast weirdness.
6176 case InitializationKind::IK_Direct:
6177 case InitializationKind::IK_Value:
6178 return NumArgs != 1;
6179 default:
6180 return false;
6181 }
6182}
6183
6184static ExprResult
6185PerformConstructorInitialization(Sema &S,
6186 const InitializedEntity &Entity,
6187 const InitializationKind &Kind,
6188 MultiExprArg Args,
6189 const InitializationSequence::Step& Step,
6190 bool &ConstructorInitRequiresZeroInit,
6191 bool IsListInitialization,
6192 bool IsStdInitListInitialization,
6193 SourceLocation LBraceLoc,
6194 SourceLocation RBraceLoc) {
6195 unsigned NumArgs = Args.size();
6196 CXXConstructorDecl *Constructor
6197 = cast<CXXConstructorDecl>(Step.Function.Function);
6198 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6199
6200 // Build a call to the selected constructor.
6201 SmallVector<Expr*, 8> ConstructorArgs;
6202 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6203 ? Kind.getEqualLoc()
6204 : Kind.getLocation();
6205
6206 if (Kind.getKind() == InitializationKind::IK_Default) {
6207 // Force even a trivial, implicit default constructor to be
6208 // semantically checked. We do this explicitly because we don't build
6209 // the definition for completely trivial constructors.
6210 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 6210, __PRETTY_FUNCTION__))
;
6211 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6212 Constructor->isTrivial() && !Constructor->isUsed(false))
6213 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6214 }
6215
6216 ExprResult CurInit((Expr *)nullptr);
6217
6218 // C++ [over.match.copy]p1:
6219 // - When initializing a temporary to be bound to the first parameter
6220 // of a constructor that takes a reference to possibly cv-qualified
6221 // T as its first argument, called with a single argument in the
6222 // context of direct-initialization, explicit conversion functions
6223 // are also considered.
6224 bool AllowExplicitConv =
6225 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6226 hasCopyOrMoveCtorParam(S.Context,
6227 getConstructorInfo(Step.Function.FoundDecl));
6228
6229 // Determine the arguments required to actually perform the constructor
6230 // call.
6231 if (S.CompleteConstructorCall(Constructor, Args,
6232 Loc, ConstructorArgs,
6233 AllowExplicitConv,
6234 IsListInitialization))
6235 return ExprError();
6236
6237
6238 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6239 // An explicitly-constructed temporary, e.g., X(1, 2).
6240 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6241 return ExprError();
6242
6243 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6244 if (!TSInfo)
6245 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6246 SourceRange ParenOrBraceRange =
6247 (Kind.getKind() == InitializationKind::IK_DirectList)
6248 ? SourceRange(LBraceLoc, RBraceLoc)
6249 : Kind.getParenOrBraceRange();
6250
6251 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6252 Step.Function.FoundDecl.getDecl())) {
6253 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6254 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6255 return ExprError();
6256 }
6257 S.MarkFunctionReferenced(Loc, Constructor);
6258
6259 CurInit = CXXTemporaryObjectExpr::Create(
6260 S.Context, Constructor,
6261 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6262 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6263 IsListInitialization, IsStdInitListInitialization,
6264 ConstructorInitRequiresZeroInit);
6265 } else {
6266 CXXConstructExpr::ConstructionKind ConstructKind =
6267 CXXConstructExpr::CK_Complete;
6268
6269 if (Entity.getKind() == InitializedEntity::EK_Base) {
6270 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6271 CXXConstructExpr::CK_VirtualBase :
6272 CXXConstructExpr::CK_NonVirtualBase;
6273 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6274 ConstructKind = CXXConstructExpr::CK_Delegating;
6275 }
6276
6277 // Only get the parenthesis or brace range if it is a list initialization or
6278 // direct construction.
6279 SourceRange ParenOrBraceRange;
6280 if (IsListInitialization)
6281 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6282 else if (Kind.getKind() == InitializationKind::IK_Direct)
6283 ParenOrBraceRange = Kind.getParenOrBraceRange();
6284
6285 // If the entity allows NRVO, mark the construction as elidable
6286 // unconditionally.
6287 if (Entity.allowsNRVO())
6288 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6289 Step.Function.FoundDecl,
6290 Constructor, /*Elidable=*/true,
6291 ConstructorArgs,
6292 HadMultipleCandidates,
6293 IsListInitialization,
6294 IsStdInitListInitialization,
6295 ConstructorInitRequiresZeroInit,
6296 ConstructKind,
6297 ParenOrBraceRange);
6298 else
6299 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6300 Step.Function.FoundDecl,
6301 Constructor,
6302 ConstructorArgs,
6303 HadMultipleCandidates,
6304 IsListInitialization,
6305 IsStdInitListInitialization,
6306 ConstructorInitRequiresZeroInit,
6307 ConstructKind,
6308 ParenOrBraceRange);
6309 }
6310 if (CurInit.isInvalid())
6311 return ExprError();
6312
6313 // Only check access if all of that succeeded.
6314 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6315 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6316 return ExprError();
6317
6318 if (shouldBindAsTemporary(Entity))
6319 CurInit = S.MaybeBindToTemporary(CurInit.get());
6320
6321 return CurInit;
6322}
6323
6324namespace {
6325enum LifetimeKind {
6326 /// The lifetime of a temporary bound to this entity ends at the end of the
6327 /// full-expression, and that's (probably) fine.
6328 LK_FullExpression,
6329
6330 /// The lifetime of a temporary bound to this entity is extended to the
6331 /// lifeitme of the entity itself.
6332 LK_Extended,
6333
6334 /// The lifetime of a temporary bound to this entity probably ends too soon,
6335 /// because the entity is allocated in a new-expression.
6336 LK_New,
6337
6338 /// The lifetime of a temporary bound to this entity ends too soon, because
6339 /// the entity is a return object.
6340 LK_Return,
6341
6342 /// The lifetime of a temporary bound to this entity ends too soon, because
6343 /// the entity is the result of a statement expression.
6344 LK_StmtExprResult,
6345
6346 /// This is a mem-initializer: if it would extend a temporary (other than via
6347 /// a default member initializer), the program is ill-formed.
6348 LK_MemInitializer,
6349};
6350using LifetimeResult =
6351 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6352}
6353
6354/// Determine the declaration which an initialized entity ultimately refers to,
6355/// for the purpose of lifetime-extending a temporary bound to a reference in
6356/// the initialization of \p Entity.
6357static LifetimeResult getEntityLifetime(
6358 const InitializedEntity *Entity,
6359 const InitializedEntity *InitField = nullptr) {
6360 // C++11 [class.temporary]p5:
6361 switch (Entity->getKind()) {
6362 case InitializedEntity::EK_Variable:
6363 // The temporary [...] persists for the lifetime of the reference
6364 return {Entity, LK_Extended};
6365
6366 case InitializedEntity::EK_Member:
6367 // For subobjects, we look at the complete object.
6368 if (Entity->getParent())
6369 return getEntityLifetime(Entity->getParent(), Entity);
6370
6371 // except:
6372 // C++17 [class.base.init]p8:
6373 // A temporary expression bound to a reference member in a
6374 // mem-initializer is ill-formed.
6375 // C++17 [class.base.init]p11:
6376 // A temporary expression bound to a reference member from a
6377 // default member initializer is ill-formed.
6378 //
6379 // The context of p11 and its example suggest that it's only the use of a
6380 // default member initializer from a constructor that makes the program
6381 // ill-formed, not its mere existence, and that it can even be used by
6382 // aggregate initialization.
6383 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6384 : LK_MemInitializer};
6385
6386 case InitializedEntity::EK_Binding:
6387 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6388 // type.
6389 return {Entity, LK_Extended};
6390
6391 case InitializedEntity::EK_Parameter:
6392 case InitializedEntity::EK_Parameter_CF_Audited:
6393 // -- A temporary bound to a reference parameter in a function call
6394 // persists until the completion of the full-expression containing
6395 // the call.
6396 return {nullptr, LK_FullExpression};
6397
6398 case InitializedEntity::EK_Result:
6399 // -- The lifetime of a temporary bound to the returned value in a
6400 // function return statement is not extended; the temporary is
6401 // destroyed at the end of the full-expression in the return statement.
6402 return {nullptr, LK_Return};
6403
6404 case InitializedEntity::EK_StmtExprResult:
6405 // FIXME: Should we lifetime-extend through the result of a statement
6406 // expression?
6407 return {nullptr, LK_StmtExprResult};
6408
6409 case InitializedEntity::EK_New:
6410 // -- A temporary bound to a reference in a new-initializer persists
6411 // until the completion of the full-expression containing the
6412 // new-initializer.
6413 return {nullptr, LK_New};
6414
6415 case InitializedEntity::EK_Temporary:
6416 case InitializedEntity::EK_CompoundLiteralInit:
6417 case InitializedEntity::EK_RelatedResult:
6418 // We don't yet know the storage duration of the surrounding temporary.
6419 // Assume it's got full-expression duration for now, it will patch up our
6420 // storage duration if that's not correct.
6421 return {nullptr, LK_FullExpression};
6422
6423 case InitializedEntity::EK_ArrayElement:
6424 // For subobjects, we look at the complete object.
6425 return getEntityLifetime(Entity->getParent(), InitField);
6426
6427 case InitializedEntity::EK_Base:
6428 // For subobjects, we look at the complete object.
6429 if (Entity->getParent())
6430 return getEntityLifetime(Entity->getParent(), InitField);
6431 return {InitField, LK_MemInitializer};
6432
6433 case InitializedEntity::EK_Delegating:
6434 // We can reach this case for aggregate initialization in a constructor:
6435 // struct A { int &&r; };
6436 // struct B : A { B() : A{0} {} };
6437 // In this case, use the outermost field decl as the context.
6438 return {InitField, LK_MemInitializer};
6439
6440 case InitializedEntity::EK_BlockElement:
6441 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6442 case InitializedEntity::EK_LambdaCapture:
6443 case InitializedEntity::EK_VectorElement:
6444 case InitializedEntity::EK_ComplexElement:
6445 return {nullptr, LK_FullExpression};
6446
6447 case InitializedEntity::EK_Exception:
6448 // FIXME: Can we diagnose lifetime problems with exceptions?
6449 return {nullptr, LK_FullExpression};
6450 }
6451 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 6451)
;
6452}
6453
6454namespace {
6455enum ReferenceKind {
6456 /// Lifetime would be extended by a reference binding to a temporary.
6457 RK_ReferenceBinding,
6458 /// Lifetime would be extended by a std::initializer_list object binding to
6459 /// its backing array.
6460 RK_StdInitializerList,
6461};
6462
6463/// A temporary or local variable. This will be one of:
6464/// * A MaterializeTemporaryExpr.
6465/// * A DeclRefExpr whose declaration is a local.
6466/// * An AddrLabelExpr.
6467/// * A BlockExpr for a block with captures.
6468using Local = Expr*;
6469
6470/// Expressions we stepped over when looking for the local state. Any steps
6471/// that would inhibit lifetime extension or take us out of subexpressions of
6472/// the initializer are included.
6473struct IndirectLocalPathEntry {
6474 enum EntryKind {
6475 DefaultInit,
6476 AddressOf,
6477 VarInit,
6478 LValToRVal,
6479 LifetimeBoundCall,
6480 } Kind;
6481 Expr *E;
6482 const Decl *D = nullptr;
6483 IndirectLocalPathEntry() {}
6484 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6485 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6486 : Kind(K), E(E), D(D) {}
6487};
6488
6489using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6490
6491struct RevertToOldSizeRAII {
6492 IndirectLocalPath &Path;
6493 unsigned OldSize = Path.size();
6494 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6495 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6496};
6497
6498using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6499 ReferenceKind RK)>;
6500}
6501
6502static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6503 for (auto E : Path)
6504 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6505 return true;
6506 return false;
6507}
6508
6509static bool pathContainsInit(IndirectLocalPath &Path) {
6510 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6511 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6512 E.Kind == IndirectLocalPathEntry::VarInit;
6513 });
6514}
6515
6516static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6517 Expr *Init, LocalVisitor Visit,
6518 bool RevisitSubinits);
6519
6520static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6521 Expr *Init, ReferenceKind RK,
6522 LocalVisitor Visit);
6523
6524static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6525 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6526 if (!TSI)
6527 return false;
6528 // Don't declare this variable in the second operand of the for-statement;
6529 // GCC miscompiles that by ending its lifetime before evaluating the
6530 // third operand. See gcc.gnu.org/PR86769.
6531 AttributedTypeLoc ATL;
6532 for (TypeLoc TL = TSI->getTypeLoc();
6533 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6534 TL = ATL.getModifiedLoc()) {
6535 if (ATL.getAttrAs<LifetimeBoundAttr>())
6536 return true;
6537 }
6538 return false;
6539}
6540
6541static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6542 LocalVisitor Visit) {
6543 const FunctionDecl *Callee;
6544 ArrayRef<Expr*> Args;
6545
6546 if (auto *CE = dyn_cast<CallExpr>(Call)) {
6547 Callee = CE->getDirectCallee();
6548 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6549 } else {
6550 auto *CCE = cast<CXXConstructExpr>(Call);
6551 Callee = CCE->getConstructor();
6552 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6553 }
6554 if (!Callee)
6555 return;
6556
6557 Expr *ObjectArg = nullptr;
6558 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6559 ObjectArg = Args[0];
6560 Args = Args.slice(1);
6561 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6562 ObjectArg = MCE->getImplicitObjectArgument();
6563 }
6564
6565 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6566 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6567 if (Arg->isGLValue())
6568 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6569 Visit);
6570 else
6571 visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6572 Path.pop_back();
6573 };
6574
6575 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6576 VisitLifetimeBoundArg(Callee, ObjectArg);
6577
6578 for (unsigned I = 0,
6579 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6580 I != N; ++I) {
6581 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6582 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6583 }
6584}
6585
6586/// Visit the locals that would be reachable through a reference bound to the
6587/// glvalue expression \c Init.
6588static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6589 Expr *Init, ReferenceKind RK,
6590 LocalVisitor Visit) {
6591 RevertToOldSizeRAII RAII(Path);
6592
6593 // Walk past any constructs which we can lifetime-extend across.
6594 Expr *Old;
6595 do {
6596 Old = Init;
6597
6598 if (auto *FE = dyn_cast<FullExpr>(Init))
6599 Init = FE->getSubExpr();
6600
6601 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6602 // If this is just redundant braces around an initializer, step over it.
6603 if (ILE->isTransparent())
6604 Init = ILE->getInit(0);
6605 }
6606
6607 // Step over any subobject adjustments; we may have a materialized
6608 // temporary inside them.
6609 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6610
6611 // Per current approach for DR1376, look through casts to reference type
6612 // when performing lifetime extension.
6613 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6614 if (CE->getSubExpr()->isGLValue())
6615 Init = CE->getSubExpr();
6616
6617 // Per the current approach for DR1299, look through array element access
6618 // on array glvalues when performing lifetime extension.
6619 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6620 Init = ASE->getBase();
6621 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6622 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6623 Init = ICE->getSubExpr();
6624 else
6625 // We can't lifetime extend through this but we might still find some
6626 // retained temporaries.
6627 return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6628 }
6629
6630 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6631 // constructor inherits one as an implicit mem-initializer.
6632 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6633 Path.push_back(
6634 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6635 Init = DIE->getExpr();
6636 }
6637 } while (Init != Old);
6638
6639 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6640 if (Visit(Path, Local(MTE), RK))
6641 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6642 true);
6643 }
6644
6645 if (isa<CallExpr>(Init))
6646 return visitLifetimeBoundArguments(Path, Init, Visit);
6647
6648 switch (Init->getStmtClass()) {
6649 case Stmt::DeclRefExprClass: {
6650 // If we find the name of a local non-reference parameter, we could have a
6651 // lifetime problem.
6652 auto *DRE = cast<DeclRefExpr>(Init);
6653 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6654 if (VD && VD->hasLocalStorage() &&
6655 !DRE->refersToEnclosingVariableOrCapture()) {
6656 if (!VD->getType()->isReferenceType()) {
6657 Visit(Path, Local(DRE), RK);
6658 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6659 // The lifetime of a reference parameter is unknown; assume it's OK
6660 // for now.
6661 break;
6662 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6663 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6664 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6665 RK_ReferenceBinding, Visit);
6666 }
6667 }
6668 break;
6669 }
6670
6671 case Stmt::UnaryOperatorClass: {
6672 // The only unary operator that make sense to handle here
6673 // is Deref. All others don't resolve to a "name." This includes
6674 // handling all sorts of rvalues passed to a unary operator.
6675 const UnaryOperator *U = cast<UnaryOperator>(Init);
6676 if (U->getOpcode() == UO_Deref)
6677 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6678 break;
6679 }
6680
6681 case Stmt::OMPArraySectionExprClass: {
6682 visitLocalsRetainedByInitializer(
6683 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6684 break;
6685 }
6686
6687 case Stmt::ConditionalOperatorClass:
6688 case Stmt::BinaryConditionalOperatorClass: {
6689 auto *C = cast<AbstractConditionalOperator>(Init);
6690 if (!C->getTrueExpr()->getType()->isVoidType())
6691 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6692 if (!C->getFalseExpr()->getType()->isVoidType())
6693 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6694 break;
6695 }
6696
6697 // FIXME: Visit the left-hand side of an -> or ->*.
6698
6699 default:
6700 break;
6701 }
6702}
6703
6704/// Visit the locals that would be reachable through an object initialized by
6705/// the prvalue expression \c Init.
6706static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6707 Expr *Init, LocalVisitor Visit,
6708 bool RevisitSubinits) {
6709 RevertToOldSizeRAII RAII(Path);
6710
6711 Expr *Old;
6712 do {
6713 Old = Init;
6714
6715 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6716 // constructor inherits one as an implicit mem-initializer.
6717 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6718 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6719 Init = DIE->getExpr();
6720 }
6721
6722 if (auto *FE = dyn_cast<FullExpr>(Init))
6723 Init = FE->getSubExpr();
6724
6725 // Dig out the expression which constructs the extended temporary.
6726 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6727
6728 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6729 Init = BTE->getSubExpr();
6730
6731 Init = Init->IgnoreParens();
6732
6733 // Step over value-preserving rvalue casts.
6734 if (auto *CE = dyn_cast<CastExpr>(Init)) {
6735 switch (CE->getCastKind()) {
6736 case CK_LValueToRValue:
6737 // If we can match the lvalue to a const object, we can look at its
6738 // initializer.
6739 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6740 return visitLocalsRetainedByReferenceBinding(
6741 Path, Init, RK_ReferenceBinding,
6742 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6743 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6744 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6745 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6746 !isVarOnPath(Path, VD)) {
6747 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6748 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6749 }
6750 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6751 if (MTE->getType().isConstQualified())
6752 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6753 Visit, true);
6754 }
6755 return false;
6756 });
6757
6758 // We assume that objects can be retained by pointers cast to integers,
6759 // but not if the integer is cast to floating-point type or to _Complex.
6760 // We assume that casts to 'bool' do not preserve enough information to
6761 // retain a local object.
6762 case CK_NoOp:
6763 case CK_BitCast:
6764 case CK_BaseToDerived:
6765 case CK_DerivedToBase:
6766 case CK_UncheckedDerivedToBase:
6767 case CK_Dynamic:
6768 case CK_ToUnion:
6769 case CK_UserDefinedConversion:
6770 case CK_ConstructorConversion:
6771 case CK_IntegralToPointer:
6772 case CK_PointerToIntegral:
6773 case CK_VectorSplat:
6774 case CK_IntegralCast:
6775 case CK_CPointerToObjCPointerCast:
6776 case CK_BlockPointerToObjCPointerCast:
6777 case CK_AnyPointerToBlockPointerCast:
6778 case CK_AddressSpaceConversion:
6779 break;
6780
6781 case CK_ArrayToPointerDecay:
6782 // Model array-to-pointer decay as taking the address of the array
6783 // lvalue.
6784 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6785 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6786 RK_ReferenceBinding, Visit);
6787
6788 default:
6789 return;
6790 }
6791
6792 Init = CE->getSubExpr();
6793 }
6794 } while (Old != Init);
6795
6796 // C++17 [dcl.init.list]p6:
6797 // initializing an initializer_list object from the array extends the
6798 // lifetime of the array exactly like binding a reference to a temporary.
6799 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6800 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6801 RK_StdInitializerList, Visit);
6802
6803 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6804 // We already visited the elements of this initializer list while
6805 // performing the initialization. Don't visit them again unless we've
6806 // changed the lifetime of the initialized entity.
6807 if (!RevisitSubinits)
6808 return;
6809
6810 if (ILE->isTransparent())
6811 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6812 RevisitSubinits);
6813
6814 if (ILE->getType()->isArrayType()) {
6815 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6816 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6817 RevisitSubinits);
6818 return;
6819 }
6820
6821 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6822 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 6822, __PRETTY_FUNCTION__))
;
6823
6824 // If we lifetime-extend a braced initializer which is initializing an
6825 // aggregate, and that aggregate contains reference members which are
6826 // bound to temporaries, those temporaries are also lifetime-extended.
6827 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6828 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6829 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6830 RK_ReferenceBinding, Visit);
6831 else {
6832 unsigned Index = 0;
6833 for (const auto *I : RD->fields()) {
6834 if (Index >= ILE->getNumInits())
6835 break;
6836 if (I->isUnnamedBitfield())
6837 continue;
6838 Expr *SubInit = ILE->getInit(Index);
6839 if (I->getType()->isReferenceType())
6840 visitLocalsRetainedByReferenceBinding(Path, SubInit,
6841 RK_ReferenceBinding, Visit);
6842 else
6843 // This might be either aggregate-initialization of a member or
6844 // initialization of a std::initializer_list object. Regardless,
6845 // we should recursively lifetime-extend that initializer.
6846 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6847 RevisitSubinits);
6848 ++Index;
6849 }
6850 }
6851 }
6852 return;
6853 }
6854
6855 // The lifetime of an init-capture is that of the closure object constructed
6856 // by a lambda-expression.
6857 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6858 for (Expr *E : LE->capture_inits()) {
6859 if (!E)
6860 continue;
6861 if (E->isGLValue())
6862 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6863 Visit);
6864 else
6865 visitLocalsRetainedByInitializer(Path, E, Visit, true);
6866 }
6867 }
6868
6869 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6870 return visitLifetimeBoundArguments(Path, Init, Visit);
6871
6872 switch (Init->getStmtClass()) {
6873 case Stmt::UnaryOperatorClass: {
6874 auto *UO = cast<UnaryOperator>(Init);
6875 // If the initializer is the address of a local, we could have a lifetime
6876 // problem.
6877 if (UO->getOpcode() == UO_AddrOf) {
6878 // If this is &rvalue, then it's ill-formed and we have already diagnosed
6879 // it. Don't produce a redundant warning about the lifetime of the
6880 // temporary.
6881 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6882 return;
6883
6884 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6885 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6886 RK_ReferenceBinding, Visit);
6887 }
6888 break;
6889 }
6890
6891 case Stmt::BinaryOperatorClass: {
6892 // Handle pointer arithmetic.
6893 auto *BO = cast<BinaryOperator>(Init);
6894 BinaryOperatorKind BOK = BO->getOpcode();
6895 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6896 break;
6897
6898 if (BO->getLHS()->getType()->isPointerType())
6899 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6900 else if (BO->getRHS()->getType()->isPointerType())
6901 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6902 break;
6903 }
6904
6905 case Stmt::ConditionalOperatorClass:
6906 case Stmt::BinaryConditionalOperatorClass: {
6907 auto *C = cast<AbstractConditionalOperator>(Init);
6908 // In C++, we can have a throw-expression operand, which has 'void' type
6909 // and isn't interesting from a lifetime perspective.
6910 if (!C->getTrueExpr()->getType()->isVoidType())
6911 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6912 if (!C->getFalseExpr()->getType()->isVoidType())
6913 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6914 break;
6915 }
6916
6917 case Stmt::BlockExprClass:
6918 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6919 // This is a local block, whose lifetime is that of the function.
6920 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6921 }
6922 break;
6923
6924 case Stmt::AddrLabelExprClass:
6925 // We want to warn if the address of a label would escape the function.
6926 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6927 break;
6928
6929 default:
6930 break;
6931 }
6932}
6933
6934/// Determine whether this is an indirect path to a temporary that we are
6935/// supposed to lifetime-extend along (but don't).
6936static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6937 for (auto Elem : Path) {
6938 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6939 return false;
6940 }
6941 return true;
6942}
6943
6944/// Find the range for the first interesting entry in the path at or after I.
6945static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6946 Expr *E) {
6947 for (unsigned N = Path.size(); I != N; ++I) {
6948 switch (Path[I].Kind) {
6949 case IndirectLocalPathEntry::AddressOf:
6950 case IndirectLocalPathEntry::LValToRVal:
6951 case IndirectLocalPathEntry::LifetimeBoundCall:
6952 // These exist primarily to mark the path as not permitting or
6953 // supporting lifetime extension.
6954 break;
6955
6956 case IndirectLocalPathEntry::DefaultInit:
6957 case IndirectLocalPathEntry::VarInit:
6958 return Path[I].E->getSourceRange();
6959 }
6960 }
6961 return E->getSourceRange();
6962}
6963
6964void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6965 Expr *Init) {
6966 LifetimeResult LR = getEntityLifetime(&Entity);
6967 LifetimeKind LK = LR.getInt();
6968 const InitializedEntity *ExtendingEntity = LR.getPointer();
6969
6970 // If this entity doesn't have an interesting lifetime, don't bother looking
6971 // for temporaries within its initializer.
6972 if (LK == LK_FullExpression)
6973 return;
6974
6975 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6976 ReferenceKind RK) -> bool {
6977 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6978 SourceLocation DiagLoc = DiagRange.getBegin();
6979
6980 switch (LK) {
6981 case LK_FullExpression:
6982 llvm_unreachable("already handled this")::llvm::llvm_unreachable_internal("already handled this", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 6982)
;
6983
6984 case LK_Extended: {
6985 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6986 if (!MTE) {
6987 // The initialized entity has lifetime beyond the full-expression,
6988 // and the local entity does too, so don't warn.
6989 //
6990 // FIXME: We should consider warning if a static / thread storage
6991 // duration variable retains an automatic storage duration local.
6992 return false;
6993 }
6994
6995 // Lifetime-extend the temporary.
6996 if (Path.empty()) {
6997 // Update the storage duration of the materialized temporary.
6998 // FIXME: Rebuild the expression instead of mutating it.
6999 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7000 ExtendingEntity->allocateManglingNumber());
7001 // Also visit the temporaries lifetime-extended by this initializer.
7002 return true;
7003 }
7004
7005 if (shouldLifetimeExtendThroughPath(Path)) {
7006 // We're supposed to lifetime-extend the temporary along this path (per
7007 // the resolution of DR1815), but we don't support that yet.
7008 //
7009 // FIXME: Properly handle this situation. Perhaps the easiest approach
7010 // would be to clone the initializer expression on each use that would
7011 // lifetime extend its temporaries.
7012 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7013 << RK << DiagRange;
7014 } else {
7015 // If the path goes through the initialization of a variable or field,
7016 // it can't possibly reach a temporary created in this full-expression.
7017 // We will have already diagnosed any problems with the initializer.
7018 if (pathContainsInit(Path))
7019 return false;
7020
7021 Diag(DiagLoc, diag::warn_dangling_variable)
7022 << RK << !Entity.getParent()
7023 << ExtendingEntity->getDecl()->isImplicit()
7024 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7025 }
7026 break;
7027 }
7028
7029 case LK_MemInitializer: {
7030 if (isa<MaterializeTemporaryExpr>(L)) {
7031 // Under C++ DR1696, if a mem-initializer (or a default member
7032 // initializer used by the absence of one) would lifetime-extend a
7033 // temporary, the program is ill-formed.
7034 if (auto *ExtendingDecl =
7035 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7036 bool IsSubobjectMember = ExtendingEntity != &Entity;
7037 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7038 ? diag::err_dangling_member
7039 : diag::warn_dangling_member)
7040 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7041 // Don't bother adding a note pointing to the field if we're inside
7042 // its default member initializer; our primary diagnostic points to
7043 // the same place in that case.
7044 if (Path.empty() ||
7045 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7046 Diag(ExtendingDecl->getLocation(),
7047 diag::note_lifetime_extending_member_declared_here)
7048 << RK << IsSubobjectMember;
7049 }
7050 } else {
7051 // We have a mem-initializer but no particular field within it; this
7052 // is either a base class or a delegating initializer directly
7053 // initializing the base-class from something that doesn't live long
7054 // enough.
7055 //
7056 // FIXME: Warn on this.
7057 return false;
7058 }
7059 } else {
7060 // Paths via a default initializer can only occur during error recovery
7061 // (there's no other way that a default initializer can refer to a
7062 // local). Don't produce a bogus warning on those cases.
7063 if (pathContainsInit(Path))
7064 return false;
7065
7066 auto *DRE = dyn_cast<DeclRefExpr>(L);
7067 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7068 if (!VD) {
7069 // A member was initialized to a local block.
7070 // FIXME: Warn on this.
7071 return false;
7072 }
7073
7074 if (auto *Member =
7075 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7076 bool IsPointer = Member->getType()->isAnyPointerType();
7077 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7078 : diag::warn_bind_ref_member_to_parameter)
7079 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7080 Diag(Member->getLocation(),
7081 diag::note_ref_or_ptr_member_declared_here)
7082 << (unsigned)IsPointer;
7083 }
7084 }
7085 break;
7086 }
7087
7088 case LK_New:
7089 if (isa<MaterializeTemporaryExpr>(L)) {
7090 Diag(DiagLoc, RK == RK_ReferenceBinding
7091 ? diag::warn_new_dangling_reference
7092 : diag::warn_new_dangling_initializer_list)
7093 << !Entity.getParent() << DiagRange;
7094 } else {
7095 // We can't determine if the allocation outlives the local declaration.
7096 return false;
7097 }
7098 break;
7099
7100 case LK_Return:
7101 case LK_StmtExprResult:
7102 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7103 // We can't determine if the local variable outlives the statement
7104 // expression.
7105 if (LK == LK_StmtExprResult)
7106 return false;
7107 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7108 << Entity.getType()->isReferenceType() << DRE->getDecl()
7109 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7110 } else if (isa<BlockExpr>(L)) {
7111 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7112 } else if (isa<AddrLabelExpr>(L)) {
7113 // Don't warn when returning a label from a statement expression.
7114 // Leaving the scope doesn't end its lifetime.
7115 if (LK == LK_StmtExprResult)
7116 return false;
7117 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7118 } else {
7119 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7120 << Entity.getType()->isReferenceType() << DiagRange;
7121 }
7122 break;
7123 }
7124
7125 for (unsigned I = 0; I != Path.size(); ++I) {
7126 auto Elem = Path[I];
7127
7128 switch (Elem.Kind) {
7129 case IndirectLocalPathEntry::AddressOf:
7130 case IndirectLocalPathEntry::LValToRVal:
7131 // These exist primarily to mark the path as not permitting or
7132 // supporting lifetime extension.
7133 break;
7134
7135 case IndirectLocalPathEntry::LifetimeBoundCall:
7136 // FIXME: Consider adding a note for this.
7137 break;
7138
7139 case IndirectLocalPathEntry::DefaultInit: {
7140 auto *FD = cast<FieldDecl>(Elem.D);
7141 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7142 << FD << nextPathEntryRange(Path, I + 1, L);
7143 break;
7144 }
7145
7146 case IndirectLocalPathEntry::VarInit:
7147 const VarDecl *VD = cast<VarDecl>(Elem.D);
7148 Diag(VD->getLocation(), diag::note_local_var_initializer)
7149 << VD->getType()->isReferenceType()
7150 << VD->isImplicit() << VD->getDeclName()
7151 << nextPathEntryRange(Path, I + 1, L);
7152 break;
7153 }
7154 }
7155
7156 // We didn't lifetime-extend, so don't go any further; we don't need more
7157 // warnings or errors on inner temporaries within this one's initializer.
7158 return false;
7159 };
7160
7161 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7162 if (Init->isGLValue())
7163 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7164 TemporaryVisitor);
7165 else
7166 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7167}
7168
7169static void DiagnoseNarrowingInInitList(Sema &S,
7170 const ImplicitConversionSequence &ICS,
7171 QualType PreNarrowingType,
7172 QualType EntityType,
7173 const Expr *PostInit);
7174
7175/// Provide warnings when std::move is used on construction.
7176static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7177 bool IsReturnStmt) {
7178 if (!InitExpr)
7179 return;
7180
7181 if (S.inTemplateInstantiation())
7182 return;
7183
7184 QualType DestType = InitExpr->getType();
7185 if (!DestType->isRecordType())
7186 return;
7187
7188 unsigned DiagID = 0;
7189 if (IsReturnStmt) {
7190 const CXXConstructExpr *CCE =
7191 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7192 if (!CCE || CCE->getNumArgs() != 1)
7193 return;
7194
7195 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7196 return;
7197
7198 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7199 }
7200
7201 // Find the std::move call and get the argument.
7202 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7203 if (!CE || !CE->isCallToStdMove())
7204 return;
7205
7206 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7207
7208 if (IsReturnStmt) {
7209 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7210 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7211 return;
7212
7213 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7214 if (!VD || !VD->hasLocalStorage())
7215 return;
7216
7217 // __block variables are not moved implicitly.
7218 if (VD->hasAttr<BlocksAttr>())
7219 return;
7220
7221 QualType SourceType = VD->getType();
7222 if (!SourceType->isRecordType())
7223 return;
7224
7225 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7226 return;
7227 }
7228
7229 // If we're returning a function parameter, copy elision
7230 // is not possible.
7231 if (isa<ParmVarDecl>(VD))
7232 DiagID = diag::warn_redundant_move_on_return;
7233 else
7234 DiagID = diag::warn_pessimizing_move_on_return;
7235 } else {
7236 DiagID = diag::warn_pessimizing_move_on_initialization;
7237 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7238 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7239 return;
7240 }
7241
7242 S.Diag(CE->getBeginLoc(), DiagID);
7243
7244 // Get all the locations for a fix-it. Don't emit the fix-it if any location
7245 // is within a macro.
7246 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7247 if (CallBegin.isMacroID())
7248 return;
7249 SourceLocation RParen = CE->getRParenLoc();
7250 if (RParen.isMacroID())
7251 return;
7252 SourceLocation LParen;
7253 SourceLocation ArgLoc = Arg->getBeginLoc();
7254
7255 // Special testing for the argument location. Since the fix-it needs the
7256 // location right before the argument, the argument location can be in a
7257 // macro only if it is at the beginning of the macro.
7258 while (ArgLoc.isMacroID() &&
7259 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7260 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7261 }
7262
7263 if (LParen.isMacroID())
7264 return;
7265
7266 LParen = ArgLoc.getLocWithOffset(-1);
7267
7268 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7269 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7270 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7271}
7272
7273static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7274 // Check to see if we are dereferencing a null pointer. If so, this is
7275 // undefined behavior, so warn about it. This only handles the pattern
7276 // "*null", which is a very syntactic check.
7277 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7278 if (UO->getOpcode() == UO_Deref &&
7279 UO->getSubExpr()->IgnoreParenCasts()->
7280 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7281 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7282 S.PDiag(diag::warn_binding_null_to_reference)
7283 << UO->getSubExpr()->getSourceRange());
7284 }
7285}
7286
7287MaterializeTemporaryExpr *
7288Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7289 bool BoundToLvalueReference) {
7290 auto MTE = new (Context)
7291 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7292
7293 // Order an ExprWithCleanups for lifetime marks.
7294 //
7295 // TODO: It'll be good to have a single place to check the access of the
7296 // destructor and generate ExprWithCleanups for various uses. Currently these
7297 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7298 // but there may be a chance to merge them.
7299 Cleanup.setExprNeedsCleanups(false);
7300 return MTE;
7301}
7302
7303ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7304 // In C++98, we don't want to implicitly create an xvalue.
7305 // FIXME: This means that AST consumers need to deal with "prvalues" that
7306 // denote materialized temporaries. Maybe we should add another ValueKind
7307 // for "xvalue pretending to be a prvalue" for C++98 support.
7308 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7309 return E;
7310
7311 // C++1z [conv.rval]/1: T shall be a complete type.
7312 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7313 // If so, we should check for a non-abstract class type here too.
7314 QualType T = E->getType();
7315 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7316 return ExprError();
7317
7318 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7319}
7320
7321ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7322 ExprValueKind VK,
7323 CheckedConversionKind CCK) {
7324
7325 CastKind CK = CK_NoOp;
7326
7327 if (VK == VK_RValue) {
7328 auto PointeeTy = Ty->getPointeeType();
7329 auto ExprPointeeTy = E->getType()->getPointeeType();
7330 if (!PointeeTy.isNull() &&
7331 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7332 CK = CK_AddressSpaceConversion;
7333 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7334 CK = CK_AddressSpaceConversion;
7335 }
7336
7337 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7338}
7339
7340ExprResult InitializationSequence::Perform(Sema &S,
7341 const InitializedEntity &Entity,
7342 const InitializationKind &Kind,
7343 MultiExprArg Args,
7344 QualType *ResultType) {
7345 if (Failed()) {
7346 Diagnose(S, Entity, Kind, Args);
7347 return ExprError();
7348 }
7349 if (!ZeroInitializationFixit.empty()) {
7350 unsigned DiagID = diag::err_default_init_const;
7351 if (Decl *D = Entity.getDecl())
7352 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7353 DiagID = diag::ext_default_init_const;
7354
7355 // The initialization would have succeeded with this fixit. Since the fixit
7356 // is on the error, we need to build a valid AST in this case, so this isn't
7357 // handled in the Failed() branch above.
7358 QualType DestType = Entity.getType();
7359 S.Diag(Kind.getLocation(), DiagID)
7360 << DestType << (bool)DestType->getAs<RecordType>()
7361 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7362 ZeroInitializationFixit);
7363 }
7364
7365 if (getKind() == DependentSequence) {
7366 // If the declaration is a non-dependent, incomplete array type
7367 // that has an initializer, then its type will be completed once
7368 // the initializer is instantiated.
7369 if (ResultType && !Entity.getType()->isDependentType() &&
7370 Args.size() == 1) {
7371 QualType DeclType = Entity.getType();
7372 if (const IncompleteArrayType *ArrayT
7373 = S.Context.getAsIncompleteArrayType(DeclType)) {
7374 // FIXME: We don't currently have the ability to accurately
7375 // compute the length of an initializer list without
7376 // performing full type-checking of the initializer list
7377 // (since we have to determine where braces are implicitly
7378 // introduced and such). So, we fall back to making the array
7379 // type a dependently-sized array type with no specified
7380 // bound.
7381 if (isa<InitListExpr>((Expr *)Args[0])) {
7382 SourceRange Brackets;
7383
7384 // Scavange the location of the brackets from the entity, if we can.
7385 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7386 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7387 TypeLoc TL = TInfo->getTypeLoc();
7388 if (IncompleteArrayTypeLoc ArrayLoc =
7389 TL.getAs<IncompleteArrayTypeLoc>())
7390 Brackets = ArrayLoc.getBracketsRange();
7391 }
7392 }
7393
7394 *ResultType
7395 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7396 /*NumElts=*/nullptr,
7397 ArrayT->getSizeModifier(),
7398 ArrayT->getIndexTypeCVRQualifiers(),
7399 Brackets);
7400 }
7401
7402 }
7403 }
7404 if (Kind.getKind() == InitializationKind::IK_Direct &&
7405 !Kind.isExplicitCast()) {
7406 // Rebuild the ParenListExpr.
7407 SourceRange ParenRange = Kind.getParenOrBraceRange();
7408 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7409 Args);
7410 }
7411 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7413, __PRETTY_FUNCTION__))
7412 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7413, __PRETTY_FUNCTION__))
7413 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7413, __PRETTY_FUNCTION__))
;
7414 return ExprResult(Args[0]);
7415 }
7416
7417 // No steps means no initialization.
7418 if (Steps.empty())
7419 return ExprResult((Expr *)nullptr);
7420
7421 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7422 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7423 !Entity.isParameterKind()) {
7424 // Produce a C++98 compatibility warning if we are initializing a reference
7425 // from an initializer list. For parameters, we produce a better warning
7426 // elsewhere.
7427 Expr *Init = Args[0];
7428 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7429 << Init->getSourceRange();
7430 }
7431
7432 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7433 QualType ETy = Entity.getType();
7434 Qualifiers TyQualifiers = ETy.getQualifiers();
7435 bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7436 TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7437
7438 if (S.getLangOpts().OpenCLVersion >= 200 &&
7439 ETy->isAtomicType() && !HasGlobalAS &&
7440 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7441 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7442 << 1
7443 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7444 return ExprError();
7445 }
7446
7447 QualType DestType = Entity.getType().getNonReferenceType();
7448 // FIXME: Ugly hack around the fact that Entity.getType() is not
7449 // the same as Entity.getDecl()->getType() in cases involving type merging,
7450 // and we want latter when it makes sense.
7451 if (ResultType)
7452 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7453 Entity.getType();
7454
7455 ExprResult CurInit((Expr *)nullptr);
7456 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7457
7458 // For initialization steps that start with a single initializer,
7459 // grab the only argument out the Args and place it into the "current"
7460 // initializer.
7461 switch (Steps.front().Kind) {
7462 case SK_ResolveAddressOfOverloadedFunction:
7463 case SK_CastDerivedToBaseRValue:
7464 case SK_CastDerivedToBaseXValue:
7465 case SK_CastDerivedToBaseLValue:
7466 case SK_BindReference:
7467 case SK_BindReferenceToTemporary:
7468 case SK_FinalCopy:
7469 case SK_ExtraneousCopyToTemporary:
7470 case SK_UserConversion:
7471 case SK_QualificationConversionLValue:
7472 case SK_QualificationConversionXValue:
7473 case SK_QualificationConversionRValue:
7474 case SK_AtomicConversion:
7475 case SK_LValueToRValue:
7476 case SK_ConversionSequence:
7477 case SK_ConversionSequenceNoNarrowing:
7478 case SK_ListInitialization:
7479 case SK_UnwrapInitList:
7480 case SK_RewrapInitList:
7481 case SK_CAssignment:
7482 case SK_StringInit:
7483 case SK_ObjCObjectConversion:
7484 case SK_ArrayLoopIndex:
7485 case SK_ArrayLoopInit:
7486 case SK_ArrayInit:
7487 case SK_GNUArrayInit:
7488 case SK_ParenthesizedArrayInit:
7489 case SK_PassByIndirectCopyRestore:
7490 case SK_PassByIndirectRestore:
7491 case SK_ProduceObjCObject:
7492 case SK_StdInitializerList:
7493 case SK_OCLSamplerInit:
7494 case SK_OCLZeroOpaqueType: {
7495 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7495, __PRETTY_FUNCTION__))
;
7496 CurInit = Args[0];
7497 if (!CurInit.get()) return ExprError();
7498 break;
7499 }
7500
7501 case SK_ConstructorInitialization:
7502 case SK_ConstructorInitializationFromList:
7503 case SK_StdInitializerListConstructorCall:
7504 case SK_ZeroInitialization:
7505 break;
7506 }
7507
7508 // Promote from an unevaluated context to an unevaluated list context in
7509 // C++11 list-initialization; we need to instantiate entities usable in
7510 // constant expressions here in order to perform narrowing checks =(
7511 EnterExpressionEvaluationContext Evaluated(
7512 S, EnterExpressionEvaluationContext::InitList,
7513 CurInit.get() && isa<InitListExpr>(CurInit.get()));
7514
7515 // C++ [class.abstract]p2:
7516 // no objects of an abstract class can be created except as subobjects
7517 // of a class derived from it
7518 auto checkAbstractType = [&](QualType T) -> bool {
7519 if (Entity.getKind() == InitializedEntity::EK_Base ||
7520 Entity.getKind() == InitializedEntity::EK_Delegating)
7521 return false;
7522 return S.RequireNonAbstractType(Kind.getLocation(), T,
7523 diag::err_allocation_of_abstract_type);
7524 };
7525
7526 // Walk through the computed steps for the initialization sequence,
7527 // performing the specified conversions along the way.
7528 bool ConstructorInitRequiresZeroInit = false;
7529 for (step_iterator Step = step_begin(), StepEnd = step_end();
7530 Step != StepEnd; ++Step) {
7531 if (CurInit.isInvalid())
7532 return ExprError();
7533
7534 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7535
7536 switch (Step->Kind) {
7537 case SK_ResolveAddressOfOverloadedFunction:
7538 // Overload resolution determined which function invoke; update the
7539 // initializer to reflect that choice.
7540 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7541 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7542 return ExprError();
7543 CurInit = S.FixOverloadedFunctionReference(CurInit,
7544 Step->Function.FoundDecl,
7545 Step->Function.Function);
7546 break;
7547
7548 case SK_CastDerivedToBaseRValue:
7549 case SK_CastDerivedToBaseXValue:
7550 case SK_CastDerivedToBaseLValue: {
7551 // We have a derived-to-base cast that produces either an rvalue or an
7552 // lvalue. Perform that cast.
7553
7554 CXXCastPath BasePath;
7555
7556 // Casts to inaccessible base classes are allowed with C-style casts.
7557 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7558 if (S.CheckDerivedToBaseConversion(
7559 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7560 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7561 return ExprError();
7562
7563 ExprValueKind VK =
7564 Step->Kind == SK_CastDerivedToBaseLValue ?
7565 VK_LValue :
7566 (Step->Kind == SK_CastDerivedToBaseXValue ?
7567 VK_XValue :
7568 VK_RValue);
7569 CurInit =
7570 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7571 CurInit.get(), &BasePath, VK);
7572 break;
7573 }
7574
7575 case SK_BindReference:
7576 // Reference binding does not have any corresponding ASTs.
7577
7578 // Check exception specifications
7579 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7580 return ExprError();
7581
7582 // We don't check for e.g. function pointers here, since address
7583 // availability checks should only occur when the function first decays
7584 // into a pointer or reference.
7585 if (CurInit.get()->getType()->isFunctionProtoType()) {
7586 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7587 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7588 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7589 DRE->getBeginLoc()))
7590 return ExprError();
7591 }
7592 }
7593 }
7594
7595 CheckForNullPointerDereference(S, CurInit.get());
7596 break;
7597
7598 case SK_BindReferenceToTemporary: {
7599 // Make sure the "temporary" is actually an rvalue.
7600 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7600, __PRETTY_FUNCTION__))
;
7601
7602 // Check exception specifications
7603 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7604 return ExprError();
7605
7606 // Materialize the temporary into memory.
7607 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7608 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7609 CurInit = MTE;
7610
7611 // If we're extending this temporary to automatic storage duration -- we
7612 // need to register its cleanup during the full-expression's cleanups.
7613 if (MTE->getStorageDuration() == SD_Automatic &&
7614 MTE->getType().isDestructedType())
7615 S.Cleanup.setExprNeedsCleanups(true);
7616 break;
7617 }
7618
7619 case SK_FinalCopy:
7620 if (checkAbstractType(Step->Type))
7621 return ExprError();
7622
7623 // If the overall initialization is initializing a temporary, we already
7624 // bound our argument if it was necessary to do so. If not (if we're
7625 // ultimately initializing a non-temporary), our argument needs to be
7626 // bound since it's initializing a function parameter.
7627 // FIXME: This is a mess. Rationalize temporary destruction.
7628 if (!shouldBindAsTemporary(Entity))
7629 CurInit = S.MaybeBindToTemporary(CurInit.get());
7630 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7631 /*IsExtraneousCopy=*/false);
7632 break;
7633
7634 case SK_ExtraneousCopyToTemporary:
7635 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7636 /*IsExtraneousCopy=*/true);
7637 break;
7638
7639 case SK_UserConversion: {
7640 // We have a user-defined conversion that invokes either a constructor
7641 // or a conversion function.
7642 CastKind CastKind;
7643 FunctionDecl *Fn = Step->Function.Function;
7644 DeclAccessPair FoundFn = Step->Function.FoundDecl;
7645 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7646 bool CreatedObject = false;
7647 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7648 // Build a call to the selected constructor.
7649 SmallVector<Expr*, 8> ConstructorArgs;
7650 SourceLocation Loc = CurInit.get()->getBeginLoc();
7651
7652 // Determine the arguments required to actually perform the constructor
7653 // call.
7654 Expr *Arg = CurInit.get();
7655 if (S.CompleteConstructorCall(Constructor,
7656 MultiExprArg(&Arg, 1),
7657 Loc, ConstructorArgs))
7658 return ExprError();
7659
7660 // Build an expression that constructs a temporary.
7661 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7662 FoundFn, Constructor,
7663 ConstructorArgs,
7664 HadMultipleCandidates,
7665 /*ListInit*/ false,
7666 /*StdInitListInit*/ false,
7667 /*ZeroInit*/ false,
7668 CXXConstructExpr::CK_Complete,
7669 SourceRange());
7670 if (CurInit.isInvalid())
7671 return ExprError();
7672
7673 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7674 Entity);
7675 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7676 return ExprError();
7677
7678 CastKind = CK_ConstructorConversion;
7679 CreatedObject = true;
7680 } else {
7681 // Build a call to the conversion function.
7682 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7683 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7684 FoundFn);
7685 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7686 return ExprError();
7687
7688 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7689 HadMultipleCandidates);
7690 if (CurInit.isInvalid())
7691 return ExprError();
7692
7693 CastKind = CK_UserDefinedConversion;
7694 CreatedObject = Conversion->getReturnType()->isRecordType();
7695 }
7696
7697 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7698 return ExprError();
7699
7700 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7701 CastKind, CurInit.get(), nullptr,
7702 CurInit.get()->getValueKind());
7703
7704 if (shouldBindAsTemporary(Entity))
7705 // The overall entity is temporary, so this expression should be
7706 // destroyed at the end of its full-expression.
7707 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7708 else if (CreatedObject && shouldDestroyEntity(Entity)) {
7709 // The object outlasts the full-expression, but we need to prepare for
7710 // a destructor being run on it.
7711 // FIXME: It makes no sense to do this here. This should happen
7712 // regardless of how we initialized the entity.
7713 QualType T = CurInit.get()->getType();
7714 if (const RecordType *Record = T->getAs<RecordType>()) {
7715 CXXDestructorDecl *Destructor
7716 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7717 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7718 S.PDiag(diag::err_access_dtor_temp) << T);
7719 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7720 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7721 return ExprError();
7722 }
7723 }
7724 break;
7725 }
7726
7727 case SK_QualificationConversionLValue:
7728 case SK_QualificationConversionXValue:
7729 case SK_QualificationConversionRValue: {
7730 // Perform a qualification conversion; these can never go wrong.
7731 ExprValueKind VK =
7732 Step->Kind == SK_QualificationConversionLValue
7733 ? VK_LValue
7734 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7735 : VK_RValue);
7736 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7737 break;
7738 }
7739
7740 case SK_AtomicConversion: {
7741 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7741, __PRETTY_FUNCTION__))
;
7742 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7743 CK_NonAtomicToAtomic, VK_RValue);
7744 break;
7745 }
7746
7747 case SK_LValueToRValue: {
7748 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")((CurInit.get()->isGLValue() && "cannot load from a prvalue"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7748, __PRETTY_FUNCTION__))
;
7749 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7750 CK_LValueToRValue, CurInit.get(),
7751 /*BasePath=*/nullptr, VK_RValue);
7752 break;
7753 }
7754
7755 case SK_ConversionSequence:
7756 case SK_ConversionSequenceNoNarrowing: {
7757 if (const auto *FromPtrType =
7758 CurInit.get()->getType()->getAs<PointerType>()) {
7759 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7760 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7761 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7762 S.Diag(CurInit.get()->getExprLoc(),
7763 diag::warn_noderef_to_dereferenceable_pointer)
7764 << CurInit.get()->getSourceRange();
7765 }
7766 }
7767 }
7768
7769 Sema::CheckedConversionKind CCK
7770 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7771 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7772 : Kind.isExplicitCast()? Sema::CCK_OtherCast
7773 : Sema::CCK_ImplicitConversion;
7774 ExprResult CurInitExprRes =
7775 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7776 getAssignmentAction(Entity), CCK);
7777 if (CurInitExprRes.isInvalid())
7778 return ExprError();
7779
7780 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7781
7782 CurInit = CurInitExprRes;
7783
7784 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7785 S.getLangOpts().CPlusPlus)
7786 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7787 CurInit.get());
7788
7789 break;
7790 }
7791
7792 case SK_ListInitialization: {
7793 if (checkAbstractType(Step->Type))
7794 return ExprError();
7795
7796 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7797 // If we're not initializing the top-level entity, we need to create an
7798 // InitializeTemporary entity for our target type.
7799 QualType Ty = Step->Type;
7800 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7801 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7802 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7803 InitListChecker PerformInitList(S, InitEntity,
7804 InitList, Ty, /*VerifyOnly=*/false,
7805 /*TreatUnavailableAsInvalid=*/false);
7806 if (PerformInitList.HadError())
7807 return ExprError();
7808
7809 // Hack: We must update *ResultType if available in order to set the
7810 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7811 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7812 if (ResultType &&
7813 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7814 if ((*ResultType)->isRValueReferenceType())
7815 Ty = S.Context.getRValueReferenceType(Ty);
7816 else if ((*ResultType)->isLValueReferenceType())
7817 Ty = S.Context.getLValueReferenceType(Ty,
7818 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7819 *ResultType = Ty;
7820 }
7821
7822 InitListExpr *StructuredInitList =
7823 PerformInitList.getFullyStructuredList();
7824 CurInit.get();
7825 CurInit = shouldBindAsTemporary(InitEntity)
7826 ? S.MaybeBindToTemporary(StructuredInitList)
7827 : StructuredInitList;
7828 break;
7829 }
7830
7831 case SK_ConstructorInitializationFromList: {
7832 if (checkAbstractType(Step->Type))
7833 return ExprError();
7834
7835 // When an initializer list is passed for a parameter of type "reference
7836 // to object", we don't get an EK_Temporary entity, but instead an
7837 // EK_Parameter entity with reference type.
7838 // FIXME: This is a hack. What we really should do is create a user
7839 // conversion step for this case, but this makes it considerably more
7840 // complicated. For now, this will do.
7841 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7842 Entity.getType().getNonReferenceType());
7843 bool UseTemporary = Entity.getType()->isReferenceType();
7844 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7844, __PRETTY_FUNCTION__))
;
7845 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7846 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7847 << InitList->getSourceRange();
7848 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7849 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7850 Entity,
7851 Kind, Arg, *Step,
7852 ConstructorInitRequiresZeroInit,
7853 /*IsListInitialization*/true,
7854 /*IsStdInitListInit*/false,
7855 InitList->getLBraceLoc(),
7856 InitList->getRBraceLoc());
7857 break;
7858 }
7859
7860 case SK_UnwrapInitList:
7861 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7862 break;
7863
7864 case SK_RewrapInitList: {
7865 Expr *E = CurInit.get();
7866 InitListExpr *Syntactic = Step->WrappingSyntacticList;
7867 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7868 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7869 ILE->setSyntacticForm(Syntactic);
7870 ILE->setType(E->getType());
7871 ILE->setValueKind(E->getValueKind());
7872 CurInit = ILE;
7873 break;
7874 }
7875
7876 case SK_ConstructorInitialization:
7877 case SK_StdInitializerListConstructorCall: {
7878 if (checkAbstractType(Step->Type))
7879 return ExprError();
7880
7881 // When an initializer list is passed for a parameter of type "reference
7882 // to object", we don't get an EK_Temporary entity, but instead an
7883 // EK_Parameter entity with reference type.
7884 // FIXME: This is a hack. What we really should do is create a user
7885 // conversion step for this case, but this makes it considerably more
7886 // complicated. For now, this will do.
7887 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7888 Entity.getType().getNonReferenceType());
7889 bool UseTemporary = Entity.getType()->isReferenceType();
7890 bool IsStdInitListInit =
7891 Step->Kind == SK_StdInitializerListConstructorCall;
7892 Expr *Source = CurInit.get();
7893 SourceRange Range = Kind.hasParenOrBraceRange()
7894 ? Kind.getParenOrBraceRange()
7895 : SourceRange();
7896 CurInit = PerformConstructorInitialization(
7897 S, UseTemporary ? TempEntity : Entity, Kind,
7898 Source ? MultiExprArg(Source) : Args, *Step,
7899 ConstructorInitRequiresZeroInit,
7900 /*IsListInitialization*/ IsStdInitListInit,
7901 /*IsStdInitListInitialization*/ IsStdInitListInit,
7902 /*LBraceLoc*/ Range.getBegin(),
7903 /*RBraceLoc*/ Range.getEnd());
7904 break;
7905 }
7906
7907 case SK_ZeroInitialization: {
7908 step_iterator NextStep = Step;
7909 ++NextStep;
7910 if (NextStep != StepEnd &&
7911 (NextStep->Kind == SK_ConstructorInitialization ||
7912 NextStep->Kind == SK_ConstructorInitializationFromList)) {
7913 // The need for zero-initialization is recorded directly into
7914 // the call to the object's constructor within the next step.
7915 ConstructorInitRequiresZeroInit = true;
7916 } else if (Kind.getKind() == InitializationKind::IK_Value &&
7917 S.getLangOpts().CPlusPlus &&
7918 !Kind.isImplicitValueInit()) {
7919 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7920 if (!TSInfo)
7921 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7922 Kind.getRange().getBegin());
7923
7924 CurInit = new (S.Context) CXXScalarValueInitExpr(
7925 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7926 Kind.getRange().getEnd());
7927 } else {
7928 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7929 }
7930 break;
7931 }
7932
7933 case SK_CAssignment: {
7934 QualType SourceType = CurInit.get()->getType();
7935
7936 // Save off the initial CurInit in case we need to emit a diagnostic
7937 ExprResult InitialCurInit = CurInit;
7938 ExprResult Result = CurInit;
7939 Sema::AssignConvertType ConvTy =
7940 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7941 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7942 if (Result.isInvalid())
7943 return ExprError();
7944 CurInit = Result;
7945
7946 // If this is a call, allow conversion to a transparent union.
7947 ExprResult CurInitExprRes = CurInit;
7948 if (ConvTy != Sema::Compatible &&
7949 Entity.isParameterKind() &&
7950 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7951 == Sema::Compatible)
7952 ConvTy = Sema::Compatible;
7953 if (CurInitExprRes.isInvalid())
7954 return ExprError();
7955 CurInit = CurInitExprRes;
7956
7957 bool Complained;
7958 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7959 Step->Type, SourceType,
7960 InitialCurInit.get(),
7961 getAssignmentAction(Entity, true),
7962 &Complained)) {
7963 PrintInitLocationNote(S, Entity);
7964 return ExprError();
7965 } else if (Complained)
7966 PrintInitLocationNote(S, Entity);
7967 break;
7968 }
7969
7970 case SK_StringInit: {
7971 QualType Ty = Step->Type;
7972 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7973 S.Context.getAsArrayType(Ty), S);
7974 break;
7975 }
7976
7977 case SK_ObjCObjectConversion:
7978 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7979 CK_ObjCObjectLValueCast,
7980 CurInit.get()->getValueKind());
7981 break;
7982
7983 case SK_ArrayLoopIndex: {
7984 Expr *Cur = CurInit.get();
7985 Expr *BaseExpr = new (S.Context)
7986 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7987 Cur->getValueKind(), Cur->getObjectKind(), Cur);
7988 Expr *IndexExpr =
7989 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7990 CurInit = S.CreateBuiltinArraySubscriptExpr(
7991 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7992 ArrayLoopCommonExprs.push_back(BaseExpr);
7993 break;
7994 }
7995
7996 case SK_ArrayLoopInit: {
7997 assert(!ArrayLoopCommonExprs.empty() &&((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7998, __PRETTY_FUNCTION__))
7998 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 7998, __PRETTY_FUNCTION__))
;
7999 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8000 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8001 CurInit.get());
8002 break;
8003 }
8004
8005 case SK_GNUArrayInit:
8006 // Okay: we checked everything before creating this step. Note that
8007 // this is a GNU extension.
8008 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8009 << Step->Type << CurInit.get()->getType()
8010 << CurInit.get()->getSourceRange();
8011 updateGNUCompoundLiteralRValue(CurInit.get());
8012 LLVM_FALLTHROUGH[[clang::fallthrough]];
8013 case SK_ArrayInit:
8014 // If the destination type is an incomplete array type, update the
8015 // type accordingly.
8016 if (ResultType) {
8017 if (const IncompleteArrayType *IncompleteDest
8018 = S.Context.getAsIncompleteArrayType(Step->Type)) {
8019 if (const ConstantArrayType *ConstantSource
8020 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8021 *ResultType = S.Context.getConstantArrayType(
8022 IncompleteDest->getElementType(),
8023 ConstantSource->getSize(),
8024 ArrayType::Normal, 0);
8025 }
8026 }
8027 }
8028 break;
8029
8030 case SK_ParenthesizedArrayInit:
8031 // Okay: we checked everything before creating this step. Note that
8032 // this is a GNU extension.
8033 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8034 << CurInit.get()->getSourceRange();
8035 break;
8036
8037 case SK_PassByIndirectCopyRestore:
8038 case SK_PassByIndirectRestore:
8039 checkIndirectCopyRestoreSource(S, CurInit.get());
8040 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8041 CurInit.get(), Step->Type,
8042 Step->Kind == SK_PassByIndirectCopyRestore);
8043 break;
8044
8045 case SK_ProduceObjCObject:
8046 CurInit =
8047 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8048 CurInit.get(), nullptr, VK_RValue);
8049 break;
8050
8051 case SK_StdInitializerList: {
8052 S.Diag(CurInit.get()->getExprLoc(),
8053 diag::warn_cxx98_compat_initializer_list_init)
8054 << CurInit.get()->getSourceRange();
8055
8056 // Materialize the temporary into memory.
8057 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8058 CurInit.get()->getType(), CurInit.get(),
8059 /*BoundToLvalueReference=*/false);
8060
8061 // Wrap it in a construction of a std::initializer_list<T>.
8062 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8063
8064 // Bind the result, in case the library has given initializer_list a
8065 // non-trivial destructor.
8066 if (shouldBindAsTemporary(Entity))
8067 CurInit = S.MaybeBindToTemporary(CurInit.get());
8068 break;
8069 }
8070
8071 case SK_OCLSamplerInit: {
8072 // Sampler initialization have 5 cases:
8073 // 1. function argument passing
8074 // 1a. argument is a file-scope variable
8075 // 1b. argument is a function-scope variable
8076 // 1c. argument is one of caller function's parameters
8077 // 2. variable initialization
8078 // 2a. initializing a file-scope variable
8079 // 2b. initializing a function-scope variable
8080 //
8081 // For file-scope variables, since they cannot be initialized by function
8082 // call of __translate_sampler_initializer in LLVM IR, their references
8083 // need to be replaced by a cast from their literal initializers to
8084 // sampler type. Since sampler variables can only be used in function
8085 // calls as arguments, we only need to replace them when handling the
8086 // argument passing.
8087 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8088, __PRETTY_FUNCTION__))
8088 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8088, __PRETTY_FUNCTION__))
;
8089 Expr *Init = CurInit.get();
8090 QualType SourceType = Init->getType();
8091 // Case 1
8092 if (Entity.isParameterKind()) {
8093 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8094 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8095 << SourceType;
8096 break;
8097 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8098 auto Var = cast<VarDecl>(DRE->getDecl());
8099 // Case 1b and 1c
8100 // No cast from integer to sampler is needed.
8101 if (!Var->hasGlobalStorage()) {
8102 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8103 CK_LValueToRValue, Init,
8104 /*BasePath=*/nullptr, VK_RValue);
8105 break;
8106 }
8107 // Case 1a
8108 // For function call with a file-scope sampler variable as argument,
8109 // get the integer literal.
8110 // Do not diagnose if the file-scope variable does not have initializer
8111 // since this has already been diagnosed when parsing the variable
8112 // declaration.
8113 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8114 break;
8115 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8116 Var->getInit()))->getSubExpr();
8117 SourceType = Init->getType();
8118 }
8119 } else {
8120 // Case 2
8121 // Check initializer is 32 bit integer constant.
8122 // If the initializer is taken from global variable, do not diagnose since
8123 // this has already been done when parsing the variable declaration.
8124 if (!Init->isConstantInitializer(S.Context, false))
8125 break;
8126
8127 if (!SourceType->isIntegerType() ||
8128 32 != S.Context.getIntWidth(SourceType)) {
8129 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8130 << SourceType;
8131 break;
8132 }
8133
8134 Expr::EvalResult EVResult;
8135 Init->EvaluateAsInt(EVResult, S.Context);
8136 llvm::APSInt Result = EVResult.Val.getInt();
8137 const uint64_t SamplerValue = Result.getLimitedValue();
8138 // 32-bit value of sampler's initializer is interpreted as
8139 // bit-field with the following structure:
8140 // |unspecified|Filter|Addressing Mode| Normalized Coords|
8141 // |31 6|5 4|3 1| 0|
8142 // This structure corresponds to enum values of sampler properties
8143 // defined in SPIR spec v1.2 and also opencl-c.h
8144 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
8145 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
8146 if (FilterMode != 1 && FilterMode != 2 &&
8147 !S.getOpenCLOptions().isEnabled(
8148 "cl_intel_device_side_avc_motion_estimation"))
8149 S.Diag(Kind.getLocation(),
8150 diag::warn_sampler_initializer_invalid_bits)
8151 << "Filter Mode";
8152 if (AddressingMode > 4)
8153 S.Diag(Kind.getLocation(),
8154 diag::warn_sampler_initializer_invalid_bits)
8155 << "Addressing Mode";
8156 }
8157
8158 // Cases 1a, 2a and 2b
8159 // Insert cast from integer to sampler.
8160 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8161 CK_IntToOCLSampler);
8162 break;
8163 }
8164 case SK_OCLZeroOpaqueType: {
8165 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||(((Step->Type->isEventT() || Step->Type->isQueueT
() || Step->Type->isOCLIntelSubgroupAVCType()) &&
"Wrong type for initialization of OpenCL opaque type.") ? static_cast
<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8167, __PRETTY_FUNCTION__))
8166 Step->Type->isOCLIntelSubgroupAVCType()) &&(((Step->Type->isEventT() || Step->Type->isQueueT
() || Step->Type->isOCLIntelSubgroupAVCType()) &&
"Wrong type for initialization of OpenCL opaque type.") ? static_cast
<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8167, __PRETTY_FUNCTION__))
8167 "Wrong type for initialization of OpenCL opaque type.")(((Step->Type->isEventT() || Step->Type->isQueueT
() || Step->Type->isOCLIntelSubgroupAVCType()) &&
"Wrong type for initialization of OpenCL opaque type.") ? static_cast
<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8167, __PRETTY_FUNCTION__))
;
8168
8169 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8170 CK_ZeroToOCLOpaqueType,
8171 CurInit.get()->getValueKind());
8172 break;
8173 }
8174 }
8175 }
8176
8177 // Check whether the initializer has a shorter lifetime than the initialized
8178 // entity, and if not, either lifetime-extend or warn as appropriate.
8179 if (auto *Init = CurInit.get())
8180 S.checkInitializerLifetime(Entity, Init);
8181
8182 // Diagnose non-fatal problems with the completed initialization.
8183 if (Entity.getKind() == InitializedEntity::EK_Member &&
8184 cast<FieldDecl>(Entity.getDecl())->isBitField())
8185 S.CheckBitFieldInitialization(Kind.getLocation(),
8186 cast<FieldDecl>(Entity.getDecl()),
8187 CurInit.get());
8188
8189 // Check for std::move on construction.
8190 if (const Expr *E = CurInit.get()) {
8191 CheckMoveOnConstruction(S, E,
8192 Entity.getKind() == InitializedEntity::EK_Result);
8193 }
8194
8195 return CurInit;
8196}
8197
8198/// Somewhere within T there is an uninitialized reference subobject.
8199/// Dig it out and diagnose it.
8200static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8201 QualType T) {
8202 if (T->isReferenceType()) {
8203 S.Diag(Loc, diag::err_reference_without_init)
8204 << T.getNonReferenceType();
8205 return true;
8206 }
8207
8208 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8209 if (!RD || !RD->hasUninitializedReferenceMember())
8210 return false;
8211
8212 for (const auto *FI : RD->fields()) {
8213 if (FI->isUnnamedBitfield())
8214 continue;
8215
8216 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8217 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8218 return true;
8219 }
8220 }
8221
8222 for (const auto &BI : RD->bases()) {
8223 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8224 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8225 return true;
8226 }
8227 }
8228
8229 return false;
8230}
8231
8232
8233//===----------------------------------------------------------------------===//
8234// Diagnose initialization failures
8235//===----------------------------------------------------------------------===//
8236
8237/// Emit notes associated with an initialization that failed due to a
8238/// "simple" conversion failure.
8239static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8240 Expr *op) {
8241 QualType destType = entity.getType();
8242 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8243 op->getType()->isObjCObjectPointerType()) {
8244
8245 // Emit a possible note about the conversion failing because the
8246 // operand is a message send with a related result type.
8247 S.EmitRelatedResultTypeNote(op);
8248
8249 // Emit a possible note about a return failing because we're
8250 // expecting a related result type.
8251 if (entity.getKind() == InitializedEntity::EK_Result)
8252 S.EmitRelatedResultTypeNoteForReturn(destType);
8253 }
8254}
8255
8256static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8257 InitListExpr *InitList) {
8258 QualType DestType = Entity.getType();
8259
8260 QualType E;
8261 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8262 QualType ArrayType = S.Context.getConstantArrayType(
8263 E.withConst(),
8264 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8265 InitList->getNumInits()),
8266 clang::ArrayType::Normal, 0);
8267 InitializedEntity HiddenArray =
8268 InitializedEntity::InitializeTemporary(ArrayType);
8269 return diagnoseListInit(S, HiddenArray, InitList);
8270 }
8271
8272 if (DestType->isReferenceType()) {
8273 // A list-initialization failure for a reference means that we tried to
8274 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8275 // inner initialization failed.
8276 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8277 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8278 SourceLocation Loc = InitList->getBeginLoc();
8279 if (auto *D = Entity.getDecl())
8280 Loc = D->getLocation();
8281 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8282 return;
8283 }
8284
8285 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8286 /*VerifyOnly=*/false,
8287 /*TreatUnavailableAsInvalid=*/false);
8288 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8289, __PRETTY_FUNCTION__))
8289 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8289, __PRETTY_FUNCTION__))
;
8290}
8291
8292bool InitializationSequence::Diagnose(Sema &S,
8293 const InitializedEntity &Entity,
8294 const InitializationKind &Kind,
8295 ArrayRef<Expr *> Args) {
8296 if (!Failed())
1
Taking false branch
8297 return false;
8298
8299 // When we want to diagnose only one element of a braced-init-list,
8300 // we need to factor it out.
8301 Expr *OnlyArg;
8302 if (Args.size() == 1) {
2
Assuming the condition is false
3
Taking false branch
8303 auto *List = dyn_cast<InitListExpr>(Args[0]);
8304 if (List && List->getNumInits() == 1)
8305 OnlyArg = List->getInit(0);
8306 else
8307 OnlyArg = Args[0];
8308 }
8309 else
8310 OnlyArg = nullptr;
4
Null pointer value stored to 'OnlyArg'
8311
8312 QualType DestType = Entity.getType();
8313 switch (Failure) {
5
Control jumps to 'case FK_NonConstLValueReferenceBindingToUnrelated:' at line 8458
8314 case FK_TooManyInitsForReference:
8315 // FIXME: Customize for the initialized entity?
8316 if (Args.empty()) {
8317 // Dig out the reference subobject which is uninitialized and diagnose it.
8318 // If this is value-initialization, this could be nested some way within
8319 // the target type.
8320 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8321, __PRETTY_FUNCTION__))
8321 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8321, __PRETTY_FUNCTION__))
;
8322 bool Diagnosed =
8323 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8324 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8324, __PRETTY_FUNCTION__))
;
8325 (void)Diagnosed;
8326 } else // FIXME: diagnostic below could be better!
8327 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8328 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8329 break;
8330 case FK_ParenthesizedListInitForReference:
8331 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8332 << 1 << Entity.getType() << Args[0]->getSourceRange();
8333 break;
8334
8335 case FK_ArrayNeedsInitList:
8336 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8337 break;
8338 case FK_ArrayNeedsInitListOrStringLiteral:
8339 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8340 break;
8341 case FK_ArrayNeedsInitListOrWideStringLiteral:
8342 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8343 break;
8344 case FK_NarrowStringIntoWideCharArray:
8345 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8346 break;
8347 case FK_WideStringIntoCharArray:
8348 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8349 break;
8350 case FK_IncompatWideStringIntoWideChar:
8351 S.Diag(Kind.getLocation(),
8352 diag::err_array_init_incompat_wide_string_into_wchar);
8353 break;
8354 case FK_PlainStringIntoUTF8Char:
8355 S.Diag(Kind.getLocation(),
8356 diag::err_array_init_plain_string_into_char8_t);
8357 S.Diag(Args.front()->getBeginLoc(),
8358 diag::note_array_init_plain_string_into_char8_t)
8359 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8360 break;
8361 case FK_UTF8StringIntoPlainChar:
8362 S.Diag(Kind.getLocation(),
8363 diag::err_array_init_utf8_string_into_char)
8364 << S.getLangOpts().CPlusPlus2a;
8365 break;
8366 case FK_ArrayTypeMismatch:
8367 case FK_NonConstantArrayInit:
8368 S.Diag(Kind.getLocation(),
8369 (Failure == FK_ArrayTypeMismatch
8370 ? diag::err_array_init_different_type
8371 : diag::err_array_init_non_constant_array))
8372 << DestType.getNonReferenceType()
8373 << OnlyArg->getType()
8374 << Args[0]->getSourceRange();
8375 break;
8376
8377 case FK_VariableLengthArrayHasInitializer:
8378 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8379 << Args[0]->getSourceRange();
8380 break;
8381
8382 case FK_AddressOfOverloadFailed: {
8383 DeclAccessPair Found;
8384 S.ResolveAddressOfOverloadedFunction(OnlyArg,
8385 DestType.getNonReferenceType(),
8386 true,
8387 Found);
8388 break;
8389 }
8390
8391 case FK_AddressOfUnaddressableFunction: {
8392 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8393 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8394 OnlyArg->getBeginLoc());
8395 break;
8396 }
8397
8398 case FK_ReferenceInitOverloadFailed:
8399 case FK_UserConversionOverloadFailed:
8400 switch (FailedOverloadResult) {
8401 case OR_Ambiguous:
8402 if (Failure == FK_UserConversionOverloadFailed)
8403 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8404 << OnlyArg->getType() << DestType
8405 << Args[0]->getSourceRange();
8406 else
8407 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8408 << DestType << OnlyArg->getType()
8409 << Args[0]->getSourceRange();
8410
8411 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8412 break;
8413
8414 case OR_No_Viable_Function:
8415 if (!S.RequireCompleteType(Kind.getLocation(),
8416 DestType.getNonReferenceType(),
8417 diag::err_typecheck_nonviable_condition_incomplete,
8418 OnlyArg->getType(), Args[0]->getSourceRange()))
8419 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8420 << (Entity.getKind() == InitializedEntity::EK_Result)
8421 << OnlyArg->getType() << Args[0]->getSourceRange()
8422 << DestType.getNonReferenceType();
8423
8424 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8425 break;
8426
8427 case OR_Deleted: {
8428 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8429 << OnlyArg->getType() << DestType.getNonReferenceType()
8430 << Args[0]->getSourceRange();
8431 OverloadCandidateSet::iterator Best;
8432 OverloadingResult Ovl
8433 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8434 if (Ovl == OR_Deleted) {
8435 S.NoteDeletedFunction(Best->Function);
8436 } else {
8437 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8437)
;
8438 }
8439 break;
8440 }
8441
8442 case OR_Success:
8443 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8443)
;
8444 }
8445 break;
8446
8447 case FK_NonConstLValueReferenceBindingToTemporary:
8448 if (isa<InitListExpr>(Args[0])) {
8449 S.Diag(Kind.getLocation(),
8450 diag::err_lvalue_reference_bind_to_initlist)
8451 << DestType.getNonReferenceType().isVolatileQualified()
8452 << DestType.getNonReferenceType()
8453 << Args[0]->getSourceRange();
8454 break;
8455 }
8456 LLVM_FALLTHROUGH[[clang::fallthrough]];
8457
8458 case FK_NonConstLValueReferenceBindingToUnrelated:
8459 S.Diag(Kind.getLocation(),
8460 Failure == FK_NonConstLValueReferenceBindingToTemporary
6
'?' condition is false
8461 ? diag::err_lvalue_reference_bind_to_temporary
8462 : diag::err_lvalue_reference_bind_to_unrelated)
8463 << DestType.getNonReferenceType().isVolatileQualified()
8464 << DestType.getNonReferenceType()
8465 << OnlyArg->getType()
7
Called C++ object pointer is null
8466 << Args[0]->getSourceRange();
8467 break;
8468
8469 case FK_NonConstLValueReferenceBindingToBitfield: {
8470 // We don't necessarily have an unambiguous source bit-field.
8471 FieldDecl *BitField = Args[0]->getSourceBitField();
8472 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8473 << DestType.isVolatileQualified()
8474 << (BitField ? BitField->getDeclName() : DeclarationName())
8475 << (BitField != nullptr)
8476 << Args[0]->getSourceRange();
8477 if (BitField)
8478 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8479 break;
8480 }
8481
8482 case FK_NonConstLValueReferenceBindingToVectorElement:
8483 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8484 << DestType.isVolatileQualified()
8485 << Args[0]->getSourceRange();
8486 break;
8487
8488 case FK_RValueReferenceBindingToLValue:
8489 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8490 << DestType.getNonReferenceType() << OnlyArg->getType()
8491 << Args[0]->getSourceRange();
8492 break;
8493
8494 case FK_ReferenceInitDropsQualifiers: {
8495 QualType SourceType = OnlyArg->getType();
8496 QualType NonRefType = DestType.getNonReferenceType();
8497 Qualifiers DroppedQualifiers =
8498 SourceType.getQualifiers() - NonRefType.getQualifiers();
8499
8500 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8501 << SourceType
8502 << NonRefType
8503 << DroppedQualifiers.getCVRQualifiers()
8504 << Args[0]->getSourceRange();
8505 break;
8506 }
8507
8508 case FK_ReferenceInitFailed:
8509 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8510 << DestType.getNonReferenceType()
8511 << DestType.getNonReferenceType()->isIncompleteType()
8512 << OnlyArg->isLValue()
8513 << OnlyArg->getType()
8514 << Args[0]->getSourceRange();
8515 emitBadConversionNotes(S, Entity, Args[0]);
8516 break;
8517
8518 case FK_ConversionFailed: {
8519 QualType FromType = OnlyArg->getType();
8520 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8521 << (int)Entity.getKind()
8522 << DestType
8523 << OnlyArg->isLValue()
8524 << FromType
8525 << Args[0]->getSourceRange();
8526 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8527 S.Diag(Kind.getLocation(), PDiag);
8528 emitBadConversionNotes(S, Entity, Args[0]);
8529 break;
8530 }
8531
8532 case FK_ConversionFromPropertyFailed:
8533 // No-op. This error has already been reported.
8534 break;
8535
8536 case FK_TooManyInitsForScalar: {
8537 SourceRange R;
8538
8539 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8540 if (InitList && InitList->getNumInits() >= 1) {
8541 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8542 } else {
8543 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8543, __PRETTY_FUNCTION__))
;
8544 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8545 }
8546
8547 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8548 if (Kind.isCStyleOrFunctionalCast())
8549 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8550 << R;
8551 else
8552 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8553 << /*scalar=*/2 << R;
8554 break;
8555 }
8556
8557 case FK_ParenthesizedListInitForScalar:
8558 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8559 << 0 << Entity.getType() << Args[0]->getSourceRange();
8560 break;
8561
8562 case FK_ReferenceBindingToInitList:
8563 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8564 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8565 break;
8566
8567 case FK_InitListBadDestinationType:
8568 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8569 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8570 break;
8571
8572 case FK_ListConstructorOverloadFailed:
8573 case FK_ConstructorOverloadFailed: {
8574 SourceRange ArgsRange;
8575 if (Args.size())
8576 ArgsRange =
8577 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8578
8579 if (Failure == FK_ListConstructorOverloadFailed) {
8580 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8581, __PRETTY_FUNCTION__))
8581 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8581, __PRETTY_FUNCTION__))
;
8582 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8583 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8584 }
8585
8586 // FIXME: Using "DestType" for the entity we're printing is probably
8587 // bad.
8588 switch (FailedOverloadResult) {
8589 case OR_Ambiguous:
8590 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8591 << DestType << ArgsRange;
8592 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8593 break;
8594
8595 case OR_No_Viable_Function:
8596 if (Kind.getKind() == InitializationKind::IK_Default &&
8597 (Entity.getKind() == InitializedEntity::EK_Base ||
8598 Entity.getKind() == InitializedEntity::EK_Member) &&
8599 isa<CXXConstructorDecl>(S.CurContext)) {
8600 // This is implicit default initialization of a member or
8601 // base within a constructor. If no viable function was
8602 // found, notify the user that they need to explicitly
8603 // initialize this base/member.
8604 CXXConstructorDecl *Constructor
8605 = cast<CXXConstructorDecl>(S.CurContext);
8606 const CXXRecordDecl *InheritedFrom = nullptr;
8607 if (auto Inherited = Constructor->getInheritedConstructor())
8608 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8609 if (Entity.getKind() == InitializedEntity::EK_Base) {
8610 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8611 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8612 << S.Context.getTypeDeclType(Constructor->getParent())
8613 << /*base=*/0
8614 << Entity.getType()
8615 << InheritedFrom;
8616
8617 RecordDecl *BaseDecl
8618 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8619 ->getDecl();
8620 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8621 << S.Context.getTagDeclType(BaseDecl);
8622 } else {
8623 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8624 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8625 << S.Context.getTypeDeclType(Constructor->getParent())
8626 << /*member=*/1
8627 << Entity.getName()
8628 << InheritedFrom;
8629 S.Diag(Entity.getDecl()->getLocation(),
8630 diag::note_member_declared_at);
8631
8632 if (const RecordType *Record
8633 = Entity.getType()->getAs<RecordType>())
8634 S.Diag(Record->getDecl()->getLocation(),
8635 diag::note_previous_decl)
8636 << S.Context.getTagDeclType(Record->getDecl());
8637 }
8638 break;
8639 }
8640
8641 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8642 << DestType << ArgsRange;
8643 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8644 break;
8645
8646 case OR_Deleted: {
8647 OverloadCandidateSet::iterator Best;
8648 OverloadingResult Ovl
8649 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8650 if (Ovl != OR_Deleted) {
8651 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8652 << DestType << ArgsRange;
8653 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8653)
;
8654 break;
8655 }
8656
8657 // If this is a defaulted or implicitly-declared function, then
8658 // it was implicitly deleted. Make it clear that the deletion was
8659 // implicit.
8660 if (S.isImplicitlyDeleted(Best->Function))
8661 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8662 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8663 << DestType << ArgsRange;
8664 else
8665 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8666 << DestType << ArgsRange;
8667
8668 S.NoteDeletedFunction(Best->Function);
8669 break;
8670 }
8671
8672 case OR_Success:
8673 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8673)
;
8674 }
8675 }
8676 break;
8677
8678 case FK_DefaultInitOfConst:
8679 if (Entity.getKind() == InitializedEntity::EK_Member &&
8680 isa<CXXConstructorDecl>(S.CurContext)) {
8681 // This is implicit default-initialization of a const member in
8682 // a constructor. Complain that it needs to be explicitly
8683 // initialized.
8684 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8685 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8686 << (Constructor->getInheritedConstructor() ? 2 :
8687 Constructor->isImplicit() ? 1 : 0)
8688 << S.Context.getTypeDeclType(Constructor->getParent())
8689 << /*const=*/1
8690 << Entity.getName();
8691 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8692 << Entity.getName();
8693 } else {
8694 S.Diag(Kind.getLocation(), diag::err_default_init_const)
8695 << DestType << (bool)DestType->getAs<RecordType>();
8696 }
8697 break;
8698
8699 case FK_Incomplete:
8700 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8701 diag::err_init_incomplete_type);
8702 break;
8703
8704 case FK_ListInitializationFailed: {
8705 // Run the init list checker again to emit diagnostics.
8706 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8707 diagnoseListInit(S, Entity, InitList);
8708 break;
8709 }
8710
8711 case FK_PlaceholderType: {
8712 // FIXME: Already diagnosed!
8713 break;
8714 }
8715
8716 case FK_ExplicitConstructor: {
8717 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8718 << Args[0]->getSourceRange();
8719 OverloadCandidateSet::iterator Best;
8720 OverloadingResult Ovl
8721 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8722 (void)Ovl;
8723 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 8723, __PRETTY_FUNCTION__))
;
8724 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8725 S.Diag(CtorDecl->getLocation(),
8726 diag::note_explicit_ctor_deduction_guide_here) << false;
8727 break;
8728 }
8729 }
8730
8731 PrintInitLocationNote(S, Entity);
8732 return true;
8733}
8734
8735void InitializationSequence::dump(raw_ostream &OS) const {
8736 switch (SequenceKind) {
8737 case FailedSequence: {
8738 OS << "Failed sequence: ";
8739 switch (Failure) {
8740 case FK_TooManyInitsForReference:
8741 OS << "too many initializers for reference";
8742 break;
8743
8744 case FK_ParenthesizedListInitForReference:
8745 OS << "parenthesized list init for reference";
8746 break;
8747
8748 case FK_ArrayNeedsInitList:
8749 OS << "array requires initializer list";
8750 break;
8751
8752 case FK_AddressOfUnaddressableFunction:
8753 OS << "address of unaddressable function was taken";
8754 break;
8755
8756 case FK_ArrayNeedsInitListOrStringLiteral:
8757 OS << "array requires initializer list or string literal";
8758 break;
8759
8760 case FK_ArrayNeedsInitListOrWideStringLiteral:
8761 OS << "array requires initializer list or wide string literal";
8762 break;
8763
8764 case FK_NarrowStringIntoWideCharArray:
8765 OS << "narrow string into wide char array";
8766 break;
8767
8768 case FK_WideStringIntoCharArray:
8769 OS << "wide string into char array";
8770 break;
8771
8772 case FK_IncompatWideStringIntoWideChar:
8773 OS << "incompatible wide string into wide char array";
8774 break;
8775
8776 case FK_PlainStringIntoUTF8Char:
8777 OS << "plain string literal into char8_t array";
8778 break;
8779
8780 case FK_UTF8StringIntoPlainChar:
8781 OS << "u8 string literal into char array";
8782 break;
8783
8784 case FK_ArrayTypeMismatch:
8785 OS << "array type mismatch";
8786 break;
8787
8788 case FK_NonConstantArrayInit:
8789 OS << "non-constant array initializer";
8790 break;
8791
8792 case FK_AddressOfOverloadFailed:
8793 OS << "address of overloaded function failed";
8794 break;
8795
8796 case FK_ReferenceInitOverloadFailed:
8797 OS << "overload resolution for reference initialization failed";
8798 break;
8799
8800 case FK_NonConstLValueReferenceBindingToTemporary:
8801 OS << "non-const lvalue reference bound to temporary";
8802 break;
8803
8804 case FK_NonConstLValueReferenceBindingToBitfield:
8805 OS << "non-const lvalue reference bound to bit-field";
8806 break;
8807
8808 case FK_NonConstLValueReferenceBindingToVectorElement:
8809 OS << "non-const lvalue reference bound to vector element";
8810 break;
8811
8812 case FK_NonConstLValueReferenceBindingToUnrelated:
8813 OS << "non-const lvalue reference bound to unrelated type";
8814 break;
8815
8816 case FK_RValueReferenceBindingToLValue:
8817 OS << "rvalue reference bound to an lvalue";
8818 break;
8819
8820 case FK_ReferenceInitDropsQualifiers:
8821 OS << "reference initialization drops qualifiers";
8822 break;
8823
8824 case FK_ReferenceInitFailed:
8825 OS << "reference initialization failed";
8826 break;
8827
8828 case FK_ConversionFailed:
8829 OS << "conversion failed";
8830 break;
8831
8832 case FK_ConversionFromPropertyFailed:
8833 OS << "conversion from property failed";
8834 break;
8835
8836 case FK_TooManyInitsForScalar:
8837 OS << "too many initializers for scalar";
8838 break;
8839
8840 case FK_ParenthesizedListInitForScalar:
8841 OS << "parenthesized list init for reference";
8842 break;
8843
8844 case FK_ReferenceBindingToInitList:
8845 OS << "referencing binding to initializer list";
8846 break;
8847
8848 case FK_InitListBadDestinationType:
8849 OS << "initializer list for non-aggregate, non-scalar type";
8850 break;
8851
8852 case FK_UserConversionOverloadFailed:
8853 OS << "overloading failed for user-defined conversion";
8854 break;
8855
8856 case FK_ConstructorOverloadFailed:
8857 OS << "constructor overloading failed";
8858 break;
8859
8860 case FK_DefaultInitOfConst:
8861 OS << "default initialization of a const variable";
8862 break;
8863
8864 case FK_Incomplete:
8865 OS << "initialization of incomplete type";
8866 break;
8867
8868 case FK_ListInitializationFailed:
8869 OS << "list initialization checker failure";
8870 break;
8871
8872 case FK_VariableLengthArrayHasInitializer:
8873 OS << "variable length array has an initializer";
8874 break;
8875
8876 case FK_PlaceholderType:
8877 OS << "initializer expression isn't contextually valid";
8878 break;
8879
8880 case FK_ListConstructorOverloadFailed:
8881 OS << "list constructor overloading failed";
8882 break;
8883
8884 case FK_ExplicitConstructor:
8885 OS << "list copy initialization chose explicit constructor";
8886 break;
8887 }
8888 OS << '\n';
8889 return;
8890 }
8891
8892 case DependentSequence:
8893 OS << "Dependent sequence\n";
8894 return;
8895
8896 case NormalSequence:
8897 OS << "Normal sequence: ";
8898 break;
8899 }
8900
8901 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8902 if (S != step_begin()) {
8903 OS << " -> ";
8904 }
8905
8906 switch (S->Kind) {
8907 case SK_ResolveAddressOfOverloadedFunction:
8908 OS << "resolve address of overloaded function";
8909 break;
8910
8911 case SK_CastDerivedToBaseRValue:
8912 OS << "derived-to-base (rvalue)";
8913 break;
8914
8915 case SK_CastDerivedToBaseXValue:
8916 OS << "derived-to-base (xvalue)";
8917 break;
8918
8919 case SK_CastDerivedToBaseLValue:
8920 OS << "derived-to-base (lvalue)";
8921 break;
8922
8923 case SK_BindReference:
8924 OS << "bind reference to lvalue";
8925 break;
8926
8927 case SK_BindReferenceToTemporary:
8928 OS << "bind reference to a temporary";
8929 break;
8930
8931 case SK_FinalCopy:
8932 OS << "final copy in class direct-initialization";
8933 break;
8934
8935 case SK_ExtraneousCopyToTemporary:
8936 OS << "extraneous C++03 copy to temporary";
8937 break;
8938
8939 case SK_UserConversion:
8940 OS << "user-defined conversion via " << *S->Function.Function;
8941 break;
8942
8943 case SK_QualificationConversionRValue:
8944 OS << "qualification conversion (rvalue)";
8945 break;
8946
8947 case SK_QualificationConversionXValue:
8948 OS << "qualification conversion (xvalue)";
8949 break;
8950
8951 case SK_QualificationConversionLValue:
8952 OS << "qualification conversion (lvalue)";
8953 break;
8954
8955 case SK_AtomicConversion:
8956 OS << "non-atomic-to-atomic conversion";
8957 break;
8958
8959 case SK_LValueToRValue:
8960 OS << "load (lvalue to rvalue)";
8961 break;
8962
8963 case SK_ConversionSequence:
8964 OS << "implicit conversion sequence (";
8965 S->ICS->dump(); // FIXME: use OS
8966 OS << ")";
8967 break;
8968
8969 case SK_ConversionSequenceNoNarrowing:
8970 OS << "implicit conversion sequence with narrowing prohibited (";
8971 S->ICS->dump(); // FIXME: use OS
8972 OS << ")";
8973 break;
8974
8975 case SK_ListInitialization:
8976 OS << "list aggregate initialization";
8977 break;
8978
8979 case SK_UnwrapInitList:
8980 OS << "unwrap reference initializer list";
8981 break;
8982
8983 case SK_RewrapInitList:
8984 OS << "rewrap reference initializer list";
8985 break;
8986
8987 case SK_ConstructorInitialization:
8988 OS << "constructor initialization";
8989 break;
8990
8991 case SK_ConstructorInitializationFromList:
8992 OS << "list initialization via constructor";
8993 break;
8994
8995 case SK_ZeroInitialization:
8996 OS << "zero initialization";
8997 break;
8998
8999 case SK_CAssignment:
9000 OS << "C assignment";
9001 break;
9002
9003 case SK_StringInit:
9004 OS << "string initialization";
9005 break;
9006
9007 case SK_ObjCObjectConversion:
9008 OS << "Objective-C object conversion";
9009 break;
9010
9011 case SK_ArrayLoopIndex:
9012 OS << "indexing for array initialization loop";
9013 break;
9014
9015 case SK_ArrayLoopInit:
9016 OS << "array initialization loop";
9017 break;
9018
9019 case SK_ArrayInit:
9020 OS << "array initialization";
9021 break;
9022
9023 case SK_GNUArrayInit:
9024 OS << "array initialization (GNU extension)";
9025 break;
9026
9027 case SK_ParenthesizedArrayInit:
9028 OS << "parenthesized array initialization";
9029 break;
9030
9031 case SK_PassByIndirectCopyRestore:
9032 OS << "pass by indirect copy and restore";
9033 break;
9034
9035 case SK_PassByIndirectRestore:
9036 OS << "pass by indirect restore";
9037 break;
9038
9039 case SK_ProduceObjCObject:
9040 OS << "Objective-C object retension";
9041 break;
9042
9043 case SK_StdInitializerList:
9044 OS << "std::initializer_list from initializer list";
9045 break;
9046
9047 case SK_StdInitializerListConstructorCall:
9048 OS << "list initialization from std::initializer_list";
9049 break;
9050
9051 case SK_OCLSamplerInit:
9052 OS << "OpenCL sampler_t from integer constant";
9053 break;
9054
9055 case SK_OCLZeroOpaqueType:
9056 OS << "OpenCL opaque type from zero";
9057 break;
9058 }
9059
9060 OS << " [" << S->Type.getAsString() << ']';
9061 }
9062
9063 OS << '\n';
9064}
9065
9066void InitializationSequence::dump() const {
9067 dump(llvm::errs());
9068}
9069
9070static bool NarrowingErrs(const LangOptions &L) {
9071 return L.CPlusPlus11 &&
9072 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9073}
9074
9075static void DiagnoseNarrowingInInitList(Sema &S,
9076 const ImplicitConversionSequence &ICS,
9077 QualType PreNarrowingType,
9078 QualType EntityType,
9079 const Expr *PostInit) {
9080 const StandardConversionSequence *SCS = nullptr;
9081 switch (ICS.getKind()) {
9082 case ImplicitConversionSequence::StandardConversion:
9083 SCS = &ICS.Standard;
9084 break;
9085 case ImplicitConversionSequence::UserDefinedConversion:
9086 SCS = &ICS.UserDefined.After;
9087 break;
9088 case ImplicitConversionSequence::AmbiguousConversion:
9089 case ImplicitConversionSequence::EllipsisConversion:
9090 case ImplicitConversionSequence::BadConversion:
9091 return;
9092 }
9093
9094 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9095 APValue ConstantValue;
9096 QualType ConstantType;
9097 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9098 ConstantType)) {
9099 case NK_Not_Narrowing:
9100 case NK_Dependent_Narrowing:
9101 // No narrowing occurred.
9102 return;
9103
9104 case NK_Type_Narrowing:
9105 // This was a floating-to-integer conversion, which is always considered a
9106 // narrowing conversion even if the value is a constant and can be
9107 // represented exactly as an integer.
9108 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9109 ? diag::ext_init_list_type_narrowing
9110 : diag::warn_init_list_type_narrowing)
9111 << PostInit->getSourceRange()
9112 << PreNarrowingType.getLocalUnqualifiedType()
9113 << EntityType.getLocalUnqualifiedType();
9114 break;
9115
9116 case NK_Constant_Narrowing:
9117 // A constant value was narrowed.
9118 S.Diag(PostInit->getBeginLoc(),
9119 NarrowingErrs(S.getLangOpts())
9120 ? diag::ext_init_list_constant_narrowing
9121 : diag::warn_init_list_constant_narrowing)
9122 << PostInit->getSourceRange()
9123 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9124 << EntityType.getLocalUnqualifiedType();
9125 break;
9126
9127 case NK_Variable_Narrowing:
9128 // A variable's value may have been narrowed.
9129 S.Diag(PostInit->getBeginLoc(),
9130 NarrowingErrs(S.getLangOpts())
9131 ? diag::ext_init_list_variable_narrowing
9132 : diag::warn_init_list_variable_narrowing)
9133 << PostInit->getSourceRange()
9134 << PreNarrowingType.getLocalUnqualifiedType()
9135 << EntityType.getLocalUnqualifiedType();
9136 break;
9137 }
9138
9139 SmallString<128> StaticCast;
9140 llvm::raw_svector_ostream OS(StaticCast);
9141 OS << "static_cast<";
9142 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9143 // It's important to use the typedef's name if there is one so that the
9144 // fixit doesn't break code using types like int64_t.
9145 //
9146 // FIXME: This will break if the typedef requires qualification. But
9147 // getQualifiedNameAsString() includes non-machine-parsable components.
9148 OS << *TT->getDecl();
9149 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9150 OS << BT->getName(S.getLangOpts());
9151 else {
9152 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
9153 // with a broken cast.
9154 return;
9155 }
9156 OS << ">(";
9157 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9158 << PostInit->getSourceRange()
9159 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9160 << FixItHint::CreateInsertion(
9161 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9162}
9163
9164//===----------------------------------------------------------------------===//
9165// Initialization helper functions
9166//===----------------------------------------------------------------------===//
9167bool
9168Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9169 ExprResult Init) {
9170 if (Init.isInvalid())
9171 return false;
9172
9173 Expr *InitE = Init.get();
9174 assert(InitE && "No initialization expression")((InitE && "No initialization expression") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 9174, __PRETTY_FUNCTION__))
;
9175
9176 InitializationKind Kind =
9177 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9178 InitializationSequence Seq(*this, Entity, Kind, InitE);
9179 return !Seq.Failed();
9180}
9181
9182ExprResult
9183Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9184 SourceLocation EqualLoc,
9185 ExprResult Init,
9186 bool TopLevelOfInitList,
9187 bool AllowExplicit) {
9188 if (Init.isInvalid())
9189 return ExprError();
9190
9191 Expr *InitE = Init.get();
9192 assert(InitE && "No initialization expression?")((InitE && "No initialization expression?") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 9192, __PRETTY_FUNCTION__))
;
9193
9194 if (EqualLoc.isInvalid())
9195 EqualLoc = InitE->getBeginLoc();
9196
9197 InitializationKind Kind = InitializationKind::CreateCopy(
9198 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9199 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9200
9201 // Prevent infinite recursion when performing parameter copy-initialization.
9202 const bool ShouldTrackCopy =
9203 Entity.isParameterKind() && Seq.isConstructorInitialization();
9204 if (ShouldTrackCopy) {
9205 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9206 CurrentParameterCopyTypes.end()) {
9207 Seq.SetOverloadFailure(
9208 InitializationSequence::FK_ConstructorOverloadFailed,
9209 OR_No_Viable_Function);
9210
9211 // Try to give a meaningful diagnostic note for the problematic
9212 // constructor.
9213 const auto LastStep = Seq.step_end() - 1;
9214 assert(LastStep->Kind ==((LastStep->Kind == InitializationSequence::SK_ConstructorInitialization
) ? static_cast<void> (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 9215, __PRETTY_FUNCTION__))
9215 InitializationSequence::SK_ConstructorInitialization)((LastStep->Kind == InitializationSequence::SK_ConstructorInitialization
) ? static_cast<void> (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 9215, __PRETTY_FUNCTION__))
;
9216 const FunctionDecl *Function = LastStep->Function.Function;
9217 auto Candidate =
9218 llvm::find_if(Seq.getFailedCandidateSet(),
9219 [Function](const OverloadCandidate &Candidate) -> bool {
9220 return Candidate.Viable &&
9221 Candidate.Function == Function &&
9222 Candidate.Conversions.size() > 0;
9223 });
9224 if (Candidate != Seq.getFailedCandidateSet().end() &&
9225 Function->getNumParams() > 0) {
9226 Candidate->Viable = false;
9227 Candidate->FailureKind = ovl_fail_bad_conversion;
9228 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9229 InitE,
9230 Function->getParamDecl(0)->getType());
9231 }
9232 }
9233 CurrentParameterCopyTypes.push_back(Entity.getType());
9234 }
9235
9236 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9237
9238 if (ShouldTrackCopy)
9239 CurrentParameterCopyTypes.pop_back();
9240
9241 return Result;
9242}
9243
9244/// Determine whether RD is, or is derived from, a specialization of CTD.
9245static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9246 ClassTemplateDecl *CTD) {
9247 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9248 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9249 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9250 };
9251 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9252}
9253
9254QualType Sema::DeduceTemplateSpecializationFromInitializer(
9255 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9256 const InitializationKind &Kind, MultiExprArg Inits) {
9257 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9258 TSInfo->getType()->getContainedDeducedType());
9259 assert(DeducedTST && "not a deduced template specialization type")((DeducedTST && "not a deduced template specialization type"
) ? static_cast<void> (0) : __assert_fail ("DeducedTST && \"not a deduced template specialization type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaInit.cpp"
, 9259, __PRETTY_FUNCTION__))
;
9260
9261 auto TemplateName = DeducedTST->getTemplateName();
9262 if (TemplateName.isDependent())
9263 return Context.DependentTy;
9264
9265 // We can only perform deduction for class templates.
9266 auto *Template =
9267 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9268 if (!Template) {
9269 Diag(Kind.getLocation(),
9270 diag::err_deduced_non_class_template_specialization_type)
9271 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9272 if (auto *TD = TemplateName.getAsTemplateDecl())
9273 Diag(TD->getLocation(), diag::note_template_decl_here);
9274 return QualType();
9275 }
9276
9277 // Can't deduce from dependent arguments.
9278 if (Expr::hasAnyTypeDependentArguments(Inits)) {
9279 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9280 diag::warn_cxx14_compat_class_template_argument_deduction)
9281 << TSInfo->getTypeLoc().getSourceRange() << 0;
9282 return Context.DependentTy;
9283 }
9284
9285 // FIXME: Perform "exact type" matching first, per CWG discussion?
9286 // Or implement this via an implied 'T(T) -> T' deduction guide?
9287
9288 // FIXME: Do we need/want a std::initializer_list<T> special case?
9289
9290 // Look up deduction guides, including those synthesized from constructors.
9291 //
9292 // C++1z [over.match.class.deduct]p1:
9293 // A set of functions and function templates is formed comprising:
9294 // - For each constructor of the class template designated by the
9295 // template-name, a function template [...]
9296 // - For each deduction-guide, a function or function template [...]
9297 DeclarationNameInfo NameInfo(
9298 Context.DeclarationNames.getCXXDeductionGuideName(Template),
9299 TSInfo->getTypeLoc().getEndLoc());
9300 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9301 LookupQualifiedName(Guides, Template->getDeclContext());
9302
9303 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9304 // clear on this, but they're not found by name so access does not apply.
9305 Guides.suppressDiagnostics();
9306
9307 // Figure out if this is list-initialization.
9308 InitListExpr *ListInit =
9309 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9310 ? dyn_cast<InitListExpr>(Inits[0])
9311 : nullptr;
9312
9313 // C++1z [over.match.class.deduct]p1:
9314 // Initialization and overload resolution are performed as described in
9315 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9316 // (as appropriate for the type of initialization performed) for an object
9317 // of a hypothetical class type, where the selected functions and function
9318 // templates are considered to be the constructors of that class type
9319 //
9320 // Since we know we're initializing a class type of a type unrelated to that
9321 // of the initializer, this reduces to something fairly reasonable.
9322 OverloadCandidateSet Candidates(Kind.getLocation(),
9323 OverloadCandidateSet::CSK_Normal);
9324 OverloadCandidateSet::iterator Best;
9325
9326 bool HasAnyDeductionGuide = false;
9327
9328 auto tryToResolveOverload =
9329 [&](bool OnlyListConstructors) -> OverloadingResult {
9330 Candidates.clear(OverloadCandidateSet::CSK_Normal);
9331 HasAnyDeductionGuide = false;
9332
9333 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9334 NamedDecl *D = (*I)->getUnderlyingDecl();
9335 if (D->isInvalidDecl())
9336 continue;
9337
9338 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9339 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9340 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9341 if (!GD)
9342 continue;
9343
9344 if (!GD->isImplicit())
9345 HasAnyDeductionGuide = true;
9346
9347 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9348 // For copy-initialization, the candidate functions are all the
9349 // converting constructors (12.3.1) of that class.
9350 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9351 // The converting constructors of T are candidate functions.
9352 if (Kind.isCopyInit() && !ListInit) {
9353 // Only consider converting constructors.
9354 if (GD->isExplicit())
9355 continue;
9356
9357 // When looking for a converting constructor, deduction guides that
9358 // could never be called with one argument are not interesting to
9359 // check or note.
9360 if (GD->getMinRequiredArguments() > 1 ||
9361 (GD->getNumParams() == 0 && !GD->isVariadic()))
9362 continue;
9363 }
9364
9365 // C++ [over.match.list]p1.1: (first phase list initialization)
9366 // Initially, the candidate functions are the initializer-list
9367 // constructors of the class T
9368 if (OnlyListConstructors && !isInitListConstructor(GD))
9369 continue;
9370
9371 // C++ [over.match.list]p1.2: (second phase list initialization)
9372 // the candidate functions are all the constructors of the class T
9373 // C++ [over.match.ctor]p1: (all other cases)
9374 // the candidate functions are all the constructors of the class of
9375 // the object being initialized
9376
9377 // C++ [over.best.ics]p4:
9378 // When [...] the constructor [...] is a candidate by
9379 // - [over.match.copy] (in all cases)
9380 // FIXME: The "second phase of [over.match.list] case can also
9381 // theoretically happen here, but it's not clear whether we can
9382 // ever have a parameter of the right type.
9383 bool SuppressUserConversions = Kind.isCopyInit();
9384
9385 if (TD)
9386 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9387 Inits, Candidates,
9388 SuppressUserConversions);
9389 else
9390 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9391 SuppressUserConversions);
9392 }
9393 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9394 };
9395
9396 OverloadingResult Result = OR_No_Viable_Function;
9397
9398 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9399 // try initializer-list constructors.
9400 if (ListInit) {
9401 bool TryListConstructors = true;
9402
9403 // Try list constructors unless the list is empty and the class has one or
9404 // more default constructors, in which case those constructors win.
9405 if (!ListInit->getNumInits()) {
9406 for (NamedDecl *D : Guides) {
9407 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9408 if (FD && FD->getMinRequiredArguments() == 0) {
9409 TryListConstructors = false;
9410 break;
9411 }
9412 }
9413 } else if (ListInit->getNumInits() == 1) {
9414 // C++ [over.match.class.deduct]:
9415 // As an exception, the first phase in [over.match.list] (considering
9416 // initializer-list constructors) is omitted if the initializer list
9417 // consists of a single expression of type cv U, where U is a
9418 // specialization of C or a class derived from a specialization of C.
9419 Expr *E = ListInit->getInit(0);
9420 auto *RD = E->getType()->getAsCXXRecordDecl();
9421 if (!isa<InitListExpr>(E) && RD &&
9422 isCompleteType(Kind.getLocation(), E->getType()) &&
9423 isOrIsDerivedFromSpecializationOf(RD, Template))
9424 TryListConstructors = false;
9425 }
9426
9427 if (TryListConstructors)
9428 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9429 // Then unwrap the initializer list and try again considering all
9430 // constructors.
9431 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9432 }
9433
9434 // If list-initialization fails, or if we're doing any other kind of
9435 // initialization, we (eventually) consider constructors.
9436 if (Result == OR_No_Viable_Function)
9437 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9438
9439 switch (Result) {
9440 case OR_Ambiguous:
9441 Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9442 << TemplateName;
9443 // FIXME: For list-initialization candidates, it'd usually be better to
9444 // list why they were not viable when given the initializer list itself as
9445 // an argument.
9446 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9447 return QualType();
9448
9449 case OR_No_Viable_Function: {
9450 CXXRecordDecl *Primary =
9451 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9452 bool Complete =
9453 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9454 Diag(Kind.getLocation(),
9455 Complete ? diag::err_deduced_class_template_ctor_no_viable
9456 : diag::err_deduced_class_template_incomplete)
9457 << TemplateName << !Guides.empty();
9458 Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9459 return QualType();
9460 }
9461
9462 case OR_Deleted: {
9463 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9464 << TemplateName;
9465 NoteDeletedFunction(Best->Function);
9466 return QualType();
9467 }
9468
9469 case OR_Success:
9470 // C++ [over.match.list]p1:
9471 // In copy-list-initialization, if an explicit constructor is chosen, the
9472 // initialization is ill-formed.
9473 if (Kind.isCopyInit() && ListInit &&
9474 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9475 bool IsDeductionGuide = !Best->Function->isImplicit();
9476 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9477 << TemplateName << IsDeductionGuide;
9478 Diag(Best->Function->getLocation(),
9479 diag::note_explicit_ctor_deduction_guide_here)
9480 << IsDeductionGuide;
9481 return QualType();
9482 }
9483
9484 // Make sure we didn't select an unusable deduction guide, and mark it
9485 // as referenced.
9486 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9487 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9488 break;
9489 }
9490
9491 // C++ [dcl.type.class.deduct]p1:
9492 // The placeholder is replaced by the return type of the function selected
9493 // by overload resolution for class template deduction.
9494 QualType DeducedType =
9495 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9496 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9497 diag::warn_cxx14_compat_class_template_argument_deduction)
9498 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9499
9500 // Warn if CTAD was used on a type that does not have any user-defined
9501 // deduction guides.
9502 if (!HasAnyDeductionGuide) {
9503 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9504 diag::warn_ctad_maybe_unsupported)
9505 << TemplateName;
9506 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9507 }
9508
9509 return DeducedType;
9510}